

000 IP²-RSNN: BI-LEVEL INTRINSIC PLASTICITY EN- 001 ABLES LEARNING-TO-LEARN IN RECURRENT SPIKING 002 NEURAL NETWORKS 003

004 **Anonymous authors**
 005

006 Paper under double-blind review
 007

009 ABSTRACT 010

011 Learning-to-learn (L2L), defined as progressively faster learning across similar
 012 tasks, is fundamental to both neuroscience and artificial intelligence. However,
 013 its neural basis remains elusive, as most studies emphasize neural population dy-
 014 namics induced by synaptic plasticity while overlooking adaptations driven by in-
 015trinsic neuronal plasticity, which point-neuron models cannot capture. To address
 016 the above issue, we develop a recurrent spiking neural network with bi-level in-
 017trinsic plasticity (IP²-RSNN). First, based on task demands, a slow meta-intrinsic
 018 plasticity determines which intrinsic neuronal properties are learnable, which is
 019 preserved throughout subsequent task learning once configured. Second, a fast
 020 intrinsic plasticity fine-tunes those learnable properties within each task. Our
 021 results indicate that the proposed bi-level intrinsic plasticity plays a critical role in
 022 enabling L2L in RSNNs and show that IP²-RSNNs outperform point-neuron re-
 023 current neural networks and self-attention models. Furthermore, our analysis of
 024 multi-scale neural dynamics reveals that the bi-level intrinsic plasticity is essen-
 025 tial to task-type-specific adaptations at both the neuronal and network levels dur-
 026 ing L2L, while such adaptations cannot be captured by point-neuron models. Our
 027 results suggest that intrinsic plasticity provides significant computational advan-
 028 tages in L2L, shedding light on the design of brain-inspired deep learning models
 029 and algorithms.
 030

031 1 INTRODUCTION 032

033 Learning-to-learn (L2L) exhibits a progressive speedup in learning by distilling prior experience and
 034 adapting to novel tasks, and has been widely studied in both neuroscience and artificial intelligence
 035 (AI) (Wang et al., 2018; Goudar et al., 2023; Bellec et al., 2018; Finn et al., 2017; Hospedales et al.,
 036 2021; Andrychowicz et al., 2016). In AI, L2L research predominantly aims to accelerate learning
 037 across tasks by designing explicit meta-objectives (Friedrich & Maziero, 2025; Andrychowicz et al.,
 038 2016), meta-optimizers (Ravi & Larochelle, 2017; Finn et al., 2017), or meta-representations (Finn
 039 et al., 2018; Wang et al., 2024). In computational neuroscience, L2L studies focus on uncovering
 040 mechanisms, employing dynamical systems analysis to investigate how shared neural representa-
 041 tions and the reorganization of neural dynamics support flexible computation, thereby providing in-
 042 sight into the mechanisms of L2L at the level of population dynamics (Driscoll et al., 2024; Goudar
 043 et al., 2023; Duncker et al., 2020; Dubreuil et al., 2022; Remington et al., 2018). Despite that, our
 044 understanding of the neural adaptations induced by intrinsic neuronal plasticity during L2L remains
 045 limited.

046 The existing computational models of L2L are predominantly based on analog recurrent neural net-
 047 works (RNNs) (Yang et al., 2019; Driscoll et al., 2024; Goudar et al., 2023; Duncker et al., 2020)
 048 or on neuromodulated RNNs that introduce modulatory signals to enhance flexibility (Costacurta
 049 et al., 2024). All these approaches belong to point-neuron models, with neuromodulation imple-
 050 mented primarily at the level of synaptic plasticity. In contrast, spiking neural networks (SNNs)
 051 offer greater biological realism, yet their application to L2L has been limited. Notable examples
 052 include LSNNs with adaptive neurons (Bellec et al., 2018) and vanilla RSNNs applied to multi-
 053 task learning (Pugavko et al., 2023). However, these SNN models have not fully exploited the rich
 repertoire of intrinsic plasticity mechanisms of biological neurons.

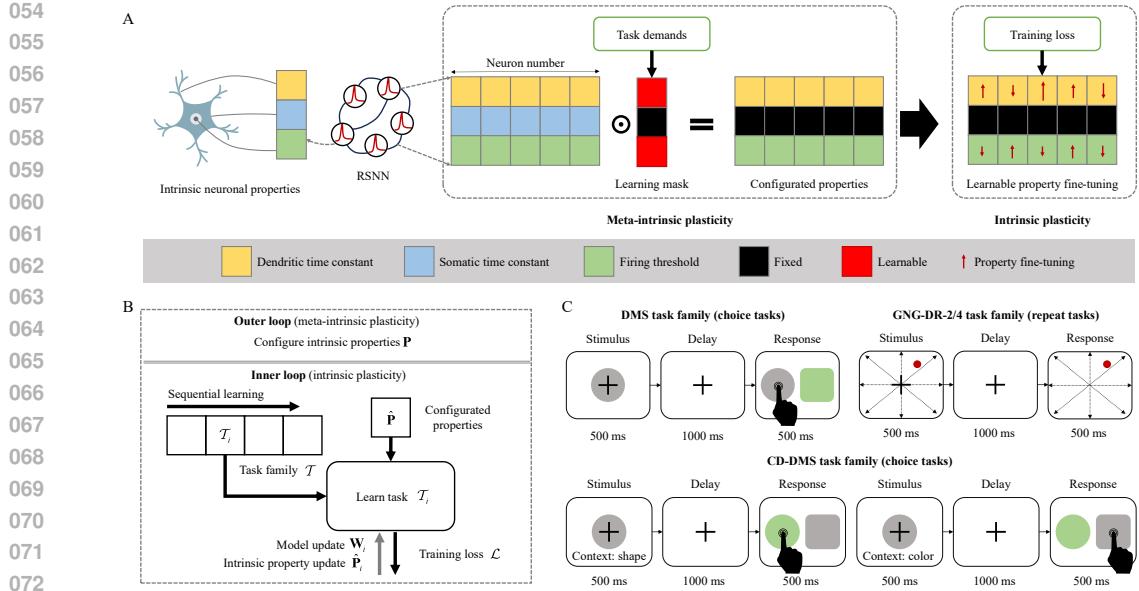


Figure 1: A schematic illustration of the recurrent spiking neural network with bi-level intrinsic plasticity (IP²-RSNN), the learning-to-learn (L2L) paradigm, and the task families. (A) IP²-RSNN incorporates meta-intrinsic plasticity and intrinsic plasticity to regulate intrinsic neuronal properties. Three intrinsic properties are considered in our work: dendritic time constant, somatic time constant, and firing threshold. (B) The L2L paradigm consists of two loops: the outer loop implements meta-intrinsic plasticity, and the inner loop applies intrinsic plasticity during the sequential learning of tasks from the task family \mathcal{T} . (C) We evaluate four task families: delayed match-to-sample (DMS), context-dependent DMS (CD-DMS), and two go/no-go delayed recall tasks (GNG-DR-2, GNG-DR-4). These tasks fall into two categories: choice tasks (DMS, CD-DMS), which require stimulus–decision mapping; and repeat tasks (GNG-DR-2, GNG-DR-4), which require delayed signal recall.

To address these challenges, this work makes the following contributions.

- We introduce a recurrent spiking neural network with bi-level intrinsic plasticity (IP²-RSNN). This model combines a slow meta-intrinsic plasticity mechanism, which determines the learnability of different intrinsic neuronal properties and preserves this configuration across sequential task learning, with a fast intrinsic plasticity mechanism that fine-tunes those learnable properties within each task. By leveraging this bi-level intrinsic plasticity, we are able to investigate the neural adaptations induced by intrinsic neuronal plasticity.
- We demonstrate the necessity of bi-level intrinsic plasticity for enabling L2L in RSNNs. Moreover, IP²-RSNNs achieve superior performance compared to four point-neuron artificial neural networks (ANNs), namely one RNN and three simplified self-attention models.
- Our analysis of multi-scale neural dynamics reveals that bi-level intrinsic plasticity is a key factor enabling RSNNs to adapt in a task-type-specific manner at both the neuronal and network levels during L2L. Such adaptation does not emerge in point-neuron ANNs.

