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Abstract

The essence of multi-modal fusion lies in exploiting the complementary infor-
mation inherent in diverse modalities. However, prevalent fusion methods rely
on traditional neural architectures and are inadequately equipped to capture the
dynamics of interactions across modalities, particularly in presence of complex
intra- and inter-modality correlations. Recent advancements in State Space Models
(SSMs), notably exemplified by the Mamba model, have emerged as promising
contenders. Particularly, its state evolving process implies stronger modality fusion
paradigm, making multi-modal fusion on SSMs an appealing direction. However,
fusing multiple modalities is challenging for SSMs due to its hardware-aware
parallelism designs. To this end, this paper proposes the Coupled SSM model,
for coupling state chains of multiple modalities while maintaining independence
of intra-modality state processes. Specifically, in our coupled scheme, we devise
an inter-modal hidden states transition scheme, in which the current state is de-
pendent on the states of its own chain and that of the neighbouring chains at the
previous time-step. To fully comply with the hardware-aware parallelism, we
devise an expedite coupled state transition scheme and derive its corresponding
global convolution kernel for parallelism. Extensive experiments on CMU-MOSEI,
CH-SIMS, CH-SIMSV2, BRCA, MM-IMDB through multi-domain input verify
the effectiveness of our model compared to current state-of-the-art methods, im-
proved F1-Score by 0.4%, 0.9%, and 2.3% on the CMU-MOSEI, CH-SIMS and
CH-SIMSV2 datasetes respectively, 49% faster inference and 83.7% GPU memory
save. The results demonstrate that Coupled Mamba model is capable of enhanced
multi-modal fusion.

1 Introduction

Real-world data captured and processed across multiple modalities, such as text, image, video, and
sensor data, yield a rich tapestry of information that is inherently complementary. This comple-
mentarity profoundly enhances the capacities of deep learning models, facilitating more nuanced
interpretations and predictions. As a result, deep learning models that integrate multi-modal data
have shown substantial superiority over their uni-modal counterparts in various domains, including
visual-language learning [1, 2, 3], multi-modal classification/segmentation [4, 5, 6, 7], sentiment
analysis [8, 9, 10, 11] and etc. Given these advantages, the development of effective multi-modal
fusion techniques has emerged as a center of attention. A variety of works have explored this topic
on convolution or Transformer -based models, and developed specified mechanisms as early, middle,
and late fusion, depending on position of fusion been conducted. A more prevalent practice is to
first extract features using modality-specific backbones and then devise a fusion module to exploit
the complementary information from all modalities. Existing fusion paradigms either aggregate
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modal-specific features into one by neglecting individual intra-modal propagation [12] or align
modal-specific features into a united representation space through regulation while failing to exploit
complementary inter-modal information exchange for difficulty in alignment supervision [13].

Recently, the state space models, advanced by the LSSL [14, 15, 16], S4 [17], GSS [18], and
S4D [19, 20], use state variables to explicitly model the sequential evolving neural states, have
being emerged as compelling alternatives to Transformers for its efficiency in modeling long-range
sequences [21]. Particularly, Mamba [22], improves with a selective scanning mechanism and
hardware-aware parallelism to enable very efficient training and inference, achieving comparable
performances to Transformers on large-scale data. Yet, existing explorations focus on process-
ing uni-modal data, and the multi-modal fusion mechanism on SSMs is still under-investigated.

In this paper, we observe that the explicit state
variables in SSMs provide great fusion anchors,
i.e., from which we can extract inter-model com-
plementary information, and to where we can
fuse the complementary information into a uni-
fied representation. Inspired by the effective Cou-
pled Hidden Markov Model (CHMM) [23], we
investigate the multi-modal fusion problem of the
Mamba model from a state transition perspec-
tive. For multi-modal fusion on Mamba, the brute-
force way is to direct aggregate features from all
multi-modalities into one feature, i.e., the aggre-
gation approach, and process with a sole Mamba
model. However, such an approach neglects the
individual intra-modal propagation. Instead, we
propose the Coupled Mamba model, for coupling
state chains of multiple modalities while main-
taining independence of intra-modality state pro-
cesses. Specifically, in our coupled scheme, we

Coupled
Mamba Block

Coupled
Mamba Block

Coupled
Mamba Block

Cat Cat Cat

Pooling Layer

Coupled Mamba Layer 2

Coupled Mamba Layer N

Coupled Mamba Layer 1

Figure 1: Architecture of Coupled Mamba.

devise an inter-modal hidden states transition scheme, in which the current state is dependent on
the states of its own chain and that of the neighbouring chains at the previous time-step. Another
challenge is to fully comply with the hardware-aware parallelism for efficiency, we achieve parallel
computing by deriving multi-modal global convolution kernels. As shown in Figure 1, the entire
Coupled Mamba model consists of N layers, and is finally adapted to downstream tasks through
pooling. Each layer has M Coupled Mamba blocks, where M is the number of modalities. Each
Coupled Mamba block receives sequence data of multiple modalities as input, aggregate states from
multiple modalities, and then transits into the state at next time of each individual modality. We
conduct extensive experiments on CMU-MOSEI, CH-SIMS [24], CH-SIMSV2 [25] datasets through
multi-domain input, and verify the effectiveness of our model compared to current state-of-the-art
methods, with 0.4%, 0.9%, 2.3% F1-Score increase, 49% faster inference and 83.7% GPU memory
save. The results demonstrate that our Coupled Mamba model enhances the multi-modal fusion with
state coupling.

