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ABSTRACT

Learning-to-learn (L2L), defined as progressively faster learning across similar
tasks, is fundamental to both neuroscience and artificial intelligence. However,
its neural basis remains elusive, as most studies emphasize neural population dy-
namics induced by synaptic plasticity while overlooking adaptations driven by in-
trinsic neuronal plasticity, which point-neuron models cannot capture. To address
the above issue, we develop a recurrent spiking neural network with bi-level in-
trinsic plasticity (IP2-RSNN). First, based on task demands, a slow meta-intrinsic
plasticity determines which intrinsic neuronal properties are learnable, which is
preserved throughout subsequent task learning once configured. Second, a fast
intrinsic plasticity fine-tunes those learnable properties within each task. Our re-
sults indicate that the proposed bi-level intrinsic plasticity plays a critical role in
enabling L2L in RSNNs and show that IP2-RSNNs outperform point-neuron re-
current neural networks and self-attention models. Furthermore, our analysis of
multi-scale neural dynamics reveals that the bi-level intrinsic plasticity is essen-
tial to task-type-specific adaptations at both the neuronal and network levels dur-
ing L2L, while such adaptations cannot be captured by point-neuron models. Our
results suggest that intrinsic plasticity provides significant computational advan-
tages in L2L, shedding light on the design of brain-inspired deep learning models
and algorithms.

1 INTRODUCTION

Learning-to-learn (L2L) exhibits a progressive speedup in learning by distilling prior experience and
adapting to novel tasks, and has been widely studied in both neuroscience and artificial intelligence
(AI) (Wang et al.| 2018} |Goudar et al., 2023} |Bellec et al.; 2018} [Finn et al., 2017; Hospedales et al.,
20215 |/Andrychowicz et al.l [2016)). In AI, L2L research predominantly aims to accelerate learning
across tasks by designing explicit meta-objectives (Friedrich & Maziero, 2025} |Andrychowicz et al.}
2016), meta-optimizers (Ravi & Larochelle, 2017 [Finn et al., [2017), or meta-representations (Finn
et al., 2018 [Wang et al.l [2024). In computational neuroscience, L2L studies focus on uncovering
mechanisms, employing dynamical systems analysis to investigate how shared neural representa-
tions and the reorganization of neural dynamics support flexible computation, thereby providing in-
sight into the mechanisms of L2L at the level of population dynamics (Driscoll et al., 2024; (Goudar
et al., 2023; |[Duncker et al., [2020; Dubreuil et al.| 2022} |Remington et al., 2018). Despite that, our
understanding of the neural adaptations induced by intrinsic neuronal plasticity during L2L remains
limited.

The existing computational models of L2L are predominantly based on analog recurrent neural net-
works (RNNs) (Yang et al., [2019; |Driscoll et al., 2024; |Goudar et al., 2023} [Duncker et al.| [2020))
or on neuromodulated RNNs that introduce modulatory signals to enhance flexibility (Costacurta
et al.l 2024). All these approaches belong to point-neuron models, with neuromodulation imple-
mented primarily at the level of synaptic plasticity. In contrast, spiking neural networks (SNNs)
offer greater biological realism, yet their application to L2L has been limited. Notable examples
include LSNNs with adaptive neurons (Bellec et al., [2018) and vanilla RSNNs applied to multi-
task learning (Pugavko et al) |2023)). However, these SNN models have not fully exploited the rich
repertoire of intrinsic plasticity mechanisms of biological neurons.
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Figure 1: A schematic illustration of the recurrent spiking neural network with bi-level intrinsic
plasticity (IP2-RSNN), the learning-to-learn (L2L) paradigm, and the task families. (A) IP2-RSNN
incorporates meta-intrinsic plasticity and intrinsic plasticity to regulate intrinsic neuronal properties.
Three intrinsic properties are considered in our work: dendritic time constant, somatic time con-
stant, and firing threshold. (B) The L2L paradigm consists of two loops: the outer loop implements
meta-intrinsic plasticity, and the inner loop applies intrinsic plasticity during the sequential learn-
ing of tasks from the task family 7. (C) We evaluate four task families: delayed match-to-sample
(DMS), context-dependent DMS (CD-DMS), and two go/no-go delayed recall tasks (GNG-DR-2,
GNG-DR-4). These tasks fall into two categories: choice tasks (DMS, CD-DMS), which require
stimulus—decision mapping; and repeat tasks (GNG-DR-2, GNG-DR-4), which require delayed sig-
nal recall.
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To address these challenges, this work makes the following contributions.