2 MODEL

2.1 IP²-RSNN

Our IP²-RSNN includes three intrinsic properties (Fig. 2A): dendritic time constants \mathbf{P}_{τ_d} , which regulate dendritic integration by adaptively weighting short-term and long-term signals (Zheng et al., 2024; Branco & Häusser, 2010; Magee, 2000; Zenke et al., 2017); somatic time constants \mathbf{P}_{τ_s} ,

108 which support memory maintenance by adjusting the decay rate of the membrane potential (Zheng
 109 et al., 2024; Hasselmo, 2006); and firing thresholds \mathbf{P}_θ , which support complex tasks by controlling
 110 neuronal firing to form complex decision boundaries (Bellec et al., 2018; Daoudal & Debanne, 2003;
 111 Titley et al., 2017; Triesch, 2004). The detailed neuronal model can be found in the Appendix A.1.
 112

113 The meta-intrinsic plasticity in IP²-RSNN configures the learnability of these properties (Fig. 2A):

$$\hat{\mathbf{P}} = \mathbf{m} \odot \mathbf{P}^{\text{learnable}} + (1 - \mathbf{m}) \odot \mathbf{P}^{\text{fixed}}, \quad (1)$$

$$\begin{aligned} \hat{\mathbf{P}}_{\tau_d} &= m_1 \cdot \mathbf{P}_{\tau_d}^{\text{learnable}} + (1 - m_1) \cdot \mathbf{P}_{\tau_d}^{\text{fixed}}, \\ \hat{\mathbf{P}}_{\tau_s} &= m_2 \cdot \mathbf{P}_{\tau_s}^{\text{learnable}} + (1 - m_2) \cdot \mathbf{P}_{\tau_s}^{\text{fixed}}, \\ \hat{\mathbf{P}}_\theta &= m_3 \cdot \mathbf{P}_\theta^{\text{learnable}} + (1 - m_3) \cdot \mathbf{P}_\theta^{\text{fixed}}, \end{aligned} \quad (2)$$

120 where $\mathbf{m}(\mathcal{T}) = [m_1 \ m_2 \ m_3]$ is the learning mask based on the demands of the task family
 121 \mathcal{T} ; $m_1 \in \{0, 1\}$ indicates whether dynamic integration is required in \mathcal{T} , $m_2 \in \{0, 1\}$ specifies
 122 the need for high-fidelity temporal memory, and $m_3 \in \{0, 1\}$ denotes the demand for complex
 123 decision-making. $\hat{\mathbf{P}} = \{\hat{\mathbf{P}}_{\tau_d}, \hat{\mathbf{P}}_{\tau_s}, \hat{\mathbf{P}}_\theta\}$ denotes the configured properties, and $\mathbf{P}^{\text{learnable}} =$
 124 $\{\mathbf{P}_{\tau_d}^{\text{learnable}}, \mathbf{P}_{\tau_s}^{\text{learnable}}, \mathbf{P}_\theta^{\text{learnable}}\}$ and $\mathbf{P}^{\text{fixed}} = \{\mathbf{P}_{\tau_d}^{\text{fixed}}, \mathbf{P}_{\tau_s}^{\text{fixed}}, \mathbf{P}_\theta^{\text{fixed}}\}$ are the candidate properties.

125 The intrinsic plasticity in IP²-RSNN fine-tunes the learnable properties during task learning
 126 (Fig. 2A):

$$\hat{\mathbf{P}}_i \leftarrow \hat{\mathbf{P}}_i - \eta \odot \nabla_{\hat{\mathbf{P}}_i} \mathcal{L}, \quad (3)$$

127 where η is the learning rate and \mathcal{L} is the task-specific loss function. For fixed properties, their
 128 gradients are zero, so only learnable properties are updated. The task loss function \mathcal{L} comprises four
 129 components:

$$\mathcal{L} = \mathcal{L}_{\text{Base}} + \lambda_h \mathcal{L}_h + \lambda_{\text{in}} \mathcal{L}_{\text{in}} + \lambda_{\text{rec}} \mathcal{L}_{\text{rec}} + \lambda_{\text{out}} \mathcal{L}_{\text{out}}, \quad (4)$$

$$\begin{aligned} \mathcal{L}_h &= \left| \frac{1}{H} \sum_{h=1}^H h_h^2 - \sigma_h^2 \right|, & \mathcal{L}_{\text{in}} &= \frac{1}{|\mathbf{W}_{\text{in}}|} \sum_{i,j} \mathbf{W}_{\text{in},ij}^2, \\ \mathcal{L}_{\text{rec}} &= \frac{1}{|\mathbf{W}_{\text{rec}}|} \sum_{i,j} \mathbf{W}_{\text{rec},ij}^2, & \mathcal{L}_{\text{out}} &= \frac{1}{|\mathbf{W}_{\text{out}}|} \sum_{i,j} \mathbf{W}_{\text{out},ij}^2, \end{aligned} \quad (5)$$

131 where $\mathcal{L}_{\text{Base}}$ is the base term measuring the discrepancy between the ground truth and the model
 132 prediction; \mathbf{W}_{in} , \mathbf{W}_{rec} , and \mathbf{W}_{out} are the input, recurrent, and output weight matrices (their corre-
 133 sponding regularization terms are \mathcal{L}_{in} , \mathcal{L}_{rec} , and \mathcal{L}_{out}); and \mathcal{L}_h is a homeostatic term on hidden-state
 134 dynamics to stabilize learning. Here, λ_h , λ_{in} , λ_{rec} , and λ_{out} are hyperparameters controlling the
 135 weight of each loss term. H denotes the number of hidden units; h_h denotes the activation of the
 136 hidden unit h ; and σ_h^2 is the target mean squared activation, initially set to zero. When the model
 137 transitions to a new task, it is updated based on the hidden-unit activity from the previous task.

145 2.2 L2L PARADIGM AND TASKS

146 The L2L paradigm includes two loops (Fig. 2B): the outer loop implements meta-intrinsic plasticity
 147 (Eq. 1) and produces the configured properties $\hat{\mathbf{P}}$. This configuration is preserved in the inner loop;
 148 the inner loop implements intrinsic plasticity (Eq. 3) and updates the model during the sequential
 149 learning of tasks. It serves to verify whether bi-level intrinsic plasticity enables learning-to-learn to
 150 arise purely from the natural dynamics of learning. Updates to $\hat{\mathbf{P}}_i$ and the model parameters \mathbf{W}_i are
 151 driven by the training loss \mathcal{L} for task \mathcal{T}_i from the task family \mathcal{T} (Eq. 4). We set the number of tasks
 152 within each task family to 1000 in order to fully observe the speedup trend and the neural dynamics
 153 during L2L.

154 To comprehensively characterize and compare neural dynamics during L2L, we adopt four task
 155 families (Fig. 2C; Appendix A.2) from neuroscience experiments: delayed match-to-sample (DMS)
 156 (Britten et al., 1992), context-dependent delayed match-to-sample (CD-DMS) (Mante et al., 2013),
 157 and two go/no-go delayed recall task sets (GNG-DR-2 and GNG-DR-4) (Funahashi et al., 1989;
 158 Mendoza-Halliday & Martinez-Trujillo, 2017). Tasks in these families all comprise three consec-
 159 utive periods: stimulus (500 ms), delay (1000 ms), and response (500 ms). DMS and CD-DMS
 160 require mapping high-dimensional stimuli to binary decisions after a delay, with CD-DMS adding
 161 contextual complexity. GNG-DR-2 and GNG-DR-4 require stimulus reproduction after a delay, with

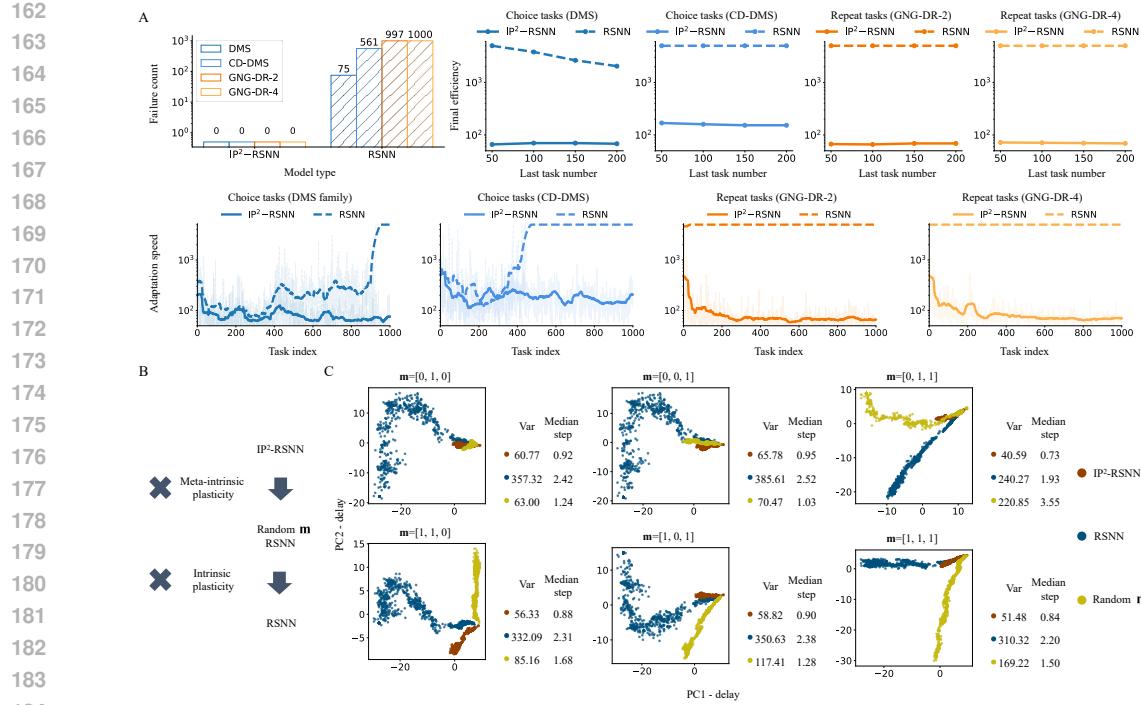


Figure 2: Effects of bi-level intrinsic plasticity and disentangled role of the meta-intrinsic plasticity and intrinsic plasticity. (A) L2L performance comparison between IP²-RSNN and RSNN across four task families, evaluated by three quantitative indicators: failure count, adaptation speed, and final efficiency. (B) Roles of meta-intrinsic plasticity and intrinsic plasticity in IP²-RSNN disentangled by randomizing the learning mask m . (C) Comparison of low-dimensional representations among IP²-RSNN, vanilla RSNN, and RSNN variants with randomized m , obtained from the delay period across all DMS tasks using principal component analysis (PCA).

