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ABSTRACT

Deep learning models for dynamical system forecasting, despite their success,
often falter when trained solely on pixel-wise numerical metrics. This paradigm
leads to overly smooth predictions that fail to capture high-impact, rare events
and lack the physical plausibility demanded by domain experts. To bridge this
gap, we introduce PRISM, a novel human-machine collaborative framework that
aligns predictive models with human preferences for physical realism and per-
ceptual quality. PRISM’s core mechanism involves distilling complex, often non-
differentiable human judgments into a differentiable preference model. This is
achieved by training on prediction pairs generated via a diverse sampling strategy
and ranked by human-trusted proxy metrics. Subsequently, this learned pref-
erence oracle is used to fine-tune the foundational predictive model through
a joint optimization process, which we theoretically ground as a bi-level opti-
mization problem converging to a stable equilibrium. Extensive experiments
on challenging benchmarks in fluid dynamics and numerical weather forecast-
ing demonstrate that PRISM serves as a versatile, plug-and-play enhancer for a
wide range of state-of-the-art models. It consistently yields predictions that are
not only numerically accurate but also qualitatively superior in capturing criti-
cal physical phenomena and visual coherence. Codes are available at https:
//anonymous.4open.science/status/PRISM_main-CC1D.

1 INTRODUCTION

In contemporary scientific research and engineering applications, modeling and predicting complex
dynamic systems serve as important tools to understand and reveal physical phenomena. They are
widely applied in areas such as weather forecasting, climate change prediction, and fluid dynam-
ics (Wu et al.; 2024d; 2023; Bi et al., 2022). Precise dynamic prediction helps us better comprehend
natural laws and provides scientific support for disaster prevention, resource management, and major
engineering decisions. However, most dynamic system modeling methods primarily optimize nu-
merical metrics (Li et al., 2020; Wu et al., 2024c). While they strive to minimize overall risks, they
often fail to accurately capture rare events like extreme weather and sudden fluid vortices. Worse still,
these methods tend to neglect the perceptual consistency and are not informative in expressing the
physical interpretability of predicted results (including visualizations).

To conquer the aforementioned shortcomings, researchers propose various improvement strategies.
First, models based on multi-scale feature extraction make significant progress in learning the
integration of local and global spatiotemporal information (Wu et al., 2024e; 2023; 2024f; He et al.).
By hierarchically extracting key features at different scales, they enhance the ability to capture local
extreme phenomena to some extent. However, these methods often lead to more complex model
structures and higher computational costs. Second, solutions based on generative adversarial networks
(GAN) (Goodfellow et al., 2014) or energy models attempt to generate diverse prediction scenarios
by approximating the real distribution, addressing higher-order uncertainties that average loss cannot
cover (Zhang et al., 2023; Ravuri et al., 2021; Wang et al., 2023). However, the adversarial training
process itself is unstable, prone to mode collapse or gradient oscillations (Li et al., 2018; Thanh-Tung
& Tran, 2020), resulting in insufficient reliability in predicting extreme or rare scenarios.

In this context, some studies integrate physical constraints and human prior knowledge into predictive
models. For example, in numerical weather forecasting, some work embeds physical laws directly
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Figure 1: An overview of Benchmark. (1) First, obtain the raw data. (2) Then, pretrain advanced
operator learning methods or spatiotemporal forecasting models. (3) Next, provide different prompts
for the pretrained model in the second stage. Here, the prompt is not text but Perlin noise, commonly
used in scientific computing. By applying noise with varying intensities, the model generates diverse
results, which are then scored using high-quality, non-differentiable human preference metrics. The
illustration uses a turbulence energy spectrum, and the final preference dataset is constructed by
selecting the highest- and lowest-scoring results.

into the network structure or introduces physical corrections in the post-processing stage to ensure
that the output results comply with conservation laws of energy and momentum (Zhang et al.,
2023; Rao et al., 2023; De Bézenac et al., 2019; Raissi et al., 2019; Jagtap et al., 2020). However,
numerical optimization and physical constraints cannot easily achieve a unified goal through simple
weighted sums. The scales of physical constraints and applicable scenarios vary greatly, and boundary
conditions are extremely complex (Fadlun et al., 2000; John & Anderson, 1995; Efendiev & Hou,
2009). This makes it difficult for models to maintain the same stability and adaptability across
different fields and environments. Additionally, using only numerical metrics, such as MSE, to
measure prediction quality ignores human needs for interpretability, visual perceptual consistency,
and attention to extreme events. Especially in highly sudden dynamic processes, like extreme
weather (Racah et al., 2017; Wu et al., 2024f) and fluid turbulence (Wang et al., 2020; Liu et al.,
2020), experts focus more on accurately characterizing the overall structure, evolution trends, and
underlying mechanisms rather than minimizing point-to-point errors.

Therefore, turning human preferences or approvals for prediction results into learnable metrics and
performing end-to-end model optimization remains a key challenge.

To address this issue, we propose a unified modeling framework PRISM that combines numerical
accuracy with human preference scores, based on human preference learning (Rafailov et al., 2024)
and diverse sampling (Bhattacharyya et al., 2018; Ma et al., 2021). Specifically, we first use risk
error (like MSE) during the pre-training phase to ensure overall numerical consistency between
the predictions and the ground-truth. Then, by adding perturbations (Chen et al., 2024; Hu et al.,
2023) to the input or replacing discrete embeddings (Van Den Oord et al., 2017), we generate a
diverse set of prediction samples and select high- and lower-quality prediction pairs based on human-
trusted metrics, such as physical consistency (Wu et al., 2024f; Wang et al., 2020), visual structure
similarity (Hore & Ziou, 2010), or domain-specific preference evaluations. Going beyond this, we
train a preference model that learns to rank different predictions under the same input conditions.
Finally, we jointly optimize the preference model with the base prediction model: while maintaining
numerical prediction accuracy, we explicitly update the models in directions that better align with
human preferences or interpretability.