» We introduce a recurrent spiking neural network with bi-level intrinsic plasticity (IP2-
RSNN). This model combines a slow meta-intrinsic plasticity mechanism, which deter-
mines the learnability of different intrinsic neuronal properties and preserves this con-
figuration across sequential task learning, with a fast intrinsic plasticity mechanism that
fine-tunes those learnable properties within each task. By leveraging this bi-level intrinsic
plasticity, we are able to investigate the neural adaptations induced by intrinsic neuronal
plasticity.

We demonstrate the necessity of bi-level intrinsic plasticity for enabling L2L in RSNNs.
Moreover, IP2-RSNNs achieve superior performance compared to four point-neuron artifi-
cial neural networks (ANNs), namely one RNN and three simplified self-attention models.

Our analysis of multi-scale neural dynamics reveals that bi-level intrinsic plasticity is a key
factor enabling RSNNSs to adapt in a task-type-specific manner at both the neuronal and
network levels during L2L. Such adaptation does not emerge in point-neuron ANNS.

2 MODEL

2.1 TIP2-RSNN

Our IP2-RSNN includes three intrinsic properties (Fig. ): dendritic time constants P, which
regulate dendritic integration by adaptively weighting short-term and long-term signals (Zheng et al.,
2024} Branco & Hiusser, 2010; Magee, 2000; Zenke et al., |2017); somatic time constants P, ,
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which support memory maintenance by adjusting the decay rate of the membrane potential (Zheng
et al.} 2024; Hasselmol [2006); and firing thresholds Py, which support complex tasks by controlling
neuronal firing to form complex decision boundaries (Bellec et al.,|2018};|Daoudal & Debanne, 2003;
Titley et al.| 2017} Triesch, [2004). The detailed neuronal model can be found in the Appendix @

The meta-intrinsic plasticity in IP2-RSNN configures the learnability of these properties (Fig. ):

P=-m @ Ppleamable | (1 _ m) o) Pﬁxed7 (1)
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where m(7) = [m; mso ms] is the learning mask based on the demands of the task family

T; m1 € {0,1} indicates whether dynamic integration is required in 7, mg € {0, 1} speci-
fies the need for high- ﬁdellty temporal memory, and mg € {0,1} denotes the demand for com-

plex decision-making. P = {P,,, P, Py} denotes the configured properties, and Pleamable —

{Pledmdble Pled.rndble Pledrndble} and Pﬁxeci {Pg‘l—zed’ Pﬁ):ed Pﬁxed} are the candidate propertles

The intrinsic plasticity in IP2-RSNN fine-tunes the learnable properties during task learning

(Fig. 2A):

where 7 is the learning rate and L is the task-specific loss function. For fixed properties, their
gradients are zero, so only learnable properties are updated. The task loss function £ comprises four
components:

L= LBase + /\hﬁh + )\inlcin + )\recl:rec + AOUPCOUU (4)
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where L, is the base term measuring the discrepancy between the ground truth and the model
prediction; Wi,, Wi, and W, are the input, recurrent, and output weight matrices (their corre-
sponding regularization terms are L, L., and Loy ); and Ly, is a homeostatic term on hidden-state
dynamics to stabilize learning. Here, A\p, Ain, Arec, and Aoy are hyperparameters controlling the
weight of each loss term. H denotes the number of hidden units; hj denotes the activation of the
hidden unit A; and ai is the target mean squared activation, initially set to zero. When the model
transitions to a new task, it is updated based on the hidden-unit activity from the previous task.

(&)

2.2 L2L PARADIGM AND TASKS

The L2L paradigm includes two loops (Fig.[2B): the outer loop implements meta-intrinsic plasticity
(Eq.[1) and produces the configured properties P. This configuration is preserved in the inner loop;
the inner loop implements intrinsic plasticity (Eq. [3) and updates the model during the sequential
learning of tasks. It serves to verify whether bi-level intrinsic plasticity enables learning-to-learn to
arise purely from the natural dynamics of learning. Updates to P; and the model parameters W ; are
driven by the training loss £ for task 7; from the task family 7" (Eq.[d). We set the number of tasks
within each task family to 1000 in order to fully observe the speedup trend and the neural dynamics
during L2L.

