
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPECULATIVE SAMPLING FOR PARAMETRIC
TEMPORAL POINT PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal point processes are powerful generative models for event sequences that
capture complex dependencies in time-series data. They are commonly specified
using autoregressive models that learn the distribution of the next event from the
previous events. This makes sampling inherently sequential, limiting efficiency. In
this paper, we propose a novel algorithm based on rejection sampling that enables
exact sampling of multiple future values from existing TPP models, in parallel,
and without requiring any architectural changes or retraining. Besides theoretical
guarantees, our method demonstrates empirical speedups on real-world datasets,
bridging the gap between expressive modeling and efficient parallel generation for
large-scale TPP applications.

1 INTRODUCTION

Event data is prevalent in social networks, natural phenomena, and financial transactions. Events occur
irregularly which poses unique challenges, particularly as the timing of events is often influenced by
the history. For example, aftershocks follow earthquakes and replies follow messages. Event data
often has high sampling frequency with thousands of events per second. Since every millisecond
counts, it is crucial to have a scalable sampling method while capturing the true process.

Temporal point processes (TPPs) are the canonical framework for modeling events, they generate se-
quences consisting of event types (marks) and arrival times on some time interval. The most common
implementation is an autoregressive model, where the history of events informs the prediction of the
next event. Consequently, the sampling process is sequential which can be inefficient, especially in
high-frequency data (Aït-Sahalia & Jacod, 2014), leading to bottlenecks in real-time applications.

Neural TPPs are primarily designed as autoregressive models (Shchur et al., 2021), similar to their
counterparts in time series and language modeling (Salinas et al., 2020; Radford et al., 2019). Some
recent works propose alternatives that learn to predict multiple future steps instead of only one
(Gloeckle et al., 2024; Zeng et al., 2023; Lüdke et al., 2023). Our approach takes a different route, we
introduce a new sampling procedure that does not require altering or retraining the underlying model.
This allows us to improve the efficiency of existing parametric autoregressive models.

Encoder

Target distributions
given proposal
sequence

Encoder

Proposed future events

Next
step

Whether sample
passes accept test

Past events Accepted future events

Repeated next step distribution
= proposal distributions

Figure 1: Illustration of our speculative sampling method for temporal point processes.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1 illustrates our approach. A pretrained encoder predicts the distribution of the next event
based on historical data. We reuse this prediction as a proposal distribution to generate multiple
future events simultaneously. The same encoder inputs all proposed samples, in parallel, producing
the target distributions. We accept proposed samples until we encounter the first event where the
proposal and target distributions diverge. In Figure 1, this occurs at the fourth step, accepting the first
three proposed events. In the paper we rigorously show this is an exact sampling procedure.

Our main contributions are: (1) a novel method for sampling multiple future events that can be
seamlessly applied to many TPP models. Our method addresses practical problems in real-world
domains like finance, making it relevant to practitioners. (2) We propose a way to compute the
rejection sampling constant for most common distribution choices and provide a theoretical foundation
for our approach. (3) We show improvements in sampling efficiency by conducting experiments on
widely used benchmark datasets. Additionally, the results provide new insights into these datasets.
(4) We highlight a particularly suitable application of our technique in the financial domain.

2 BACKGROUND

2.1 TEMPORAL POINT PROCESSES

Temporal point processes (TPPs) (Daley & Vere-Jones, 2006) are stochastic processes whose realiza-
tions are event sequences x = (x1, . . . , xn), xi ∈ {1, . . . , D} observed at strictly increasing arrival
times t = (t1, . . . , tn), 0 < t1 < · · · < tn ≤ T . That is, each event is a random point in time ti with
an assigned event type xi, called a mark. The future events often depend on the past, so we denote
the history of the ith event asHi = {(tj , xj) : tj < ti}, a set of all the events that came before ti.

One way to specify a TPP is with an intensity function λ(t) which tells us about the concentration
of points around each time location t. A trivial example is the constant intensity which gives rise
to a homogeneous Poisson process. A more expressive conditional intensity function incorporates
the information of the past events. A completely equivalent parameterization is defining the density
function p(τ), on inter-event (delta) times τi = ti − ti−1, with t0 = 0 (Shchur et al., 2020).

When using a density parametrization, the existing machinery makes it very easy to specify the
likelihood and the sampling is straightforward. In the following, we use density-based framework in
order to define speculative sampling approach for TPPs. On the other hand, non-parametric intensity
models require Monte Carlo in training and they use thinning algorithm for sampling, making them
less applicable for our approach.

For practitioners, parametric TPPs are often the default choice due to ease of use without making
compromises on performance. Our proposed method adheres to this same principle: it is applicable
to any existing parametric TPP model without requiring retraining or model modifications, while
maintaining exact sampling and accelerating the sampling process.

A parametric TPP model is specified as p(τi, xi|Hi), joint distribution over the next (ith) time point
and its mark, conditioned on the history. Neural TPP models usually encode the history with a neural
network that returns a fixed-sized vector representation hi ∈ Rh. Examples of encoders include
recurrent neural networks (RNNs) (Cho et al., 2014) and transformers (Vaswani et al., 2017). Our
proposed sampling method is model agnostic and we use established models for our experiments.

The model is trained by maximizing the log-likelihood (Daley & Vere-Jones, 2006):

log p(t,x) =

n∑
i=1

log p(τi, xi|Hi) + logS(τn+1|Hn), τn+1 = T − τn, (1)

where S(τn+1) denotes the survival function, the probability that no event occurred since the last
(nth) event and until the end of the observed interval T . The likelihood of the whole dataset is a
product of all individual sequence likelihoods.

Conventional sampling from the model starts with the existing events {(t1, x1), . . . , (tn, xn)}. This
sequence is processed with a neural network to obtain the distribution of the next delta time p(τn+1)
and mark p(xn+1). One can sample τn+1 and xn+1 directly from these distributions, append them to
the existing sequence, and repeat this process until some stopping criterion is met.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 REJECTION SAMPLING

Sampling from a density function is straightforward. Traditionally, TPPs specified with an intensity
function use a different approach called thinning Ogata (1981). Given an intensity function λ(t) for
which we know the upper bound λ(t) < λmax,∀t, we can sample points using the following steps:

1. Sample candidate points ti from a proposal homogeneous TPP with intensity λmax,
2. Compute λ(ti) under the target process and draw a random value ui ∼ (0, λmax),
3. Keep the point ti if ui < λ(ti), else remove the point (thin).

This approach works because the proposal process intensity is larger than the target process intensity
on the whole domain. Then each sample is kept with the probability proportional to the intensity of
the target process. This is an example of rejection sampling applied to TPPs.

Rejection sampling is a general method of obtaining samples from a target distribution by accept-
ing and rejecting samples from some proposal distribution; see, e.g., Devroye (1986) or Bishop &
Nasrabadi (2006, Chapter 11) for an overview. Given a proposal distribution g(x) and a target distri-
bution f(x), a sample x ∼ g(x) is accepted as a sample from f(x) with probability f(x)/(Mg(x)),
where M is the upper bound on the ratio f/g. Note that f and g do not have to be normalized, but g
does have to dominate f , which is why we incorporate M to ensure that the ratio is always lower
than 1. In case f = g, the probability of acceptance will be 1 since M = 1. If a proposal distribution
is close to the target, we get low rejection rates and efficient sampling.

To summarize, the prerequisite for rejection sampling, given a target density f(x) and a proposal
density g(x), is that we can evaluate both f(x) and g(x), we can readily sample from g(x), and that
we know M = maxx f(x)/g(x). Since most common distributions allow density evaluation and
sampling, our focus is on finding the rejection constant.

3 METHOD

3.1 REJECTION CONSTANT FOR SELECTED DISTRIBUTIONS

The categorical distribution is one example of a distribution where we can evaluate the rejection
constant M directly. The distribution is defined on the space of D categories, where each category x
has a probability p(x) of occurring. For a target and a proposal distribution defined with pT and pP ,
respectively, we obtain M by evaluating the ratio for all D possible values and take the maximum:

M = max
x∈X

pT (x)

pP (x)
, X = {1, 2, . . . , D}. (2)

Note that some low probability categories can dramatically influence M . For example, having a
two-class proposal distribution with probabilities pP = [1 − ϵ, ϵ]; and a target distribution with
probabilities pT = [1 − cϵ, cϵ], we get rejection constant of c, even for very small ϵ. We propose
excluding categories with the highest ratios when they contain less than δ of the target distribution’s
probability mass. If δ is small, the resulting samples closely follow the target distribution. In fact,
we guarantee an upper bound on the total variation distance between the approximated and true
distributions to be equal δ. Appendix A.3 provides a more rigorous treatment with an implementation.

This means we can choose to use truly exact sampling or introduce a controllable error into the
sampling procedure for better performance.

For an exponential distribution whose probability density function (PDF) is given by f(x;λ) =
λe−λx, λ > 0, we can write the ratio of two exponential density functions as:

fT (x)

fP (x)
=

λT

λP
e(λP−λT)x.

This is a monotonically decreasing function when λP < λT , giving us the maximum ratio at x⋆ = 0.
However, when λP > λT , the ratio is unbounded and we cannot evaluate it for all the points on the
domain. One way to solve this is to restrict the domain similar to the categorical distribution. For
example, we can provide coverage up to 99th percentile of fT (x), evaluating the ratio at this point.

Not all distributions permit such straightforward analysis, examples include most distribution mixtures.
Because of this we devise an alternative approach, described in the following.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

PDF
Grid

Convex
Concave

0 1 2 3 4 5

PDF
Upper bound

0 1 2 3 4 5

PDF
Lower bound

Figure 2: Illustration of upper and lower linear bounds of a mixture distribution with two components.
The grid points always include inflections which makes the rejection sampling exact.

3.2 GENERAL REJECTION CONSTANT

The main idea is to upper bound the target density function and lower bound the proposal. Since we are
free to choose bounding functions, we will choose those that allow us straightforward evaluation of the
ratio between them, which consequently gives us a way to find the rejection constant (Theorem 3.1).

We decide to approximate a density function with a piecewise linear function, which will allow us
simple computation of the rejection constant. This is similar to an envelope construction which
has been previously studied for log-concave distributions (Gilks & Wild, 1992). The difference to
previous works is that our general method works with many choices of densities, including mixtures
of distributions, and is efficient to compute on modern hardware. See Section 4 for further discussion.

We construct linear segments on a grid {x0, x1, . . . , xn}. For example, exponential density is convex
so it can be upper bounded by the line segment connecting (xi, f(xi)) and (xi+1, f(xi+1)). Alterna-
tively, it can be lower-bounded by a tangent f ′(xm) passing through a midpoint xm = xi+xi+1

2 , for
all segments. If the function is concave, these bounds are reversed. From this we can bound any well-
behaved density by simply decomposing its domain into convex and concave regions (Lemma A.2).
A valid grid needs to, at a minimum, contain all the inflection points.

This approach extends naturally to mixture distributions. For a mixture f(x) =
∑k

i=1 wifi(x) with
weights wi ≥ 0 and

∑k
i=1 wi = 1, we can construct upper and lower bounds for each component

fi(x) and then linearly combine them. More precisely, we use a weighted sum of the components’
bounds (Lemma A.3). To make the implementation efficient, mixture components share the grid,
which in turn simplifies combining them by summing up the values of the grid points.

Theorem 3.1 (Rejection constant using linear density approximation). Let fT (x) be a target den-
sity with piecewise linear upper bound gT (x) constructed using grid points {x0, x1, . . . , xn} as de-
scribed above, and let fP (x) be a proposal density with a lower bound hP (x), on the same grid. Then,
the upper bound on the rejection sampling constant M is given by: M̃ = maxi∈{0,1,...,n}

gT (xi)
hP (xi)

.