GNG-DR-4 further increasing input dimensionality relative to GNG-DR-2. Based on the underlying task rules, the four task families fall into two categories: choice tasks (decision making) and repeat tasks (reproduction).

All tasks above involve multidimensional temporal stimuli, thereby requiring dynamic input integration ($m_1 = 1$ in all cases). Compared to DMS and GNG-DR-2, CD-DMS and GNG-DR-4 place higher demands on decision-making complexity ($m_3 = 1$), whereas GNG-DR-2 and GNG-DR-4 additionally require higher temporal fidelity of memory ($m_2 = 1$). Thus, the learning masks and the corresponding configured properties of these four task families are specified as follows:

$$\begin{aligned} \mathbf{m}(\text{DMS}) &= [1, 0, 0], & \mathbf{m}(\text{CD-DMS}) &= [1, 0, 1], \\ \mathbf{m}(\text{GNG-DR-2}) &= [1, 1, 0], & \mathbf{m}(\text{GNG-DR-4}) &= [1, 1, 1]. \end{aligned} \quad (6)$$

$$\begin{aligned} \hat{\mathbf{P}}_{\text{DMS}} &= \{\mathbf{P}_{\tau_d}^{\text{learnable}}, \mathbf{P}_{\tau_s}^{\text{fixed}}, \mathbf{P}_{\theta}^{\text{fixed}}\}, & \hat{\mathbf{P}}_{\text{CD-DMS}} &= \{\mathbf{P}_{\tau_d}^{\text{learnable}}, \mathbf{P}_{\tau_s}^{\text{fixed}}, \mathbf{P}_{\theta}^{\text{learnable}}\}, \\ \hat{\mathbf{P}}_{\text{GNG-DR-2}} &= \{\mathbf{P}_{\tau_d}^{\text{learnable}}, \mathbf{P}_{\tau_s}^{\text{learnable}}, \mathbf{P}_{\theta}^{\text{fixed}}\}, & \hat{\mathbf{P}}_{\text{GNG-DR-4}} &= \{\mathbf{P}_{\tau_d}^{\text{learnable}}, \mathbf{P}_{\tau_s}^{\text{learnable}}, \mathbf{P}_{\theta}^{\text{learnable}}\}. \end{aligned} \quad (7)$$

3 RESULTS

3.1 BI-LEVEL INTRINSIC PLASTICITY IS ESSENTIAL FOR LEARNING-TO-LEARN

To examine whether bi-level intrinsic plasticity facilitates learning-to-learn, we compare the proposed IP²-RSNN with a standard RSNN across four task families (Fig. 2). We evaluate L2L performance using three metrics: (i) failure count, the number of tasks within a family on which the model fails to converge; (ii) adaptation speed, the number of iterations required for task T_i to reach a predefined convergence threshold; and (iii) final efficiency, the average adaptation speed over the last 50,

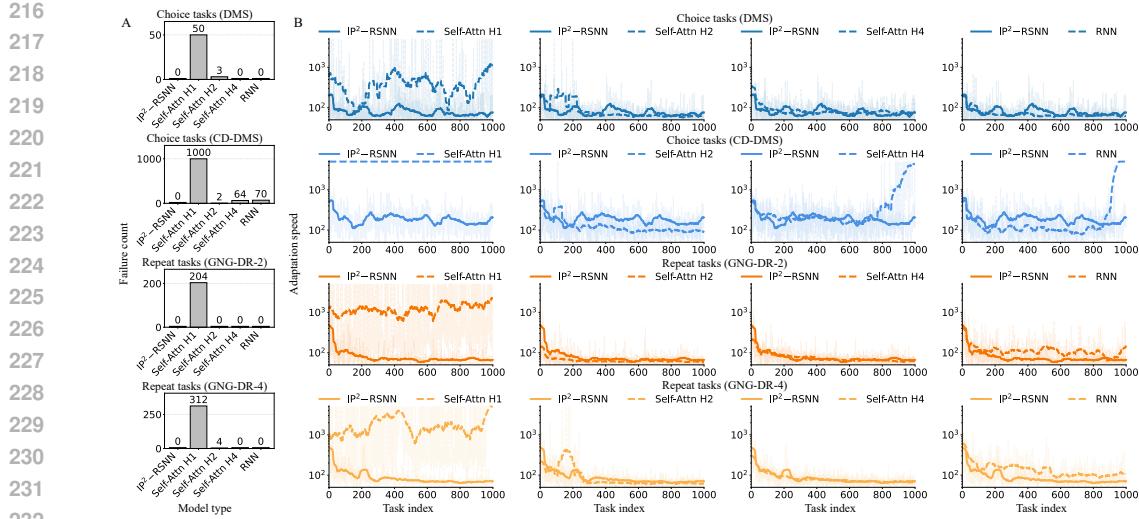


Figure 3: L2L performance comparison between IP²-RSNN and four artificial neural networks (ANNs), including a standard recurrent neural network (RNN) and three Transformer-based models (Vaswani et al., 2017), with one, two, or four attention heads (Self-Attn H1, H2, H4). (A) Comparison of failure counts across four task families. (B) Comparison of final efficiency across four task families.

100, 150, and 200 tasks. IP²-RSNN incurs no failures in any task family, whereas the RSNN exhibits substantial failures (Fig. 2A). For adaptation speed, IP²-RSNN decreases consistently with the task index across all families, indicating that the network acquires L2L during sequential exposure; by contrast, the RSNN shows no such a decreasing trend (Fig. 2A). Finally, IP²-RSNN achieves much better final efficiency than the RSNN (Fig. 2A). These results demonstrate that bi-level intrinsic plasticity is essential for enabling learning-to-learn in RSNNs.

To test whether both levels of intrinsic plasticity are necessary, we conduct ablation studies and disentangle their roles by randomizing the learning mask \mathbf{m} (Fig. 2B). We probe the contribution of meta-intrinsic plasticity by comparing low-dimensional delay-period activity across all DMS tasks between IP²-RSNN and RSNNs with randomized \mathbf{m} . Randomizing \mathbf{m} markedly increases both the variance and the median step size, indicating that meta-intrinsic plasticity enhances representational consistency and thereby facilitates L2L (Fig. 2C). To isolate the contribution of intrinsic plasticity, we compare the vanilla RSNN with RSNNs using randomized \mathbf{m} . Compared to the vanilla RSNN, most random masks yield a lower variance and a smaller median step size; however, for the specific mask $\mathbf{m} = [0, 1, 1]$, the performance degrades. This suggests that intrinsic plasticity improves L2L by providing an additional tuning pathway beyond synaptic plasticity. Note, however, that amplifying plasticity along irrelevant dimensions can be detrimental (Fig. 2C). Overall, IP²-RSNN produces the most compact state space, followed by most RSNNs with random \mathbf{m} , then standard RSNNs, with RSNNs using maladaptive masks performing worst (Fig. 2C). The L2L performance on four task families further supports this ranking (Fig. S1). These results indicate that meta-intrinsic plasticity and intrinsic plasticity act synergistically to regulate intrinsic properties and enable learning-to-learn.

3.2 IP²-RSNN ACHIEVES SUPERIOR PERFORMANCE COMPARED WITH ANNS

We compare IP²-RSNN with a set of ANNs, including a standard RNN and three Transformer-based models (Vaswani et al., 2017) with one, two, or four attention heads (Self-Attn H1, H2, H4), to demonstrate the competitive performance of IP²-RSNN in L2L. Notably, none of the ANN models are able to successfully complete all sequential tasks across the four task families, whereas IP²-RSNN achieves full task completion (Fig. 3A). Moreover, in the DMS, GNG-DR-2, and GNG-DR-4 task families, IP²-RSNN exhibits a comparable adaptation speed to that of the best-performing ANN models (Fig. 3B). In the CD-DMS task family, the adaptation trend of IP²-RSNN is slightly worse than Self-Attn H2; however, the IP²-RSNN completes all 1000 sequential tasks, whereas Self-