To validate our concept, we construct an open-source scientific dataset that integrates human
preferences within the first shot. To solve this, we collaborate with physics experts and use
crowdsourced annotations to build a dataset called HPSci (Human Preference for Scientific Com-
puting). HPSci covers typical dynamical system scenarios such as turbulence, Rayleigh-Bénard
convection and fire spread, providing rich prediction samples annotated with human preferences.
Build on this, we can explore deeply how to combine human preferences with physical consistency
to enhance the performance and interpretability of dynamical system prediction. In Section 2, we
will introduce the construction method and characteristics of this dataset.
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In summary, the contribution of our paper can be summarized as follows: (1) Novel Methodology.
We construct a multi-objective optimization framework that combines numerical loss with human
preference scores. This provides a flexible and adjustable unified training scheme for various applica-
tion scenarios. (2) New Strategy. In sampling strategies and preference Benchmark construction, we
generate a diverse set of candidate predictions by perturbing inputs or replacing discrete embeddings.
We then select positive and negative sample pairs based on human-trusted metrics, effectively enhanc-
ing the ability to perceive extreme or abnormal scenarios. (3) Superior Performance. We analyze the
convergence and optimality of our method using a bi-level optimization and game theory approach.
We validate its superior performance in real weather forecasting and fluid simulation tasks.

2 BENCHMARK
Existing literature does not have a public dataset that combines scientific computing features with hu-
man preferences. To solve this, we work with physics researchers and use crowd-sourced annotations
to create HPSci, a Human Preference dataset for Scientific computing. The main process is shown in
Figure 1.

Table 1: Comparison among different Benchmarks.

Method Multi-Objective human preference 3D
PDEBench (Takamoto et al., 2022) ✗ ✗ ✗

BLAST (Chung et al., 2024) ✗ ✗ ✓

EAGLE (Janny et al., 2023) ✗ ✗ ✗

Prometheus (Wu et al., 2024b) ✗ ✗ ✗

HPSci (Ours) ✓ ✓ ✓

First, we choose typical
dynamical system scenar-
ios, such as fluid tur-
bulence, Rayleigh-Bénard
convection, and wildfire
spread, from scientific com-
puting datasets like BLAST-
Net (Chung et al., 2024)
and PDEBench (Takamoto
et al., 2022). Then, we use pretrained forecasting models, such as FNO and ConvLSTM, to make
various forecasts. Next, to increase uncertainty and variety in the model forecasts, we add different
changes, including Gaussian noise and discrete embedding replacements, to the input or intermediate
features to create more candidate forecasts. We then use physical consistency measures, like turbulent
kinetic energy and energy conservation, to filter these samples. To gather human preferences, we
use both crowdsourcing and expert annotations. Given the same input scenario and multiple forecast
outputs, annotators choose or rate the forecasts based on their perceived quality, creating positive and
negative pairs for preference learning. Finally, we organize these annotated samples with the original
inputs and observed results to create HPSci, which we release publicly. This dataset provides a base
for future research on combining human preferences and physical consistency in dynamical system
forecasting.

Table 1 summarizes the benchmark details. Compared to traditional benchmarks, the HPSci bench-
mark offers three key advantages: multi-objective optimization, human preference integration, and
comprehensive 3D modeling support. It combines numerical accuracy with human-perceived quality
and supports complex 3D dynamical system forecasting, improving model practicality and reliability.

3 METHODOLOGY

We propose PRISM, a novel framework for dynamical system modeling. Its core objective is to
transcend the limitations of conventional pixel-wise numerical metrics, such as Mean Squared
Error (MSE), by aligning model predictions with human-perceptible quality and physical intuition.
As illustrated in Figure 2, the PRISM architecture follows a meticulously designed three-stage
optimization pipeline: (1) Fidelity-Focused Pre-training of a Foundational Model, which establishes
a robust baseline for dynamical forecasting; (2) Distillation of a Human Preference Oracle, which
translates complex, often non-differentiable expert criteria into a smooth, differentiable scoring
function; and (3) Policy Fine-tuning via Direct Preference Optimization, which leverages the
learned preference information to guide the refinement of the foundational model, thereby achieving
a Pareto-optimal balance between numerical accuracy and perceptual realism.

3.1 PROBLEM FORMULATION

We first formalize the task of spatiotemporal forecasting. Given a sequence of historical state
observations of a dynamical system, represented as a tensor X ∈ RTin×C×H×W , our goal is to
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Figure 2: An overview of PRISM. Our method consists of four steps: (1) Pretrain the base model and
optimize it using mean squared error (MSE) loss. (2) Generate diverse prediction samples with a
perturbation module and evaluate their quality using human-trusted metrics. (3) Create a preference
dataset and train a preference model to assess prediction quality. (4) Combine preference model
scores with base model accuracy to jointly optimize the prediction model, achieving both accuracy
and alignment with human preferences.

predict its future state sequence Ytrue ∈ RTout×C×H×W . Here, Tin and Tout denote the temporal
lengths of the input and output, C is the number of channels representing physical fields, and H ×W
is the spatial grid resolution.

We define our predictive model as a deep neural network fθ : X 7→ Ŷ, parameterized by θ. In the
standard supervised learning paradigm, the optimization objective is to minimize the expected loss
over the data distribution D, which is typically the Mean Squared Error (MSE):

LMSE(θ) = E(X,Ytrue)∼D

[
∥fθ(X)−Ytrue∥2F

]
, (1)

where ∥ · ∥F denotes the Frobenius norm. However, this loss function tends to penalize errors across
all frequencies uniformly, causing the model to learn a conditional mean. The resulting predictions are
often overly smooth and fail to capture high-frequency details, extreme events, or critical topological
structures.

Our central hypothesis is that an ideal prediction Ŷ should maximize an implicit utility function
U(Ŷ,Ytrue), which encapsulates not only numerical similarity but also human preferences regarding
high-level semantics such as physical consistency and structural plausibility. As U is latent and
non-differentiable, our task is to construct a tractable surrogate objective for its optimization.

