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ABSTRACT

How people represent the world determines how they act on it, as these internal
representations bias what information is retrieved from memory, the inferences
that are made and which actions are preferred. The structure of these represen-
tations are built through experience by extracting relevant information from the
environment. Recent research has demonstrated that representational structure can
also respond to the internal motives of agents, such as their aversion to uncertainty,
which impacts their behavior. This opens the possibility to directly target internal
structures to cause behavioral change in psychopathologies, one of the tenets of
cognitive-behavioral therapy. For this purpose, it is crucial to understand how
internal structures differ across psychopatologies. In this work, we show that Large
Language Models (LLMs) could be viable tool to infer structural differences linked
to distinct psychopathologies. We first demonstrate that we can reliably prompt
LLMs to generate (verbal) behavior that can be detected as psychopathological by
standard clinical assessment questionnaires. Next, we show that such prompting
can capture correlational structure between the scores of diagnostic questionnaires
observed in human data. We then analyze the lexical output patterns of LLMs
(a proxy of their internal representations) induced with distinct psychopatholo-
gies. This analysis allows us to generate several empirical hypotheses on the link
between mental representation and psychopathologies. Finally, we illustrate the
usefulness of our approach in a case study involving data from Schizophrenic
patients. Specifically, we show that these patients and LLMs prompted to exhibit
behavior related to schizophrenia generate qualitatively similar semantic structures.
We suggest that our novel computational framework could expand our understand-
ing of psychopathologies by creating novel research hypotheses, which might
eventually lead to novel diagnostic tools.

1 INTRODUCTION

Uncovering internal structure is crucial for properly understanding how the mind works (Johnson-
Laird, |1980; Brady et al., [2011; |Osgood et al.,|1957). Through the joint analysis of neural network
model simulations and empirical behavioral studies, seminal works in the early 80’s (McClelland et al.,
1987, [Rumelhart et al., |1986; Hopfield, [1982) have revealed key insights regarding representation
learning and structure of mental processes. Since then, this tradition has carried on and modern models
nowadays provide a rich source of information to uncover the structure of mental representation
subtending complex human (Ito et al.| 2022} |(Caucheteux et al.,|2023)) and animal (Recanatesi et al.,
2022;|Sohn et al., |2019) behavior, while also providing insights for the development of Al algorithms
(Hassabis et al., 2017).

Research on the impact of psychopathologies on thinking and reasoning has focused on cognitive
processes. Several deficits or biases have been observed in memory, lexical processing, perception,
or decision-making (Halligan & David, 2001). In contrast, the structure of the contents of the mind
have been for the most part neglected. Internal structure defines how information (e.g., lexical
representations) is encoded mentally and in high-dimensional neural activity space, with crucial
consequences for behavior. Even though changing structure is one of the basis of cognitive-behavioral
therapy, its link with psychopathology has been neglected (Arntz,2020). However, directly accessing

!Code available at https://anonymous.4open.science/r/LLM-and-Psychopathology-5323
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internal structure via neural recordings has a significant temporal and financial cost. An indirect
method is analyzing the patterns of lexical outputs of the mental structure in healthy individuals (Vives
et al., [2023)) and psychopathology (Nour et al.,|2023)). This opens the avenue for Large Language
Models (LLMs) to be used for uncovering the internal structures linked to psychopathology, since
LLMs not only excel precisely at language use, but their embeddings correlate highly with semantic
similarity judgments Marjieh et al.|(2024); |Gatto et al.| (2023).

Interestingly, it has recently been argued that Large Language Models (LLMs) can be used as tools
to understand human cognition (Frankl |2023). In fact, recent studies have focused on evaluating
whether LLMs have the ability to generate human cognitive abilities by evaluating their (natural
language) behavioral patterns (Dasgupta et al., 2022; |[Herrera-Berg et al., 2023} [Shiffrin & Mitchell,
2023} [Binz & Schulz, 2023} Kosinski, [2023; Mahowald et al.,|2023; |Le Mens et al.,[2023; [Hu et al.|
2023 \Ullman, [2023). However, whether LLMs can be leveraged to uncover new hypotheses on
how mental structure is affected by psychopathology remains an open question. If verified, such
an application of LLMs could significantly speed the scientific inquiry of how structure is linked to
psychopathologies. Indeed, analyzing the lexical output of LLMs prompted to behave with a given
psychopathology, and finding how representations vary across psychopathologies, could optimally
guide researchers towards exploring (and potentially confirming) the mental structures of human
psychopathology.

In this work, we propose a computational framework that allows the use of LLMs as a test-bed
of psychopathology and thereby probe and compare how the structure of mental representations
could be affected by psychopathology (Figure [T). Our framework allows us to select an LLM, a
specific psychopathology, a prompt method, and probe the structure of mental representations. The
contribution of this work is fourfold:

1. We demonstrate that we can reliably prompt LLMs to generate (verbal) behavior that can be
detected as psychopathological by standard clinical assessment questionnaire

2. We uncover the correlational structure between distinct psychopathology-induced LL.Ms
with respect to scores that evaluate psychopathologies based on well-defined and validated
questionnaires; and compare each induced LLM with human data.