2 Related Work

Multi-modal Fusion Multi-modal fusion focuses on combining features from various modalities into
unified representations to tackle multi-modal learning challenges. Traditionally, fusion methods are
categorized into feature-level early fusion and decision-level late fusion, based on where fusion occurs
within the model [26]. Early fusion techniques are employed by [27] to merge features from diverse
modalities such as audio, text, and vision. [28] introduce a method using two separate branches for
spatial and temporal modalities with a straightforward post-fusion for video action recognition. Other
notable post-fusion approaches include works like [9] and [29, 30], which suggest robust late fusion
via rank minimization. Recent advances in deep learning have expanded the concept of early fusion
to mid-term fusion, which integrates features at multiple levels [31]. For instance, [32] develop a
fused representation by progressively combining multiple fusion layers. Similarly, [33] propose a
multi-layer fusion method that connects all modality-specific networks through a central network. [?
] introduce an architecture search algorithm to identify the optimal fusion architecture. Furthermore,
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[34, 35] incorporate attention mechanisms into multi-modal fusion, while [13] suggest exchanging
feature channels between modalities. Additionally, [36] integrate bilinear pooling into attention
blocks, showing its effectiveness in capturing higher-level feature interactions by stacking multiple
attention blocks for image captioning. The focus has recently shifted towards dynamic fusion, which
selects the optimal fusion strategy from various candidate operations based on inputs from different
modalities [37, 38]. This dynamic approach offers greater flexibility for different multi-modal tasks
compared to static methods. Inspired by the success of dynamic fusion designs and higher-level
feature interaction capture in multi-modal fusion, our work aims to dynamically capture hidden states
both within and between modalities using coupled state space models via state diffusion, enabling
more efficient modality fusion for complex multi-modal tasks.

State Space Models State Space Models (SSM) are exceptionally effective at learning the complex
correlations inherent in language sequences. The seminal work of [17] introduced the structured state
space model (S4), which aims to encapsulate the extended dependency characteristics of language
sequences. Conceptually, S4 combines the unique properties of CNNs and RNNs to create a powerful
framework for sequential data processing. Building on the foundation laid by S4, subsequent research
efforts have been devoted to solving the problem of linearly scaling sequence lengths. In this regard,
[39] introduced S5 utilizing MIMO-SSM and parallel scan technology, while [40] proposed H3,
which greatly improved the performance of SSM, and [18] introduced GSS, which demonstrated
faster training and competitive performance. Furthering the current state of research, [22] developed
a novel language model called Mamba. This model uniquely combines a data-selective SSM layer
and a parallel scanning algorithm to solve Transformer’s quadratic complexity calculation problem
in long sequence modeling and Transformer’s inability to model data outside the attention window.
This also illustrates the huge potential of Mamba in processing sequence data.

Coupled Hidden Markov Model Hidden Markov Model (HMM) is a probabilistic model that
simulates a sequence of hidden states to generate a sequence of observations. The core components
of the model include the state transition matrix A, the observation probability matrix (emission
matrix) B and the initial state probability vector π. This model assumes the existence of Markov
chains between hidden states, and observation events are independently generated by hidden states.
To address specific needs, researchers have developed several HMM variants. For example, the
Hierarchical Hidden Markov Model (HHMM) [41] introduces a state hierarchy based on standard
HMMs, while the Mixed Hidden Markov Model (MHMM) [42] combines multiple HMMs to Build
complex distributions. These extensions improve the applicability of HMM in various scenarios and
further promote the application of sequence data analysis in multiple fields. Coupled Hidden Markov
Models (CHMM) [23] are a class of tools capable of modeling multiple interrelated time series. In
multimodal fusion, we usually focus on signals from different channels, such as audio, text, and facial
expressions, which are all time-correlated. Coupled HMMs can effectively model such data because
they can consider dynamic correlations between multiple channels simultaneously.

3 Coupled State Space Model

In this section, we introduce Coupled Mamba method for multi-modal fusion in detail, which performs
multi-modal fusion by introducing multi-modal historical states. As shown in Figure 2, it contains
two parts: state coupling and state space model.

3.1 Preliminary

In recent years, the state space model has developed rapidly [17, 19, 40]. Mamba introduced a
selectivity mechanism based on S4, which converted the original time-invariant characteristics.
Mamba is based on the concept of continuous systems by introducing hidden states h (t) ∈ RN to
map a series of inputs x (t) ∈ RL to obtain output y (t) ∈ RL, where N denotes the number of hidden
states. The continuous system can be expressed as:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t). (1)
where A ∈ RN×N represents the state transition matrix of the system, and B ∈ RN×1,C ∈ RN×1

are projection matrices. Mamba uses a time scale parameter ∆ to discretize the continuous parameters
A,B into A,B, the zero-order hold (ZOH) principle is adopted by default. The discretized state-
space equation is:

A = exp (∆A) , B = (∆A)
−1

(exp (∆A)− I) ·∆B. (2)
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Figure 2: Coupling Mamba receives input xt−1, and performs internal state switching and output
through three key parameter matrices, where B,C and S are respectively represented as the input
matrix, output matrix and state transfer matrix. The hidden states are summed across modalities and
used for state transition input to generate next time states. The state is propagated sequentially in
time.