3.2 STAGE 1: FOUNDATIONAL MODEL PRE-TRAINING FOR NUMERICAL FIDELITY

To ensure the model first masters the fundamental evolutionary laws of the system, we conduct an
initial pre-training stage for the predictive model fθ. The objective here is to minimize the LMSE
defined in Equation 1, thereby obtaining a set of initial parameters θ0 that exhibit strong numerical
stability and foundational predictive capabilities:

θ0 = argmin
θ

LMSE(θ). (2)

As shown in Figure 2, our foundational model fθ employs a hybrid Encoder-Diffusion-Decoder
architecture. The input X is first mapped into a latent space by an encoder Eθenc . Subsequently, a
Transformer-based diffusion model (DiT), Dθdit , denoises and refines the latent representations to
capture global spatiotemporal dependencies. Finally, a decoder Gθdec reconstructs the processed latent
representation into a high-resolution prediction Ŷ. The entire forward pass is a function composition:

Ŷ = fθ(X) = Gθdec(Dθdit(Eθenc(X))). (3)

This pre-training stage provides a high-quality "reference policy" for the subsequent preference
alignment.

4
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3.3 STAGE 2: DISTILLATION OF A HUMAN PREFERENCE ORACLE

The core task of this stage is to translate abstract human preferences into an operational, differentiable
signal. We achieve this by training a separate Preference Model Sϕ, parameterized by ϕ, designed
to output a scalar score for any given prediction Ŷ. A higher score indicates greater alignment with
human preferences.

3.3.1 EXPLORATORY CANDIDATE GENERATION

To train a discerning preference model, we require a diverse set of candidate predictions for the
same input X, exhibiting variations in quality. We generate these candidates by introducing random
perturbations at the input of the pre-trained model fθ0 , thereby exploring the neighborhood of
the conditional probability distribution p(Y|X). Specifically, we sample a perturbation δi from a
predefined distribution Pσ (e.g., a Gaussian distributionN (0, σ2I)) to generate a set of N candidates,
YX:

YX = {Ŷi}Ni=1 s.t. Ŷi = fθ0(X + δi), δi ∼ Pσ. (4)

This step is crucial, as it provides a rich and varied dataset for preference learning, covering a
spectrum of outcomes from structurally coherent to artifact-laden.

3.3.2 MAXIMUM LIKELIHOOD ESTIMATION OF THE PREFERENCE MODEL

Next, we construct a preference dataset Dpref. As depicted in the "Select" step of Figure 2, we employ
a set of domain-specific, widely accepted human-trusted metrics M(·, ·) as an automated proxy for
expert judgment. For instance, in fluid dynamics, M could be the similarity of the turbulent kinetic
energy spectrum; for weather forecasting, it could be the Critical Success Index (CSI).

For each candidate set YX, we select a "winner" Yw and a "loser" Yl to form a preference pair
(Yw,Yl), where M(Yw,Ytrue) > M(Yl,Ytrue). We assume that human preferences follow the
Bradley-Terry model, wherein the probability of preferring Yw over Yl is proportional to the
exponent of their latent rewards:

p(Yw ≻ Yl) =
exp(r∗(Yw))

exp(r∗(Yw)) + exp(r∗(Yl))
= σ(r∗(Yw)− r∗(Yl)), (5)

where r∗(·) is the true, unknown reward function, and σ(·) is the logistic sigmoid function. Our
preference model Sϕ aims to learn this reward function. We train Sϕ by maximizing the log-likelihood
on Dpref, with the following loss function:

Lpref(ϕ) = −E(Yw,Yl)∼Dpref [log σ (Sϕ(Yw)− Sϕ(Yl))] . (6)

Upon convergence, the model Sϕ becomes a differentiable preference oracle, capable of scoring
any prediction and effectively emulating the complex evaluation process of human experts.

3.4 STAGE 3: POLICY FINE-TUNING VIA DIRECT PREFERENCE OPTIMIZATION

In the final stage, shown as "DPO Training" in Figure 2, we fix the preference oracle Sϕ and use
it to guide the fine-tuning of the foundational model fθ. We treat fθ as a policy πθ that generates
predictions, while Sϕ provides the reward signal. Diverging from traditional reinforcement learning
methods, we adopt the principles of Direct Preference Optimization (DPO), which reframes the
reward maximization problem as a simple classification task, thereby circumventing explicit reward
modeling and its associated sampling instabilities.

We formulate a composite loss function to update θ, which integrates numerical fidelity with prefer-
ence alignment:

LTotal(θ) = LMSE(θ) + λLDPO(θ; θ0), (7)

where λ is a hyperparameter that balances the two objectives. The LDPO term, inspired by the core
idea of DPO, directly optimizes the policy using the preference model. Its form is analogous to Lpref,
but the optimization is performed over the generator’s parameters θ:

LDPO(θ; θ0) = −EX∼D,(δw,δl)∼Pσ
[log σ (Sϕ(fθ(X + δw))− Sϕ(fθ(X + δl)))] . (8)

5
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Here, the loss is constructed by scoring the outputs of the current model fθ. This is mathematically
equivalent to implicitly maximizing the reward of the policy πθ relative to the reference policy πθ0 .
The gradient update rule for the entire optimization process is:

θ ← θ − η∇θ (LMSE(θ) + λLDPO(θ; θ0)) . (9)

By minimizing LTotal, we drive the predictive model fθ to explore regions of the solution space that
yield higher preference scores—and thus are more physically intuitive and visually realistic—while
remaining anchored to the ground truth by the numerical fidelity term. Ultimately, the PRISM
framework yields a dynamical system model that is both "accurate" and "perceptually superior."

4 EXPERIMENTS

Table 2: Summary of experiment benchmarks, including the
number of training samples (Ntrain), the number of testing
samples (Ntest), data dimensions (number of channels C,
height H , width W ), and the input/output time steps (I/O).