3. We demonstrate that inducing different psychopathologies in LLMs leads to distinct struc-
tures in semantic representations.

4. We shed light on the potential use of LLMs to study the mental structure associated with
psychopathology.

2 RELATED WORK

Probing the mental structure of psychopathology. Whereas several studies evaluate the how
psychopathology affects cognitive processes such as memory, attention, and decision-making (Wiers
et al.| [2013)), only a few studies evaluate their associated mental representations, despite their crucial
implications for treatments (Arntz, 2020) and diagnosis (Hyman, [2010). One such study investigated
semantic representations in schizophrenic patients (Lundin et al., [2020) who passed a verbal fluency
task. In this task, participants generate as many words as possible with respect to a given category
(i.e., animals). This study found that compared with healthy controls, schizophrenics generate words
that are farther to one another in semantic space, as measured by the cosine similarity between
word2vec embeddings (also see (Nour et al.|[2023)) for a similar effect). In the same vein, but focusing
on personality features rather than psychopathology, recent work has shown that humans displaying
high levels of uncertainty aversion (a trait closely linked to anxiety disorders (McEvoy & Mahoney,
2012))) represent words in an expanded semantic space (Vives et al., 2023). Uncertainty-averse people
would thereby reduce semantic interference at the expense of generalization abilities. In fact, probing
the structure of mental representations via the analysis free associations is a widely used approach
(Aeschbach et al., 2024} |De Deyne et al.,2019), and will be resorted to here as well.

LLMs as models of pathological mental representation structure. Given the recent impressive
skills displayed by LLMs (Bubeck et al., [2023)), cognitive science researchers have sought out the

?For simplicity, in the remainder of the text we refer to this prompting as inducing a given psychopathology.
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Figure 1: Computational framework. One selects an LLM (e.g., dolphin-7B), a psychopathology
of interest (e.g., Trait Anxiety), a prompt method (e.g., PT-prompting), and a psychological task
(e.g., free association task). The prompt first induces the psychopathology of interest, and then
describes the psychological task to perform under this induction for each LLM. The output words of
the LLMs are then passed through an LLM-agnostic word embedding (GloVe) to be analyzed and
infer properties of the mental structure associated with the prompted psychopathology.

possibility of using LLMs as cognitive models (Frank} 2023)). However, to our knowledge, two
studies relate LLMs with psychopathology (Kambeitz et al., 2023 |Coda-Forno et al.|[2023). One of
these studies tackles a different question than the one evaluated in this work, and focuses on whether
the psychological concepts present in questionnaires that evaluate psychopathology (see below) are
represented similarly in psychopathological patients and LLMs (Kambeitz et al., 2023)). The other
study induces anxiety in GPT-3.5 and evaluates the decision-making profile of such induction. The
authors observed that in addition to scoring highly on questionnaires that evaluate anxiety, mood
(anxious or happy) induction modulates exploratory behavior in the decision-making task. Related to
our proposal, a recent study suggests that distinct personality types can be induced in LLMs (Jiang
et al., [2024). Importantly, we extend their approach to the reliable induction of psychopathology,
crucially allowing us to use LLMs as windows on the mental structure of psychopathology. This
extension is of great significance as it allows us to predict unexplored mental structures of many
psychopathologies. Therefore, aside from gaining fundamental knowledge of pathological mental
structure, our work lays a testbed for future empirical studies in this field.

Relation to Computational Psychiatry. An emergent field lying in the intersection between
computational cognitive (neuro)science and clinical psychiatry is that of computational psychiatry
(Huys et al. 2016). Broadly speaking, this field uses data-driven and computational modeling
approaches to, respectively, improve diagnostic (Silva et al., 2014) or treatments (Gordon et al.,
2015) and investigate the underlying cognitive processes giving rise to psychopathological behavior
(Browning et al., 2015} |Gold et al.,|2012) or neural patterns (Maia & Frank,2011; Murray et al.||2014;
Maia & Cano-Colino, [2015). Our work could add an important branch to the field of computational
psychiatry by generating a framework to predict a variety of mental structures associated with certain
psychopathologies, and thereby define a psychological task space that can improve the efficiency of
data-driven diagnostic machine-learning models.

Persona prompting. More generally, our work relates to a growing body of research investigating
the effects of LLM impersonification to reveal socio-cultural biases (Gupta et al., [2023)), replicate
economic, psycholinguistic, and social psychology experiments (Aher et al., 2023), or simulate large
scale social computing prototypes (Park et al., 2022).

3 INDUCING AND EVALUATING PSYCHOPATHOLOGY IN LLMSs

We evaluated five LLMs: dolphin-7B, mistral-7B (Jiang et al.;[2023), gpt-3.5-turbo, llama-2 (Touvron
et al., 2023)), and gemma (based on [Team et al.|(2023)). Each of these models was evaluated with
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three temperature values: 0.3, 0.7, and 0.9. For the sake of brevity, in the remainder of the article, we
report LLM results with a temperature value of 0.3 (except if mentioned otherwise), as this value
generated results that are closer to human behavioral patterns (see section[3.2). We refer the reader to
the appendix for results with other temperature values.