Proof. Appendix A.1 contains the full proof. We first show that bounding the densities bounds the
rejection constant. Then, we show that the linear segments, as described, correctly bound a density
function. Finally, we exploit monotonicity of the linear approximation to prove the main claim.

This is a general approach for finding an upper bound on the true rejection constant which works for
many real-world distributions. In Section 3.3 we list some examples. Figure 2 shows an example
construction of bounds. The method is particularly effective because it requires evaluating the bounds
only at the grid points, making it computationally efficient even for complicated distributions.

The algorithm for finding the rejection constant is described in detail in Appendix A.2. First,
Algorithm 2 returns linear segments given the distribution and the grid of points. For that we need to
be able to evaluate the density function and its derivative. Then, Algorithm 3 returns the rejection
constant given the linear segments. All operations can be computed efficiently, in parallel.

3.3 CATALOGING COMMON DISTRIBUTIONS

Recall the exponential PDF is given by f(x;λ) = λe−λx. We can easily show this function is convex
by computing the second derivative f ′′(x) = λ3e−λx and noticing this is always positive. In this
case, to define the grid for the construction of linear segments, we can choose any arbitrary set of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Distribution PDF f(x) Derivative f ′(x) Inflection points

Exponential λe−λx −λf(x) ∅
Gamma βα

Γ(α)x
α−1e−βx

(
α−1
x − β

)
f(x) α−1±

√
α−1

β

Log-normal 1
xσ

√
2π

e−
(log x−µ)2

2σ2

(
− 1

x −
log x−µ

σ2x

)
f(x) e

µ+σ2

2

(
−3±

√
1+ 4

σ2

)

Weibull k
λ

(
x
λ

)k−1
e−(

x
λ)

k (
k−1
x −

k
λ

(
x
λ

)k−1
)
f(x) 2−

1
k λ
(

−3+3k±
√
5k2−6k+1
k

) 1
k

Table 1: Commonly used distributions in TPP models.

points. However, most densities are not strictly convex so this will not work in general. What we do,
instead, is find the intervals on which the density is either concave or convex.

The intervals are bounded by inflection points, which we get by solving f ′′(x) = 0. This is possible
to find for most distributions. In Table 1 we show some commonly used distributions, along with their
first derivative and inflection points. The full derivation of all the terms is provided in Appendix B.1
for exponential distribution, in B.2 for Gamma, B.3 for log-normal, and in Appendix B.4 for Weibull.

3.4 EFFICIENT SAMPLING ALGORITHM

Our proposed method leverages a two-step approach involving renewal sampling and accep-
tance/rejection to efficiently sample multiple future events.

Renewal sampling. The existing encoder has been trained to predict the distribution of the next
event based on historical data. LetHi denote the history of events up to event time ti−1. The encoder
represents the sequence with the state hi and predicts the distribution of the next event p(τi, xi|Hi).
This prediction serves as a proposal distribution, allowing us to generate multiple future events simul-
taneously. We denote the set of l proposed future events with S = {(τi+1, xi+1), . . . , (τi+l, xi+l)}.
Sample acceptance. We accept proposed samples until we encounter the first event where the
proposal and target distributions diverge. The model processes all generated samples S in parallel,
producing hidden states hi+1,hi+2, . . . ,hi+l, and target distributions p∗(τi+1, xi+j |Hτi+j), one for
each proposed sample i+ j. Next, we compute the rejection constants Mi+j based on the proposal
distribution p(τi, xi|Hi) and the target distribution p∗(τi+j , xi+j |Hi+j).

The samples are then independently flagged as accepted or discarded based on the following criterion:
for each proposed sample (τi+j , xi+j), we accept it with probability

Pi+j =
p∗(τi+j , xi+j |Hi+j)

Mi+jp(τi, xi|Hi)
.

We find the first j ∈ {1, . . . , l} such that (i + j + 1)th event is discarded. We then discard all the
events after i + j, set the hidden state of the model to hi+j and repeat the above procedure. This
results in exact sampling from the model. This is easy to show by examining the chain of validity that
governs sequential events in TPPs. When sampling from the target distribution, each accepted event
depends on having a valid history of previous events. The rejection constant precisely quantifies the
maximum ratio between the target density (conditioned on the true, evolving history) and the proposal
density (conditioned on the static initial history). By stopping at the first rejection, we ensure that
every accepted sequence follows the exact conditional structure of the target distribution.

All of the described steps can be computed in parallel. The efficiency in terms of memory requirements
will depend on the choice of l and the average rejection rate. Therefore, l can be adjusted on the
fly to maximize efficiency. Note that the first event at step i+ 1 will always be accepted, since the
proposal and target distributions are identical. The overhead computations of this method compared
to a conventional sampling scheme is in obtaining the constants Mi+j .

Batching. In case of batched samples, we keep track of the shortest sequence in the batch and
continue generating events for all sequences until the shortest one is completed. Assuming that the
sequences come from the same process, we expect that the rejection rate will be similar over longer
simulation horizons. Then, the extra samples that are generated for some sequences are trimmed. An
alternative implementation can use packed sequences to dynamically exclude completed sequences.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Efficient event sampling.
Let’s examine a concrete example. If
we have historical data up to the current
time, we might want to generate 100
future events using speculative step of 3.
First, the encoder processes history into
a hidden state h0. The decoder outputs
proposal distribution p(τ1, x1|h0). We
sample 3 events from this, e.g., “email”
at τ1 = 0.5, “call” at τ2 = 1.7, and
“meeting” at τ3 = 0.2. Then, for each
sample, we compute its updated hidden
state (how history would look if it
occurred), target distribution p⋆, and the
rejection constant. After computing the
acceptance probability, we might reject
the third event and append the sequence
with the accepted events. We repeat
this process, starting from h2, until we
generate all future events.

1: Input: Historical data Hi, encoder model Enc,
decoder model Dec, rejection constant function
RejectionConst, rejection function IsRejected

2: Output: Samples {(τi+1, xi+1), . . . , (τi+l, xi+l)}
3: S ← {} # Initialize set of samples
4: h← Enc(Hi) # History hidden state
5: p← Dec(h) # Proposal distribution
6: while |S| ≤ l do
7: (τi+j , xi+j) ∼ p(τi, xi|h) # Proposal events
8: hi+j ← Enc(τi+j , xi+j) # New states
9: p∗i+j ← Dec(hi+j) # Target distributions

10: Mi+j ← RejectionConst(p, p∗i+j)
11: ui+j ← IsRejected(Mi+j) # Boolean 0-1 output
12: k ← argminj ui+j # Find first rejection
13: S ← S ∪ {(τi+j , xi+j)}k−1

j=1 # Append samples
14: h← hi+k−1 # Update state
15: p← p∗i+k−1 # Update proposal
16: i← k − 1 # Update index
17: end while

Algorithm 1 shows the proposed method. For clarity, wherever •i+j is used, it is implied that all
values {•i+j}lj=1 are computed in parallel. We split the model into an encoder, which only outputs the
hidden states; and the decoder, that outputs distributions. To further enhance the sampling efficiency,
we can adopt a non-exact approach. A variant of Algorithm 1, which we evaluate in Section 5, utilizes
the kth rejection instead of the first. Other non-exact methods may involve different approximations.

4 RELATED WORK

Envelope methods (Devroye, 1984; Gilks & Wild, 1992) construct the upper bound on the log-density
in order to take samples from the upper bound which are then accepted w.r.t. the true density. On the
other hand, we can sample directly from our densities, that is, our method uses bounded functions
only to compute the rejection constant. Doing this, we obtain exact sampling and speed up the
process by parallelizing the ancestral sampling. Görür & Teh (2011) propose a concave-convex
approximation similar to ours, however, our Algorithm 1 is less expensive and readily parallelizable.

Most TPP models are autoregressive: Hawkes process (Hawkes, 1971) defines excitement through
adjacency matrix and exponential kernel; RMTPP (Du et al., 2016) uses RNN encoder and a simple
distribution for delta times; Neural Hawkes (Mei & Eisner, 2017) combines RNNs with Hawkes
intensity; and intensity-free models (Shchur et al., 2020) generalize to any distribution. Other
research has explored modifications to the encoder (Zuo et al., 2020; Chen et al., 2018); and decoder,
incorporating different intensity functions (Omi et al., 2019; Lüdke et al., 2023).

Xue et al. (2024) present a benchmark for TPPs that consolidates existing models and datasets. Their
findings reveal that neural models outperform classical TPPs, with small performance variation among
different models. Notably, intensity-free models still achieve state-of-the-art results. Karpukhin
et al. (2024) suggest that predicting a full window is a strong baseline for long-horizon forecasting,
however, autoregressive models remain the dominant paradigm in literature and practice. Xue et al.
(2022) enhance long-horizon predictions through a hybrid model that combines an autoregressive
base with an energy function for reweighing. In contrast, our work focuses on improving sampling
efficiency; it can be combined with this method to enable parallel sampling of multiple next events.

Speculative decoding (Stern et al., 2018) has resurfaced in LLMs as a way to accelerate sampling
(Qi et al., 2020; Gloeckle et al., 2024). LLM training and sampling is similar to TPP models, and by
extension to other autoregressive models, like those from time series forecasting. Our method can be
directly applied to text generation, however, it is not suitable for this task since in language domain,
consecutive token distributions vary considerably. So, while the two approaches share similarities, a
key distinction is that we do not require learning to predict multiple next steps, allowing us to apply
our method to existing models without retraining. This is not possible to achieve in the text domain.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.05 0.1 0.2 0.5 1.0
Amax

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Sp
ar

sit
y

4.70 4.37 4.30 4.57 4.00
4.80 4.17 3.80 3.97 4.33
4.83 4.30 3.77 4.30 4.07
4.57 4.47 3.30 4.37 3.73
4.93 4.43 3.93 3.47 3.97
4.87 4.63 3.93 3.57 3.03
4.97 4.80 4.47 2.77 3.60
4.80 4.77 4.67 3.80 3.77
5.00 4.97 4.57 3.90 3.10

10 dimensions

0.05 0.1 0.2 0.5 1.0
Amax

4.20 4.10 4.03 4.13 4.47
4.57 4.03 4.63 4.07 4.07
4.77 4.03 3.97 4.13 3.47
4.60 3.90 3.53 3.80 4.23
4.93 4.23 3.23 3.50 3.63
4.80 4.20 3.23 3.27 3.83
4.90 4.43 3.97 2.60 2.97
4.97 4.87 3.73 2.60 2.57
5.00 4.90 4.00 3.03 2.13

20 dimensions

0.05 0.1 0.2 0.5 1.0
Amax

3.83 3.60 4.33 3.87 4.03
3.70 3.40 3.73 3.80 3.77
3.60 3.90 3.80 3.80 3.77
3.93 3.93 3.10 2.93 3.90
4.67 4.03 3.43 3.83 3.43
4.67 2.53 2.70 3.57 3.07
4.70 3.53 2.60 2.63 2.57
4.80 4.30 2.37 2.43 2.03
5.00 4.73 3.80 2.13 1.87

40 dimensions

0.05 0.1 0.2 0.5 1.0
Amax

3.53 4.00 3.57 3.67 3.87
3.40 4.07 2.97 3.57 3.93
3.60 3.43 3.60 3.00 3.07
3.67 3.37 3.83 3.67 3.03
3.13 2.80 3.33 3.33 2.57
3.47 3.17 2.93 3.30 3.37
3.57 2.30 1.97 2.90 2.73
4.67 2.67 1.90 2.47 2.30
4.63 4.17 2.87 1.67 1.30

80 dimensions

Figure 3: Average accepted step (out of 5 proposed events) for different configurations of multivariate
Hawkes process. Lower sparsity and larger adjacency values define stronger mark interactions leading
to lower acceptance ratio, nevertheless, all configurations show good acceptance ratios.