DESCRIPTIONS Ntrain Ntest (C,H,W ) I/O

PROMETHEUS-T 30000 2000 (2, 32, 480) 10/10
PROMETHEUS-P 30000 2000 (2, 32, 64) 10/10
RAYLEIGH–BÉNARD 1544 193 (2, 64, 448) 1/99
SEVIR 35,718 4465 (1, 192, 192) 13/12

Benchmarks. As presented in
Table 2, we conduct experiments
on three datasets. First, in the
Prometheus dataset, following the de-
sign of (Wu et al., 2024b), we select
two scenarios: tunnel fire and pool
fire. Considering the significant im-
pact of fire spread on human safety,
we focus on the visual perception abil-
ity of the prediction results in this
dataset and choose the Structural Sim-
ilarity Index (SSIM) (Brunet et al.,
2011) for optimization. Second, for Rayleigh–Bénard convection, we follow the design of (Wang
et al., 2020) and select turbulent kinetic energy as the evaluation metric. In fluid dynamics, turbulent
kinetic energy represents the average kinetic energy per unit mass associated with vortices in turbu-
lence. From a physical perspective, we characterize it by measuring the root mean square of velocity
fluctuations. Finally, to reflect extreme precipitation events, we choose the SEVIR (Veillette et al.,
2020) dataset and, following the design of (Gao et al., 2022b), take the Critical Success Index (CSI)
as the optimization metric (Schaefer, 1990).

Backbones. We comprehensively use about 11 backbones, including basic vision backbone:
ResNet (He et al., 2016), U-Net (Ronneberger et al., 2015), Vision Transformer (ViT) (Doso-
vitskiy, 2020), Swin Transformer (Swin) (Liu et al., 2021), etc. Spatio-temporal Prediction model:
SimVP (Gao et al., 2022a), PastNet (Wu et al., 2024e). Typical neural operators: FNO (Li et al.,
2020), CNO (Raonic et al., 2024), UNO (Rahman et al., 2022) and Based on Graph Neural Network:
MGN (Pfaff et al., 2020), EGNN (Satorras et al., 2021).

Implementations. For fairness, we set the hidden layer dimension of all models to 256 and the
learning rate to 1e-3, using a cosine annealing strategy for adjustment. We choose the Adam
optimizer (Kingma & Ba, 2014) and use MSE as the loss function. We conduct all experiments on
servers equipped with eight 40GB NVIDIA A100 GPUs and perform inference on a single 40GB
NVIDIA A100 GPU. See Appendix for comprehensive implementations.

4.1 MAIN RESULTS

We compare PRISM with multiple existing models and validate its effectiveness in improving numeri-
cal accuracy and human perceptual quality.

Qualitative Analysis. Table 3 shows model performance improvements with PRISM. On
Prometheus (MSE/SSIM focus), basic CNNs gain substantially: ResNet (SSIM 0.8334→0.8485)
and U-Net (0.8298→0.8643) show enhanced structural accuracy. Advanced models
(SimVP/PastNet) maintain MSE while increasing SSIM, confirming better visual consistency. For
Rayleigh–Bénard (MSE/MAPE focus), PRISM lowers MAPE: ResNet (25.66%→24.99%) and U-
Net (13.72%→12.73%), improving dynamical system sensitivity. On SEVIR (MSE/CSI focus),
PRISM boosts CSI: ViT (0.3847→0.3984) and Swin (0.3983→0.4212), demonstrating enhanced
extreme weather prediction. PRISM achieves top performance: Prometheus (MSE 0.0287→0.0281;
SSIM 0.9103→0.9233), Rayleigh–Bénard (MSE 0.1023→0.0983; MAPE 12.31%→10.29%), and
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Table 3: Performance comparison of various models with and without the PRISM framework.
The table presents the performance of different models in their original versions (Ori) and after
applying PRISM (+ PRISM). ’∗’ indicates a memory overflow. ’¯’ indicates that FNO failed to learn
high-frequency components, yielding non-informative predictions.

MODEL CATEGORY
PROMETHEUS RAYLEIGH-BÉNARD SEVIR (MSE IS 10−3)

ORI + PRISM ORI + PRISM ORI + PRISM

MSE SSIM MSE SSIM MSE MAPE(%) MSE MAPE(%) MSE CSI MSE CSI

COMPUTER VISION BACKBONES
� RESNET _CVPR’16 0.0982 0.8334 0.0972 0.8485 0.6990 25.66 0.6872 24.98 5.0478 0.3234 4.9873 0.3398
� U-NET _MICCAI’15 0.1067 0.8298 0.0921 0.8643 0.1246 13.71 0.1372 12.73 4.1119 0.3593 4.0932 0.3674
� VIT _ICLR’21 0.0713 0.8512 0.0722 0.8627 0.1354 14.38 0.1293 13.98 3.9843 0.3847 3.8475 0.3984
� SWIN _CVPR’21 0.0729 0.8776 0.0708 0.8921 0.1273 15.74 0.1283 14.87 3.7463 0.3983 3.4354 0.4212

SPATIOTEMPORAL MODELS
Y SIMVP _CVPR’22 0.0342 0.9233 0.0326 0.9301 0.0926 20.00 0.0872 10.28 3.4632 0.4538 3.4532 0.4676
Y PASTNET _MM’24 0.0299 0.9398 0.0298 0.9421 0.1126 11.83 0.1112 11.09 3.3874 0.4695 3.3982 0.4701

OPERATOR LEARNING MODELS
« FNO _ICLR’21 0.0506 0.6537 0.0507 0.6538 0.1455 11.65 0.1203 10.29 — — — —
« CNO _NEURIPS’23 0.0862 0.8654 0.0842 0.8722 0.1134 11.57 0.0927 10.28 4.3784 0.3384 4.3698 0.3409
« UNO _KDD’22 0.0499 0.8937 0.0453 0.9123 0.1173 11.60 0.1283 10.29 3.6372 0.4003 3.5947 0.4092

GRAPH NEURAL NETWORKS
ú MGN _ICLR’21 0.1079 0.8421 0.0921 0.8521 0.2731 15.42 0.2563 14.28 * * * *
ú EGNN _ICML’21 0.1722 0.7829 0.1574 0.8021 0.7832 22.83 0.7726 20.09 * * * *

� OURS 0.0287 0.9103 0.0281 0.9233 0.0926 12.30 0.0983 10.28 3.3623 0.4783 3.3546 0.4893
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Figure 3: Visual Results. (a) Prometheus tunnel benchmark. Shows SimVP’s temperature and
visibility fields with and without PRISM at the final time step. (b) Prometheus pool fire benchmark
(top view). Shows SimVP’s U V velocity and temperature fields with and without PRISM at the final
time step. (c) Prometheus pool fire benchmark (front view). Shows PastNet’s U V velocity and
temperature fields with and without PRISM at the final time step. (d) Rayleigh-Bénard benchmark.
Shows CNO’s U V velocity vectors with and without PRISM. (e) SEVIR benchmark. Shows UNO’s
U V velocity vectors with and without PRISM.