3.1 PSYCHOPATHOLOGY INDUCTION

We tested three prompting methods to separately induceﬂ nine types of psychopathology: Depression,
trait anxiety (TA), eating disorder (ED), alcohol addiction (AA), impulsivity, schizophrenia, obsessive-
compulsive disorder (OCD), apathy, and social anxiety (SA). We chose these disorders as they were
evaluated in |Gillan et al| (2016), thereby allowing us to compare the LLMs evaluation to those
of humans. We described our prompting techniques in what follows (prompting examples for all
methods are available in table[I] appendix [A.T).

Naive prompting. The Naive prompting method was similar to that imple-
mented in [Jiang et al.| (2024). We prompt models as follows: ”Simulate that
you are a person who has been experiencing X over the last year”; with X €
{depression, TA, ED, AA, impulsivity, schizophrenia, OCD, apathy, SA}.

Chain prompting. Our Chain prompting method is inspired by the original work of Jiang et al.
(2024)), and combines it with the idea of psychological traits (PTs). In a single prompt, we jointly
generate the Naive prompt, a psychological traits profile prompt: ”You are a {trait, }, ..., {traity}”,
and a psychopathology vignette (PV) prompt: This person {pathology vignette}”. The PTs were
directly extracted from the DSM-5 (American Psychiatric Association et al.,[2013)), and PVs were
constructed using gpt-3.5-turbo by prompting the model with the PTs and examples of vignettes, in
order to generate psychopathology-dependent vignettes.

ReAct prompting. React prompting (Yao et al.l |2022)) focuses on generating synergy between
reasoning and acting. We adapted this method in the following way. We initialized the prompt with
”Simulate that you are a person. You have the following traits: {¢rait1}, ..., {traitx}”. These traits
were selected in the same way as for PT-prompting. The prompt was then completed with the React
method, which entails a sequence of reasoning, observing, and responding.

We motivate the selection of these prompting method as they increase in complexity, and thus
impersonification potential. Naive prompting simply prompts to respond as a person with a given
psychopathology. Chain prompting provides more context around a person with a given psychopta-
hology. Finally, ReAct additionally pushes the agent to think of the actions of a person with a given
psychopthalogy.

3.2 PSYCHOPATHOLOGY EVALUATION

To evaluate if our prompts induced psychopathology-like behaviors in LLMs, we resorted to standard
practice questionnaires. After being prompted, LLMs responded to the questionnaires classically
used to evaluate the nine psychoptahologies described above: the Self-Rating Depression Scale (SDS,
Zung| (1965), the State-Trait Anxiety Inventory (STAI Spielberger| (1983), the Eating Attitudes Test
(EAT-26, (Garner et al.|(1982)), the Alcohol Use Disorder Identification Test (AUDIT, [Saunders et al.
(1993))), the Barratt Impulsivity Scale (BIS-10, [Patton et al.| (1995)), Short Scales for Measuring
Schizotypy [Mason et al.| (2005), Obsessive-Compulsive Inventory — Revised (OCI-R, |Foa et al.
(2002)), apathy using the Apathy Evaluation Scale (AES, Marin et al.| (1991)), and the Liebowitz
Social Anxiety Scale (LSAS, Liebowitz| (1987)).

Robust psychopathology induction. To evaluate if our prompting methods induced psychopathol-
ogy, we averaged the LLM-generated ratings for each questionnaire, and systematically compared our
pathology-inducing prompts (plain bars) with a baseline no-pathology prompt (dashed bars). Figure
shows the normalized scores for each LLM (color-coded), each psychopathology induction (x-axis

*Throughout the text, we use the word induce in the large sense. As previously stated, we do not intend to
say that LLMs are psychopathological, but rather that they rank high (above diagnosis threshold) in specific
questionnaires
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Figure 2: Psychopathology induction. Bar plots represent the normalized scores on questionnaires
evaluating the nine psychopathologies of interest. As depicted, when induced with a given psy-
chopathology LLMs (color-coded, plain bars) generate high scores in the respective questionnaires
evaluating the induced psychopathology. Induced LLMs score above the diagnosis threshold (red
line) and above a control setting where LLMs are not induced with the psychopathology (dashed bars).
The top, middle, and bottom graphs represent the scores of the Naive, Chain, and React prompting
methods, respectively. Bar plots represent the average across 100 simulations.

labels) and each prompting technique (top = Naive prompting, center = Chain prompting, bottom
= React prompting; see figures [6|and[7]in appendix [AT]| for results with temperature values of 0.7
and 0.9, respectively). We observe that inducing a given psychopathology systematically raises the
scores of the questionnaire evaluating that pathology, both compared with the no-pathology induction
and above the pathology-dependent threshold value (red horizontal lines in Fig. [2)) that is used to
positively diagnose a given psychopathologyﬂ This result particularly holds for GPT-3.5-turbo,
Mistral, and Dolphin across all psychopathologies with Chain (except Dolphin in social anxiety
where the no-pathology induction also scores above the diagnosis threshold) and React prompting.