To comprehensively characterize and compare neural dynamics during L2L, we adopt four task
families (Fig. 2IC; Appendix from neuroscience experiments: delayed match-to-sample (DMS)
(Britten et al., [1992), context-dependent delayed match-to-sample (CD-DMS) (Mante et al., |2013)),
and two go/no-go delayed recall task sets (GNG-DR-2 and GNG-DR-4) (Funahashi et al., |[1989;
Mendoza-Halliday & Martinez-Trujillo, 2017). Tasks in these families all comprise three consec-
utive periods: stimulus (500 ms), delay (1000 ms), and response (500 ms). DMS and CD-DMS
require mapping high-dimensional stimuli to binary decisions after a delay, with CD-DMS adding
contextual complexity. GNG-DR-2 and GNG-DR-4 require stimulus reproduction after a delay, with
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Figure 2: Effects of bi-level intrinsic plasticity and disentangled role of the meta-intrinsic plasticity
and intrinsic plasticity. (A) L2L performance comparison between IP2-RSNN and RSNN across four
task families, evaluated by three quantitative indicators: failure count, adaptation speed, and final
efficiency. (B) Roles of meta-intrinsic plasticity and intrinsic plasticity in IP2-RSNN disentangled
by randomizing the learning mask m. (C) Comparison of low-dimensional representations among
IP2-RSNN, vanilla RSNN, and RSNN variants with randomized m, obtained from the delay period
across all DMS tasks using principal component analysis (PCA).

GNG-DR-4 further increasing input dimensionality relative to GNG-DR-2. Based on the underlying
task rules, the four task families fall into two categories: choice tasks (decision making) and repeat
tasks (reproduction).

All tasks above involve multidimensional temporal stimuli, thereby requiring dynamic input inte-
gration (m; = 1 in all cases). Compared to DMS and GNG-DR-2, CD-DMS and GNG-DR-4 place
higher demands on decision-making complexity (m3 = 1), whereas GNG-DR-2 and GNG-DR-4
additionally require higher temporal fidelity of memory (my = 1). Thus, the learning masks and the
corresponding configured properties of these four task families are specified as follows:

m(DMS) = [1,0,0], m(CD-DMS) = [1,0,1],

6
m(GNG-DR-2) = [1,1,0], m(GNG-DR-4) = [1,1, 1]. ©
PDMS — {]_:)Lf_:afl;\rnable7 Pgi_i(ed’ nged}’ PCD—DMS — {Pl:;mable’ Plj_):ed, Pg:arnable}, (7)

s learnable learnable fixed » learnable learnable learnable
PonGpr2 = {PTd ) PTS ) P@ }a PgnGpr4 = {P'rd ’ P’Ts ) PG }

3 RESULTS

3.1 BI-LEVEL INTRINSIC PLASTICITY IS ESSENTIAL FOR LEARNING-TO-LEARN

To examine whether bi-level intrinsic plasticity facilitates learning-to-learn, we compare the pro-
posed IP2-RSNN with a standard RSNN across four task families (Fig. . We evaluate L2L perfor-
mance using three metrics: (i) failure count, the number of tasks within a family on which the model
fails to converge; (ii) adaptation speed, the number of iterations required for task 7; to reach a prede-
fined convergence threshold; and (iii) final efficiency, the average adaptation speed over the last 50,
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Figure 3: L2L performance comparison between IP2-RSNN and four artificial neural networks
(ANNS5s), including a standard recurrent neural network (RNN) and three Transformer-based models
(Vaswani et al.| 2017), with one, two, or four attention heads (Self-Attn H1, H2, H4). (A) Compar-
ison of failure counts across four task families. (B) Comparison of final efficiency across four task
families.

100, 150, and 200 tasks. IP2-RSNN incurs no failures in any task family, whereas the RSNN exhibits
substantial failures (Fig. ). For adaptation speed, IP2-RSNN decreases consistently with the task
index across all families, indicating that the network acquires L2L during sequential exposure; by
contrast, the RSNN shows no such a decreasing trend (Fig. ). Finally, IP?2-RSNN achieves much
better final efficiency than the RSNN (Fig. [2JA). These results demonstrate that bi-level intrinsic
plasticity is essential for enabling learning-to-learn in RSNNs.