SEVIR (MSE 3.3623→3.3546; CSI 0.4783→0.4893). Neural operators (FNO/CNO/UNO) improve
with PRISM, though FNO fails on high-frequency components (marked "−"). Graph networks
(MGN/EGNN) show partial gains despite memory overflow issues (marked "∗").

Quantitative Analysis. Figure 3 visualizes PRISM’s enhancements: (a) SimVP with PRISM better
captures flame paths and smoke diffusion in tunnel fires. (b-c) SimVP/PastNet with PRISM accurately
reproduce fluid dynamics and temperature patterns in pool fires. (d) CNO with PRISM reveals clearer
convective roll structures in Rayleigh–Bénard flows. (e) UNO with PRISM precisely locates heavy
precipitation regions in SEVIR extreme weather prediction. Overall, Figure 3 effectively demonstrates
how PRISM enhances the performance of various simulation models, leading to more accurate and
detailed representations of complex physical phenomena.

4.2 MODEL ANALYSIS
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Figure 4: (a) SWE dataset forecasts, showing the performance of EGNN + PRISM at different time
steps. (b) Energy spectrum analysis, comparing the target data, PRISM-enhanced approach, and
EGNN model across high and low frequencies. (c) SEVIR dataset forecasts, demonstrating the
improvements of the PRISM-enhanced approach in thunderstorm forecasting. (d) CSI comparison,
showing performance changes across different models before and after PRISM enhancement.

Table 4: MSE reduction for scalar (wave height) and
vector (U, V velocity) variables. The "Improvement"
column shows the mean percentage decrease in MSE
for each model after applying our method.

MODEL SCALAR MSE VECTOR MSE IMPROVEMENT

RESNET 0.0782 ↓ 0.0701 0.0983 ↓ 0.0873 10.8%
SIMVP 0.0345 ↓ 0.0298 0.0564 ↓ 0.0531 10.0%
FNO 0.0986 ↓ 0.0763 0.1102 ↓ 0.0972 16.9%
EGNN 0.0425 ↓ 0.0403 0.0609 ↓ 0.0576 6.1%

Long-term forecasting capability analy-
sis. After addressing the smoothing prob-
lem, our model effectively performs long-
term forecasting by taking 1 input time step
to predict the next 59. As the forecasting
horizon extends, high-frequency informa-
tion decays more slowly (He et al.). We
employ the shallow water equations (Wu
et al., 2024a) to describe wave dynamics
near the equator, involving three variables:
water wave height and its corresponding U and V velocities. Table 4 shows that after integrating
PRISM, all backbone networks yield lower mean squared errors (MSE) for both scalar (wave height)
and vector (U, V) variables. Specifically, ResNet’s scalar MSE decreases from 0.0782 to 0.0701,
and vector MSE from 0.0983 to 0.0873. SimVP’s scalar MSE drops from 0.0345 to 0.0298, and
vector MSE from 0.0564 to 0.0531. FNO’s scalar MSE falls from 0.0986 to 0.0763, and vector MSE
from 0.1102 to 0.0972. EGNN’s scalar MSE decreases from 0.0425 to 0.0403, and vector MSE from
0.0609 to 0.0576. These results confirm that PRISM significantly enhances forecasting accuracy.

As shown in Figure 4 (a), the visualization results indicate that EGNN+PRISM performs well in
long-term forecasting (from step 1 to step 59), with predictions closely matching the ground truth.
Next, as shown in Figure 4 (b), we convert the energy spectrum to a logarithmic scale to better
illustrate the broad energy distribution. The results show that the energy spectrum of EGNN+PRISM
aligns closely with the ground truth. Based on the original backbone network, this strongly validates
that our method effectively enhances the model’s long-term forecasting capability and improves its
ability to learn both high- and low-frequency dynamics.

Extreme event capability analysis. As shown in Figure 4(c), we select SEVIR for analysis. The
visualization results show that CNO produces smoother outputs, while extreme events are high-
frequency, making analysis difficult. After combine PRISM, the model optimization shifts toward
higher extreme event scores, resulting in more high-frequency outputs. This demonstrates that our
method improves the model’s ability to capture extreme events. The Figure 4(d) better reflects the
improved consistency of our method in extreme events.

Transfer learning capability analysis. We first pretrain the model using PRISM on the source domain
dataset, Prometheus-P, to achieve strong numerical forecasting accuracy and alignment with human
preferences. Then, we transfer the model to two target datasets: Prometheus-T (with 20%, 40%, and
100% training data) and Rayleigh-Bénard (full dataset). This design evaluates performance changes
when data is limited in fire scenarios and examines whether PRISM improves numerical accuracy and
perceptual quality in a completely different convection process.
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Table 5: Transfer Learning Performance. We pretrain on a source domain and transfer to two target
datasets. For Prometheus-T, performance (MSE↓/SSIM↑) is evaluated with varying percentages of
training data. For Rayleigh-Bénard, we compare training from scratch (FS) against fine-tuning with
our method (+ PRISM), evaluated by MSE↓/MAPE↓.