Then the discretized version of Eq. (1) with step size ∆ can be rewritten as:

ht = Aht−1 +Bxt, yt = Cht. (3)

Finally, by expanding ht−1 layer by layer,
the global convolution kernel K ∈ RL can
be obtained, and K is used to calculate the
output y, which is defined as follows:

K =
(
CB,CAB, ...,CA

L−1
B
)
,

y = x⊗K.
(4)

where L is the length of the input sequence
x and ⊗ denotes the convolution operation.
For algorithm 1, L denotes the sequence
length, E denotes the extended dimension,
D denotes the feature dimension, and B
denotes the batch size.

3.2 Coupled State Transition
For multi-modality data input, one naive
way is to aggregate the multi-modal fea-
tures into one feature and process using a
single Mamba model. However, such ap-
proach neglects intra-modal propagation.
Inspired by the Coupled Hidden Markov
Model (CHMM) [23], a more elegant solu-
tion is to model mutual modality transition
probability as follows:

Pi=1:M,j = P
(
hj
t |h1

t−1, h
2
t−1, ..., h

M
t−1

)
where Pi=1:M,j is the probability transi-
tion matrix from all modalities to current
modality j. For SSM with M multi-modal

Algorithm 1: Coupled Mamba
Data: Input:

Ht−1 =
{
h1
t−1, h

2
t−1, ..., h

M
t−1

}
,xt−1 :

hm
t−1 ∈ RN , xt−1 ∈ (B,L,D)

Result: Output: yt : (B,L,D)
Require :Input
Ensure :Output

1 ;
2 Normalize the input sequence:
3 x′

t−1 : (B,L,D)← LayerNorm(xt−1);
4 u : (B,L,E)← Linearu(x′

t−1);
5 z : (B,L,E)← Linearz(x′

t−1);
6 ;
7 Process with Coupled Mamba:
8 for o in forward do
9 u′

o : (B,L,E)← SiLU(Conv1do(u));
10 Bo : (B,L,N)← LinearoB(u′

o);
11 Co : (B,L,N)← LinearoC(u′

o);
12 ∆o : (B,L,E)← log(1 +

exp(Linear∆o(u
′
o) + Parameter∆o));

13 So : (B,L,E,N)←∆N
o ⊗ ParameterAo ;

14 Bo : (B,L,E,N)←∆N
o ⊗Bo;

15 yo : (B,L,E)←
CSSM(So,Bo,Co)(Ht−1,u

′
o);

16 end
17 ;
18 Get gated yo:;
19 y′

forward : (B,L,E)← yforward ⊙ SiLU(z);
20 Residual connection:;
21 yt : (B,L,D)← LinearT (y′

forward) + xt−1;

input, we have M state propagation sequences. In alignment with CHMM, we can model the state
transition of a modality m by coupling all the modality states as:

hm
t =

∑(
A1,mh1

t−1,A2,mh2
t−1, ...,AM,mhM

t−1

)
+Bmxm

t , ymt = Chm
t . (5)
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where Ai,m denotes the state transition matrix from modality i to m.

Taking into account the memory overhead and computational efficiency, such modeling increase the
number of parameters and computational complexity greatly. We propose a more memory efficient
way by conducting summation before state transition, which achieves similar performance and is
much more efficient. So our formation of Coupled SSM is:

hm
t = Sm

M∑
m=1

hm
t−1 +Bmxm

t (6)

Where we use Sm ∈ RB×L×D×N to model the overall state transition after states summation. One
minor drawback of this modeling is that we require all modalities to have the same state, which can
be easily addressed by using projection layers.

3.3 Parallelism and Efficiency Analysis

The main difference between Mamba and traditional recurrent neural networks (RNNs) is that the
transition between states does not rely on any activation function. This feature enables it to pre-
calculate intermediate results through the iterative Eq.(3), thereby achieving parallel computing.
However, Coupled Mamba adds multi-modal state information based on Mamba, which brings
new challenges to the ability to maintain the Mamba parallelization algorithm. In order to solve
this problem, we derived a global convolution kernel suitable for Coupled Mamba to ensure that
Coupled Mamba can continue to enjoy the advantages brought by Mamba parallel computing,
thereby effectively improving the throughput and inference speed of the model. Detailed analysis on
throughput and inference speed will be discussed in depth in subsequent sections.

After introducing the state information of different modals, we learned about the entire state transfer
process (6) through 3.2. By deriving Eq.(6), that is, disassembling hm

t−1, we can get the following
results:

P =

M∑
m=1

Sm, Ut =

M∑
m=1

Bmxm
t , hm

t = Sm

t−1∑
i=0

PiUt−1−i +Bmxm
t . (7)

where P ∈ RB×L×D×N . According to Eq.(7) which can be extended to the state information of
each modal, we use the following formula to calculate the output.

y = C⊗
M∑

m=1

hm
t = C⊗

t∑
i=0

UiP
t−i (8)

From this, the global convolution kernel K =
(
CP0,CP1, ...,CPt−1,CPt

)
suitable for Coupled

Mamba can be obtained.

The global convolution kernel K can be used to perform convolution operations on sequence data.
In the convolution operation, the calculations of each convolution kernel and the input sub-region
are independent of each other, allowing parallel processing of different convolution kernels or input
blocks.