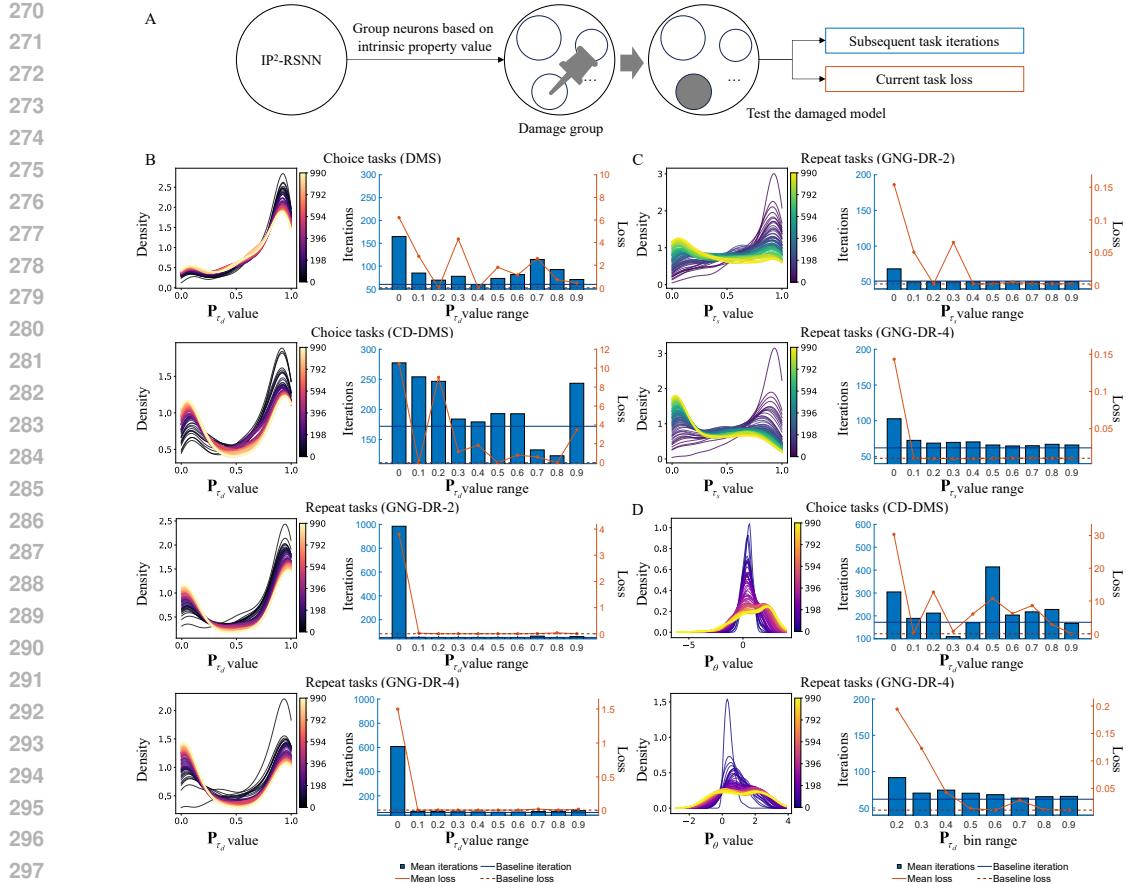


Figure 4: Analysis of neuron-level adaptation in IP²-RSNN. (A) Method to capture functional roles of neurons. Neurons are first grouped based on their intrinsic property values, and functional roles are probed by silencing neurons within each group. The impact is assessed by examining subsequent-task learning iterations and current-task execution loss of the damaged IP²-RSNN. (B) Evolution of P_{τ_d} during L2L in four task families, and effects of damage on next-task iterations and current-task loss for neuron groups stratified by P_{τ_d} ranges. (C) Evolution of P_{τ_s} during L2L in the two repeat task families, and effects of damage on next-task iterations and current-task loss for neuron groups stratified by P_{τ_s} ranges. (D) Evolution of P_{θ} during L2L in CD-DMS and GNG-DR-4, and effects of damage on next-task iterations and current-task loss for neuron groups stratified by P_{θ} ranges.

Attn H2 fails on two (Fig. 3A). These results indicate that IP²-RSNN achieves better performance than ANN models.

3.3 NEURONAL-LEVEL ADAPTATION IN IP²-RSNN

Based on bi-level intrinsic plasticity, the intrinsic properties of IP²-RSNN can evolve dynamically during L2L. Thus, we group neurons based on their intrinsic property values and examine the group functional roles by damaging the corresponding group in IP²-RSNN and testing the damaged IP²-RSNN's subsequent-task learning iterations and current-task execution loss (Fig. 4A). In this work, intrinsic property values of IP²-RSNN are extracted from the penultimate training task (task index = 999) in each task family, because the intrinsic property evolution trend is stable on this task. Moreover, intrinsic property values are normalized and divided into ten equal ranges. Neurons falling in the same intrinsic property range represent a neuronal group. This design parallels lesion analysis in biological systems, enabling inference of functional roles for distinct neuronal subgroups (Vaidya et al., 2019).

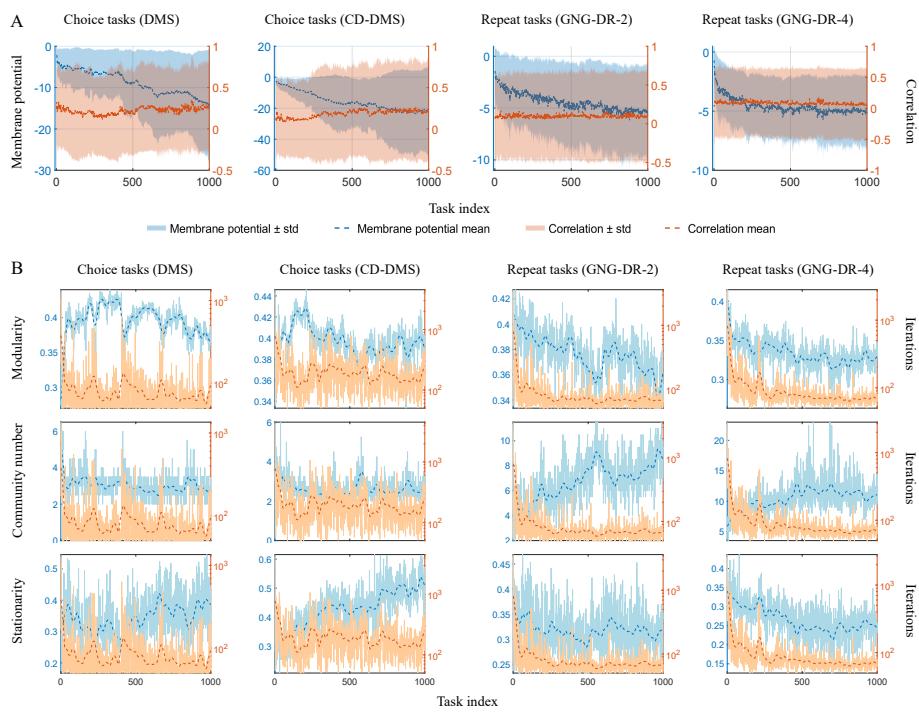


Figure 5: Analysis of the network level adaptation in IP²-RSNN across four task families. (A) Dynamics of membrane potentials and their correlations. Membrane potentials are examined because they capture both subthreshold fluctuations and near-threshold states that are not reflected in spikes. (B) Trends in modularity, community count, and stationarity plotted against iterations.

We first examine the evolution of neuronal intrinsic properties during L2L (Fig. 4B). For dendritic time constants P_{τ_d} , we observe a consistent shift in the distribution across all four task families: initially concentrated near 1, the distribution gradually becomes bimodal, with emerging peaks near 0 and 1. Furthermore, task-family comparisons reveal that $P_{\tau_d,CD\text{-}DMS}$ and $P_{\tau_d,GNG\text{-}DR\text{-}4}$ exhibit stronger shifts toward shorter time constants than $P_{\tau_d,DMS}$ and $P_{\tau_d,GNG\text{-}DR\text{-}2}$, suggesting that more complex task inputs drive more extreme reductions in dendritic integration windows. For somatic time constants P_{τ_s} , we find a similar but slightly more pronounced trend in the GNG-DR-2 and GNG-DR-4 task families: the dominant peak shifts from around 1 toward 0. This indicates that neurons progressively adopt shorter somatic integration times, enabling fast, high-resolution processing that is critical for accurate memory recall. Consistent with the dendritic parameters, tasks with a heavier memory burden also induce stronger reductions in P_{τ_s} , reinforcing the role of somatic time constants. For firing thresholds P_θ , the overall distribution gradually broadens and shifts toward higher values. This adjustment facilitates threshold diversity, contributing to the refinement of decision boundaries.

We then analyze damage effects (Fig. 4B) across different intrinsic properties. For P_{τ_d} derived damage, both the next-task iterations and the current-task loss exhibit prominent peaks in the 0-0.1 range across all four task families, indicating that neuron groups with small P_{τ_d} values play critical roles in both task execution and L2L capability. Comparing repeat tasks (GNG-DR-2 and GNG-DR-4) with choice tasks (DMS and CD-DMS), we observe that neurons in repeat tasks exhibit an extremely clear functional division: only two functional roles emerge, including a dominant mixed group in the 0-0.1 range and a redundant group elsewhere. By contrast, choice tasks show more complex functional differentiation. For P_{τ_s} derived damage, the influence on current-task loss is stronger than on next-task iterations, indicating that P_{τ_s} based groups mainly contribute to task processing. Consistent with P_{τ_d} , repeat tasks still exhibit a clear functional segregation. Finally, for P_θ derived damage, current-task loss peaks in smaller bin ranges across the CD-DMS and GNG-DR-4 task families. In CD-DMS, next-task iterations peak around the 0.5-0.6 range. By contrast, in GNG-DR-4, firing thresholds have limited influence on next-task iterations.