MODEL
TARGET DOMAIN 1: PROMETHEUS-T (FIRE SIMULATION) TARGET DOMAIN 2: RAYLEIGH-BÉNARD (CONVECTION)

DATA: 20% DATA: 40% DATA: 100% FROM SCRATCH (FS) + PRISM

MSE SSIM MSE SSIM MSE SSIM MSE MAPE MSE MAPE

RESNET 0.141 0.801 0.124 0.823 0.099 0.833 0.713 25.65 0.697 24.95
U-NET 0.157 0.793 0.115 0.838 0.106 0.831 0.127 13.73 0.114 12.73
SIMVP 0.121 0.901 0.102 0.928 0.034 0.924 0.093 20.01 0.088 14.83
PASTNET 0.112 0.891 0.071 0.923 0.031 0.941 0.114 11.84 0.113 11.09
UNO 0.132 0.821 0.118 0.865 0.050 0.895 0.112 11.60 0.107 10.30

OURS 0.106 0.891 0.079 0.913 0.029 0.911 0.103 12.31 0.098 10.29

Table 5 presents the key results. On Prometheus-T, as the training data increases from 20% to 100%,
MSE decreases and SSIM improves. For example, ResNet’s MSE drops from 0.141 to 0.099, and
SSIM rises from 0.801 to 0.833. SimVP and PastNet also demonstrate high accuracy and stability.
On Rayleigh-Bénard, compared to training from scratch, PRISM significantly reduces MSE and
MAPE. For instance, ResNet’s MSE decreases from 0.713 to 0.697, and MAPE drops from 25.647%
to 24.953%. These results show that PRISM effectively enhances model accuracy and perceptual
consistency in both fire spread and convection field forecasting, demonstrating strong transferability
and practical value.

Table 6: Efficiency Analysis. We compare training time
(s/epoch ↑), inference speed (FPS ↓), and peak GPU memory
(GB ↑) before and after applying PRISM. Arrows indicate
that changes represent computational overhead.

MODEL TRAIN (S/EPOCH) INFER (FPS) MEM (GB)

RESNET 18.2 → 20.4 225 → 220 5.3 → 5.7
U-NET 25.3 → 27.8 180 → 174 6.1 → 6.4
SIMVP 23.9 → 25.6 210 → 205 6.9 → 7.2
PASTNET 31.5 → 34.1 160 → 157 7.8 → 8.1

Efficiency analysis. As shown in
Table 6, applying the PRISM frame-
work slightly increases training time
per epoch by about 10%-15% on av-
erage. For example, ResNet’s train-
ing time rises from 18.200 seconds to
20.400 seconds. However, inference
speed (FPS) experiences only a mi-
nor decrease, with ResNet dropping
from 225.000 FPS to 220.000 FPS, in-
dicating that PRISM has little impact
on inference efficiency. Additionally,
GPU memory usage increases slightly,
with ResNet rising from 5.300 GB to 5.700 GB, mainly due to diversified sampling and the intro-
duction of the preference model. Overall, PRISM enhances model performance while maintaining a
moderate impact on computational efficiency and resource consumption, ensuring its feasibility and
practicality in real-world applications.

5 CONCLUSION

In this paper, we introduce PRISM, a novel learning paradigm designed to bridge the fundamental
gap between conventional numerical objectives and the physically grounded desiderata essential
for dynamical system modeling. Traditional methods, while numerically optimized, often fail to
capture the high-fidelity details and extreme events that are critical for scientific applications. Our
framework innovatively integrates the principles of Direct Preference Optimization to address this
limitation. By distilling the complex, often implicit, criteria of domain experts into a differentiable
preference oracle, PRISM successfully transforms nuanced human priors into a tractable, end-to-end
optimization signal. Extensive experiments across diverse benchmarks, including fluid dynamics,
fire propagation, and extreme weather forecasting, provide compelling evidence of our approach’s
effectiveness and generalizability. As a plug-and-play module, PRISM consistently enhances the
performance of various backbone architectures to capture high-frequency dynamics, predict rare
events, and improve physical plausibility. This work not only validates a powerful new technique but,
more importantly, charts a promising path toward a new generation of human-machine collaborative
models for scientific discovery systems that learn not just to be numerically accurate, but to align
with the profound intuition of human experts.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were not involved in the research ideation or the writing of this paper.

A THEORETICAL CONVERGENCE ANALYSIS

In this section, we provide the theoretical analysis regarding the convergence of the PRISM framework.
We formulate the joint optimization in Stage 3 as a composite optimization problem and prove its
convergence to a stationary point. This theoretically grounds our claim that the bi-level optimization
process converges to a stable equilibrium between numerical fidelity and human-aligned preference.

A.1 PROBLEM FORMULATION

Recall the total objective function defined in Eq. (7) of the main paper. The optimization problem for
the foundational model parameter θ is:

min
θ
J (θ) = LMSE(θ) + λLDPO(θ; θref) (10)

where LMSE(θ) = E(X,Y )∼D[∥fθ(X)− Y ∥2] ensures numerical fidelity. The preference alignment
term LDPO is derived from the distilled Preference Oracle Sϕ.

Remark on Differentiability: While raw physical metrics (e.g., Critical Success Index, Hit Rate) are
often non-differentiable or discrete, our Preference Oracle Sϕ is parameterized by a neural network
with smooth activation functions (e.g., Sigmoid, GELU). Consequently, the distilled preference signal
transforms the non-smooth metric optimization into a smooth surrogate objective J (θ), enabling
gradient-based optimization.

A.2 ASSUMPTIONS

To establish the convergence of the stochastic gradient descent (SGD) algorithm used in PRISM, we
make the following standard assumptions for non-convex optimization problems:

• Assumption 1 (Lower Bound): The objective function J (θ) is bounded from below. That
is, there exists a constant J ∗ > −∞ such that J (θ) ≥ J ∗ for all θ ∈ Rd.

• Assumption 2 (L-Smoothness): The objective function J (θ) is L-smooth. This implies
that J is differentiable and its gradient is L-Lipschitz continuous:

∥∇J (θ1)−∇J (θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1, θ2 ∈ Rd (11)

Given that both the predictive model fθ and the preference model Sϕ are deep neural
networks composed of smooth operators, this assumption generally holds locally.

• Assumption 3 (Bounded Variance): The stochastic gradients gt computed on mini-batches
are unbiased estimates of the full gradient, and their variance is bounded by σ2:

E[gt] = ∇J (θt), E[∥gt −∇J (θt)∥2] ≤ σ2 (12)

A.3 CONVERGENCE THEOREM

We define a Pareto Stationary Point as a solution where the gradient of the composite loss vanishes,
representing a stable trade-off between the physics-based loss and the preference-based reward.