4 Experiment

To evaluate the effectiveness of our proposed Coupled Mamba in multi-modal fusion, we conduct
extensive experiments, with special focus on the multi-modal sentiment analysis (MSA) task as it
relies heavily on multi-modal data and is in sequential form. The MSA task aims to predict people’s
emotional polarity by fusing audio, text, and visual information. To fully evaluate the advantages of
our approach, we conduct extensive experiments on both classification and regression tasks.

4.1 Datasets and Implementation Details

Datasets We conduct experiments on five benchmark datasets (CMU-MOSEI, CH-SIMS [24], CH-
SIMSV2 [25], MM-IMDB and BRCA). CMU-MOSEI dataset is an extension of CMU-MOSI,
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contains 22856 samples of movie review video clips. In this dataset, 16326 samples are used as the
training set, and the remaining 1871 and 4659 samples are used as the validation set and test set
respectively. CH-SIMS contains 2281 video clip samples, 1368 samples are used as the training
set, and the remaining 456 and 457 samples are used as the validation set and test set respectively.
CH-SIMSV2 is an extension of CH-SIMS, which contains 4402 video clip samples, of which 2722
samples are used as the training set, and the remaining 647 and 1034 samples are used as the validation
set and test set respectively. For the feature extraction method of the dataset, please refer to the
Appendix for more information. The MM-IMDB dataset is used for the movie genre classification
task, which classifies movies based on posters and text descriptions. The BRCA dataset includes
mRNA expression, DNA methylation, and miRNA expression data for predicting PAM50 subtype
classification of breast cancer.

Evaluation metrics For regression tasks, we use the mean absolute error (MAE), which is the
average absolute difference between the predicted value and the true value, and the Pearson corre-
lation coefficient (Corr), which measures the degree of deviation of the prediction according to the
following formula: The positive/negative and non-negative/negative classification results calculate the
binary classification accuracy (Acc-2) and F1-Score, where Acc-2 and F1-Score are more important
indicators. For classification tasks, we use Acc-2, Acc-3 and F1-Score (Weighted-F1, Macro-F1,
Micro-F1, F1-score3) as evaluation indicators. F1-score3 is the overall performance evaluation of
all categories, and F1-score is the performance evaluation of two categories. At the same time, the
neutral category is ignored. All experiments were conducted in the same environment.

Implementation details We use a hidden dimension size of 128, an expansion coefficient of 2, a
convolution kernel size of 4, ∆ = dstate/8 as the configuration of each Mamba block, and a layer
number of 3 to train our Coupled Mamba. We use Adam to optimize the model and set the learning
rate to 0.0005 , weight decay coefficient is 0.0005, epoch is 150, the batch size is set to 1024, 128, 256
on CMU-MOSEI, CH-SIMS, and CH-SIMSV2. L1 loss is used as the loss function for the regression
task, and cross entropy is used as the loss function for the classification task. All experiments were
conducted on a Linux workstation equipped with a single NVIDIA 32GB V100GPU and a 32-core
Intel Xeon CPU. More experimental details can be found in the Appendix.

4.2 Comparison with the state-of-the-arts

To fully validate the performance of Coupled Mamba, we conduct extensive comparisons with the
following baselines [43, 30, 27, 11, 44, 45] in Table 1. We ran five times and reported the average
value. We use bold text to show the best results. Traditionally, models that use aligned corpora tend
to perform better [27]. In our experiments, we achieve significant improvements on all evaluation
metrics compared to unaligned models. Our unaligned method is able to achieve better results even
when compared with aligned models.

Table 1: Results on CMU-MOSEI. All models are based on language features extracted by BERT.
The one with ∗ indicates that the model reproduces under the same conditions.

Model CMU-MOSEI Data Setting
MAE ↓ Corr ↑ Acc− 2 ↑ F1− Score ↑

TFN [9] 0.593 0.700 82.5 82.1 Unaligned
LMF [30] 0.623 0.677 82.0 82.1 Unaligned
MFN [10] - - 76.0 76.0 Aligned
MFM [46] 0.568 0.717 84.4 84.3 Aligned
MulT [27] 0.580 0.703 82.5 82.3 Aligned

MAG-BERT [47] - - 84.7 84.5 Aligned
ICCN [48] 0.565 0.713 84.2 84.2 Aligned
MISA [11] 0.555 0.756 85.5 85.3 Aligned

TETFN [45] 0.551 0.748 85.1 85.2 Unaligned
DMD [44] - - 84.8 84.7 Unaligned

IMDer3 [43] - - 85.1 85.1 Unaligned
MAG-BERT*̂ [47] 0.549 0.753 85.2 85.1 Aligned

Coupled Mamba (Ours) 0.547 0.756 85.6 85.5 Unaligned
Coupled Mamba (Ours) 0.547 0.758 85.7 85.6 Aligned
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In multi-modal sentiment analysis tasks, language is a key factor because different languages may
have different ways of expressing the same emotion. However, Table 2 shows that our Coupled
Mamba shows robustness in both English and Chinese sentiment analysis tasks. Even with unaligned
data, our method still achieves highest performance.