To test whether both levels of intrinsic plasticity are necessary, we conduct ablation studies and dis-
entangle their roles by randomizing the learning mask m (Fig. 2B). We probe the contribution of
meta-intrinsic plasticity by comparing low-dimensional delay-period activity across all DMS tasks
between IP2-RSNN and RSNNs with randomized m. Randomizing m markedly increases both the
variance and the median step size, indicating that meta-intrinsic plasticity enhances representational
consistency and thereby facilitates L2L (Fig. 2IC). To isolate the contribution of intrinsic plastic-
ity, we compare the vanilla RSNN with RSNNs using randomized m. Compared to the vanilla
RSNN, most random masks yield a lower variance and a smaller median step size; however, for
the specific mask m = [0, 1, 1], the performance degrades. This suggests that intrinsic plasticity
improves L2L by providing an additional tuning pathway beyond synaptic plasticity. Note, how-
ever, that amplifying plasticity along irrelevant dimensions can be detrimental (Fig. 2IC). Overall,
IP2-RSNN produces the most compact state space, followed by most RSNNs with random m, then
standard RSNNs, with RSNNs using maladaptive masks performing worst (Fig. 2IC). The L2L per-
formance on four task families further supports this ranking (Fig. [ST). These results indicate that
meta-intrinsic plasticity and intrinsic plasticity act synergistically to regulate intrinsic properties and
enable learning-to-learn.

3.2 TP2-RSNN ACHIEVES SUPERIOR PERFORMANCE COMPARED WITH ANNS

We compare IP2-RSNN with a set of ANNSs, including a standard RNN and three Transformer-
based models (Vaswani et al., 2017) with one, two, or four attention heads (Self-Attn H1, H2,
H4), to demonstrate the competitive performance of IP2-RSNN in L2L. Notably, none of the ANN
models are able to successfully complete all sequential tasks across the four task families, whereas
IP2-RSNN achieves full task completion (Fig. ). Moreover, in the DMS, GNG-DR-2, and GNG-
DR-4 task families, IP2-RSNN exhibits a comparable adaptation speed to that of the best-performing
ANN models (Fig. ). In the CD-DMS task family, the adaptation trend of IP?2-RSNN is slightly
worse than Self-Attn H2; however, the IP2-RSNN completes all 1000 sequential tasks, whereas Self-
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Figure 4: Analysis of neuron-level adaptation in IP2-RSNN. (A) Method to capture functional roles
of neurons. Neurons are first grouped based on their intrinsic property values, and functional
roles are probed by silencing neurons within each group. The impact is assessed by examining
subsequent-task learning iterations and current-task execution loss of the damaged IP2-RSNN. (B)
Evolution of P, during L2L in four task families, and effects of damage on next-task iterations and
current-task loss for neuron groups stratified by P, ranges. (C) Evolution of P, during L2L in the
two repeat task families, and effects of damage on next-task iterations and current-task loss for neu-
ron groups stratified by P, ranges. (D) Evolution of Py during L2L in CD-DMS and GNG-DR-4,
and effects of damage on next-task iterations and current-task loss for neuron groups stratified by
Py ranges.

Attn H2 fails on two (Fig. ). These results indicate that IP2-RSNN achieves better performance
than ANN models.

3.3 NEURONAL-LEVEL ADAPTATION IN IP2-RSNN

Based on bi-level intrinsic plasticity, the intrinsic properties of IP2-RSNN can evolve dynamically
during L2L. Thus, we group neurons based on their intrinsic property values and examine the group
functional roles by damaging the corresponding group in IP>-RSNN and testing the damaged IP?-
RSNN’s subsequent-task learning iterations and current-task execution loss (Fig. @JA). In this work,
intrinsic property values of IP2-RSNN are extracted from the penultimate training task (task index
= 999) in each task family, because the intrinsic property evolution trend is stable on this task.
Moreover, intrinsic property values are normalized and divided into ten equal ranges. Neurons
falling in the same intrinsic property range represent a neuronal group. This design parallels lesion
analysis in biological systems, enabling inference of functional roles for distinct neuronal subgroups

(Vaidya et al}, [2019).
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Figure 5: Analysis of the network level adaptation in IP2-RSNN across four task families. (A) Dy-
namics of membrane potentials and their correlations. Membrane potentials are examined because
they capture both subthreshold fluctuations and near-threshold states that are not reflected in spikes.
(B) Trends in modularity, community count, and stationarity plotted against iterations.