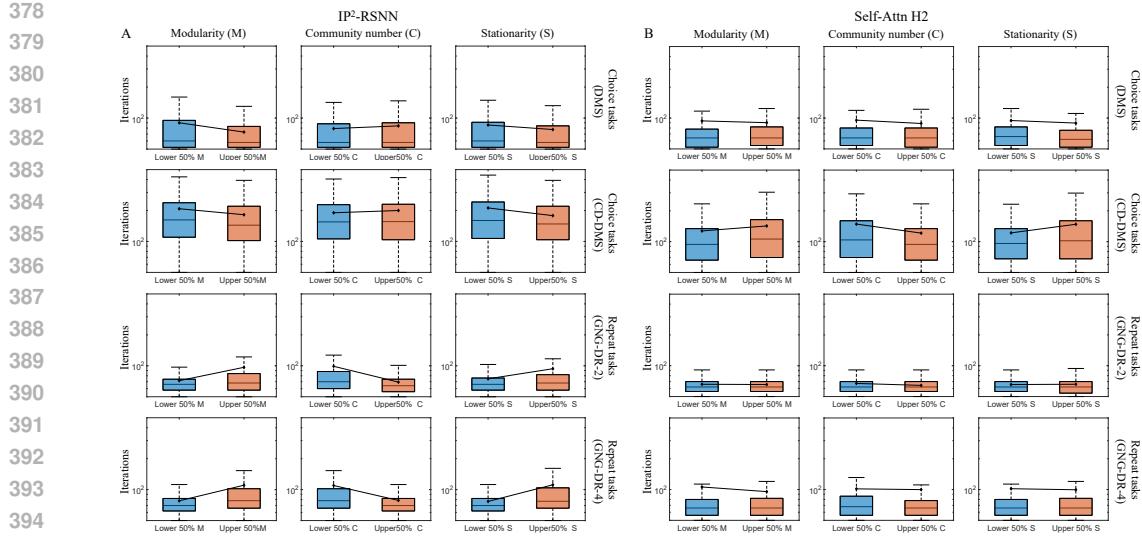


Figure 6: Relationship between IP²-RSNN modularity and L2L adaptation speed. (A) Relationships between three modularity metrics (modularity, number of communities, and stationarity) and adaptation speed in IP²-RSNN across four task families. For each metric, the 1000 tasks are sorted in ascending order of their metric values and split at the median into lower 50% and upper 50% groups. Thus adaptation speed distributions can be compared between the two groups. (B) Relationships between three modularity metrics (modularity, number of communities, and stationarity) and adaptation speed in Self-Attn H2 across four task families. Self-Attn H2 is shown because it performs best among the three attention-based ANN models.

The damage results show that task families in the same category exhibit more similar functional role patterns in IP²-RSNN.

3.4 NETWORK-LEVEL ADAPTATION IN IP²-RSNN

We first investigate the dynamics, correlations, and distributional evolution of membrane potentials during L2L in IP²-RSNN (Fig. 5A, Fig. S2). Across all task families, the mean membrane potential gradually decreases, while its variance steadily increases, indicating that overall activation patterns become sparser and more differentiated (Fig. 5A). For membrane potential correlations, the mean values remain positive and relatively stable, while the correlation variance is large, suggesting that some neural subpopulations work in coordination whereas others operate independently (Fig. 5A). Compared with repeat tasks (GNG-DR-2 and GNG-DR-4), choice tasks (DMS and CD-DMS) show more negative mean potentials but higher mean correlations, reaching around 0.25, whereas repeat tasks remain only slightly above zero (Fig. 5A). These results reflect task-type-specific adaptation of membrane potentials in IP²-RSNN.

Neurophysiological studies suggest that functional modularity is a hallmark of flexible and efficient neural computation, enabling the brain to reorganize subnetworks to meet task demands (Bassett & Sporns, 2017; Shine et al., 2016). We therefore investigate the modularity dynamics of IP²-RSNN during L2L. We first examine the trends of modularity, the number of communities, and stationarity (Fig. 5B) and visualize the evolution of the modular allegiance matrix during L2L across the four task families (Fig. S3). In the choice tasks (DMS and CD-DMS), modularity first increases with fluctuations and then gradually declines, indicating that the network initially forms distinct modules to meet task demands but later dissolves boundaries to enhance integration and support L2L. Consistently, the number of communities decreases while stationarity increases, suggesting that modules are reused and their functional roles become more stable. By contrast, in the repeat tasks (GNG-DR-2 and GNG-DR-4), modularity decreases, the number of communities increases, and stationarity declines. This reorganization reflects the demands of high-fidelity memory, requiring detailed information to be distributed across multiple subpopulations. Accordingly, the network weakens modular

432 boundaries to improve inter-community coordination, forms more small specialized communities,
 433 and maintains flexible, dynamically reconfigurable functional roles.

434
 435 We then analyze the relationship between three modularity metrics and L2L adaptation speed. For
 436 each metric, we sort the 1000 tasks in ascending order of their values and split them at the median
 437 into lower 50% and upper 50% groups. We then compare adaptation speed distributions between
 438 the two groups to assess how each modularity metric relates to L2L efficiency. In the choice tasks
 439 (DMS and CD-DMS), modularity is negatively correlated with the number of iterations required, in-
 440 dicating that stronger modular organization facilitates more efficient L2L (Fig. 6A). By contrast, the
 441 number of communities is positively correlated with the number of iterations required, suggesting
 442 that overly fine-grained community partitioning may hinder L2L capability (Fig. 6A). Stationarity is
 443 also negatively correlated with the number of iterations, implying that more stable functional roles
 444 of modules support improved learning efficiency (Fig. 6A). By contrast, these relationships reverse
 445 in the repeat tasks (GNG-DR-2 and GNG-DR-4): higher modularity, lower community number, and
 446 higher stationarity are all associated with more iterations (Fig. 6A). These results show that mod-
 447 ularity of IP²-RSNN adapts in a task-type-specific manner in L2L. Notably, ANNs such as RNNs
 448 and Self-Attn H2 cannot capture this (Fig. 6B, Fig. S4).

449 4 RELATED WORK

450
 451 A growing body of behavioral, fMRI, and computational work suggests that the prefrontal cortex
 452 (PFC) can function as a meta-reinforcement learner. Under dopaminergic training signals, the PFC
 453 acquires an internal learning loop that supports rapid cross-task adaptation, i.e., learning to learn
 454 (Wang et al., 2018; Eichenbaum et al., 2020; Stokes et al., 2013; Miller & Cohen, 2001). Causal
 455 evidence also implicates the orbitofrontal cortex (OFC) in meta-learning. In mice, reversal learning
 456 generalizes across contexts with progressively faster reinforcement learning, and disrupting OFC
 457 function, either via inhibition or by blocking CaMKII-dependent synaptic plasticity, abolishes this
 458 L2L effect (Hattori et al., 2023). In addition, the PFC together with the hippocampus (HPC) and me-
 459 dial temporal lobe (MTL) supports abstract, task-agnostic strategies and relational representations
 460 that provide a substrate for rapid transfer and flexible generalization across contexts (Behrens et al.,
 461 2018; Stachenfeld et al., 2017). Despite this evidence, the neural mechanisms underlying L2L at
 462 the microscopic level of intrinsic and synaptic plasticity remain unclear, owing to the difficulty of
 463 performing multi-scale biological experiments. Computational modeling therefore offers a powerful
 464 framework to probe these mechanisms.

465 Computational studies of L2L mechanisms have largely focused on how circuits reconfigure across
 466 tasks and reuse low-dimensional subspaces and population dynamics. However, these studies typ-
 467 ically examine flexibility under task-specific training objectives rather than directly demonstrating
 468 progressive speedup without an explicit meta-objective (Driscoll et al., 2024; Goudar et al., 2023;
 469 Duncker et al., 2020; Dubreuil et al., 2022; Remington et al., 2018). Work explicitly addressing
 470 such meta-objective-free progressive speedup is limited. The first demonstration, to our knowledge,
 471 is Goudar et al. (2023), which showed that during L2L an RNN can form and reuse low-dimensional
 472 manifolds to accelerate learning, but this analysis is confined to the population level and does not
 473 probe cellular mechanisms. In this study, we show that standard training in IP²-RSNNs naturally
 474 gives rise to L2L, and we provide a cellular-level account of the phenomenon, thereby filling the gap
 475 between circuit-level dynamics and neuron-level mechanisms.

476 5 CONCLUSION

477 We propose IP²-RSNN, which integrates bi-level intrinsic plasticity: meta-intrinsic plasticity con-
 478 figures the learnability of intrinsic neuronal properties, while intrinsic plasticity fine-tunes those
 479 properties during task learning. We show that bi-level intrinsic plasticity is essential for L2L in
 480 RSNNs and that its two components act synergistically to regulate intrinsic properties. We further
 481 find that IP²-RSNNs outperform point-neuron ANNs. Analyses of multi-scale neural dynamics fur-
 482 ther reveal that bi-level intrinsic plasticity enables RSNNs to adapt in a task-type-specific manner at
 483 both the neuronal and network levels during L2L. Such adaptations do not emerge in point-neuron
 484 ANNs. These findings highlight the computational advantages of brain-inspired models and inform
 485 the design of more efficient neural architectures.