The results of the classification task are given in Table 3 4. It can be seen from the results of the 1
that our proposed fusion method achieves state-of-the-art (SOTA) regardless of whether the data are
aligned and from the results of the 4, we find that Coupled Mamba also performs well on Chinese
datasets. This is sufficient to demonstrate the effectiveness and robustness of our method.
Table 2: Results on CH-SIMS (Chinese). All models are based on language features extracted by
BERT, and the results are compared on unaligned data. Acc-N represents N-level accuracy.

Model CH-SIMS
Acc− 2 ↑ Acc− 3 ↑ Acc− 5 ↑ F1− Score ↑ MAE ↓

TFN [9] 78.4 65.1 39.3 78.6 0.432
LMF [30] 77.8 64.7 40.5 77.9 0.411
MFN [10] 77.9 65.7 39.5 77.9 0.435
MulT [27] 78.6 64.8 37.9 79.7 0.453

Self-MM [8] 80.0 65.5 41.5 80.4 0.425
TETFN [45] 81.2 63.2 41.8 80.2 0.420
IMDer [43] 76.3 - 50.7 76.4 -

Coupled Mamba (Ours) 81.8 68.7 42.1 81.3 0.409

Table 3: Results of classification tasks on CMU-MOSEI. All models are based on language features
extracted by BERT, and the results are performed on unaligned data. We ran it five times and report
the average results.

Model CMU-MOSEI
Acc− 2 ↑ Acc− 3 ↑ F1− Score ↑ F1− Score− 3 ↑

EF-LSTM [49] 26.73 66.09 28.12 63.68
Graph-MFN [50] 28.47 66.39 28.77 64.00

TFN [9] 28.66 66.63 28.75 63.93
LMF [30] 28.66 66.59 28.92 64.86
MFN [10] 28.61 66.59 28.70 64.31
MulT [27] 27.38 67.04 28.67 65.01
MISA [11] 28.50 67.63 29.03 65.39

Self-MM [8] 29.67 68.15 28.86 66.53
TETFN [45] 29.54 67.95 28.47 66.33

Coupled Mamba (Ours) 32.02 68.95 29.72 67.76
Table 4: Classification task results on CH-SIMS. All models are based on language features extracted
by BERT and the results are performed on unaligned data. We ran it five times and report the average
results.

Model CH-SIMS
Acc− 2 ↑ Acc− 3 ↑ F1− Score ↑ F1− Score− 3 ↑

EF-LSTM [49] 56.27 54.27 49.85 38.18
Graph-MFN [50] 57.99 68.44 54.66 63.44

TFN [9] 53.56 65.95 52.79 62.04
LMF [30] 57.06 66.87 53.83 62.46
MFN [10] 56.96 67.57 54.14 62.37
MulT [27] 56.34 68.27 54.26 64.23
MISA [11] 57.27 67.05 53.99 60.98

Self-MM [8] 58.65 67.56 55.88 65.95
TETFN [45] 57.77 66.83 55.15 65.23

Coupled Mamba(Ours) 60.12 68.75 56.15 67.47

Table 7 shows the results on the CH-SIMSV2 dataset, which currently only supports regression tasks.
It can be seen from the table that the method we proposed has achieved a huge improvement of
2.3%, 2, 3% in Acc-2 and F1-Score respectively, indicating the effectiveness of our method.

The results of Coupled Mamba on BRCA and MM-IMDB datasets are shown in Table 5 6. Whether
in multimodal sentiment analysis tasks or in movie genre classification tasks or biology classification
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Table 5: Result on the BRCA benchmark: mR, D, and miR denote mRNA expression, DNA
methylation, and miRNA expression data respectively. The best results are in bold.

Modality Acc(%)↑ WeightedF1(%)↑ MacroF1(%)↑
GRridg [51] mR+D+miR 74.5 72.6 65.6
GMU [52] mR+D+miR 80.0 79.8 74.6
CF [53] mR+D+miR 81.5 81.5 77.1
MOGONET [54] mR+D+miR 82.9 82.5 77.4
TMC [55] mR+D+miR 84.2 84.4 80.6
MM-Dynamics [56] mR+D+miR 87.5 87.6 83.9
Coupled Mamba(Ours) mR+D+miR 88.1 88.5 85.4

Table 6: Result on the MM-IMDB benchmark. I and T denote image and text respectively. The best
results are in bold.

Modality MicroF1(%)↑ MacroF1(%)↑
LRMF [57] I+T 58.95 50.73
MFM [46] I+T 56.44 48.53
MI-Matrix [58] I+T 55.87 46.77
RMFE [59] I+T 58.67 49.82
CCA [60] I+T 60.31 50.45
RefNet [61] I+T 59.45 51.51
DynMM [62] I+T 60.35 51.60
Coupled Mamba (Ours) I+T 62.41 52.58

tasks, Coupled Mamba can show excellent performance. We expect that coupled mamba can be
extended to other multimodal tasks.

Table 7: Results on CH-SIMSV2, consistent across all experimental settings, using unaligned data.
We run it five times and report the average results.