We first examine the evolution of neuronal intrinsic properties during L2L (Fig. @B). For dendritic
time constants P,,, we observe a consistent shift in the distribution across all four task families:
initially concentrated near 1, the distribution gradually becomes bimodal, with emerging peaks near
0 and 1. Furthermore, task-family comparisons reveal that P, cp.oms and P, gnG.pr-4 €xhibit
stronger shifts toward shorter time constants than P, pms and P, gn-pr-2, suggesting that more
complex task inputs drive more extreme reductions in dendritic integration windows. For somatic
time constants P, , we find a similar but slightly more pronounced trend in the GNG-DR-2 and
GNG-DR-4 task families: the dominant peak shifts from around 1 toward 0. This indicates that
neurons progressively adopt shorter somatic integration times, enabling fast, high-resolution pro-
cessing that is critical for accurate memory recall. Consistent with the dendritic parameters, tasks
with a heavier memory burden also induce stronger reductions in P, , reinforcing the role of so-
matic time constants. For firing thresholds Py, the overall distribution gradually broadens and shifts
toward higher values. This adjustment facilitates threshold diversity, contributing to the refinement
of decision boundaries.

We then analyze damage effects (Fig. [{]B) across different intrinsic properties. For P, derived
damage, both the next-task iterations and the current-task loss exhibit prominent peaks in the 0-0.1
range across all four task families, indicating that neuron groups with small P, values play critical
roles in both task execution and L2L capability. Comparing repeat tasks (GNG-DR-2 and GNG-
DR-4) with choice tasks (DMS and CD-DMS), we observe that neurons in repeat tasks exhibit an
extremely clear functional division: only two functional roles emerge, including a dominant mixed
group in the 0-0.1 range and a redundant group elsewhere. By contrast, choice tasks show more
complex functional differentiation. For P, derived damage, the influence on current-task loss is
stronger than on next-task iterations, 1ndlcat1ng that P based groups mainly contribute to task
processing. Consistent with P, repeat tasks still exhibit a clear functional segregation. Finally, for
Py derived damage, current-task loss peaks in smaller bin ranges across the CD-DMS and GNG-
DR-4 task families. In CD-DMS, next-task iterations peak around the 0.5-0.6 range. By contrast, in
GNG-DR-4, firing thresholds have limited influence on next-task iterations.
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Figure 6: Relationship between IP2-RSNN modularity and L2L adaptation speed. (A) Relation-
ships between three modularity metrics (modularity, number of communities, and stationarity) and
adaptation speed in IP2-RSNN across four task families. For each metric, the 1000 tasks are sorted
in ascending order of their metric values and split at the median into lower 50% and upper 50%
groups. Thus adaptation speed distributions can be compared between the two groups. (B) Rela-
tionships between three modularity metrics (modularity, number of communities, and stationarity)
and adaptation speed in Self-Attn H2 across four task families. Self-Attn H2 is shown because it
performs best among the three attention-based ANN models.

The damage results show that task families in the same category exhibit more similar functional role
patterns in IP2-RSNN.

3.4 NETWORK-LEVEL ADAPTATION IN IP2-RSNN

We first investigate the dynamics, correlations, and distributional evolution of membrane potentials
during L2L in IP2-RSNN (Fig. , Fig. . Across all task families, the mean membrane potential
gradually decreases, while its variance steadily increases, indicating that overall activation patterns
become sparser and more differentiated (Fig. [5]A). For membrane potential correlations, the mean
values remain positive and relatively stable, while the correlation variance is large, suggesting that
some neural subpopulations work in coordination whereas others operate independently (Fig. 5A).
Compared with repeat tasks (GNG-DR-2 and GNG-DR-4), choice tasks (DMS and CD-DMS) show
more negative mean potentials but higher mean correlations, reaching around 0.25, whereas repeat
tasks remain only slightly above zero (Fig. [5JA). These results reflect task-type-specific adaptation
of membrane potentials in IP>-RSNN.