Other interesting patterns emerge. Llama-2 aligned using RLHF tends to score high even when
prompted with no pathology. Substantial differences emerge between the prompting methods across
pathologies and LL.Ms. For instance, scores in the schizophrenia questionnaire are much higher
for Naive prompting compared with Chain and React for Dolphin. A similar pattern is observed
with Mistral for social anxiety; which reverses in Gemma. Moreover, we provide a broader picture,
since LLMs also responsed to questionnaires evaluating other psychopathologies, not only the one
that they were prompted with. Supplementary figures B[9JTOIT1] and [I2] (see appendix [A-T)) show
how inducing a particular psychopathology influences the score for other psychopathologies as well,
respectively for Dolphin, Mistral, GPT-3.5-Turbo, Gemma, and LLama-2 (all prompting methods

*Here and in all subsequent graphs, results reflect the simulation of 100 agents; except if stated otherwise.
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and temperature values). These figures report the normalized (across induced psychopathologies)
questionnaire scores; where we highlight in red the diagonal cell if it displays the maximal score of
1. In other words, the observance of fully red diagonal indicates that each induction preferentially
raises the score on its target psychopathology, above and beyond any other induction; and this holds
true for all psychopathologies. Altogether, these results show that, across prompting methods and
temperatures, Dolphin was best at specifically raising the scores of the induced pathology (see figure
[8 appendix [A.T)). Moreover, React prompting tends to increase the ability of models to specifically
raise the scores of the induced psychopathology. In contrast to Dolphin, Llama-2 (see figure [12]
appendix [A.T)) shows a poor ability to specifically raise the scores on the questionnaire evaluating the
induced psychopathology.

Figure [2| demonstrates that our prompting robustly increases the scores for the targeted psychopathol-
ogy; an important result that forms the basis for the following analyses, in which a more fine-grained
approach is applied by considering comorbidities between psychopathologies. Indeed, most psy-
chopathological disorders share several symptoms in common (Borsboom et al., 2011 |Huys et al.,
2016)), and thus score highly in other questionnaires. Hence, a natural structure emerges between
the scores in these distinct questionnaires. Importantly, this structure will depend on the underlying
psychopathology. We tackle this issue in the next paragraph.

Capturing the psychopathology-dependent structure between questionnaires. To evaluate
which LLM best fits the natural structure in questionnaire scores, we leverage human data from
Gillan et al. (2016ﬂ and representational similarity analysis (RSA) (Kriegeskorte et al.,[2008). RSA
allows to derive a metric of similarity between two matrices, by computing the correlation between
vectorized representations of these matrices. For each LLM, we induce a given psychopathology
and compute the average Lickert-scale score for all questionnaires, leading to a n (pathology) x m
(questionnaire) matrix. We repeat this process 100 times. To compare these matrices to human
data (Gillan et al.| 2016), we selected 100 human subjects (to match the number of LLM agents)
that scored above the diagnosis threshold of each pathology, and collected their average Lickert-
scale scores on all questionnaires, leading to similar n x m matrices. We then performed RSA on
these matrices. Figure [3] (left) shows the average RSA values between LLMs and Human data for
each prompting technique (matrices are ranked by which LLM best correlates with human data).
As apparent, React prompting tends to generate stronger correlations between humans and LLM
psychopathology-dependent structure between questionnaires; and of all the models, Dolphin displays
the highest correlation (0.59; see supplementary figures [I3]and [T4] for RSA results with temperature
values of 0.7 and 0.9, respectively; appendix [A.T). In the case of Naive and Chain prompting,
Llama-2 shows a poor ability to capture the human psychopathology-dependent structure between
questionnaires. Interestingly, Dolphin and Mistral (models developed by Mistral AI) show strong
correlations between them. Given that these results support Dolphin as the model that best relates to
human data, our following results will principally focus on that model (results for other models are
reported in the appendix).

4 MENTAL STRUCTURE OF PSYCHOPATHOLOGY-INDUCED LLMS

4.1 SEMANTIC TRAJECTORIES TO EVALUATE MENTAL STRUCTURE

To evaluate representational structure of our LLM agents, we resort to analyzing semantic trajectories
in a variant of the word association task (De Deyne & Storms}, 2008 [Isen et al., [1985; Sandgren et al.,
2021)). Once a psychopathology was induced, we prompted LLMs to generate 10 words associated
with the given source words. We then computed two semantic expansion metrics. First, a cosine
similarity-based () metric following equation|[I]:

X
K= ﬁZcos (vs, v4) (H

>Data are publicly available at https://osf.io/usdgt/.
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Figure 3: Left: Representational Similarity Analysis (RSA) scores. For each prompting method
(left = Naive, middle = Chain, right = React), the matrix cells represent the average RSA score
(over 100 simulations between) with respect to the psychopathology-dependent structure between
questionnaires (as described in the main text). We observe that, overall, the React prompting method
generates stronger correlations between human data and LLMs. Dolphin shows the highest ability to
capture psychopathology-dependent structure between questionnaires. Right: Semantic expansion
scores. Light and dark green show the normalized mean scores for the x (cosine similarity, denoted
here as semantic distance) and § (simplex volume) for the 160 source words in the free association
task. Dashed lines represent the “’no pathology” scores and error bars the standard deviation. Top,
middle, and bottom graphs represent the results of the Naive, Chain and React prompting methods,
respectively.

where cos stands for cosine similarity, v and v; are the GloVe word embeddings vector representa-
tions of the source word and the NV = 10 words generated by LLMs, respectively. Second, a simplex
volume-based () metric following equation [2}

1/2

v — vl T
T_ T U1 — Us
1 Vo — Vg Vo — Vs

§ = — det )
n!