Model CH-SIMSV2
Acc− 2 ↑ Acc− 3 ↑ Acc− 5 ↑ F1− Score ↑ MAE ↓ Corr ↑

TFN [9] 80.1 72.3 52.5 80.1 30.3 70.7
LMF [30] 74.1 64.9 47.8 73.8 36.7 55.7
MFN [10] 81.1 73.7 54.5 81.2 29.5 72.6
MulT [27] 80.7 73.1 54.8 80.7 29.1 73.8

MAG-BERT [47] 79.8 73.5 53.7 79.8 33.4 69.1
Self-MM [8] 79.7 72.6 52.8 79.7 31.1 69.5
TETFN [45] 79.7 73.6 54.4 79.8 31.1 69.5

Coupled Mamba 83.4 75.0 55.1 83.5 28.7 75.8

4.3 Ablation study

We evaluated the impact of each component in Coupled Mamba to verify the effectiveness of our
design. It is worth noting that in order to reduce the impact of randomness on the experimental results,
our entire ablation experiment was conducted on the CMU-MOSEI dataset.

We use the cross-attention mechanism instead of the fusion strategy for comparison. The results are
shown in Table 8. Coupled Mamba filters input through a selective mechanism and uses historical
modal information to remember and perceive global context, so Coupled Mamba also performs
modal fusion well on unaligned data. In contrast, cross-attention is sensitive to misaligned data, and
this spatio-temporal inconsistency will lead to insufficient integration between modalities and poor
performance.
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Table 8: All things being equal, replacing Coupled Mamba with Cross attention, we execute it five
times and report the average results.

Method CMU-MOSEI Data Setting
MAE ↓ Corr ↑ Acc− 2 ↑ F1− Score ↑

Cross Attention 55.9 73.3 84.6 84.5 Unaligned
Coupled Mamba (Ours) 54.7 75.6 85.6 85.5 Unaligned

The number of hidden states and size of ∆ will have an impact on the results. The size of ∆
affects SSM’s ability to retain historical information. An increased size of ∆ focuses more on
the present input while disregarding past data, and it also raises the count of hidden states. This
escalation in complexity might result in overfitting, higher computational expenses, and may not
enhance the model’s actual effectiveness. In order to explore the impact of these parameters on the
results, we conducted multiple experiments, and the experimental results showed that the model
performance changed under different parameter settings. Detailed results can be found in Tables 9,
10. With ∆ = dstate/8 and dstate = 64, Coupled Mamba achieves the best performance than other
configurations.

Table 9: Performance on CMU-MOSEI with
different timescale ∆

∆
CMU-MOSEI

Corr↑ Acc-2↑ F1-Score↑
dstate/16 75.3 85.2 85.0
dstate/8 75.6 85.6 85.5
dstate/4 74.2 85.0 84.9

Table 10: Performance on CMU-MOSEI with
different dstate

dstate
CMU-MOSEI

Corr↑ Acc-2↑ F1-Score↑
128 74.1 84.2 84.1
64 75.6 85.6 85.5
32 75.0 84.9 84.9

In order to verify the effectiveness of our state coupling, we adopt the splicing fusion, average fusion,
and native Mamba blocks for experiments. Average Fusion and Concat Fusion refer to averaging and
concatenating the features of different modalities and then sending them to a single Mamba Block
for processing. Mamba Fusion refers to using a Mamba Block to process each modality, and finally
weighting the results of the three blocks for downstream tasks. The result is shown in Table 11, our
Coupled Fusion obtains the best performance than others. Traditional modal fusion methods, such
as averaging and concatenation, fail to fully cope with the inherent heterogeneity of multi-modal
data. Such methods ignore the different influences that different modalities may have on specific
tasks, thereby failing to effectively reveal the intrinsic correlation between multi-modal data. Simple
Mamba blocks are not enough to dynamically grasp the semantic relationships. The introduction of
state coupling mechanism based on Mamba can make up for this shortcoming and achieve significant
improvements in multiple performance indicators.

Table 11: Comparison of fusion methods

Model CMU-MOSEI
MAE ↓ Corr ↑ Acc− 2 ↑ F1− Score ↑

Average Fusion 56.4 73.6 84.2 84.1
Concat Fusion 56.2 72.8 84.8 84.5
Mamba Fusion 55.3 74.9 85.3 85.3

Coupled Fusion 54.7 75.6 85.6 85.5

Compared to Transformers, our approach improves performance by 1% ∼ 2% as shown in Table 8
and decreases memory consumption by more than 83. 7% for sequences length 500 according to
Figure 3. When the sequence length increases, the GPU memory usage of the Transformer-based
method increases exponentially. In comparison, our method exhibits linear growth. As the sequence
grows, the advantages of Coupled Mambas become more apparent.

As shown in Figure 4, we compared Coupled Mamba and Transformers with five different sequence
lengths, and the results show that our inference speed is twice as fast as Transformers under the same
sequence length. However, as the sequence length continues to grow, the inference speed of Coupled
Mamba will far exceed that of Transformers.
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Figure 4: Inference speed comparison

To verify the robustness of our proposed method, we conducted experiments on the CMU-MOSEI
dataset with missing data. Specifically, we created a random mask with the same shape as the original
tensor, where each element is taken from the Bernoulli distribution B(1-p). This means that each
element has a p% probability of being 1 (retained) and a (1-p)% probability (i.e., the missing rate
(MR)) of being 0 (missing). We then multiplied this random mask with the original tensor so that the
regions with masked values of 0 result in missing data in the original tensor.