486 6 ETHICS STATEMENT
487488 This submission does not present any ethical concerns.
489490 7 REPRODUCIBILITY STATEMENT
491493 We will upload a source code ZIP in the supplementary material. A public GitHub repository will
494 be released upon acceptance.
495496 REFERENCES
497498 Kingma DP, Ba J, Adam et al. A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
499 1412(6), 2014.500 Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
501 Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
502 descent. *Advances in neural information processing systems*, 29, 2016.503 Danielle S Bassett and Olaf Sporns. Network neuroscience. *Nature neuroscience*, 20(3):353–364,
504 2017.506 Timothy EJ Behrens, Timothy H Muller, James CR Whittington, Shirley Mark, Alon B Baram,
507 Kimberly L Stachenfeld, and Zeb Kurth-Nelson. What is a cognitive map? organizing knowledge
508 for flexible behavior. *Neuron*, 100(2):490–509, 2018.510 Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
511 short-term memory and learning-to-learn in networks of spiking neurons. *Advances in neural
512 information processing systems*, 31, 2018.513 Tiago Branco and Michael Häusser. The single dendritic branch as a fundamental functional unit in
514 the nervous system. *Current opinion in neurobiology*, 20(4):494–502, 2010.516 Kenneth H Britten, Michael N Shadlen, William T Newsome, and J Anthony Movshon. The anal-
517 ysis of visual motion: a comparison of neuronal and psychophysical performance. *Journal of
518 Neuroscience*, 12(12):4745–4765, 1992.519 Julia Costacurta, Shaunak Bhandarkar, David Zoltowski, and Scott Linderman. Structured flexibility
520 in recurrent neural networks via neuromodulation. *Advances in Neural Information Processing
521 Systems*, 37:1954–1972, 2024.523 Gaël Daoudal and Dominique Debanne. Long-term plasticity of intrinsic excitability: learning rules
524 and mechanisms. *Learning & memory*, 10(6):456–465, 2003.525 Laura N Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in recurrent
526 networks utilizes shared dynamical motifs. *Nature Neuroscience*, 27(7):1349–1363, 2024.528 Alexis Dubreuil, Adrian Valente, Manuel Beiran, Francesca Mastrogiovanni, and Srdjan Ostojic.
529 The role of population structure in computations through neural dynamics. *Nature neuroscience*,
530 25(6):783–794, 2022.531 Lea Duncker, Laura Driscoll, Krishna V Shenoy, Maneesh Sahani, and David Sussillo. Organizing
532 recurrent network dynamics by task-computation to enable continual learning. *Advances in neural
533 information processing systems*, 33:14387–14397, 2020.535 Adam Eichenbaum, Jason M Scimeca, and Mark D’Esposito. Dissociable neural systems support
536 the learning and transfer of hierarchical control structure. *Journal of Neuroscience*, 40(34):6624–
537 6637, 2020.538 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
539 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

540 Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. *Advances*
 541 *in neural information processing systems*, 31, 2018.

542

543 Lucas Friedrich and Jonas Maziero. Learning to learn with an evolutionary strategy applied to
 544 variational quantum algorithms. *Physical Review A*, 111(2):022630, 2025.

545

546 Shintaro Funahashi, Charles J Bruce, and Patricia S Goldman-Rakic. Mnemonic coding of visual
 547 space in the monkey’s dorsolateral prefrontal cortex. *Journal of neurophysiology*, 61(2):331–349,
 548 1989.

549

550 Vishwa Goudar, Barbara Peysakhovich, David J Freedman, Elizabeth A Buffalo, and Xiao-Jing
 551 Wang. Schema formation in a neural population subspace underlies learning-to-learn in flexible
 552 sensorimotor problem-solving. *Nature Neuroscience*, 26(5):879–890, 2023.

553

554 Shi Gu, Marcelo G Mattar, Huajin Tang, and Gang Pan. Emergence and reconfiguration of modular
 555 structure for artificial neural networks during continual familiarity detection. *Science Advances*,
 556 10(30):eadm8430, 2024.

557

558 Michael E Hasselmo. The role of acetylcholine in learning and memory. *Current opinion in neuro-*
 559 *biology*, 16(6):710–715, 2006.

560

561 Ryoma Hattori, Nathan G Hedrick, Anant Jain, Shuqi Chen, Hanjia You, Mariko Hattori, Jun-Hyeok
 562 Choi, Byung Kook Lim, Ryohei Yasuda, and Takaki Komiyama. Meta-reinforcement learning via
 563 orbitofrontal cortex. *Nature Neuroscience*, 26(12):2182–2191, 2023.

564

565 Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
 566 networks: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 44(9):
 567 5149–5169, 2021.

568

569 Jeffrey C Magee. Dendritic integration of excitatory synaptic input. *Nature Reviews Neuroscience*,
 570 1(3):181–190, 2000.

571

572 Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent
 573 computation by recurrent dynamics in prefrontal cortex. *nature*, 503(7474):78–84, 2013.

574

575 Diego Mendoza-Halliday and Julio C Martinez-Trujillo. Neuronal population coding of perceived
 576 and memorized visual features in the lateral prefrontal cortex. *Nature communications*, 8(1):
 577 15471, 2017.

578

579 Earl K Miller and Jonathan D Cohen. An integrative theory of prefrontal cortex function. *Annual
 580 review of neuroscience*, 24(1):167–202, 2001.

581

582 Mechislav M Pugavko, Oleg V Maslennikov, and Vladimir I Nekorkin. Multitask computation
 583 through dynamics in recurrent spiking neural networks. *Scientific Reports*, 13(1):3997, 2023.

584

585 Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In *International
 586 conference on learning representations*, 2017.

587

588 Evan D Remington, Devika Narain, Eghbal A Hosseini, and Mehrdad Jazayeri. Flexible sensorimo-
 589 tor computations through rapid reconfiguration of cortical dynamics. *Neuron*, 98(5):1005–1019,
 590 2018.

591

592 James M Shine, Patrick G Bissett, Peter T Bell, Oluwasanmi Koyejo, Joshua H Balsters, Krzysztof J
 593 Gorgolewski, Craig A Moodie, and Russell A Poldrack. The dynamics of functional brain net-
 594 works: integrated network states during cognitive task performance. *Neuron*, 92(2):544–554,
 595 2016.

596

597 Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus as a
 598 predictive map. *Nature neuroscience*, 20(11):1643–1653, 2017.

599

600 Mark G Stokes, Makoto Kusunoki, Natasha Sigala, Hamed Nili, David Gaffan, and John Duncan.
 601 Dynamic coding for cognitive control in prefrontal cortex. *Neuron*, 78(2):364–375, 2013.

602

603 Heather K Titley, Nicolas Brunel, and Christian Hansel. Toward a neurocentric view of learning.
 604 *Neuron*, 95(1):19–32, 2017.

594 Jochen Triesch. Synergies between intrinsic and synaptic plasticity in individual model neurons.
 595 *Advances in neural information processing systems*, 17, 2004.
 596

597 Avinash R Vaidya, Maia S Pujara, Michael Petrides, Elisabeth A Murray, and Lesley K Fellows.
 598 *Lesion studies in contemporary neuroscience. Trends in cognitive sciences*, 23(8):653–671, 2019.

599 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 600 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 601 *tion processing systems*, 30, 2017.

602 Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
 603 Demis Hassabis, and Matthew Botvinick. Prefrontal cortex as a meta-reinforcement learning
 604 system. *Nature neuroscience*, 21(6):860–868, 2018.

605 Ruijie Wang, Jingyuan Huang, Yutong Zhang, Jinyang Li, Yufeng Wang, Wanyu Zhao, Shengzhong
 606 Liu, Charith Mendis, and Tarek Abdelzaher. Tgonline: Enhancing temporal graph learning with
 607 adaptive online meta-learning. In *Proceedings of the 47th International ACM SIGIR Conference*
 608 *on Research and Development in Information Retrieval*, pp. 1659–1669, 2024.

609

610 Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T Newsome, and Xiao-Jing
 611 Wang. Task representations in neural networks trained to perform many cognitive tasks. *Nature*
 612 *neuroscience*, 22(2):297–306, 2019.

613

614 Friedemann Zenke, Wulfram Gerstner, and Surya Ganguli. The temporal paradox of hebbian learn-
 615 ing and homeostatic plasticity. *Current opinion in neurobiology*, 43:166–176, 2017.

616 Hanle Zheng, Zhong Zheng, Rui Hu, Bo Xiao, Yujie Wu, Fangwen Yu, Xue Liu, Guoqi Li, and Lei
 617 Deng. Temporal dendritic heterogeneity incorporated with spiking neural networks for learning
 618 multi-timescale dynamics. *Nature Communications*, 15(1):277, 2024.

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A APPENDIX A**

649

650 **A.1 DETAILED NEURAL MODEL IN IP²-RSNN**

651

652 The membrane potential dynamics of spiking neurons in IP²-RSNNs are defined as:

653

654
$$V(t) = \mathbf{P}_{\tau_s} V(t-1) + (1 - \mathbf{P}_{\tau_s}) \left(\mathbf{W}_{\text{in}} x_{\text{in}}(t) + \mathbf{W}_{\text{rec}} S_{\text{mem}}(t-1) + N(t) \right), \quad (8)$$

655

656 where \mathbf{W}_{in} and \mathbf{W}_{rec} are the input and recurrent weight matrices, \mathbf{P}_{τ_s} is the decay factor parameter
657 associated with the somatic time constant, $x_{\text{in}}(t)$ denotes the input at time step t , $S_{\text{mem}}(t-1)$ is the
658 membrane state from the previous step, and $N(t)$ is a noise term updated as:

659
$$N(t+1) = (1 - \alpha_{\text{noise}}) N(t) + \sqrt{2\alpha_{\text{noise}}} A_{\text{noise}} \mathcal{N}(0, 1), \quad (9)$$

660

661 with α_{noise} the noise decay constant, A_{noise} the noise amplitude, and $\mathcal{N}(0, 1)$ standard Gaussian
662 noise. When dendritic integration is taken into account, the membrane potential then evolves as:

663
$$V(t) = \mathbf{P}_{\tau_s} V(t-1) + (1 - \mathbf{P}_{\tau_s})$$

664
$$\left(\sum_d \mathbf{P}_{\tau_d, d} V_d(t-1) + (1 - \mathbf{P}_{\tau_d, d}) (\mathbf{W}_{\text{in}, d} x_{\text{in}}(t) + \mathbf{W}_{\text{rec}, d} S_{\text{mem}}(t-1)) \right) + N(t), \quad (10)$$

665

666 where d indexes dendritic branches, and $\mathbf{P}_{\tau_d, d}$ is the decay factor parameter of dendritic compartment d . A spike is emitted when the membrane potential crosses a threshold \mathbf{P}_θ :

667
$$S_{\text{spike}}(t) = \begin{cases} 1, & \text{if } V(t) \geq \mathbf{P}_\theta, \\ 0, & \text{otherwise.} \end{cases} \quad (11)$$

668

669 Upon spiking, the membrane potential is reset to V_{reset} . Membrane state evolves as:

670

671
$$S_{\text{mem}}(t) = \alpha S_{\text{mem}}(t-1) + (1 - \alpha) S_{\text{spike}}(t-1), \quad (12)$$

672

673 where α controls the temporal smoothing of spiking activity. The network output is given by:

674

675
$$\hat{Y}(t) = \mathbf{W}_{\text{out}} S_{\text{mem}}(t), \quad (13)$$

676

677 with \mathbf{W}_{out} denoting output weights.