Neurophysiological studies suggest that functional modularity is a hallmark of flexible and efficient
neural computation, enabling the brain to reorganize subnetworks to meet task demands (Bassett &
Sporns, 2017; |Shine et al., [2016). We therefore investigate the modularity dynamics of IP°-RSNN
during L2L. We first examine the trends of modularity, the number of communities, and stationarity
(Fig. [3B) and visualize the evolution of the modular allegiance matrix during L2L across the four
task families (Fig.[S3). In the choice tasks (DMS and CD-DMS), modularity first increases with
fluctuations and then gradually declines, indicating that the network initially forms distinct modules
to meet task demands but later dissolves boundaries to enhance integration and support L2L. Consis-
tently, the number of communities decreases while stationarity increases, suggesting that modules
are reused and their functional roles become more stable. By contrast, in the repeat tasks (GNG-
DR-2 and GNG-DR-4), modularity decreases, the number of communities increases, and stationarity
declines. This reorganization reflects the demands of high-fidelity memory, requiring detailed infor-
mation to be distributed across multiple subpopulations. Accordingly, the network weakens modular



Under review as a conference paper at ICLR 2026

boundaries to improve inter-community coordination, forms more small specialized communities,
and maintains flexible, dynamically reconfigurable functional roles.

We then analyze the relationship between three modularity metrics and L2L adaptation speed. For
each metric, we sort the 1000 tasks in ascending order of their values and split them at the median
into lower 50% and upper 50% groups. We then compare adaptation speed distributions between
the two groups to assess how each modularity metric relates to L2L efficiency. In the choice tasks
(DMS and CD-DMS), modularity is negatively correlated with the number of iterations required, in-
dicating that stronger modular organization facilitates more efficient L2L (Fig.[6]A). By contrast, the
number of communities is positively correlated with the number of iterations required, suggesting
that overly fine-grained community partitioning may hinder L2L capability (Fig.[fJA). Stationarity is
also negatively correlated with the number of iterations, implying that more stable functional roles
of modules support improved learning efficiency (Fig.[6]A). By contrast, these relationships reverse
in the repeat tasks (GNG-DR-2 and GNG-DR-4): higher modularity, lower community number, and
higher stationarity are all associated with more iterations (Fig. [6A). These results show that mod-
ularity of IP2-RSNN adapts in a task-type-specific manner in L2L. Notably, ANNs such as RNNs
and Self-Attn H2 cannot capture this (Fig.[6B, Fig.[S4).

4 RELATED WORK

A growing body of behavioral, fMRI, and computational work suggests that the prefrontal cortex
(PFC) can function as a meta-reinforcement learner. Under dopaminergic training signals, the PFC
acquires an internal learning loop that supports rapid cross-task adaptation, i.e., learning to learn
(Wang et al., 2018}, Eichenbaum et al., 2020j |Stokes et al., 2013} Miller & Cohen, 2001). Causal
evidence also implicates the orbitofrontal cortex (OFC) in meta-learning. In mice, reversal learning
generalizes across contexts with progressively faster reinforcement learning, and disrupting OFC
function, either via inhibition or by blocking CaMKII-dependent synaptic plasticity, abolishes this
L2L effect (Hattori et al.,|2023)). In addition, the PFC together with the hippocampus (HPC) and me-
dial temporal lobe (MTL) supports abstract, task-agnostic strategies and relational representations
that provide a substrate for rapid transfer and flexible generalization across contexts (Behrens et al.,
2018; Stachenfeld et al., [2017)). Despite this evidence, the neural mechanisms underlying L2L at
the microscopic level of intrinsic and synaptic plasticity remain unclear, owing to the difficulty of
performing multi-scale biological experiments. Computational modeling therefore offers a powerful
framework to probe these mechanisms.

Computational studies of L2L. mechanisms have largely focused on how circuits reconfigure across
tasks and reuse low-dimensional subspaces and population dynamics. However, these studies typ-
ically examine flexibility under task-specific training objectives rather than directly demonstrating
progressive speedup without an explicit meta-objective (Driscoll et al., 2024; |Goudar et al.| [2023;
Duncker et al.l 20205 [Dubreuil et al., 2022} Remington et al.l 2018)). Work explicitly addressing
such meta-objective-free progressive speedup is limited. The first demonstration, to our knowledge,
is|Goudar et al.| (2023, which showed that during L2L an RNN can form and reuse low-dimensional
manifolds to accelerate learning, but this analysis is confined to the population level and does not
probe cellular mechanisms. In this study, we show that standard training in IP2-RSNNs naturally
gives rise to L2L, and we provide a cellular-level account of the phenomenon, thereby filling the gap
between circuit-level dynamics and neuron-level mechanisms.