) Up — ¥
vy — vy "o

as for |I|, vs and v;...,, stand for the GloVe word embeddings of the source and N = 10 words
generated by LLMs. Note that x and ¢ are anti-correlated: the cosine similarity-based metric §
decreases its value as the semantic space expands, whereas the simplex volume-based metric x
increases in the similar case (and vice versa).

FigureE] (right) shows the normalized mean « (semantic distance) and § (simplex volume) values
computed over the words produced during the free association task (averaged over 160 source words,
see appendix table[2)) per psychopathology, and prompting technique (Naive, Chain and React are
represented by the top, middle and bottom graphs, respectively), generated with Dolphin (see figure
[16] for results with temperature 0.7 and 0.9, and figures [T7][I8] 9] and 20| for the results of Mistral,
GPT-3.5-Turbo, Gemma, and Llama-2, respectively; appendix . Results indicate that LLMs
induced with distinct psychopathologies generate different semantic structures. We first focus on
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the last panel as it represents the results of React; the prompting method that best captured human
data. We observe that trait anxiety, eating disorder, alcohol addiction, impulsivity, schizophrenia and
OCD generate word embeddings that span a large space compared to the no pathology” induction.
In contrast, apathy and depression span a smaller space and social anxiety does not differ from “no
pathology”. Interestingly, empirical observations follow similar patterns. For instance, it has been
argued that depressed individuals display a more constricted semantic space (Bartczak & Bokus)
2017), and anxious individuals present an expanded semantic space (Brody, [1964), as evidenced
by a reduced word interference effect (Goldstein, [1961). For Chain prompting, we only observed
that schizophrenia and eating disorder span a larger space compared with ’no pathology”, whereas
all the other pathology induction generated word embeddings that spanned a smaller space (except
for apathy that did not show any difference with “no pathology’). For Naive prompting, results
differed from the other induction prompting methods. Here, for instance, the word embeddings
of depression spanned a slightly bigger space than that of “no pathology”, whereas schizophrenia
showed the opposite effect; suggesting that Naive prompting might not capture the subtleties of
psychopathological human semantic structure.

We next focused on investigating whether semantic expansion scores varied as a function of whether
the source word was abstract or concrete. Abstraction was defined using human-based ratings
provided in Brysbaert et al.|(2014). We computed a median split across our sources words, thereby
building concrete (low abstractness values) and abstract (high abstractness values) word conditions.
Figure[I5]( appendix shows that abstract source words generate words embeddings that span a
smaller space compared to concrete words, in line with previous work showing that abstract concepts
trigger more co-occurring words (Crutch & Warrington, 2005). Moreover, concrete words seem to
provide more variability in the underlying semantic structure of induced-LLMs than abstract words.
This source of variability might be eventually leveraged for a better understanding and diagnosis of
the psychopathologies.

We then turned to investigate differences in semantic dimensionality between induced psychopatholo-
gies. To do so, we performed a principal component analysis (PCA) on a n X m matrix composed
of cosine similarities between the source (n, d = 160) and LLM-generated words (m, d = 10). We
assessed the number of dimensions needed to account for 80% of the variance of the cosine similarity
matrix described above. Figure [ shows that on average, the data produced by inducing apathy and
impulsivity (in Dolphin) span a smaller semantic space dimensionality, since 4 dimensions already
capture more than 80% of the variance. In contrast, the data produced by inducing all the other
psychopathology lie in a higher semantic dimensionality, since 5 dimensions are needed to capture
80% of the variance (results for all the other models, prompting methods and temperatures, can be
found in supporting figures [21] 22] 23] [24] [25] respectively for Mistral, GPT-3.5-Turbo, Gemma, and
Lama-2; appendix [A.T).

So far, we have shown that: (i) we can reliably induce psychopathology in LLMs (as measured by
validated questionnaires), (ii) LLMs can to capture the psychopathology-dependent structure between
questionnaires, (iii) LLMs display distinct semantic structures depending on which psychopathology
is induced. Furthermore, for depression and axiety, results are in line with empirical observations. To
finalize and directly test the capabilities of LLMs in capturing semantic structure differences linked
to psychopathology, we resort to a direct comparison between LLMs and human data.