678 **A.2 DETAILED TASK DESCRIPTION**

679

680 We consider four task families. The DMS family (Britten et al., 1992) follows the configuration
681 in Goudar et al. (2023). Each task comprises two input trials, $x_{\text{in}, 1}$ and $x_{\text{in}, 2}$, both spanning three
682 periods: stimulus (500 ms), delay (1000 ms), and response (500 ms). During the stimulus period,
683 the input contains a 10-dimensional stimulus signal and a 1-dimensional fixation signal. During the
684 delay period, only the fixation signal is maintained. During the response period, both signals are
685 set to zero. The corresponding target trials, y_1 and y_2 , preserve the fixation signal during stimulus
686 and delay, and switch to a categorical label encoding stimulus identity in the response period. The
687 CD-DMS family (Mante et al., 2013) extends the DMS family by introducing a binary context cue
688 during the stimulus period. When the cue is 0, the stimulus-response mapping is identical to the
689 DMS; when the cue is 1, the mapping is reversed. Each task therefore contains four input-target
690 trial pairs. Two GNG-DR families (Funahashi et al., 1989; Mendoza-Halliday & Martinez-Trujillo,
691 2017) require the model to either reproduce the input stimulus (go) or suppress the output near zero
692 (no-go) during the response period. Two variants are used: GNG-DR-2 with two-dimensional inputs
693 and GNG-DR-4 with four-dimensional inputs. Each task in the task families has input stimuli that
694 are randomly generated and different.

695 Based on underlying task rules, the four task families fall into two categories. The choice tasks
696 (DMS and CD-DMS) require mapping high-dimensional stimuli to binary decisions, with CD-DMS
697 adding contextual complexity. The repeat tasks (GNG-DR-2 and GNG-DR-4) require stimulus re-
698 production after a delay, with GNG-DR-4 further increasing input dimensionality relative to GNG-
699 DR-2.

702
 703 Table 1: Parameter configuration in this study. RSNNs in this table include IP²-RSNN, vanilla
 704 RSNN, and RSNNs with randomized \mathbf{m} . Moreover, β_1 and β_2 denote the decay rates of the first
 705 and second moments in the Adam optimizer (Adam et al., 2014).

Task and L2L Configuration				
Sample/Fixation Dimension	DMS	CD-DMS	GNG-DR-2	GNG-DR-4
Response/Fixation Dimension	10/1	11/1	2/1	4/1
Stimulus/Delay/Response Duration (ms)	2/1	2/1	2/1	4/1
Task Number of Each Family			500/1000/500	
Maximum Iterations per Task			1000	
Minimum Iterations per Task			5000	
Consecutive Failure for L2L Early Stopping			50	
Convergence Loss Threshold	0.005 (DMS, CD-DMS, GNG-DR-2) / 0.006 (GNG-DR-4)			
Training Configuration				
Optimizer	Adam			
Learning Rate (All ANNs/All RSNNs)	0.0001 / 0.01			
β_1 (All ANNs/All RSNNs)	0.3 / 0.1			
β_2 (All ANNs/All RSNNs)	0.999 / 0.3			
$\mathcal{L}_{\text{Base}}$	CE Loss (DMS, CD-DMS) / MSE Loss (GNG-DR-2, GNG-DR-4)			
λ_h (All ANNs/All RSNNs)	0.0005 / 0.0005			
λ_{in} (RNN/All RSNNs)	0.001 / 0.001			
λ_{rec} (RNN/All RSNNs)	0.0001 / 0.0001			
λ_{out} (RNN/All RSNNs)	0.00001 / 0.1			
Model Configuration				
Hidden Neuron (RNN/All RSNNs)	256 / 256			
Token (Self-Attn H1/Self-Attn H2/Self-Attn H4)	256 / 128 / 64			
α (RNN/All RSNNs)	0.01 / 0.01			
α_{noise} (RNN/All RSNNs)	0.5 / 0.5			
A_{noise} (RNN/All RSNNs)	0.05 / 0.05			

A.3 TRAINING SETUP

731 The parameter configuration in this study is shown in Table 1. When \mathbf{P}_{τ_d} is learnable in IP²-
 732 RSNN and RSNNs with randomized \mathbf{m} , each neuron is assigned two dendritic branches with sparse
 733 connectivity, following the setup described in Zheng et al. (2024).

A.4 STRUCTURAL MODULARITY ANALYSIS

737 Structural modularity analysis involves decomposing a system into subsystems based on structural
 738 relationships. We assess modular organization using three key metrics: modularity, number of com-
 739 munities, and modular stationarity, and follow the configuration described in work (Gu et al., 2024).

740 Modularity Q quantifies the modular organization of the functional connectivity network and is
 741 defined as:

$$742 \quad Q = \frac{1}{2\mu} \sum_{ijlr} \left[F_{ijl} - \gamma_l \frac{k_{il}k_{jl}}{2m_l} \delta_{lr} + \delta_{ij} C_{jlr} \right] \delta(g_{il}, g_{jr}), \quad (14)$$

745 here, i and j index neurons, l and r denote temporal layers (sliding windows over hidden-layer
 746 activity). F_{ijl} is the adjacency (e.g., Pearson correlation) between nodes i and j in layer l . γ_l
 747 controls resolution. $k_{il} = \sum_j F_{iji}$ is the degree of node i in layer l , and $m_l = \frac{1}{2} \sum_{ij} F_{ijl}$ is
 748 the total edge weight. C_{jlr} denotes the inter-layer coupling strength linking node j across layers l
 749 and r , encouraging temporal continuity in community assignments. δ_{lr} and δ_{ij} are Kronecker delta
 750 functions, and g_{il} denotes the community label of node i in layer l . The modularity Q is maximized
 751 to identify optimal communities across all time layers.

752 Community number quantifies the granularity of modular decomposition, with larger values indicat-
 753 ing more fragmented network structures. For temporal layer l , the community number C_l is defined
 754 as the number of distinct community labels assigned across all nodes:

$$755 \quad C_l = |\{g_{il} \mid i = 1, \dots, n\}|, \quad (15a)$$

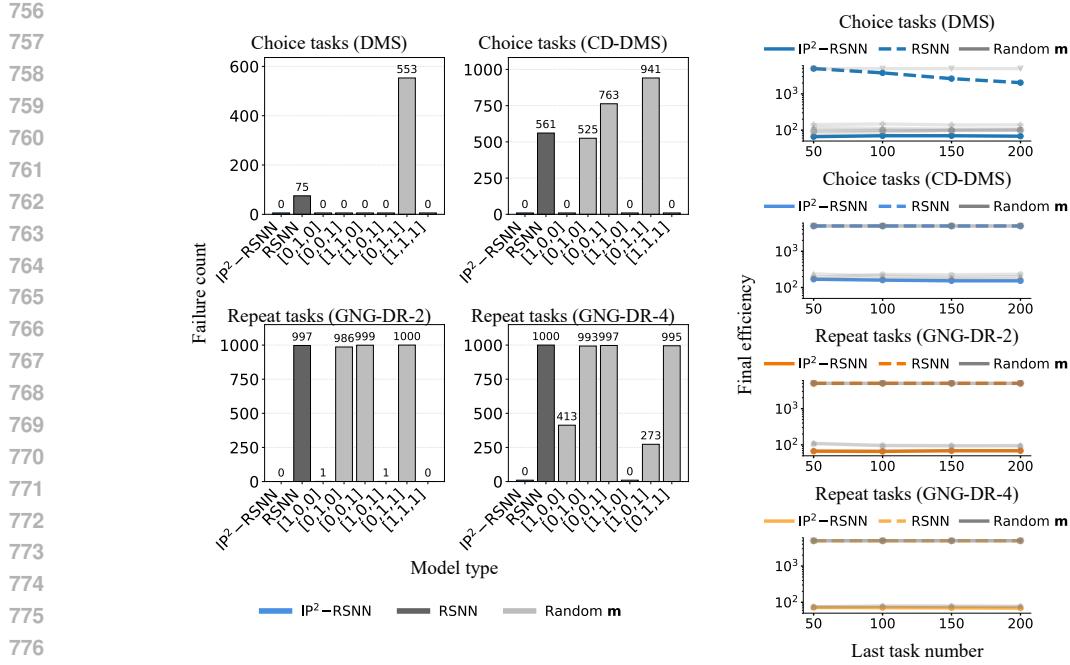


Figure S1: Comparison of L2L failure counts and final task efficiency among $\text{IP}^2\text{-RSNN}$, vanilla RSNNs, and RSNNs with randomized variations of \mathbf{m} across four task families.