5 EXPERIMENTS

In Section 5.1 we motivate our method with two synthetic examples which have strong connection to
real world problems. Section 5.2 shows that real-world data is not-stationary meaning our results in
Section 5.3 cannot be replicated with a simpler underlying model. Section 5.4 shows the empirical
runtime improvements. Finally, in Section 5.5 we show a study on a real-world problem in finance.

In our study we analyze seven standard event sequence datasets: Amazon (Ni et al., 2019), Earthquake
(EQ) (Xue et al., 2024), Retweet (Zhou et al., 2013), Stack Overflow (SO) (Leskovec & Sosič, 2016),
Taobao (Xue et al., 2022), and Taxi (Whong, 2014), processed by Xue et al. (2024); and Reddit
(Kumar et al., 2018). These datasets have different properties and are a good representation of the
real-world data. Sequences can have hundreds of events and mark dimensions range from single digit
to 985. Data is described in detail in Appendix C, see e.g., Table 4 and Figure 6.

5.1 MOTIVATING EXAMPLES

Multivariate Hawkes Process. Marks in a TPP may or may not interact with each other, leading
to different sparsity of the adjacency matrix. For instance, in a social network, messages can be
treated as events, and not all users have to be connected. To simulate this we generate data from a
multivariate Hawkes process (Hawkes, 1971; Bacry et al., 2017). Adjacency matrix is uniformly
sampled with values from 0 to Amax and a percentage of values is set to 0. We vary sparsity from
10% to 90%, dimension from 10 to 80, Amax from 0.05 to 1, and the decay factor is either 0.2 or 1.

A single experiment configuration defines a Hawkes process taking the values from the above ranges.
We use the true intensity function to compute the rejection constants, acceptance rates, and average
accepted step size. We use a maximum speculative step size of 5 and average the results over 30 runs.

Figure 3 shows the average accepted step. We can see that increasing the dimension, connectedness
and adjacency strength decreases the acceptance ratio. Crucially, we show that even with a high
dimension and low sparsity we obtain good acceptance rates. This confirms the practical utility of
our method for diverse TPPs and gives us confidence that it can be applied in real-world tasks.

Jump Process. We consider a process that cycles through periods of different constant intensities.
For instance, server logs exhibit such behavior; some jobs print at a constant rate, but we can have
multiple jobs that start and end at random times, each having its own intensity. This can be described
by a jump process: behaving as a renewal process most of the time but experiencing random jumps in
intensity function. We construct the data by stitching together sequences from different homogeneous
processes by first sampling interval durations and then sampling random intensities which finally
generate events on the interval. We use GRU (Cho et al., 2014) with an exponential distribution.

Given initial sequences, we generate 100 new realizations with length 3000. Figure 8 in Appendix D.2
illustrates different samples from the model based on one input sequence, demonstrating the model’s
ability to generate long intervals of constant intensity with sudden changes. The acceptance rate on
the whole test data remains consistently around 90%, with an average accepted step length of 13.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 REAL DATA IS USUALLY NON-STATIONARY

If the data originates from a stationary process, we could learn a single distribution for the next event,
disregarding all historical context, which would automatically simplify sampling. This would be the
same as learning a renewal TPP model. We test this hypothesis by evaluating whether incorporating
history significantly enhances modeling quality. We consider three scenarios: (1) full history—using
the canonical TPP with complete past context; (2) Markov—utilizing only the most recent event to
predict the next; and (3) no history—a TPP with a stationary distribution unaffected by past events.

The training setup is explained in Appendix D.3. Table 6 shows the likelihood, mark accuracy,
and time RMSE results averaged over five runs. We include the most common class prediction to
demonstrate that models without full history mainly learn the marginal distribution. Full history
model is clearly beneficial, indicating that real data is predominantly non-stationary. Consequently, an
alternative to our method cannot be a renewal process, as it would significantly reduce performance.

5.3 LONG-HORIZON SAMPLING ON BENCHMARK DATA

We use standard benchmark datasets as described at the start of Section 5. Our model has a GRU
encoder with 256 hidden dimension. The decoder is a log-normal mixture distribution with 32
components. After training is completed, the models are used to generate new realizations starting
from the initial sequences that are given in the held-out test set. We generate the sequences using
regular one-by-one sampling which is the ground truth, and compare it to speculative sampling using
our linear estimation of the rejection constant. We additionally do speculative sampling with Monte
Carlo estimation of the rejection constant, the results are discussed in Appendix D.4.

For each sequence, we take 10 samples, each consisting of 100 events, and use a speculative step of 5.
We also implement approximate schemes for further improvements in sampling efficiency, namely,
top-k sampling where we accept all events up to the kth event flagged for rejection. We measure the
average acceptance step and various distances between empirical distributions of events from the
conventional and speculative sampling. We report KL-divergence between marks, maximum mean
discrepancy of arrival times, and log-likelihood ratio; all formally defined in Appendix D.5.

Table 2 shows the distances between the true sampling distribution and the speculative samples. The
results demonstrate that large speculative steps are achieved for most datasets without compromising
sampling quality. The only exception is the Taxi dataset, which has specific structure where marks
alternate between two values, i.e., mark 1 always follows mark 2 and vice versa, limiting the
effectiveness of our approach in this specific case. This results in large rejection rates of the
categorical distribution but it can be fixed by augmenting the proposal distribution. Additional
results with error bars and other metrics are in Table 8. For results using different encoders, such as
transformer and convolutional neural network, see Appendix D.6.

5.4 RUNTIME IMPROVEMENTS

Having demonstrated that speculative sampling generates equivalent samples to the true process
while accepting multiple events per iteration, we now quantify the computational benefits through
wall-clock time measurements (with hardware specifications in Appendix D.1). We break down the
sampling procedure into its key components as outlined in Algorithm 1. For instance, “Encoder”
measurement represents the total time spent on encoder computations.

Table 3 presents the timing comparison, additional detailed results are available in Appendix D.6. The
measurements demonstrate substantial speedup, particularly for datasets with higher acceptance rates.

Table 2: Quality of samples and average accepted step for different top-k, compared to ground truth.
MMD KL-divergence Log-likelihood ratio Step

True Top-1 Top-2 Top-3 True Top-1 Top-2 Top-3 True Top-1 Top-2 Top-3 Top-1 Top-2 Top-3
Amazon 0.2 0.2 0.19 0.2 7.26 7.33 7.26 7.28 0.02 -0.02 -0.03 -0.05 2.8905 5.9309 8.8409
EQ 0.19 0.2 0.19 0.18 3.9 3.98 3.99 3.86 0.04 -0.13 -0.05 0.03 3.0387 6.1882 9.1424
Reddit 0.19 0.19 0.19 0.2 6.36 6.4 6.45 6.26 -0.06 -0.15 -0.16 -0.21 2.1848 4.3222 6.5014
Retweet 0.2 0.19 0.19 0.19 1.89 1.92 1.87 1.99 0.02 0.02 0.01 -0.03 3.7707 8.2337 12.6512
SO 0.19 0.18 0.19 0.18 6.93 6.97 6.93 7.0 0.01 -0.01 -0.06 -0.07 2.1695 4.282 6.225
Taobao 0.2 0.2 0.2 0.2 8.33 8.59 8.34 8.63 0.02 -0.07 -0.21 -0.24 1.7783 3.4225 5.0025
Taxi 0.19 0.19 0.21 0.21 2.64 2.71 6.38 6.27 0.02 0.02 2.68 2.81 1.0003 2.1283 3.0359

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Average total time (in ms) for speculative sampling, compared to a conventional method.
Encoder (process history) Decoder (output distributions) Sample next event

True Top-1 Top-2 Top-3 True Top-1 Top-2 Top-3 True Top-1 Top-2 Top-3
Amazon 36.36 16.66 11.4 7.47 42.04 37.04 23.11 12.87 47.84 12.81 8.15 4.74
EQ 46.53 20.61 10.99 7.82 54.09 45.83 21.32 13.4 62.69 16.11 7.78 5.09
Reddit 37.89 25.05 19.2 13.81 43.41 55.34 36.2 22.94 49.53 19.22 13.54 9.1
Retweet 39.24 13.81 7.73 5.94 44.13 29.31 14.11 9.4 50.35 10.27 5.1 3.53
SO 49.02 29.85 17.36 13.13 50.61 59.83 30.87 21.46 60.72 22.35 12.3 8.88
Taobao 49.06 37.56 22.12 16.22 50.71 76.34 40.45 27.12 60.79 28.12 15.71 10.99
Taxi 49.18 54.33 29.86 22.62 51.13 111.12 55.5 38.98 61.03 40.71 21.7 15.61

0 100 200 300 400 500 600 700
Time

#5

#4

#3

#2

#1

0 100 200 300 400 500 600
Time

#5

#4

#3

#2

#1
Mark 1
Mark 2
Mark 3
Mark 4

Figure 4: Limit order book samples. (Left) Samples generated with a conventional autoregressive
method. (Right) Samples generated with a speculative sampling method.

This performance gain stems from more efficient utilization of parallel computing capabilities in
modern hardware. Since neural network operations on batched data incur similar overhead regardless
of batch sizes, our approach achieves better throughput by reducing the total number of separate calls.

The rejection constant runtime depends on the implementation and exact parameters. The current
implementation prioritizes clarity and didactic value rather than computational efficiency, while other
modules leverage optimized native operations. Despite this, we achieve significant overall speedup.

5.5 REAL-WORLD APPLICATION: LIMIT ORDER BOOKS

Limit order book (LOB) records outstanding buy and sell orders for an asset, organized by price
level. Real-time messages, such as new orders or cancellations, are processed based on price and time
priority, ensuring efficient trade execution. Messages can be modeled with a TPP, where individual
order timings are arrival times and their contents are marks. Accurately modeling LOB messages is
essential for enhancing trading strategies. We use publicly available data for the MSFT symbol from
a single day,1 comprising 600k messages with various features, detailed in Appendix C.2. The data is
divided into training sequences of length 200, with four mark types.

A unique challenge arises as messages can arrive simultaneously which occurs in about 8% of the data,
conflicting with the assumptions of a simple point process. To address this, we quantize delta times
using quantile bins, allowing for zero values. The model then predicts one categorical distribution
for inter-arrival times and another categorical distribution for marks. We simulate 100 future steps
10 times, achieving an average speculative step size of 2.82, and 5.19 for top-2 sampling. Figure 4
shows empirical samples using different sampling methods. In Appendix D.7 we show some stylized
facts that demonstrate that the samples generated with a speculative scheme have the same properties
as the conventional sampling. Figure 9 shows transition matrices and Figure 10 cumulative counts.

6 DISCUSSION

In this paper, we introduce a novel method that improves the simulation efficiency of TPPs by enabling
parallel sampling of multiple next events, which is crucial for rapid event sequence generation.
Notably, our method is effective even with non-renewal data, allowing for broad applicability without
altering existing models. Our approach utilizes envelope approximation, which can be applied to
a wide range of functions, including most common distribution choices and their mixtures. Our
approach can be adapted to various model definitions, and we offer implementations for most common
choices. Future work might explore better proposal distributions to further boost efficiency.

1https://lobsterdata.com/info/DataSamples.php

9

https://lobsterdata.com/info/DataSamples.php

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yacine Aït-Sahalia and Jean Jacod. High-frequency financial econometrics. Princeton University
Press, 2014.