Table 12: Performance of Coupled Mamba on CMU-MOSEI dataset when data is missing. Other
baselines are from [63]

MR DCCA [64] DCCAE [65] MCTN [66] MMIN [67] GCNET [68] Coupled Mamba

0.0 80.7/80.9 81.2/81.2 84.2/84.2 84.3/84.2 85.2/85.1 85.5/85.6
0.1 77.4/77.3 78.4/78.3 81.8/81.6 81.9/81.3 82.3/82.1 82.6/82.7
0.2 73.8/74.0 75.5/75.4 79.0/78.7 79.8/78.8 80.3/79.9 81.1/80.9
0.3 71.1/71.2 72.3/72.2 76.9/76.2 77.2/75.5 77.5/76.8 81.0/81.0
0.4 69.5/69.4 70.3/70.0 74.3/74.1 75.2/72.6 76.0/74.9 78.4/78.5
0.5 67.5/65.4 69.2/66.4 73.6/72.6 73.9/70.7 74.9/73.2 77.4/77.7
0.6 66.2/63.1 67.6/63.2 73.2/71.1 73.2/70.3 74.1/72.1 75.1/75.4
0.7 65.6/61.0 66.6/62.6 72.7/70.5 73.1/69.5 73.2/70.4 74.1/74.2

Average 70.3/71.2 72.6/71.2 77.0/76.1 77.3/75.4 77.9/76.8 79.4/79.5

The results are shown in Table 12, and the numbers of other baselines are from [63]. Our method
shows the best performance. Note that the left side of / shows Acc-2, while the right side indicates
the F1-score.

5 Conclusion and Discussion

In this paper, we introduce Coupled Mamba, a novel approach to enhance multi-modal fusion by
leveraging state evolution chains within state space. Our method integrates intermediate information
from various modalities, capturing dynamic multi-modal interactions over time. This addresses
challenges in parallel SSM with multiple inputs. Both quantitative and qualitative experiments confirm
the effectiveness of Coupled Mamba. Code is available at https://github.com/hustcselwb/coupled-
mamba.
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A Appendix / supplemental material

The following content is the entire process of pushing to the Coupled Mamba parallelization guarantee.
First, we first define the symbols. Assume that the total number of modes is M, hm

t−1 represents
the hidden state at time t-1, where m is any mode, A ∈ RD×N represents the state transition
matrix, B ∈ RB×L×N represents the selective matrix obtained by mapping from the current input,
C ∈ RB×L×N is the same as B, where superscript B is the batch size, L is the input time series
length, and N is the number of hidden states.

Since the equations of the state space model and Mamba’s core processes, such as discretization
processing, hardware-aware algorithms, and parallel execution theory, have been discussed in the
text, they will not be repeated below.

The core of Coupled Mamba is to introduce multi-modal information while ensuring the parallel
computing advantages of Mamba block. After introducing multi-modal information, we have:

hm
t = AmGm

M∑
m=1

hm
t−1 +BmXm

t (9)

where Am ∈ RB×L×D×N , Gm ∈ RN×N is a coupling matrix, which can be understood as a shared
state transition matrix, which transfers the coupling state based on a certain probability based on the
comprehensive state at time t− 1. By integrating Gm into Am, we can get its unified representation
Sm ∈ RB×L×D×N .Therefore, the above formula can be expressed as

hm
t = Sm

M∑
m=1

hm
t−1 +BmXm

t (10)

Next, let us derive it step by step starting from time 0, when t = 0 we have:

hm
0 = Bmxm

0 (11)

when t = 1, we can get:

h1
t=1 = S1

M∑
m=1

hm
t=0 +B1x

1
t=1 (12)

h2
t=1 = S2

M∑
m=1

hm
t=0 +B2x

2
t=1 (13)

The subscripts of S and B represent different modalities, and the superscript of xm
t represents

different modalities.Through this recursive formula we can get

hM
t=1 = SM

M∑
m=1

hm
t=0 +BMxM

t=1 (14)

In the same way, we bring h1
t=1, h

2
t=1, ..., h

M
t=1 into the formula for calculating each mode hm

t=2, we
can get:

h1
t=2 = S1

M∑
m=1

hm
t=1 +B1x

1
t=2 (15)

By disassembling h1
t=1, h

2
t=1, ..., h

M
t=1, we can get:

h1
t=2 = S1

(
M∑

m=1

hm
0

M∑
m=1

Sm +B1x
1
t=1 +B2x

2
t=1 + ....+BMxM

t=1

)
(16)

where
M∑

m=1

hm
0 = B1x

1
t=0 +B2x

2
t=0 + ...+BMxM

t=0 (17)
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Let B1x
1
t +B2x

1
t + ...+BMx1

t be Ut, P =
∑M

m=1 Sm ,Ut can be expressed as

Ut =

M∑
m=1

Bmxm
t (18)

Similarly we can get
h1
t=2 = S1 (PU0 + U1) +B1x

1
t=2 (19)

h1
t=3 = S1

(
P 2U0 + PU1 + U2

)
+B1x

1
t=3 (20)

Therefore, by recursively recursing this formula, we can get

hm
t = Sm

t−1∑
i=0

P iUt−1−i +Bmxm
t (21)

Finally we calculate the output through y = C⊗
∑M

m hm
t , we have

y = C⊗
t∑

i=0

UiP
t−i (22)

where ⊗ represents the convolution operation, and the convolution kernel is K =(
CP0,CP1, ...,CPt−1,CPt

)
. At this point, we have completed the derivation of the entire

parallelized calculation.