Theorem 1 (Convergence to Stationary Point). Let {θt}T−1
t=0 be the sequence of parameters

generated by SGD with a constant learning rate η satisfying 0 < η ≤ 1
L . Under Assumptions 1-3,

the algorithm converges to a stationary point in expectation. Specifically, the average squared norm
of the gradients satisfies:

E

[
1

T

T−1∑
t=0

∥∇J (θt)∥2
]
≤ 2(J (θ0)− J ∗)

Tη
+ Lησ2 (13)

As T →∞, if we choose a decaying learning rate, the gradient norm converges to zero.

14
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Proof. Based on the L-smoothness assumption, we have the following quadratic upper bound
inequality:

J (θt+1) ≤ J (θt) + ⟨∇J (θt), θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2 (14)

Substituting the SGD update rule θt+1 = θt − ηgt:

J (θt+1) ≤ J (θt)− η⟨∇J (θt), gt⟩+
Lη2

2
∥gt∥2 (15)

Taking the expectation with respect to the stochasticity at step t:

E[J (θt+1)] ≤ J (θt)− η∥∇J (θt)∥2 +
Lη2

2
(E∥gt −∇J (θt)∥2 + ∥∇J (θt)∥2) (16)

≤ J (θt)−
(
η − Lη2

2

)
∥∇J (θt)∥2 +

Lη2σ2

2
(17)

Assuming η ≤ 1
L , we have η − Lη2

2 ≥
η
2 . Rearranging the terms gives:

η

2
∥∇J (θt)∥2 ≤ J (θt)− E[J (θt+1)] +

Lη2σ2

2
(18)

Summing over t = 0 to T − 1 and taking total expectation:

T−1∑
t=0

η

2
E∥∇J (θt)∥2 ≤ J (θ0)− E[J (θT )] +

TLη2σ2

2
(19)

Since J (θT ) ≥ J ∗, we have J (θ0) − E[J (θT )] ≤ J (θ0) − J ∗. Dividing by Tη
2 , we obtain the

theorem result.

A.4 DISCUSSION ON EQUILIBRIUM

The derived stationary point θ∗ satisfies ∇J (θ∗) = ∇LMSE(θ
∗) + λ∇LDPO(θ

∗) = 0. This implies:

∇LMSE(θ
∗) = −λ∇LDPO(θ

∗) (20)

This condition characterizes a Pareto Equilibrium: at this state, any infinitesimal update to improve
the preference score LDPO would result in a strictly opposing degradation in numerical fidelity
LMSE, weighted by λ. This theoretical result validates that PRISM effectively converts the discrete,
expert-guided preference alignment problem into a stable, differentiable optimization task.

B MODEL SUMMARY

The pseudo-algorithm of PRISM is shown in Algorithm 1.

15
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Algorithm 1 Overview of the Method

Require: Training dataset D; Perturbation intensity σ; Balancing coefficient λ; Learning rate η.
1: Initialize foundation model parameters Θ and preference model parameters ϕ.
2: // -- Stage 1: Pretrain Foundation Model --
3: for number of pretraining epochs do
4: Sample a mini-batch (X,Ytrue) from D.
5: Compute prediction: Ŷ ← FoundationModelΘ(X).
6: Calculate MSE loss: LMSE ← ∥Ŷ − Ytrue∥22.
7: Update foundation model parameters Θ using gradient descent on LMSE.
8: end for
9: -- Stage 2: Diverse Sample Generation --

10: Initialize preference dataset Dpref ← ∅.
11: for each input X in D do
12: Generate a set of diverse predictions {Ŷi}Ni=1 from X using the pretrained model Θ.
13: Filter and form preference pairs (Y +

j , Y −
j ) from {Ŷi} using physical metrics M(·).

14: Add generated pairs to Dpref.
15: end for
16: -- Stage 3: Train Preference Model --
17: for number of preference training epochs do
18: Sample a preference pair (Y +

j , Y −
j ) from Dpref.

19: Compute preference loss: LPref ← − log
(
σ
(
Sϕ(Y

+
j )− Sϕ(Y

−
j )

))
.

20: Update preference model parameters ϕ using gradient descent on LPref.
21: end for
22: -- Stage 4: Joint Optimization --
23: for number of joint optimization epochs do
24: Sample a mini-batch (X,Ytrue) from D.
25: ▷ Compute base task loss
26: LMSE ← E∥FoundationModelΘ(X)− Ytrue∥22.
27: ▷ Compute preference alignment loss using the fixed preference model
28: Generate diverse outputs {Yk} and form pairs (Y +

k , Y −
k ).

29: LAlign ← E(Y +,Y −)

[
log

(
1 + eSϕ(Y −)−Sϕ(Y +)

)]
.

30: ▷ Combine losses and update foundation model
31: Total loss: LTotal ← LMSE + λLAlign.
32: Update foundation model parameters Θ← Θ− η∇ΘLTotal.
33: end for
34: return Optimized foundation model parameters Θ∗.
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C EVALUATION METRICS

To comprehensively evaluate the performance of our proposed PRISM framework, we employ a set of
evaluation metrics tailored to different aspects of dynamic system prediction. These metrics include
Mean Squared Error (MSE), Structural Similarity Index (SSIM), Critical Success Index (CSI), and
Mean Percentage Absolute Error (MPAE). Below, we provide the mathematical formulations and
detailed descriptions of each metric.

C.1 MEAN SQUARED ERROR (MSE)

Mean Squared Error quantifies the average squared difference between the predicted values and the
ground truth. It is a fundamental metric for assessing numerical accuracy in predictions.

MSE =
1

N

N∑
i=1

(Ypred,i − Ytrue,i)
2
. (21)

Description: MSE measures the average of the squares of the errors between predicted values (Ypred)
and true values (Ytrue). A lower MSE indicates higher predictive accuracy, making it a crucial metric
for evaluating numerical consistency in dynamic system modeling.

C.2 STRUCTURAL SIMILARITY INDEX (SSIM)

Structural Similarity Index assesses the similarity between two images by considering luminance,
contrast, and structural information. It is particularly useful for evaluating visual perceptual quality.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (22)

Description: SSIM evaluates the similarity between two images (x and y) by analyzing their
luminance (µx, µy), contrast (σx, σy), and structural correlation (σxy). Constants C1 and C2 stabilize
the division to prevent instability when the denominators are close to zero. SSIM values range from
-1 to 1, where higher values indicate greater structural similarity and better visual quality of the
predictions.