Emmanuel Bacry, Martin Bompaire, Stéphane Gaïffas, and Soren Poulsen. Tick: a python library for
statistical learning, with a particular emphasis on time-dependent modelling. arXiv:1707.03003,
2017.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In NeurIPS, 2018.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. In SSST@EMNLP 2014, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014.

D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes: Volume I: Elementary
Theory and Methods. Probability and Its Applications. Springer New York, 2006.

Luc Devroye. A simple algorithm for generating random variates with a log-concave density.
Computing, 33(3-4):247–257, 1984.

Luc Devroye. Non-Uniform Random Variate Generation. Springer, 1986.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp.
1555–1564, 2016.

Walter R Gilks and Pascal Wild. Adaptive rejection sampling for gibbs sampling. Journal of the
Royal Statistical Society: Series C (Applied Statistics), 41(2):337–348, 1992.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. In ICML, 2024.

Dilan Görür and Yee Whye Teh. Concave-convex adaptive rejection sampling. Journal of Computa-
tional and Graphical Statistics, 20(3):670–691, 2011.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58
(1):83–90, 1971.

Ivan Karpukhin, Foma Shipilov, and Andrey Savchenko. Hotpp benchmark: Are we good at the long
horizon events forecasting? arXiv:2406.14341, 2024.

Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. Community interaction and
conflict on the web. In Proceedings of the 2018 World Wide Web Conference on World Wide Web,
pp. 933–943. International World Wide Web Conferences Steering Committee, 2018.

Jure Leskovec and Rok Sosič. SNAP: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology (TIST), 2016.

David Lüdke, Marin Biloš, Oleksandr Shchur, Marten Lienen, and Stephan Günnemann. Add and
thin: Diffusion for temporal point processes. In NeurIPS, 2023.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. In NeurIPS, 2017.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In EMNLP-IJCNLP, pp. 188–197, 2019.

Yosihiko Ogata. On lewis’ simulation method for point processes. IEEE transactions on information
theory, 27(1):23–31, 1981.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Takahiro Omi, Kazuyuki Aihara, et al. Fully neural network based model for general temporal point
processes. In NeurIPS, 2019.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and
Ming Zhou. Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training. In Trevor
Cohn, Yulan He, and Yang Liu (eds.), EMNLP. Association for Computational Linguistics, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International journal of forecasting, 36(3):
1181–1191, 2020.

Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point
processes. In ICLR, 2020.

Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural temporal
point processes: A review. In Zhi-Hua Zhou (ed.), IJCAI, 2021.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. In NeurIPS, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Chris Whong. FOILing NYC’s taxi trip data. 2014.

Siqiao Xue, Xiaoming Shi, James Zhang, and Hongyuan Mei. Hypro: A hybridly normalized
probabilistic model for long-horizon prediction of event sequences. In NeurIPS, 2022.

Siqiao Xue, Xiaoming Shi, Zhixuan Chu, Yan Wang, Hongyan Hao, Fan Zhou, Caigao Jiang, Chen
Pan, James Y. Zhang, Qingsong Wen, Jun Zhou, and Hongyuan Mei. EasyTPP: Towards open
benchmarking temporal point processes. In ICLR, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI, 2023.

Ke Zhou, Hongyuan Zha, and Le Song. Learning triggering kernels for multi-dimensional hawkes
processes. In ICML. PMLR, 2013.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes process.
In ICML, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A THEORETICAL RESULTS

A.1 PROOF OF THEOREM 3.1

First, we show some results that will help us prove the main claim.

Lemma A.1. Let gT (x) be the upper bound of the target density fT (x), and let hP (x) be the lower
bound of the proposal density fP (x). Then the ratio M̃ = maxx

gT (x)
hP (x) is the upper bound of the

rejection sampling constant M = maxx
fT (x)
fP (x) .

Proof. Since fT (x) ≤ gT (x) and hP (x) ≤ fP (x), we know fT (x)
fP (x) ≤

gT (x)
hP (x) , which finally gives

M = maxx
fT (x)
fP (x) ≤ maxx

gT (x)
hP (x) = M̃ .

Lemma A.2. For any density function f(x) and grid {x0, x1, . . . , xn}, f can be approximated by a
piecewise linear function where, in convex regions [xi, xi+1], f is upper-bounded by the line segment
connecting (xi, f(xi)) and (xi+1, f(xi+1)) and lower-bounded by the line with slope f ′(xm) at
xm = xi+xi+1

2 passing through (xm, f(xm)). In concave regions, these bounds are reversed. Any
function can be bounded by decomposing its domain into convex and concave regions.

Proof. We proceed by establishing bounds for convex and concave regions separately, then show
how these can be combined.

Case 1: Convex regions. Let [xi, xi+1] be an interval where f is convex, and let xm = xi+xi+1

2 .

For the upper bound, by definition of convexity, for any λ ∈ [0, 1] and x = λxi + (1− λ)xi+1:

f(x) ≤ λf(xi) + (1− λ)f(xi+1)

This is precisely the line segment connecting (xi, f(xi)) and (xi+1, f(xi+1)), confirming it as an
upper bound.

For the lower bound, let L(x) be the line with slope f ′(xm) passing through (xm, f(xm)):

L(x) = f(xm) + f ′(xm)(x− xm)

For a convex function, any tangent line lies below the function, thus:

f(x) ≥ f(xm) + f ′(xm)(x− xm) = L(x) ∀x

Case 2: Concave regions. For intervals where f is concave, the inequalities reverse. The line
segment becomes a lower bound, and the tangent line at xm becomes an upper bound, by the same
reasoning applied to −f .

Combining regions: Any continuous function can be decomposed into intervals where it is either
convex or concave, assuming f ′′ exists and changes sign a finite number of times in any bounded
interval. This holds for all the densities of interest. By applying the appropriate bounds in each
region, we obtain piecewise linear upper and lower bounds for the entire function.

This construction assumes f is twice differentiable almost everywhere to identify convex and concave
regions. We also assume that f ′(xm) exists at each midpoint. The approximation error depends on
the grid spacing and the maximum curvature of f . Note that the endpoints from two adjacent linear
segments do not have to meet in the same point.

Lemma A.3. Let f(x) =
∑k

i=1 wifi(x) be a mixture of density functions with weights wi ≥ 0
and

∑k
i=1 wi = 1. Let gi(x) be a linear upper bound and hi(x) a lower bound of a component

fi(x) according to Lemma A.2. Then, g(x) =
∑k

i=1 wigi(x) is an upper bound of f(x), and
h(x) =

∑k
i=1 wihi(x) is a lower bound of f(x).

Proof. Since gi(x) ≥ fi(x) for all x and for each i ∈ {1, 2, . . . , k}, and wi ≥ 0, we have:

wigi(x) ≥ wifi(x) ∀x,∀i (3)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Summing over all components:

k∑
i=1

wigi(x) ≥
k∑

i=1

wifi(x) (4)

g(x) ≥ f(x) (5)

Similarly, since hi(x) ≤ fi(x) for all x and for each i ∈ {1, 2, . . . , k}, we have:

k∑
i=1

wihi(x) ≤
k∑

i=1

wifi(x) (6)

h(x) ≤ f(x) (7)

Since each gi(x) and hi(x) is piecewise linear by construction, and a weighted sum of piecewise linear
functions remains piecewise linear, both g(x) and h(x) maintain the piecewise linear structure.

Lemma A.3 holds even if component functions are approximated on different grids. In that case, one
has to take the union over all the grid points to get the final shape. A simpler and computationally
friendly approach is to predefine the grid that will share the convexity for all the components. Finally,
having proven Lemmas A.1, A.2, and A.3, we can prove Theorem 3.1 from the main text.

Proof. (Theorem 3.1) Between any two adjacent grid points [xi, xi+1], both gT (x) and hP (x) are
linear functions:

gT (x) = aix+ bi (8)
hP (x) = cix+ di (9)

where ai, bi, ci, di are constants determined by the respective bounds.

The ratio between grid points is therefore:

r(x) =
gT (x)

hP (x)
=

aix+ bi
cix+ di

(10)

This ratio function r(x) is either:

1. Constant (when ai

ci
= bi

di
), in which case the maximum is attained everywhere, including at

the endpoints,

2. Strictly monotonic (either increasing or decreasing), as the derivative r′(x) = aidi−bici
(cix+di)2

has
constant sign. In this case, the maximum in [xi, xi+1] must occur at either xi or xi+1.

Since this holds for all intervals [xi, xi+1], the global maximum of r(x) must occur at one of the grid
points {x0, x1, . . . , xn}. Therefore:

M̃ = max
x

r(x) = max
i∈{0,1,...,n}

gT (xi)

hP (xi)
(11)

Theorem 3.1 shows us how to construct the grid made out of piecewise linear segments. Since it
works for mixture distributions, e.g., with components defined in Section 3.3, and since mixture
distributions build a universal approximator for TPPs (Shchur et al., 2020), our method can be
considered a universal approach for speculative sampling.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 ALGORITHM FOR FINDING THE REJECTION CONSTANT

Algorithm 2 shows us how to get the upper and lower bound for any density, as long as we can
evaluate this density and its derivative in any point. Algorithm 3 shows us how to compute the
rejection constant given the target and proposal density.

Algorithm 2 GetBounds function for bounding density
1: Input: Distribution p, left segment bounds Xleft, right segment bounds Xright, boolean

upperBound
2: Output: Left and right segment values which define the linear segments which bound the density
3: X̄ ← (Xleft + Xright)/2 # Mid points
4: P̄ ← p(X̄), Pleft ← p(Xleft), Pright ← p(Xright)
5: P̄ ′ ← p′(X̄) # Derivative in mid points
6: Zleft ← P̄ ′(Xleft − X̄) + P̄ # Tangent values in edges
7: Zright ← P̄ ′(Xright − X̄) + P̄
8: if upperBound then
9: Yleft,Yright ← max(Pleft,Zleft),max(Pright,Zright)

10: else
11: Yleft,Yright ← min(Pleft,Zleft),min(Pright,Zright)
12: end if
13: Return Yleft,Yright

Algorithm 3 RejectionConst for any pair of densities
1: Input: Proposal distribution q, target distribution p, target percentile α, number of grid points n,

grid generator GetGridPoints, GetBounds (Algorithm 2)
2: Output: Rejection constant M
3: Xleft,Xright ← GetGridPoints(q, p, α, n)
4: Pleft,Pright ← GetBounds(p,Xleft,Xright,True)
5: Qleft,Qright ← GetBounds(q,Xleft,Xright,False)
6: R ← [Pleft/Qleft,Pright/Qright]
7: M ← max(R)
8: Return M

A.3 IMPROVED REJECTION SAMPLING FOR CATEGORICAL DISTRIBUTION WITH BOUNDED
ERROR

For categorical distributions pT and pP over a discrete set X , the rejection sampling constant is
defined in Equation 2. The acceptance probability is then 1

M , meaning that on average, M samples
must be drawn from pP to obtain one sample from pT . We can trade-off accuracy for efficiency by
defining the δ-truncated rejection constant as:

Mδ = min

{
M ≥ 1

∣∣∣∑
x∈S(M)

pT (x) ≥ 1− δ

}
, (12)

where S(M) = {x ∈ X | M · pP (x) ≥ pT (x)} is the set of elements that satisfy the rejection
criterion with constant M . To compute Mδ:

1. Calculate ratios r(x) = pT (x)
pP (x) for all x ∈ X ,

2. Sort ratios in descending order: r1 ≥ r2 ≥ . . . ≥ rn,

3. Compute cumulative mass of the target distribution: Ci =
∑i

j=1 pT (x̂j), where x̂j is the
element with the jth highest ratio,

4. Find the smallest index i∗ such that Ci∗ ≥ δ,

5. Set Mδ = ri∗+1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

This corresponds to excluding the elements with the highest ratios, whose collective probability under
p is at most δ. When δ is small, we expect this to have no effect on sampling quality. To quantify
the error, we measure the total variation distance: TV(p̃, p) = 1

2

∑
x∈X |p̃(x)− p(x)|, where p̃ is the

distribution resulting from δ-truncated rejection sampling. We show that this error is bounded by δ.