In order to fully verify the effectiveness of this research method, we further performed classification
experiments on the CMU-MOSI. The experimental results are displayed in Table 13, as follows:

Table 13: Results on the CMU-MOSI dataset for classification task, all results are performed under
the same conditions, and the average results are reported after five runs.

Model CMU-MOSI
Acc-2↑ Acc-3↑ F1-Score↑ F1-Score-3↑

EF-LSTM [49] 46.40 74.43 46.55 72.74
Graph-MFN [50] 46.13 75.34 46.96 73.71

TFN [9] 43.78 73.44 45.55 71.86
LMF [30] 45.76 74.11 46.34 72.50
MFN [10] 46.68 74.99 46.78 74.22
MulT [27] 48.93 74.99 47.29 73.06
MISA [11] 44.15 76.30 46.75 74.57
Self-MM[8] 51.48 77.74 48.37 76.25
TETFN [45] 50.74 77.67 47.88 75.85

Coupled Mamba (Ours) 53.76 78.59 49.21 76.76

The CH-SIMSV2 [25] dataset is a Chinese data set for multi-modal sentiment analysis and is an
extension of the CH-SIMS data set. The dataset contains audio, text, and video clips from different
emotion categories, and each clip is labeled with emotional polarity, such as happy, sad, angry, etc.
Each emotion category has corresponding speech, text, and video clips, as well as emotion labels
associated with them.

Feature extraction CMU-MOSEI uses the pre-trained BERT model to extract language features
and obtains 768-dimensional hidden states as word embeddings. For the visual modality, each video
frame is encoded using Facet to represent the presence of a total of 35 facial action units. The acoustic
model is processed by COVAREP to obtain 74-dimensional features. CH-SIMS uses pre-trained
Chinese BERTbase word embeddings to obtain word vectors from text records, and finally represents
each word as a 768-dimensional word vector. Acoustic features at 22050Hz were extracted using the
LibROSA speech toolkit with default parameters. A total of 33-dimensional frame-level acoustic
features are extracted. Extract aligned faces using MTCNN face detection algorithm. The MultiComp
OpenFace2.0 toolkit was then used to extract a collection of 68 facial landmarks, 17 facial action
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units, head pose, head orientation, and eye gaze. Finally, a total of 709-dimensional frame-level
visual features were extracted.

Exploring Coupled Mamba Layers We investigated the number of layers in Coupled Mamba by
performing experiments shown in Table 14. The optimal performance of our Coupled Mamba was
observed at layer = 3.

Table 14: Performance on CMU-MOSEI with different layers

Model CMU-MOSEI
MAE↓ Corr↑ Acc-2↑ F1-Score↑

Coupled Mamba(Layer = 1) 55.1 74.7 84.7 84.8
Coupled Mamba(Layer = 2) 55.3 74.9 84.9 84.8
Coupled Mamba(Layer = 3) 54.7 75.6 85.6 85.5
Coupled Mamba(Layer = 4) 56.6 74.5 84.8 84.7
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction of this paper accurately reflect the contribution
of the paper, such as solving the problem that Mamba cannot be parallelized when using
multi-modal input, and verifying the effectiveness of our method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in the end of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We fully prove the entire derivation process of our algorithm in the appendix.
If you want to know more, you can refer to the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We put the main experimental results in the main text, but in order to fully
prove the effectiveness of our method, we also provide some additional experimental results
in the appendix. In order to ensure the reproducibility of the experiment, we have set up an
Implementation details chapter in the article, including our experimental environment, batch
size, loss function and other details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit our experimental code in the supporting material. The environment
we use is python 3.10, cuda12.1, torch 2.12. We will indicate how to run the code in the
supporting material. For the processing of the data set, we give details in the appendix.
We refer to the MMSA library to reproduce the baseline on different data sets, and all
experimental environments are the same.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give our training details in detail in the implementation details chapter,
such as hyperparameter learning rate, batch size settings, and optimizer selection. In order
to be more detailed, we also conducted more detailed comparative experiments on different
hyperparameters. This can be viewed in the appendix. We have also discussed the splitting
of the data set in the data set chapter, including which data sets to use, why, and the sizes of
the test set, validation set, and training set. We have explained them in detail.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [No]
Justification: The data we report in the paper is the average data of five report runs, so the
error bars are not explicitly written in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We indicate the type of graphics card, CPU type, memory and other information
we use in the implementation details, and also provide a visualization of memory usage in
the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and strongly agree with it, and we
fully followed the code during our research. We have not violated any guidelines and we
hope everyone will follow them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we have discussed the positive and negative impacts of our work. Gener-
ally speaking, our research has a positive effect on society and can promote human-computer
interaction and better enable computers to serve humans in life.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: Our research does not design data sets with high risk of misuse, and our model
is also very safe. For this reason, we do not elaborate on the corresponding protection
measures in the article.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Any assets we use have the permission and approval of their original owners,
and we fully understand and agree with the protection of any intellectual property rights.
We used a CC-BY 4.0 Asset license and for the datasets we used, we cited them in the
References section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We proposed the Coupled Mamba model, and we have fully explained its
detailed architecture in the text. If our paper can be accepted, we will publish the model and
code strictly in accordance with the response standards.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve any research or experiments with human subjects,
and we use publicly available data sets for experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research did not involve any human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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