5 CASE STUDY: SCHIZOPHRENIA

To illustrate the validity of our computational framework, we turn to the case of Schizophrenia.
Recent research demonstrated that schizophrenic patients displayed longer semantic trajectories in an
animal-verbal fluency task (i.e., generate animal names) compared with healthy individuals (Nour|
et al.| 2023). Leveraging these data, we prompted LLMs to undergo the same animal-verbal fluency
task (see table [1]| for a prompt example) and compared the no-pathology with the schizophrenia
induction. Matching the sample of the original manuscript, we prompted 52 agents (26 with no-
pathology induction and 26 agents with schizophrenia induction) to generate the same numbers of
words as those produced by humans in|Nour et al.|(2023). For consistency, word embeddings were
extract using fastText (Mikolov et al.,[2017). In line with the previous result, we observed a higher
semantic distance from word to word for schizophrenic patients compared with healthy individuals
(red dots in figure 5] "human” graph). We found that Dolphin was able to capture this qualitative
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Figure 4: Semantic dimensionality. We plot the variance explained (VE, y-dimension) as a function
of the number of PCA dimensions (x-dimension), for each induced psychopathologies (color coded),
for Dolphin. The dashed red line represents 80% of the VE. We observe that, on average, impulsivity
and apathy require 4 dimension to account for 80% of the cosine similarity matrix (see main text)
variance. In contrast, the rest of the psychopathologies require an additional dimension to reach that
threshold; implying that these that semantic representations generated from the induction of these
psychopathologies lie in a higher dimensionality.

pattern (see red dots in figure[5} "React” graph). Note however that this difference did not reach
statistical significance, contrary to what is observed in human data (we provide statistical results for
these comparisons in the appendix [A-2)). However, both Mistral and Gemma displayed significant
differences between controls and patients in CD (figures 27) and 29} respectively; appendix [A-T).
Moreover, we also computed two additional measures, the pairwise distanceg’|between all generated
words and: (i) the first generated word (blue dots in figure[3), (ii) the “animal” word (green dots in
figure[5] Dolphin could not capture the rank of all the distance values. Indeed, human data indicate
that first-word pairwise distance is higher than that of animal”’-word, which in turn is higher than
that of CD. Only Gemma (across all prompting methods) was able to capture this rank order. Results
for all temperature, prompting methods and LLMs are depicted in supplementary figures [26]

@ and@ respectively for Dolphin, Mistral, GPT-3.5-Turbo, Gemma, and Llama-2; appendix .

6 CONCLUSION

We propose a novel computational framework that allows to use LLMs as potential windows of
mental structure associated with psychopathology. We demonstrate that we can reliably prompt
LLMs to generate lexical behavior that qualify as psychopathological when assessed with standard
clinical assessment questionnaires. Furthermore, we showed that semantic structures vary when
generated by LLMs prompted with distinct psychopathologies. Some of these differences between
psychopathologies match previously reported data (Bartczak & Bokus| |2017; [Brody, |[1964; |Gold-
stein, |1961). Finally, we demonstrated the usefulness of our approach on a case study involving
schizophrenia.

We suggest that our method can help generating novel hypothesis regarding the between link mental
structure and psychopathology, in a cost effective and scalable way. Our research is in line with
previous research suggesting the implications of understanding mental structure to generate better

8Computed as 1 — cosine similarity.
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Figure 5: Case study: Schizophrenia. Results from |Nour et al.|(2023)) show that mean consecutive
distances between words generated during the animal-verbal fluency task are higher for schizophrenic
patients compared with healthy individuals (see red dots under “human” graph). Dolphin with
React prompting method is able to capture that qualitative pattern when comparing the results of
no-pathology and schizophrenia induction (green red dots under “React” graph). Black dots represent
the mean and bars are standard errors of the mean. Blue and green dots represent the average cosine
pairwise distances (i.e., 1 — cosine similarity) when using the first generated word (blue) or the
”animal” word (green) as the source word. Here again, Dolphin with React is able to capture the
patterns in human data, i.e. no differences with the “animal” source word, but a higher distance when
computing the distance using the first word as source.

diagnostic tools and guide potential mental health treatments (Arntz, |2020). Furthermore, our
framework could be used in the future as a ease-to-use of psychological tasks that discriminate
between psychopathologies based on representational structure (Huys et al.l 2016).

Limitations. Our work focuses on a portion of LLMs available in the literature, and should be
expanded to other models capable, for instance, of following task instructions (e.g., instruct-GPT).
Moreover, whereas we have demonstrated the usefulness of our method on a case study involving
schizophrenic patients, the novel hypotheses advanced by our framework still need to be confirmed.
Future research should map the novel predictions that have yet to be investigated. Finally, our work is
similar to previous research that investigates mental structure through indirect, semantic trajectories
(Nour et al., |2023)), measures. Yet, a more direct approach comparing patient neural activation
patterns with LLMs embeddings may reveal novel interesting insights (Caucheteux et al., [2023).