Lemma A.4. Let p̃ be the distribution of samples generated by δ-truncated rejection sampling. The
total variation distance between p̃ and the target distribution p is bounded by TV(p̃, p) ≤ δ.

Proof. Let E =
{
x ∈ X | p(x)q(x) > Mδ

}
be the set of excluded elements. Then, by construction,∑

x∈E p(x) ≤ δ. The δ-truncated algorithm effectively samples from a re-normalized distribution:

p̃(x) =

{
p(x)

1−
∑

y∈E p(y) if x /∈ E

0 if x ∈ E.

The total variation distance is bounded by:

TV(p̃, p) =
1

2

∑
x∈X
|p̃(x)− p(x)| = 1

2

(∑
x∈E

p(x) +
∑
x/∈E

∣∣∣∣∣ p(x)

1−
∑

y∈E p(y)
− p(x)

∣∣∣∣∣
)
,

which simplifies to TV(p̃, p) =
∑

x∈E p(x) ≤ δ.

A more precise estimation of the error accounts for the partial coverage of excluded categories:

TVeffective(p̃T , pT) =
∑
x∈E

pT (x)

(
1−min

(
1,

MδpP (x)

pT (x)

))
. (13)

This represents the fact that categories in E aren’t completely unrepresented, they are sampled from
pP and accepted with probability MδpP (x)

pT (x) , which provides partial coverage.

B DISTRIBUTIONS

0.0

0.2

0.4

0.6

Ga
m

m
a

= 2.0, = 1.0 = 3.0, = 2.0 = 0.7, = 0.1

PDF
Inflection point
Convex Region
Concave Region

0.0

0.5

1.0

Lo
gN

or
m

al

= 0.0, = 1.0 = 1.0, = 0.5 = 1.0, = 2.0 = 1.2, = 0.1

0 2 4
0.0

0.5

1.0

W
ei

bu
ll

= 1.0, k = 1.0

0 2 4

= 1.0, k = 2.0

0 2 4

= 2.0, k = 2.0

0 2 4

= 2.0, k = 4.0

Figure 5: Convexity of Gamma, log-normal and Weibull distributions for different parameters. The
first and second derivative, and inflection points are available in closed-form, see Table 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.1 EXPONENTIAL

The exponential PDF is given by f(x;λ) = λe−λx, λ > 0. The first derivative of f(x) is:

f ′(x) =
d

dx

(
λe−λx

)
= −λ2e−λx.

Using this, the second derivative of f(x) is:

f ′′(x) =
d

dx

(
−λ2e−λx

)
= λ3e−λx.

Since λ > 0 this is always positive, exponential PDF is convex, therefore, we do not have any
inflection points.

B.2 GAMMA

The Gamma PDF is given by f(x;α, β) = βα

Γ(α)x
α−1e−βx;α, β > 0. The first derivative of f(x) is:

f ′(x) =
βα

Γ(α)

d

dx

(
xα−1e−βx

)
=

βα

Γ(α)

[
d

dx

(
xα−1

)
e−βx + xα−1 d

dx

(
e−βx

)]
=

βα

Γ(α)

[
(α− 1)xα−2e−βx − βxα−1e−βx

]
= f(x)

(
α− 1

x
− β

)
.

Then, the second derivative of f(x) is:

f ′′(x) = f ′(x)

(
α− 1

x
− β

)
+ f(x)

d

dx

(
α− 1

x
− β

)
= f(x)

[(
α− 1

x
− β

)2

− α− 1

x2

]
We find inflection points by solving f ′′(x) = 0. Since f(x) > 0, this simplifies to:(

α− 1

x
− β

)2

=
α− 1

x2∣∣∣∣α− 1

x
− β

∣∣∣∣ =
√

α− 1

x2

We distinguish two cases:

1. α−1
x − β =

√
α−1
x2

2. α−1
x − β = −

√
α−1
x2

which finally gives us our inflection points:

x1 =
α− 1−

√
α− 1

β
, x2 =

α− 1 +
√
α− 1

β
.

B.3 LOG-NORMAL

The log-normal PDF is given by:

f(x;µ, σ) =
1

xσ
√
2π

exp

(
− (log x− µ)2

2σ2

)
, σ > 0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The first derivative of f(x) is:

f ′(x) =
d

dx

(
1

xσ
√
2π

exp

(
− (log x− µ)2

2σ2

))
=

d

dx

(
1

xσ
√
2π

)
exp

(
− (log x− µ)2

2σ2

)
+

1

xσ
√
2π

d

dx

(
exp

(
− (log x− µ)2

2σ2

))
= − 1

x2σ
√
2π

exp

(
− (log x− µ)2

2σ2

)
+

1

xσ
√
2π

exp

(
− (log x− µ)2

2σ2

)(
− 1

σ2

log x− µ

x

)
= f(x)

(
− 1

x
− log x− µ

σ2x

)
.

The second derivative of f(x) is:

f ′′(x) =
d

dx

(
f(x)

(
− 1

x
− log x− µ

σ2x

))
= f ′(x)

(
− 1

x
− log x− µ

σ2x

)
+ f(x)

d

dx

(
− 1

x
− log x− µ

σ2x

)
= f(x)

(
− 1

x
− log x− µ

σ2x

)2

+ f(x)

[
1

x2
− 1

σ2

d

dx

(
log x− µ

x

)]
= f(x)

(
− 1

x
− log x− µ

σ2x

)2

+ f(x)

[
1

x2

(
1− 1

σ2

)
+

log x− µ

σ2x2

]
= f(x)

1

x2

[(
1 +

log x− µ

σ2

)2

+

(
1− 1

σ2

)
+

log x− µ

σ2

]
.

We find inflection points by solving f ′′(x) = 0. Since f(x) > 0, this simplifies to:

(
1 +

log x− µ

σ2

)2

+

(
1− 1

σ2

)
+

log x− µ

σ2
= 0

Let z = log x. Substituting z, we get:

(
1 +

z − µ

σ2

)2

+

(
1− 1

σ2

)
+

z − µ

σ2
= 0

1 + 2
z − µ

σ2
+

(z − µ)2

σ4
+

(
1− 1

σ2

)
+

z − µ

σ2
= 0

(z − µ)2

σ4
+

3(z − µ)

σ2
+

(
2− 1

σ2

)
= 0

This is a quadratic equation in z − µ. Let a = 1
σ4 , b = 3

σ2 , and c = 2− 1
σ2 . The equation becomes

a(z − µ)2 + b(z − µ) + c = 0, which can be solved using the quadratic formula, which gives us:

x = exp

(
µ+
−b±

√
b2 − 4ac

2a

)
, a =

1

σ4
, b =

3

σ2
, c = 2− 1

σ2
.

Plugging values back in, we get: exp(µ+ σ2

2

(
−3±

√
1 + 4

σ2

)
).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 WEIBULL

The Weibull PDF is given by f(x; k, λ) = k
λ

(
x
λ

)k−1
e−(

x
λ)

k

; k, λ > 0, where k is called shape and
λ is scale parameter. The first derivative of f(x) is:

f ′(x) =
d

dx

[
k

λ

(x
λ

)k−1

e−(
x
λ)

k
]

=
k

λ

[
d

dx

(x
λ

)k−1

e−(
x
λ)

k

+
(x
λ

)k−1 d

dx

(
e−(

x
λ)

k)]
=

k

λ

[
(k − 1)

(x
λ

)k−2 1

λ
e−(

x
λ)

k

− k
(x
λ

)k−1 1

λ
e−(

x
λ)

k
]

= f(x)

[
k − 1

x
− k

λ

(x
λ

)k−1
]
.

The second derivative of f(x) is:

f ′′(x) =
d

dx

[
f(x)

(
k − 1

x
− k

λ

(x
λ

)k−1
)]

= f ′(x)

(
k − 1

x
− k

λ

(x
λ

)k−1
)
+ f(x)

d

dx

(
k − 1

x
− k

λ

(x
λ

)k−1
)

= f ′(x)

(
k − 1

x
− k

λ

(x
λ

)k−1
)
+ f(x)

[
−k − 1

x2
− k(k − 1)

λ2

(x
λ

)k−2
]

= f ′(x)

(
k − 1

x
− k

λ

(x
λ

)k−1
)
+ f(x)

[
−k − 1

x2
− k(k − 1)

λ2

(x
λ

)k−2
]
.

To find the inflection points, we solve f ′′(x) = 0. Since f(x) > 0, we simplify to:(
k − 1

x
− k

λ

(x
λ

)k−1
)2

= −k − 1

x2
− k(k − 1)

λ2

(x
λ

)k−2

∣∣∣∣k − 1

x
− k

λ

(x
λ

)k−1
∣∣∣∣ =

√
k − 1

x2
+

k(k − 1)

λ2

(x
λ

)k−2

.

This gives two cases to solve:

k − 1

x
− k

λ

(x
λ

)k−1

= ±
√

k − 1

x2
+

k(k − 1)

λ2

(x
λ

)k−2

.

Let us substitute y = x
λ , then we have:

k − 1

λy
− k

λ
yk−1 = ±

√
k − 1

λ2y2
+

k(k − 1)

λ2
yk−2

k − 1

y
− kyk−1 = ±

√
k − 1

y2
+ k(k − 1)yk−2

(
k − 1

y
− kyk−1

)2

=
k − 1

y2
+ k(k − 1)yk−2

(k − 1)2

y2
− 2k(k − 1)yk−2 + k2y2k−2 =

k − 1

y2
+ k(k − 1)yk−2

We rearrange to get:

(k − 1)2 − (k − 1)

y2
− 2k(k − 1)yk−2 − k(k − 1)yk−2 + k2y2k−2 = 0

(k − 1)(k − 2)− 3k(k − 1)yk + k2y2k = 0

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

This is a quadratic equation in z = yk, which gives:

k2z2 − 3k(k − 1)z + (k − 1)(k − 2) = 0,

then, using the quadratic formula:

z =
3k(k − 1)±

√
9k2(k − 1)2 − 4k2(k − 1)(k − 2)

2k2
.

We can simplify further:

9k2(k − 1)2 − 4k2(k − 1)(k − 2) = k2(k − 1)(9(k − 1)− 4(k − 2)) = k2(k − 1)(5k − 1),

when we substitute back into the quadratic solution we get:

z =
3k(k − 1)± k

√
(k − 1)(5k − 1)

2k2
=

3(k − 1)±
√
(k − 1)(5k − 1)

2k
.

In the original variables (from z = yk and y = x
λ) this gives us:

(x
λ

)k
=

3(k − 1)±
√
(k − 1)(5k − 1)

2k

x

λ
=

(
3(k − 1)±

√
(k − 1)(5k − 1)

2k

)1/k

x = λ

(
1

2

)1/k
(
3(k − 1)±

√
(k − 1)(5k − 1)

k

)1/k

.

C DATA

C.1 BECNHMARK DATA

Table 4 shows the summary statistics for real-world data used in experiments. Figure 6 shows the
distribution of inter-event times, and Figure 7 shows sample sequences.