5 CONCLUSION

We propose IP2-RSNN, which integrates bi-level intrinsic plasticity: meta-intrinsic plasticity con-
figures the learnability of intrinsic neuronal properties, while intrinsic plasticity fine-tunes those
properties during task learning. We show that bi-level intrinsic plasticity is essential for L2L in
RSNNSs and that its two components act synergistically to regulate intrinsic properties. We further
find that IP2-RSNNs outperform point-neuron ANNSs. Analyses of multi-scale neural dynamics fur-
ther reveal that bi-level intrinsic plasticity enables RSNNs to adapt in a task-type-specific manner at
both the neuronal and network levels during L2L. Such adaptations do not emerge in point-neuron
ANNSs. These findings highlight the computational advantages of brain-inspired models and inform
the design of more efficient neural architectures.
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A APPENDIX A

A.1 DETAILED NEURAL MODEL IN [P2-RSNN

The membrane potential dynamics of spiking neurons in IP2-RSNNss are defined as:
V() = Pr V(= 1)+ (1= Pr) (Winzia(t) + WeeeSnen(t = 1) + N (1)), ®)

where Wi, and W, are the input and recurrent weight matrices, P, is the decay factor parameter
associated with the somatic time constant, i, (¢) denotes the input at time step ¢, Spem (t — 1) is the
membrane state from the previous step, and N (¢) is a noise term updated as:

N(t + 1) = (]- - anoise)N(t) + vV 20noise Anoise N(07 1)» )

with ayeise the noise decay constant, Apgise the noise amplitude, and A(0, 1) standard Gaussian
noise. When dendritic integration is taken into account, the membrane potential then evolves as:

Vi) =P.,Vt-1)+(1-P,)
(Z PTd,dVd(t - ]-) + (]- - PTd,d)(Win,dwin(t) + erec,dSmem(tL - 1))) + N(t), (10)
d

where d indexes dendritic branches, and P, 4 is the decay factor parameter of dendritic compart-
ment d. A spike is emitted when the membrane potential crosses a threshold Py:

Sepike () = {(1) iﬁf&ibp"’ (1
Upon spiking, the membrane potential is reset to Viese. Membrane state evolves as:
Smem(t) = @Smem(t — 1) + (1 — @) Sgpike (t — 1), (12)
where « controls the temporal smoothing of spiking activity. The network output is given by:
Y (£) = WouSmen(?), (13)

with W, denoting output weights.

A.2 DETAILED TASK DESCRIPTION

We consider four task families. The DMS family (Britten et al.| |1992) follows the configuration
in |Goudar et al.|(2023). Each task comprises two input trials, xj, 1 and i, 2, both spanning three
periods: stimulus (500 ms), delay (1000 ms), and response (500 ms). During the stimulus period,
the input contains a 10-dimensional stimulus signal and a 1-dimensional fixation signal. During the
delay period, only the fixation signal is maintained. During the response period, both signals are
set to zero. The corresponding target trials, y; and yo, preserve the fixation signal during stimulus
and delay, and switch to a categorical label encoding stimulus identity in the response period. The
CD-DMS family (Mante et al., 2013) extends the DMS family by introducing a binary context cue
during the stimulus period. When the cue is 0, the stimulus-response mapping is identical to the
DMS; when the cue is 1, the mapping is reversed. Each task therefore contains four input-target
trial pairs. Two GNG-DR families (Funahashi et al., [1989; Mendoza-Halliday & Martinez-Trujillo}
2017) require the model to either reproduce the input stimulus (go) or suppress the output near zero
(no-go) during the response period. Two variants are used: GNG-DR-2 with two-dimensional inputs
and GNG-DR-4 with four-dimensional inputs. Each task in the task families has input stimuli that
are randomly generated and different.

Based on underlying task rules, the four task families fall into two categories. The choice tasks
(DMS and CD-DMS) require mapping high-dimensional stimuli to binary decisions, with CD-DMS
adding contextual complexity. The repeat tasks (GNG-DR-2 and GNG-DR-4) require stimulus re-
production after a delay, with GNG-DR-4 further increasing input dimensionality relative to GNG-
DR-2.
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Table 1: Parameter configuration in this study. RSNNs in this table include IP2-RSNN, vanilla
RSNN, and RSNNs with randomized m. Moreover, 5; and (35 denote the decay rates of the first
and second moments in the Adam optimizer (Adam et al., 2014).