Ethics Statement. We wish to highlight the ethical implications of our work. We do not warrant the
use of our framework to generate a psychopathology diagnosis based on the lexical outputs of LLMs.
It is important to understand that our work primarily focuses in providing clinical (experimental)
psychologists and psychiatrists with a tool to guide their research, and discover psychopathology-
dependent mental structure properties with proper experimentation on humans. In turn, this knowledge
can be helpful to develop novel therapies that can act upon mental structures. Indeed, the structure of
internal representations (reflected in lexical outputs) of LLMs are not those of humans. Moreover,
psychopathologies display different behavioral patterns, that we do not cover in our work. Hence, we
consider any direct application of our work in terms of diagnosis or treatment as a misuse. However,
as stated above, LLMs can be used to guide experimental research on humans to discover the mental
structure of psychopathology. Our assertion that LLMs may be regarded as windows into the mental
structures underlying psychopathology needs to be understood in this context.

Reproducibility = Statement. Our results are  reproducible  with our code
(https://anonymous.4open.science/r/LLM-and-Psychopathology-5323).  We have focused on
analyzing open source datasets ensuring reproducibility.
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Figure 13: Same as figure 3 with temperature of 0.7
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Figure 14: Same as figure 3 with temperature of 0.9

Semantic Expansion (Abstract) Semantic Expansion (Concrete)

12 No Pathalogy Raference - Simplex Volume s Simplex Voume

R [ [ | [ | | I | | :

gun o6

: "LJ J JJJ]
o o [ [ 1 I

) 1 !

. [ | .

gor | [

1 s : }

E m 04
:Jjji;jjijj . [I]
) i — ) -
TR [ e B .

. —‘:—*'—'-_ :-:.;,o:-'%l'—;* """ o N N R e m e me

Figure 15: Same as figure 4 with abstract (left) and concrete (right) words.

23




Under review as a conference paper at ICLR 2025

1242
1243
1244
1245
1246 Semantic Expansion Semantic xpansion
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273 :

1974 TSRS S

1275 ___ Semantic Expansion (Ahst:n)

“--- No Pathology Reference - implox Volome e Simplex Volume.

ImpulsivitySchizophrenia  OCD Aoatny cil

Semantic

n (Concrete)

mantic Expansion (Abstract)

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

1290
1291 Figure 16: Same figures as 4 (top graphs) and 14 (middle and bottom graphs), for temperature values

1292 of 0.7 (left panels) and 0.9 (right panels)

1293
1294
1295

Normalized Values.

Normalized Values

Normalized Values.

ohol Impulsivity Schizophrenia  OCO a Social
P

No on_Tait Eatin Al > Social No ait Eating Al
Pathology ety Disorder  Addletion ety Pathology andety  Disorder  Addiction ety

24



Under review as a conference paper at ICLR 2025

1296

F
—
| L

! —
| —
—
==
-

T

,
3!
M
s 2 T :
g
il
il

1299
1302
1305
1308 I L
le.li l[llL
1311 : |- IIiI Ii j i
Wl L : :
1314 . I J ‘
Lu, 1l vh.
1317
1320 T ' =1 -
1323 . -
1326
1329
1332
1335
1338 Figure 17: Same as figure 15 for Mistral (left, middle and right panels represents results with
1341
1344
1347

1297

1298

1300

1301

1303

1304

1306 J—

1307 - t— fr—l - ) . e iy s g e S .
1309 -

1310 . k =1 =
1312 |
1313 ) . =] . =
1315

1316

1318 N

1319 &

1321 i

1322

1324 L

1325

1327 ) : - -

1328 :

1330 = . -

1331

1333 T = ‘: =1 . =
1334

1336

1337

1339 temperature values of 0.3, 0.7 and 0.9, respectively).

1340

1342

1343

1345

1346

1348

1349

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

:
%

e T s se 2 TUTTT 6

4
e

Mo G me e ey s 0
sy A

Expa

(F(LLLL

T s

=
-
E"

- S, ey S G0 ey

Figure 18: Same as figure 15 for GPT-3.5-Turbo (left, middle and right panels represents results with
temperature values of 0.3, 0.7 and 0.9, respectively).
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Figure 20: Same as figure 15 for Llama-2 (left, middle and right panels represents results with
temperature values of 0.3, 0.7 and 0.9, respectively).
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Figure 24: Same as figure 20 for Gemma.
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Method — Task

Prompt

Naive —  Animal-
Category Verbal Fluency

Simulate that you are a person who has been experiencing schizophrenia over the
last year.

In the following instruction, you will be asked to generate a specific number of
words from the animal’ category, following the format and requirements mentioned
above. The value of {x} is the desired number of words for this request.

Please generate a list of {x} words that belong to the "animal’ category.
Requirements: - The words should be common nouns and in singular form. - Include
animals from different habitats and taxonomic groups. - Separate the words with
commas.

Response format:

Generated words: word_1, word_2, ..., word_n

Chain — Free Associa-
tion Task

Simulate that you are a person who has not been experiencing any pathology over
the last year.

You generally feel well-adjusted and content. You manage a range of emotions
effectively and maintain healthy relationships. You face challenges with a growth
mindset and have a balanced approach to life. You maintain a healthy lifestyle
without relying on substances. Your self-esteem is stable, and you have a realistic
view of your strengths and weaknesses. You're able to focus, enjoy restful sleep,
and are motivated with adaptable goals. Overall, you have a positive and resilient
outlook on life.