where $|\cdot|$ denotes the cardinality of the set, and n is the total number of nodes. The overall community number \bar{C} is then defined as the average across all L temporal layers:

$$\bar{C} = \frac{1}{L} \sum_{l=1}^L C_l. \quad (15b)$$

Stationarity quantifies the temporal consistency of community structures. For a given community c , its stationarity ζ_c is defined as:

$$\zeta_c = \frac{1}{L_c - 1} \sum_{l=1}^{L_c - 1} \text{corr}(\mathbf{v}_{c,l}, \mathbf{v}_{c,l+1}), \quad (16a)$$

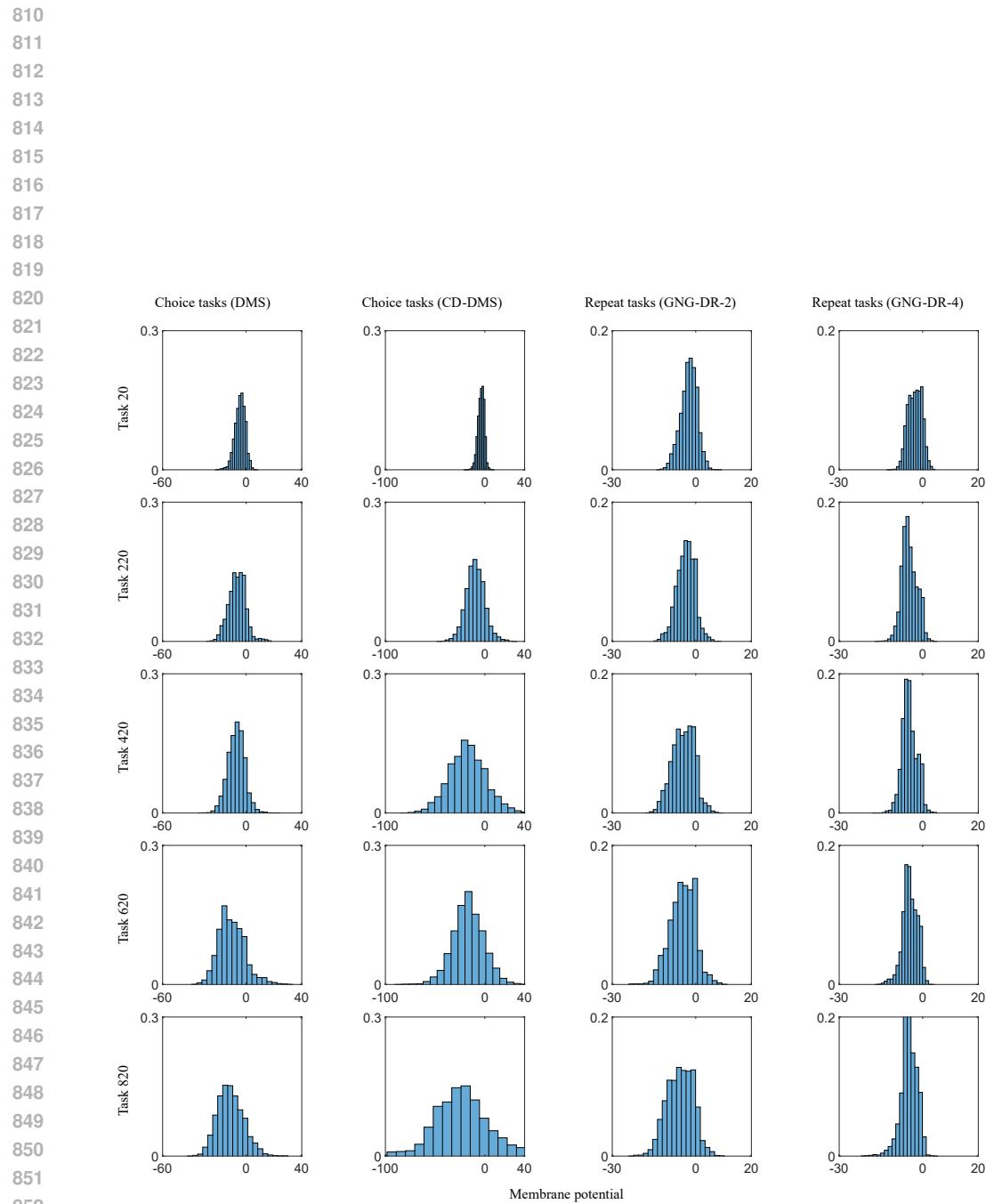
where $\mathbf{v}_{c,l}$ is the membership indicator vector for community c at time window l , and L_c is the number of time windows in which community c is detected. The overall stationarity \bar{S} is computed as the average across all detected communities \mathcal{C} :

$$\bar{S} = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \zeta_c. \quad (16b)$$

Higher values of \bar{S} indicate more stable modular structures over time.

A.5 LLM USAGE

A large language model was used solely for grammar checking and minor phrasing suggestions for the manuscript text. The LLM did not contribute to research ideation, experimental design, model implementation, data generation, analysis, or results. All technical content, equations, figures, and code were created and verified by the authors.

Figure S2: Evolution of IP²-RSNN membrane potentials during L2L across four task families.

855
856
857
858
859
860
861
862
863

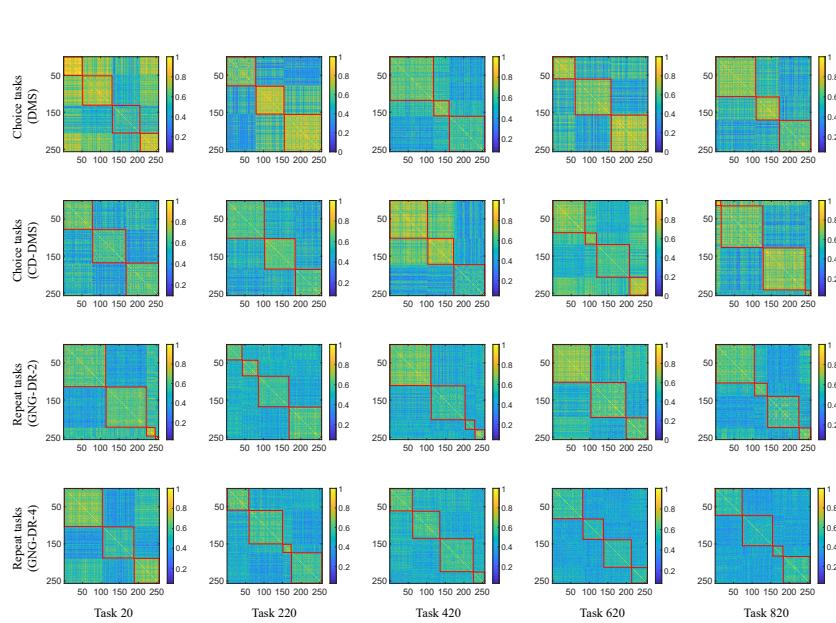


Figure S3: Evolution of the modular allegiance matrix in IP²-RSNN during L2L across four task families.

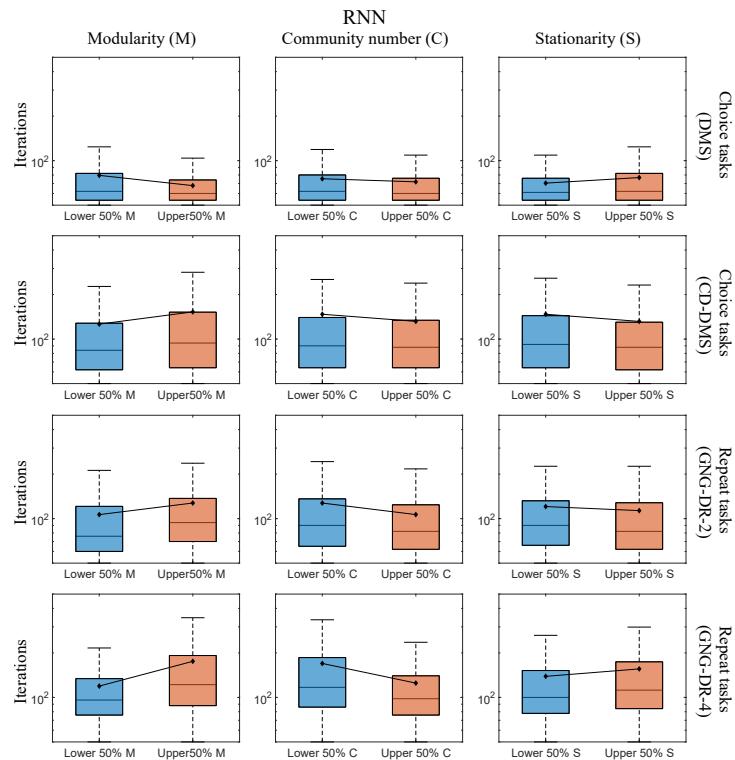


Figure S4: Relationships between three modularity metrics (modularity, number of communities, and stationarity) and adaptation speed in RNN across four task families.