Task and L2L Configuration

DMS CD-DMS GNG-DR-2 GNG-DR-4
Sample/Fixation Dimension 10/1 11/1 2/1 4/1
Response/Fixation Dimension 2/1 2/1 2/1 4/1
Stimulus/Delay/Response Duration (ms) 500/1000/500
Task Number of Each Family 1000
Maximum Iterations per Task 5000
Minimum Iterations per Task 50
Consecutive Failure for L2L Early Stopping 3
Convergence Loss Threshold 0.005 (DMS, CD-DMS, GNG-DR-2) / 0.006 (GNG-DR-4)
Training Configuration
Optimizer Adam
Learning Rate (All ANNs/All RSNNs) 0.0001 /0.01
531 (All ANNs/All RSNNs) 0.3/0.1
B2 (All ANNs/All RSNNs) 0.999/0.3
Lpase CE Loss (DMS, CD-DMS) / MSE Loss (GNG-DR-2, GNG-DR-4)
Anr (All ANNs/All RSNNs) 0.0005 /0.0005
Ain (RNN/AIl RSNNs) 0.001 /0.001
Arec (RNN/AIl RSNN5s) 0.0001 /0.0001
Aout (RNN/AII RSNNs) 0.00001 /0.1
Model Configuration
Hidden Neuron (RNN/AIl RSNNs) 256 /256
Token (Self-Attn H1/Self-Attn H2/Self-Attn H4) 256 /128 / 64
o (RNN/AII RSNNs) 0.01/0.01
Qtnoise (RNN/AIl RSNNss) 0.5/0.5
Apoise (RNN/AI RSNN5s) 0.05/0.05

A.3 TRAINING SETUP

The parameter configuration in this study is shown in Table When P, is learnable in IP%-
RSNN and RSNNs with randomized m, each neuron is assigned two dendritic branches with sparse
connectivity, following the setup described in Zheng et al.| (2024).

A.4 STRUCTURAL MODULARITY ANALYSIS

Structural modularity analysis involves decomposing a system into subsystems based on structural
relationships. We assess modular organization using three key metrics: modularity, number of com-
munities, and modular stationarity, and follow the configuration described in work (Gu et al.}[2024)).

Modularity ) quantifies the modular organization of the functional connectivity network and is
defined as:

1 kiki
Q= % Z |:Fijl -m szj Oir + 0i;Cjir | 0(Gits gjr), (14)

ijlr
here, ¢ and j index neurons, [ and r denote temporal layers (sliding windows over hidden-layer
activity). Fjj; is the adjacency (e.g., Pearson correlation) between nodes ¢ and j in layer [. +;
controls resolution. k; = Y ; Fiji is the degree of node i in layer I, and m; = %le Fij is
the total edge weight. C;,. denotes the inter-layer coupling strength linking node j across layers [
and 7, encouraging temporal continuity in community assignments. ¢;, and J;; are Kronecker delta
functions, and g;; denotes the community label of node ¢ in layer [. The modularity () is maximized
to identify optimal communities across all time layers.

Community number quantifies the granularity of modular decomposition, with larger values indicat-
ing more fragmented network structures. For temporal layer /, the community number C; is defined
as the number of distinct community labels assigned across all nodes:

Ol:|{gll|Z:1a7n}‘7 (152)
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Figure S1: Comparison of L2L failure counts and final task efficiency among IP2-RSNN, vanilla
RSNNs, and RSNNs with randomized variations of m across four task families.

where | - | denotes the cardinality of the set, and n is the total number of nodes. The overall commu-
nity number C' is then defined as the average across all L temporal layers:

L

_ 1
C:El;a. (15b)

Stationarity quantifies the temporal consistency of community structures. For a given community c,
its stationarity (. is defined as:

Le—1
1

T 2 con(Ven Vers1), (162)
¢ =1

Cc:

where v, ; is the membership indicator vector for community c at time window [, and L. is the
number of time windows in which community c is detected. The overall stationarity .S is computed
as the average across all detected communities C:

_ 1
S = 4 > ¢ (16b)

ceC

Higher values of S indicate more stable modular structures over time.

A.5 LLM USAGE

A large language model was used solely for grammar checking and minor phrasing suggestions for
the manuscript text. The LLM did not contribute to research ideation, experimental design, model
implementation, data generation, analysis, or results. All technical content, equations, figures, and
code were created and verified by the authors.
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