Table 4: Facts about the real-world data used in experiments.
Mark Majority Number of sequences Sequence lengths: “min–max (median)"

Dataset dim. mark Train Val Test Train Val Test

Amazon 16 29.1% 6454 922 1851 14 - 94 (42) 15 - 94 (42) 14 - 94 (42)
EQ 7 43.7% 3000 400 900 15 - 18 (16) 15 - 18 (17) 0 - 18 (16)
Reddit 985 10.8% 6000 2000 2000 28 - 100 (44) 29 - 100 (45) 29 - 100 (45)
Retweet 3 49.4% 20000 2000 2000 50 - 264 (90) 50 - 264 (89) 50 - 264 (90)
SO 22 44.1% 1401 401 401 41 - 101 (57) 41 - 101 (58) 41 - 101 (61)
Taobao 17 44.3% 1300 200 500 28 - 64 (61) 31 - 64 (61) 32 - 64 (61)
Taxi 10 44.6% 1400 200 400 36 - 38 (38) 36 - 38 (38) 36 - 38 (38)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Amazon

Earthquake

Reddit

Retweet

Stackoverflow

Taobao

Taxi

Figure 7: Four sequence examples for each benchmark dataset. Vertical lines correspond to the
events, the space between the lines represents the time difference between events, different colors
indicate different mark types.

10 2 10 1

C
ou

nt

Amazon

10 5 10 3 10 1 101

Earthquake

10 7 10 4 10 1

Reddit

101 103 105

Retweet

10 3 10 1 101

Time since last event

C
ou

nt

Stackoverflow

10 4 10 2 100

Taobao

10 3 10 2 10 1 100

Taxi
Train
Dev
Test

Figure 6: Histogram of times between consecutive events. Different colors are different data splits.

C.2 LIMIT ORDER BOOK DATA

Table 5 describes the data fields in limit order book message data. We only keep submission (1) and
deletion (3) types since they account for 94% of messages. Combining these two types with two
directions gives us 4 different marks. Other possibilities, such as including size or price are possible
but we leave this for future work.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Field Description

Time Seconds after midnight with decimal precision of at least milliseconds

Type Categorical variable with the following possible values:
1. Submission of a new limit order
2. Cancellation (partial deletion of a limit order)
3. Deletion (total deletion of a limit order)
4. Execution of a visible limit order
5. Execution of a hidden limit order
6. Trading halt indicator

Order ID Unique order reference number (assigned in order flow)
Size Number of shares
Price Dollar price
Direction -1 for sell limit order, and 1 for buy limit order

Table 5: Description of LOB data fields.

D EXPERIMENTS

D.1 HARDWARE

All experiments were conducted on a server equipped with a 40 core CPU at 2.40GHz and 754GB of
RAM. The system features dual NVIDIA Tesla V100 GPUs, each with 16GB of dedicated VRAM.

D.2 JUMP PROCESS SYNTHETIC DATA RESULTS

0 500 1000 1500 2000 2500 3000
Time

#5
#4
#3
#2
#1

Sa
m

pl
es

0 500 1000 1500 2000 2500 3000
Time

0.6

0.7

0.8

0.9

1.0

Ac
ce

pt
an

ce
 r

at
e

Accept rate
IQR

1.0 1.5 2.0
Rejection constant

0

2

4

6

D
en

si
ty

Figure 8: Qualitative results on jump process data. (Left) Five samples generated from the same
initial sequence. Vertical blue lines indicate events, which results in visually darker areas for regimes
with higher intensity. (Middle) Acceptance ratio over time. (Right) Rejection constant distribution.

D.3 STATIONARITY OF REAL-WORLD DATA

We use an intensity-free model with a log-normal mixture distribution (Shchur et al., 2020). The
full history model employs a GRU that updates its state with each event, while the Markov model
processes events without retaining history. The no-history (renewal) model learns a single shared
distribution for all events. Our model variations are implemented within the framework of Xue et al.
(2024). In Table 6 we do not report Retweet RMSE results because of numerical instability which
occurs computing this metric for all models.

D.4 MONTE CARLO REJECTION CONSTANT

We compute the rejection constant necessary for exact baseline speculative sampling through a
comprehensive numerical approach. Given a target distribution fT (t) and a proposal distribution
fP (t), the method constructs a dense grid of evaluation points spanning the support of both distri-
butions. At each point in this grid, we compute the ratio fT (t)/fP (t). The rejection constant M is
then determined as the maximum value of this ratio across all evaluation points, effectively finding
M = maxt

fT (t)
fP (t) . With enough points, this approach guarantees that MfP (t) ≥ fT (t) for all t in

the domain, ensuring the correctness of the rejection sampling procedure. While computationally

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

TPP model type based on history
Metric Data No history Markov Full history

Log-likelihood Amazon 0.205±0.035 0.231±0.040 0.513±0.026
Earthquake -2.307±0.002 -2.306±0.001 -2.017±0.012
Retweet -9.892±0.000 -9.892±0.000 -9.849±0.009
Stackoverflow -2.689±0.001 -2.679±0.002 -2.229±0.001
Taobao 0.429±0.010 0.406±0.000 0.790±0.017
Taxi -0.608±0.005 -0.597±0.001 0.384±0.002

Accuracy Amazon 0.290±0 (0.29) 0.290±0 0.347±0.001
Earthquake 0.451±0 (0.44) 0.451±0 0.470±0.001
Retweet 0.496±0 (0.49) 0.496±0 0.601±0.004
Stackoverflow 0.437±0 (0.44) 0.437±0 0.473±0.000
Taobao 0.422±0 (0.44) 0.422±0 0.569±0.004
Taxi 0.439±0 (0.45) 0.439±0 0.907±0.001

RMSE Amazon 3.867±5.035 0.486±0.001 0.462±0.000
Earthquake 2.404±0.033 3.221±1.561 2.729±0.563
Stackoverflow 1.549±0.041 1.529±0.015 2.233±0.654
Taobao 3.641±5.295 0.166±0.005 6.859±2.314
Taxi 13.573±12.906 0.437±0.015 0.449±0.041

Table 6: Model test log-likelihood, mark accuracy and time RMSE. Brackets in “No history” model’s
accuracy column indicate the majority class. Full history model is the best overall, indicating the
processes are non-stationary.

MMD KL LLR
Exact Data Autoreg MC Autoreg MC Autoreg MC Step

True Amazon 0.2 0.2 7.21 7.17 -0.01 -0.0 1.2608
EQ 0.19 0.19 3.99 3.93 -0.03 -0.09 2.0946
Reddit 0.19 0.2 6.11 6.28 0.03 -0.08 1.6671
Retweet 0.2 0.19 1.89 1.82 -0.02 -0.01 2.0967
SO 0.19 0.19 6.91 6.98 0.02 -0.0 1.5393
Taobao 0.2 0.2 8.43 8.51 -0.01 -0.13 1.4982
Taxi 0.19 0.19 2.78 2.78 -0.0 -0.0 1.0001

False Amazon 0.2 0.2 7.2 7.23 0.01 0.01 2.5115
EQ 0.19 0.2 3.84 3.98 0.0 -0.1 2.9172
Reddit 0.19 0.2 6.43 6.55 0.02 -0.15 2.1583
Retweet 0.19 0.2 1.89 1.88 0.0 -0.03 2.4527
SO 0.18 0.18 6.93 7.02 0.04 -0.01 2.1158
Taobao 0.2 0.2 8.38 8.63 -0.0 -0.16 1.7809
Taxi 0.19 0.19 2.68 2.71 0.02 0.02 1.0004

Table 7: Speculative sampling using Monte Carlo (MC) approximation of the rejection constant,
compared to the traditional one-by-one sampling (Autoreg). Speculative sampling is either exact
(with tight bounds) or inexact (with loose bounds on categorical rejection constant and percentile
computation). Inexact setting does not apply to autoregressive baseline. The reason for different
values in “Autoreg” column for the same data is due to different random seeds.

intensive compared to our proposed method, the MC brute force method provides a reliable measure
of the optimal rejection constant which can then be used to examine the gap in our approximation.

Table 7 shows the metrics of distance between the true autoregressive samples and speculative
samples generated using the Monte Carlo rejection constant. For autoregressive column values,
the distance is computed on two disjoint sets of samples from the same sampling procedure. This
demonstrates the empirical distance between the values from the same distribution as a lower bound.
It additionally shows the average achieved speculative step. We distinguish between exact and inexact
approach where the latter has a looser definition of the bounds on which the grid is constructed and
the categorical distribution rejection constant is computed with δ = 0.05.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.5 METRICS

To quantify the statistical similarity between sequences generated by our speculative sampling method
and conventional autoregressive sampling, we employ multiple complementary metrics.

KL divergence per event. We measure the Kullback-Leibler divergence between the empirical mark
distributions of generated samples on an event-by-event basis. For discrete mark sequences xp and
xq from distributions P and Q respectively, we compute:

KLper event =
1

BL

B∑
b=1

L∑
l=1

D∑
d=1

p̂
(d)
b,l log

p̂
(d)
b,l

q̂
(d)
b,l

(14)

where B is the batch size, L is the sequence length, D is the mark space dimension, and p̂
(d)
b,l ,

q̂
(d)
b,l represent the empirical probability mass at dimension d for event l in batch b, computed

using frequency counts across samples. A value closer to zero indicates greater similarity between
distributions.

Maximum Mean Discrepancy (MMD). To compare the temporal aspects of generated sequences,
we employ MMD with a Gaussian kernel to measure the distance between distributions of inter-arrival
times. For each event position, we compute:

MMDb,l(tp, tq) = E[k(tp,b,l, t′p,b,l)] + E[k(tq,b,l, t′q,b,l)]− 2E[k(tp,b,l, tq,b,l)] (15)

where k(·, ·) is a Gaussian kernel with bandwidth selected via median L1 distance heuristic. The
final MMD is averaged across all batch elements and event positions. MMD approaches zero as
distributions become identical.

Log-Likelihood Ratio. This metric directly evaluates distributional agreement by comparing the
log-probabilities assigned by the model to samples from different methods:

LLR =
1

BSL

B∑
b=1

S∑
s=1

L∑
l=1

(log pnew(ts,l, xs,l)− log pold(ts,l, xs,l)) (16)

where S is the number of samples per sequence, and the log-probabilities are computed using the
same trained model. Values near zero indicate agreement between the sampling methods’ output
distributions.

For all metrics, we compute baseline comparisons by splitting samples from the conventional method
into two halves and measuring the same statistics between them, providing a reference for expected
variation within a single sampling method.

D.6 ADDITIONAL RESULTS

Table 8 shows all the results for GRU encoder with hidden dimension of 256 and a log-normal
mixture with 32 components. We test out different top-k values while measuring the divergence
from the true samples, indicated by “Baseline”. The speculative step is adjusted for different k, for 2
it becomes 10 and for 3 it is 15. As we can see, for most of the datasets larger top-k does not change
the sample quality. The only dataset for which this is not the case is Taxi, which is a known issue
discussed in the main text. Time constant and mark constant indicate the average rejection constant
for the respective time and mark distributions.

Table 10 similarly shows results for a two layer transformer network, with a similar setup as for
GRU. We sample 10 samples, each with 20 sequences and use a fixed speculative step of 5 for all
k. Table 9 shows timing results for convolutional neural network encoder. We also show results for
GRU encoder with different decoders, exponential in Table 11 and Weibull distribution in Table 12.