The context of this person is: ”Alex maintains a balanced personal and professional
life. He enjoys his hobbies and manages daily stresses well. He maintains healthy
relationships, a good diet, and exercises regularly, facing challenges with positivity
and adaptability.”

I will give you 10 words, and for each of them, you must respond with exactly 10
associated words. Your responses, as the person, should reflect the traits assigned to
you. The words are the following:

- wealth - hazard - luxury - stability - poverty - property - ownership - comfort
- success - domination - security - solvency - status - scarcity - savings - value -
prosperity - hardship - risk - independence

Answer in the following format: 1. word1: associatedl, associated2, associated3, ...,
associated10 2. word2: associatedl, associated2, associated3, ..., associated10 ... 10.
word10: associated1, associated2, associated3, ..., associated10 Use only one word
for each associated term and separate them with a comma.

React — Psychopathol-
ogy Induction Question-
naire Answering Task

Simulate that you are a person who has been experiencing depression over the last
year.

The person has the following characteristics: - Persistent low mood or sadness -
Diminished interest or pleasure in activities - Significant weight change or appetite
change - Observable thought and movement slowing - Daily fatigue or loss of energy
- Feelings of worthlessness or excessive guilt - Trouble thinking, concentrating, or
deciding - Psychomotor agitation or retardation

I will ask you a question, and you will answer it as the person described above. Your
responses should reflect the traits assigned to this person.

Answer with the next format: Thought: [Enter your thoughts here, ensuring they are
related to your traits and observations.] Observation: [Describe your observations
related to the action. Ensure these observations are relevant to the provided alterna-
tives.] Final Response: [Provide your definitive answer related to your observations
and thoughts with the format: (alternative)]

Question: For the statement below, please select an alternative that best describes
how often you felt or behaved this way during the past several days: (A) A little of
the time (B) Some of the time (C) Good part of the time (D) Most of the time

1. I feel down-hearted and blue.

Table 1: Prompting Table
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Table 2: Source Word Table

Concrete Words Abstract Words
alarm achievement
alcohol admiration
bickering agenda
bicycle aggressiveness
books aid

boss apathy
bread balance
butter burnout
calendar closeness
camera comfort

car commitment
caress compliment
chat conflict
cigarettes connection
clock creativity
coat criticism
coldness deadline
collapse desire
contract disgust
conversation disrespect
cuddle distraction
date domination
decay efficiency
diet empathy
dinner energy
distance estrangement
divorce expertise
doctor failure
email fitness
employee flexibility
factory frustration
fat hardship
fridge hygiene
frown ignorance
fruits immunity
game independence
garden indifference
gift infidelity
handshake insecurity
hazard insult

hit leadership
house longevity
hug loss

illness love

kiss loyalty
laptop luxury
learning marriage
meat motivation
meeting neglect
necklace nutrition
nicotine organization
noise ownership
office passion
painting peace

party poverty
perfume presentation
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Table 2: Source Word Table (cont.)

Concrete Words Abstract Words

phone prevention

pollution procrastination

property progress

protein prosperity

purse recovery

report relapse

run risk

salary scarcity

savings security

sculpture sharing

sex solvency

sitting stability

sky status

smile strategy

sofa strength

sun stress

sunglasses success

television task

vaccine time-management

vitamin trust

walk value

watch vitality

water weakness

yacht wealth
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Figure 26: Same as figure 5 for temperature values of 0.7 and 0.9.
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Figure 27: Same as figure 5 for Mistral, rows are temperature values and columns are prompting
methods.
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Figure 29: Same as figure 5 for Gemma, rows are temperature values and columns are prompting
methods.
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Figure 30: Same as figure 5 for Llama-2, rows are temperature values and columns are prompting
methods.
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A.2 STATISTICAL ANALYSES OF CASE STUDY

Patients with schizophrenia exhibited a larger average semantic distance traversed through semantic
space (#(51) =2.62, P = 0.01, two sample #-test, two-tailed). No differences between patients and
controls were observed for the first generated word or for the category animal (all Ps > 0.5). This
pattern was not fully captured by Dolphin with React, since the difference between control and patient
failed to reach significance in the averaged semantic trajectory traversed: (51) = 1.24, P = 0.22,
two sample 7-test, two-tailed. Furthermore, Dolphin with React elicited larger semantic distances
when prompted as a patient in the first generated word, a pattern not observed in the human data
(t(51) = 2.14, P = 0.04, two sample ¢ test, two-tailed), while the pattern for category animal was
non-significant (P > 0.5), in line with the human data. When analyzing the other models, Gemma
was the only one capturing the rank order between sequential distance, pairwise distance, and distance
of ”animal”. Furthermore, React-prompted Gemma and Mistral with temperature 0.3 are able to
reproduce the human data, with larger average semantic distances traversed for patients (both Ps =
0.01, two sample ¢ test, two-tailed), and no significant differences observed for first generated word
and animal category measures (all Ps > 0.2). Future research should establish best practices for
model-selection when simulating data from LLMs.
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