Measuring wall-clock time for rejection sampling reveals that depending on the speculative size and
the way we construct a grid, the total time spent on computing the constant can be up to 100ms. This
is the worst case for non-optimized code, and we expect that the speed can be improved significantly.
The algorithm has linear complexity in the number of grid points, or log-linear if we need to sort
them. The reason encoder is fast because (1) we use small models and (2) it is implemented using
highly optimized native functions. We expect that using larger models on longer sequences combined
with a faster optimization of rejection step, instead of the current didactic approach to code, will show
that even for small acceptance rate we match or outperform the conventional approach.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Data Amazon EQ Reddit Retweet SO Taobao Taxi
Top-k

LLR 1 -0.02±2.07 -0.13±2.11 -0.15±3.57 0.02±1.42 -0.01±2.47 -0.07±2.74 0.02±1.41
2 -0.03±2.06 -0.05±2.09 -0.16±3.55 0.01±1.4 -0.06±2.53 -0.21±2.73 2.68±2.63
3 -0.05±2.07 0.03±2.06 -0.21±3.48 -0.03±1.4 -0.07±2.56 -0.24±2.71 2.81±2.59

Baseline 0.02±2.06 0.04±2.13 -0.06±3.56 0.02±1.46 0.01±2.43 0.02±2.73 0.02±1.41

MMD 1 0.2±0.2 0.2±0.17 0.19±0.16 0.19±0.14 0.18±0.16 0.2±0.15 0.19±0.16
2 0.19±0.19 0.19±0.16 0.19±0.16 0.19±0.14 0.19±0.16 0.2±0.15 0.21±0.17
3 0.2±0.2 0.18±0.16 0.2±0.17 0.19±0.14 0.18±0.16 0.2±0.15 0.21±0.17

Baseline 0.2±0.19 0.19±0.16 0.19±0.17 0.2±0.14 0.19±0.16 0.2±0.14 0.19±0.15

KL per event 1 7.33±4.17 3.98±3.85 6.4±6.34 1.92±3.0 6.97±4.59 8.59±4.53 2.71±3.0
2 7.26±4.18 3.99±3.81 6.45±6.36 1.87±2.93 6.93±4.56 8.34±4.58 6.38±6.08
3 7.28±4.21 3.86±3.79 6.26±6.32 1.99±3.03 7.0±4.6 8.63±4.63 6.27±6.41

Baseline 7.26±4.16 3.9±3.81 6.36±6.26 1.89±2.95 6.93±4.55 8.33±4.43 2.64±2.94

Rank correlation 1 0.0±0.05 0.01±0.11 0.0±0.06 0.0±0.05 0.0±0.05 -0.0±0.05 -0.0±0.06
2 0.0±0.05 0.0±0.1 0.01±0.06 0.0±0.06 -0.02±0.06 -0.0±0.05 0.01±0.05
3 -0.0±0.04 -0.02±0.11 0.02±0.06 0.01±0.06 -0.0±0.05 0.0±0.05 0.0±0.04

Baseline 0.0±0.05 -0.01±0.11 -0.0±0.06 -0.0±0.06 -0.01±0.05 -0.0±0.05 0.0±0.05

Time constant 1 1.0656 1.5293 1.8412 1.0 1.3579 1.4391 3.5415
2 1.0711 1.6574 1.8747 1.0 1.3891 1.4742 2.6866
3 1.0785 1.8223 1.8644 1.0 1.4136 1.4952 2.5601

Mark constant 1 1.4906 1.2353 2.3063 1.2389 10.7231 4.2384 4228.5493
2 1.5876 1.2418 2.4749 1.2579 19.9326 4.312 509.4294
3 1.6273 1.2454 2.6028 1.2751 48.905 4.3765 498.4741

Encoder runtime 1 16.66±1.16 20.61±6.32 25.05±7.17 13.81±1.14 29.85±5.45 37.56±2.88 54.33±1.12
2 11.4±0.98 10.99±2.41 19.2±5.24 7.73±0.75 17.36±3.03 22.12±1.66 29.86±1.61
3 7.47±0.73 7.82±1.24 13.81±3.72 5.94±0.55 13.13±2.18 16.22±1.39 22.62±1.57

Baseline 36.36±0.73 46.53±12.39 37.89±2.31 39.24±2.27 49.02±0.62 49.06±0.91 49.18±1.55

Decoder runtime 1 37.04±2.6 45.83±14.22 55.34±16.26 29.31±2.22 59.83±11.42 76.34±6.05 111.12±2.29
2 23.11±2.07 21.32±4.31 36.2±10.33 14.11±1.19 30.87±5.93 40.45±3.58 55.5±4.04
3 12.87±1.33 13.4±1.77 22.94±6.61 9.4±0.84 21.46±4.07 27.12±2.55 38.98±3.47

Baseline 42.04±0.63 54.09±14.5 43.41±2.32 44.13±2.01 50.61±0.66 50.71±1.24 51.13±2.14

Sample runtime 1 12.81±0.89 16.11±5.08 19.22±5.66 10.27±0.83 22.35±4.26 28.12±2.49 40.71±1.04
2 8.15±0.72 7.78±1.66 13.54±3.88 5.1±0.5 12.3±2.36 15.71±1.34 21.7±1.54
3 4.74±0.49 5.09±0.7 9.1±2.62 3.53±0.35 8.88±1.74 10.99±1.19 15.61±1.28

Baseline 47.84±0.83 62.69±18.08 49.53±2.84 50.35±2.6 60.72±0.96 60.79±1.16 61.03±2.29

Step 1 2.8905 3.0387 2.1848 3.7707 2.1695 1.7783 1.0003
2 5.9309 6.1882 4.3222 8.2337 4.282 3.4225 2.1283
3 8.8409 9.1424 6.5014 12.6512 6.225 5.0025 3.0359

Table 8: Results for GRU encoder and log-normal mixture.

Top-k Amazon EQ Reddit Retweet SO Taobao Taxi

LLR 1 4.18±5.31 7.81±4.72 N/A 4.71±4.88 5.25±4.8 1.07±5.0 2.16±3.98
2 9.02±4.59 9.88±3.9 9.09±6.05 5.76±5.1 8.0±4.29 4.81±5.07 3.07±4.01
3 8.84±4.65 9.96±3.96 9.32±6.03 4.96±5.06 8.08±4.16 6.59±4.99 3.21±3.97

Baseline 0.01±3.57 0.02±2.5 -0.03±6.91 -0.0±3.15 -0.0±3.36 -0.04±5.3 -0.0±3.59

MMD 1 0.36±0.21 0.19±0.16 0.47±0.26 0.75±0.34 0.72±0.34 0.86±0.23 1.02±0.24
2 0.33±0.21 0.19±0.16 0.38±0.25 0.36±0.21 0.22±0.16 0.33±0.23 0.9±0.3
3 0.35±0.22 0.19±0.16 0.38±0.27 0.42±0.23 0.21±0.15 0.39±0.33 0.78±0.32

Baseline 0.19±0.14 0.19±0.16 0.2±0.14 0.19±0.14 0.19±0.13 0.18±0.14 0.18±0.14

KL per event 1 11.14±3.76 5.28±4.47 15.94±1.88 1.14±2.73 13.18±3.24 13.0±3.43 8.25±4.54
2 11.19±3.76 4.43±4.01 15.71±2.11 1.31±3.17 12.94±3.33 12.0±3.62 8.09±4.37
3 11.24±3.78 4.16±3.89 15.77±1.99 1.1±2.64 13.01±3.31 11.77±3.65 7.58±4.39

Baseline 11.11±3.78 4.22±3.93 15.24±2.38 1.17±2.59 13.01±3.24 11.58±3.69 6.33±4.11

Rank correlation 1 0.01±0.05 -0.0±0.05 -0.01±0.05 0.0±0.03 -0.0±0.03 0.01±0.05 -0.0±0.05
2 -0.01±0.04 0.01±0.05 0.0±0.05 0.0±0.03 0.0±0.04 -0.0±0.05 -0.0±0.05
3 0.01±0.05 -0.0±0.05 0.01±0.05 0.0±0.04 0.01±0.05 0.0±0.05 -0.0±0.06

Baseline -0.0±0.04 0.0±0.04 -0.01±0.04 -0.01±0.02 0.0±0.03 -0.0±0.04 -0.0±0.05

Time constant 1 2682.1531 115.6433 N/A 756.444 76.4793 43.3235 298.3471
2 1131.7275 167.2671 N/A 383.369 175.6843 221.8055 79.851
3 1111.671 153.6114 N/A 238.7219 186.8324 362.6418 88.6586

Mark constant 1 33.2394 108.5231 983.8811 155.4943 63.4784 10.5921 6.6346
2 33.736 84.2254 442.0354 107.2799 66.3883 27.6739 9.4718
3 26.9968 64.4483 337.1147 89.9403 45.942 45.3992 12.4013

Step 1 1.3357 1.3856 1.3674 1.6934 1.292 1.1466 1.1433
2 2.6618 2.6933 2.913 4.7831 2.6727 2.3286 2.2001
3 4.0362 4.3148 4.6114 7.0428 4.0173 3.8323 3.2598

Table 9: Results for CNN encoder and log-normal mixture.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Top-k Amazon EQ Reddit Retweet SO Taobao Taxi

LLR 1 0.51±1.94 -1.1±2.71 0.9±3.48 -0.01±7.0 0.56±2.75 0.75±2.79 0.87±1.7
2 0.44±2.01 -0.54±2.63 0.65±3.49 -1.43±6.1 0.39±2.72 0.38±2.89 0.86±1.65
3 0.27±2.03 -0.34±2.53 0.53±3.52 -2.12±5.65 0.28±2.78 0.08±2.93 0.94±1.68

Baseline 0.01±1.97 -0.03±2.11 0.0±3.49 0.06±6.54 0.01±2.72 -0.01±2.91 -0.02±1.14

MMD 1 0.32±0.34 0.33±0.22 0.22±0.21 0.24±0.17 0.2±0.18 0.19±0.16 0.27±0.22
2 0.31±0.34 0.28±0.2 0.21±0.19 0.3±0.2 0.19±0.17 0.2±0.15 0.26±0.21
3 0.28±0.31 0.25±0.19 0.2±0.18 0.36±0.22 0.19±0.17 0.2±0.15 0.27±0.22

Baseline 0.2±0.2 0.19±0.17 0.19±0.16 0.2±0.15 0.18±0.16 0.19±0.15 0.19±0.15

KL per event 1 10.32±4.86 4.45±4.29 5.56±6.59 1.74±3.4 6.9±4.89 7.82±5.55 5.46±6.64
2 9.64±4.72 4.38±4.21 5.2±6.38 1.63±3.06 6.69±4.8 6.84±5.18 5.84±6.79
3 9.16±4.82 4.61±4.35 4.83±6.04 1.52±2.84 6.71±4.81 6.41±5.15 5.58±6.66

Baseline 6.95±4.38 3.81±3.86 3.55±5.02 1.51±2.77 5.65±4.37 4.52±4.02 1.14±2.08

Rank correlation 1 0.0±0.06 -0.0±0.08 -0.01±0.06 -0.01±0.09 -0.0±0.06 0.0±0.06 0.0±0.06
2 0.01±0.06 -0.01±0.08 0.01±0.06 -0.0±0.1 -0.0±0.07 0.0±0.05 -0.01±0.06
3 0.0±0.06 0.01±0.07 -0.0±0.05 -0.01±0.1 -0.0±0.06 0.0±0.06 0.0±0.05

Baseline 0.0±0.06 -0.0±0.06 0.0±0.05 -0.02±0.08 -0.0±0.04 -0.0±0.06 -0.0±0.06

Time constant 1 3.0293 2.9214 1.6733 1.6153 1.721 1.5309 5.1346
2 3.0626 2.3598 1.5995 1.273 1.5164 1.4856 4.6703
3 2.8964 2.1497 1.5658 1.1631 1.4477 1.4743 4.4259

Mark constant 1 12.9586 5.345 81.0723 2.5292 11.8475 13.0482 558.3685
2 9.2925 4.4702 62.7646 2.1753 10.3675 11.5164 650.7604
3 8.1383 3.8468 46.027 1.9539 8.7498 9.9784 697.7171

Step 1 2.1756 1.5597 2.9815 2.8391 1.8302 2.9812 1.1026
2 4.2941 3.3363 6.0441 6.4851 3.749 5.4506 2.1793
3 6.0612 5.2772 8.8392 10.4488 5.6055 7.4253 3.2466

Table 10: Results for transformer encoder and log-normal mixture.

Top-k Amazon EQ Reddit Retweet SO Taobao Taxi

LLR 1 -0.02±1.79 -0.09±1.82 -0.11±2.56 0.0±0.07 -0.01±2.47 -0.17±1.55 -0.04±1.32
2 -0.04±1.79 -0.11±1.77 -0.11±2.53 0.01±0.08 -0.08±2.51 -0.21±1.56 2.91±2.8
3 -0.05±1.79 -0.15±1.71 -0.14±2.54 0.02±0.08 -0.12±2.54 -0.25±1.56 2.93±2.82

Baseline -0.0±1.79 0.01±1.79 0.05±2.54 -0.0±0.07 0.01±2.44 0.01±1.54 -0.03±1.32

MMD 1 0.19±0.16 0.2±0.17 0.19±0.16 0.18±0.16 0.18±0.16 0.19±0.16 0.19±0.16
2 0.19±0.16 0.2±0.17 0.19±0.16 0.19±0.16 0.19±0.16 0.19±0.15 0.19±0.16
3 0.19±0.15 0.2±0.18 0.19±0.16 0.19±0.16 0.19±0.16 0.19±0.16 0.19±0.16

Baseline 0.19±0.16 0.2±0.17 0.19±0.16 0.19±0.16 0.19±0.16 0.19±0.15 0.19±0.16

KL per event 1 7.64±4.26 4.19±3.92 6.59±6.37 1.72±2.86 6.95±4.52 7.84±4.59 2.7±3.34
2 7.53±4.29 4.18±3.95 6.5±6.38 1.78±2.95 7.08±4.55 7.85±4.4 6.92±5.83
3 7.62±4.28 4.23±3.95 6.47±6.4 1.73±2.86 6.97±4.56 7.75±4.5 6.99±6.54

Baseline 7.61±4.27 4.09±3.89 6.43±6.27 1.73±2.88 7.0±4.57 7.66±4.48 2.69±3.31

Rank correlation 1 0.0±0.05 -0.01±0.16 0.01±0.06 0.0±0.01 -0.0±0.06 -0.0±0.06 0.01±0.08
2 0.0±0.05 -0.0±0.15 0.0±0.09 -0.0±0.0 -0.0±0.05 -0.0±0.07 -0.0±0.04
3 -0.0±0.05 0.01±0.13 -0.01±0.08 0.0±0.0 0.01±0.06 -0.01±0.06 -0.0±0.06

Baseline -0.0±0.05 -0.0±0.14 -0.01±0.08 0.0±0.01 -0.0±0.06 0.0±0.07 0.0±0.09

Time constant 1 1.2667 1.9845 1.5389 1.0026 1.4444 1.4892 3.327
2 1.2805 2.2042 1.706 1.0053 1.5484 1.5257 3.0401
3 1.286 2.3504 1.7577 1.0068 1.6356 1.5492 2.7018

Mark constant 1 1.7289 1.3241 2.3114 1.1298 11.1859 4.3067 7021.4775
2 1.8439 1.3375 2.507 1.1448 18.6992 4.3776 970.8654
3 1.8874 1.3411 2.5984 1.1519 37.7343 4.4245 1134.9554

Step 1 2.2616 2.5223 2.5251 4.1626 2.3546 1.8214 1.0004
2 4.4213 5.1332 5.1172 8.9544 4.5941 3.4815 2.1796
3 6.462 7.6076 7.5137 13.8284 6.6238 5.1294 3.0276

Table 11: Results for GRU encoder and exponential distribution.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Data Amazon EQ Reddit Retweet SO Taxi
Top-k

LLR 1 -0.03±1.89 -0.16±1.99 -0.11±4.5 -0.01±7.23 -0.05±2.44 -0.01±1.09
2 -0.03±1.92 -0.09±1.99 -0.12±4.46 -0.04±7.19 -0.14±2.5 3.07±2.69
3 -0.07±1.9 -0.03±2.0 -0.08±4.47 -0.02±7.24 -0.21±2.57 3.03±2.71

Baseline 0.0±1.92 -0.01±1.97 0.04±4.47 -0.03±7.24 0.01±2.4 0.01±1.11

MMD 1 0.19±0.16 0.2±0.16 0.2±0.15 0.2±0.14 0.19±0.16 0.18±0.15
2 0.18±0.16 0.2±0.16 0.2±0.15 0.2±0.14 0.19±0.16 0.2±0.16
3 0.19±0.15 0.19±0.16 0.2±0.15 0.19±0.13 0.19±0.16 0.2±0.16

Baseline 0.18±0.16 0.19±0.15 0.2±0.15 0.2±0.13 0.18±0.16 0.18±0.16

KL per event 1 7.46±4.22 4.14±3.89 7.12±6.66 1.28±2.52 7.04±4.54 2.51±3.05
2 7.52±4.22 4.1±3.83 6.93±6.56 1.33±2.59 7.06±4.58 7.78±6.37
3 7.56±4.26 4.2±3.9 6.97±6.51 1.37±2.64 7.05±4.57 7.14±6.78

Baseline 7.46±4.25 4.12±3.87 6.89±6.51 1.34±2.58 6.99±4.51 2.53±3.05

Rank correlation 1 0.0±0.05 0.0±0.09 -0.0±0.06 0.01±0.05 -0.01±0.06 0.01±0.07
2 0.0±0.05 -0.0±0.08 0.0±0.05 0.01±0.05 -0.01±0.05 -0.01±0.04
3 -0.0±0.05 0.01±0.09 0.0±0.06 0.0±0.05 -0.0±0.05 0.0±0.04

Baseline 0.01±0.05 0.01±0.08 0.01±0.05 0.01±0.05 -0.01±0.05 -0.01±0.06

Time constant 1 1.2976 1.3292 1.1461 1.0479 1.4029 10.4097
2 1.3104 1.3891 1.1776 1.0519 1.6359 9.5996
3 1.3221 1.4222 1.2016 1.0562 1.8774 9.7414

Mark constant 1 1.7017 1.2497 3.4656 1.1285 10.0589 9639.1475
2 1.8175 1.2626 3.8273 1.142 23.7208 886.7015
3 1.8802 1.263 3.97 1.1512 67.8345 1109.8258

Step 1 2.2871 3.1127 2.5807 3.9662 2.3344 1.0002
2 4.4654 6.4353 5.115 8.5965 4.5189 2.1213
3 6.486 9.5578 7.5811 13.1784 6.4567 3.0229

Table 12: Results for GRU encoder and Weibull distribution.

D.7 LIMIT ORDER BOOKS

The figures present a comprehensive statistical comparison between conventional and speculative
sampling methods for limit order book data. In Figure 9, transition matrices are constructed by
calculating the probabilities of state-to-state transitions for both time deltas and mark types across
three conditions: original data, conventional sampling, and speculative sampling. These matrices
reveal that both sampling methods preserve the underlying transition dynamics of the data.

In the main text, Figure 4 displays empirical event sequences visualized as vertical lines on timelines
(with colors representing different mark types), providing qualitative evidence that both sampling
approaches generate visually similar patterns. Each sequence is prompted with the same initial
sequence.

Figure 10 plots the accumulation of events by mark type over time, showing mean counts with
standard deviation bands for both sampling methods across the four order types.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

C
ur

re
nt

 S
ta

te
1.11.71.31.21.10.90.90.90.70.7
1.82.52.21.81.30.50.20.10.10.1
1.32.22.12.11.50.50.30.20.10.1
1.11.52.22.01.40.70.50.30.20.2
1.21.51.21.41.41.10.90.60.40.4
0.80.50.60.71.12.11.51.20.90.7
0.80.20.30.40.81.31.91.71.11.0
0.90.10.20.30.51.11.42.31.71.3
0.70.10.20.20.41.01.01.32.41.9
0.80.10.10.20.50.81.11.11.63.5

Data

0 1 2 3 4 5 6 7 8 9

1.11.51.31.11.10.80.80.70.50.4
1.62.32.01.71.50.50.20.20.10.1
1.22.02.02.01.60.60.30.20.10.1
1.01.52.12.01.70.90.60.40.20.2
1.21.61.31.71.81.41.00.70.40.4
0.70.60.70.81.42.31.71.30.90.6
0.80.20.30.50.91.52.01.81.10.9
0.80.20.20.40.61.21.42.51.91.1
0.50.10.20.30.41.01.01.42.41.7
0.50.10.10.20.40.81.01.01.42.8

Conventional sampling

0 1 2 3 4 5 6 7 8 9

1.51.81.51.21.00.80.70.60.50.4
1.82.92.51.71.10.50.30.20.10.1
1.52.52.41.81.30.70.40.20.20.1
1.21.71.91.91.50.90.60.40.30.2
0.91.11.21.51.61.31.00.70.50.4
0.80.60.70.91.31.81.51.31.00.7
0.70.30.40.60.91.41.61.51.10.9
0.60.20.30.40.71.21.42.11.61.2
0.50.10.20.30.51.01.01.42.11.6
0.50.10.10.20.40.81.01.11.52.9

Speculative sampling

0 1 2 3
Next State

0
1

2
3

C
ur

re
nt

 S
ta

te

10.3 9.6 3.2 4.7

11.2 8.0 3.1 3.0

3.3 4.6 9.1 7.5

3.0 3.1 9.1 7.2

0 1 2 3
Next State

10.2 10.4 3.0 5.0

12.1 9.2 3.1 3.2

3.1 4.6 7.7 6.7

3.3 3.3 8.2 7.1

0 1 2 3
Next State

11.9 9.3 3.9 4.6

9.9 9.8 4.1 3.4

3.9 4.7 8.4 5.9

4.0 3.4 6.5 6.3

Figure 9: Limit order book transition matrix between two consecutive events. (Left) True transition
matrix between the previous and next state. (Middle) Transition matrix obtained with conventional
sampling. (Right) Transition matrix computed on samples coming from a speculative sampling
scheme.

0 50 100 150 200
Time

0

5

10

15

20

C
um

ul
at

iv
e

co
un

t

Mark 1

True
Speculative

0 50 100 150 200
Time

Mark 2

0 50 100 150 200
Time

Mark 3

0 50 100 150 200
Time

Mark 4

Figure 10: Limit order book cumulative event counts per mark dimension.

27

	Introduction
	Background
	Temporal point processes
	Rejection sampling

	Method
	Rejection constant for selected distributions
	General rejection constant
	Cataloging common distributions
	Efficient sampling algorithm

	Related work
	Experiments
	Motivating examples
	Real data is usually non-stationary
	Long-horizon sampling on benchmark data
	Runtime improvements
	Real-world application: Limit order books

	Discussion
	Theoretical results
	Proof of Theorem 3.1
	Algorithm for finding the rejection constant
	Improved rejection sampling for categorical distribution with bounded error

	Distributions
	Exponential
	Gamma
	Log-normal
	Weibull

	Data
	Becnhmark data
	Limit order book data

	Experiments
	Hardware
	Jump process synthetic data results
	Stationarity of real-world data
	Monte Carlo rejection constant
	Metrics
	Additional results
	Limit order books