C.3 CRITICAL SUCCESS INDEX (CSI)

Critical Success Index measures the accuracy of predicting extreme events by evaluating the propor-
tion of correctly predicted events against the total number of observed and predicted events.

CSI =
Hits

Hits + Misses + False Alarms
. (23)

Description: CSI assesses the model’s capability to accurately predict extreme events, such as severe
weather phenomena.

- Hits: Correctly predicted extreme events. - Misses: Actual extreme events that were not predicted. -
False Alarms: Predicted extreme events that did not occur.

A higher CSI indicates better performance in identifying and predicting extreme events, which are
often rare but critical for applications like disaster prevention and resource management.

C.4 MEAN PERCENTAGE ABSOLUTE ERROR (MPAE)

Mean Percentage Absolute Error quantifies the average absolute percentage difference between the
predicted values and the ground truth. It is particularly useful for assessing relative errors in physical
metrics.

MPAE =
1

N

N∑
i=1

∣∣∣∣Ypred,i − Ytrue,i

Ytrue,i

∣∣∣∣× 100%. (24)

Description: MPAE measures the average absolute percentage error between predicted values (Ypred)
and true values (Ytrue). In the context of the Rayleigh-Bénard Convection (RBC) dataset, we compute
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MPAE for the turbulent kinetic energy spectrum derived from the U and V velocity components.
This approach effectively captures the relative errors in the energy distribution across different scales,
which is essential for evaluating the physical consistency and accuracy of turbulence modeling. Since
the turbulent kinetic energy spectrum involves complex interactions between velocity components,
directly measuring errors in U and V velocities may not adequately reflect the model’s performance
in capturing the underlying physical phenomena. Therefore, MPAE serves as a more informative
metric for assessing the quality of predictions in such scenarios.

C.5 MEAN ABSOLUTE ERROR (MAE)

Mean Absolute Error provides a straightforward measure of prediction accuracy by averaging the
absolute differences between predicted values and true values.

MAE =
1

N

N∑
i=1

|Ypred,i − Ytrue,i| . (25)

Description: MAE calculates the average absolute deviation of the predictions from the actual values.
Unlike MSE, MAE does not square the errors, making it less sensitive to outliers and providing a
more interpretable measure of average error magnitude. Lower MAE values indicate better predictive
performance.

C.6 APPLICATION OF METRICS IN DATASETS

Different datasets and prediction tasks emphasize various aspects of model performance, necessitating
the selection of appropriate evaluation metrics:

- Prometheus Dataset: We focus on both numerical accuracy and visual perceptual quality, utilizing
MSE and SSIM to assess the fidelity and structural similarity of the predictions.

- Rayleigh-Bénard Convection (RBC) Dataset: Given the complexity of turbulent energy distributions,
we employ MPAE to evaluate the relative errors in the turbulent kinetic energy spectrum derived
from U and V velocity components. This choice ensures that the physical consistency and energy
distribution are accurately captured by the model.

- SEVIR Dataset: For extreme weather event prediction, we use MSE to measure numerical accuracy
and CSI to evaluate the model’s ability to correctly identify and predict extreme events.

By integrating these metrics, we ensure a holistic evaluation of PRISM, capturing both quantitative ac-
curacy and qualitative aspects aligned with human perceptual and physical consistency requirements.

D RELATED WORK

Dynamical System Modeling. Early dynamic system prediction relied on numerical simulations or
closed-form PDE models for analytical system evolution. With deep learning advances, many studies
now use end-to-end neural networks optimized with metrics like MSE (Li et al., 2020; Xiong et al.,
2024). Typically employing CNNs (Wu et al., 2024e; 2023) or ST architectures (Gao et al., 2022a),
these models extract essential spatiotemporal correlations to minimize prediction errors. While
they reduce average errors and speed up predictions, their focus on overall distributions hampers
the accurate modeling of extreme or sudden dynamics and often lacks physical consistency and
interpretability.

Generative and Diverse Sampling. To capture higher-order uncertainties beyond average errors,
researchers utilize generative models like GANs, VAEs, and diffusion models (Zhang et al., 2023; Li
et al., 2024; Fotiadis et al., 2023). GANs perform adversarial training between real and predicted
distributions, VAEs estimate explicit probabilities, and diffusion models characterize complex distri-
butions via perturbation and generation processes. Additionally, diverse sampling techniques such
as input perturbations, multimodal fusion, and discrete embedding replacements generate richer
predictions (Bi et al., 2022; Wu et al.). However, challenges like training stability, computational
costs, and incorporating human preferences remain.
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Physical and Preference Fusion Methods. Recent work embeds physical constraints or integrates
human prior knowledge into deep models. Incorporating physical laws into network structures or
post-processing reduces deviations from real processes, enhancing reliability (Zhang et al., 2023;
Rao et al., 2023; Raissi et al., 2019). Additionally, human preference learning introduces expert
scores (Rafailov et al., 2024; Chen et al.; Zhou et al., 2024), annotations, or quality assessments into
predictions by using preference models to translate subjective evaluations into learnable objectives.
These fusion methods preserve accuracy, align with application needs and human perception, and
enhance the detection of high-risk scenarios while improving interpretability and trustworthiness.

E DETAILS OF COMPARED APPROACHES

The compared approaches involved in this study is as follows:

• ResNet He et al. (2016) introduces residual blocks to solve the degradation problem in deep
networks. It allows the network to be deeper and easier to train by using skip connections to directly
pass information.

• U-Net Ronneberger et al. (2015) is a convolutional neural network initially used for biomedical
image segmentation. It has a symmetric U-shaped structure and uses skip connections to link the
encoder and decoder, enabling efficient feature fusion.

• ViT Dosovitskiy et al. (2021) applies the Transformer model to image recognition. It divides the
image sample into patches and uses self-attention mechanisms to process these patches, balancing
computational efficiency and performance.

• SwinT Liu et al. (2021) introduces a sliding window mechanism for effective local and global
feature extraction. It is suitable for various computer vision tasks.

• SimVP Gao et al. (2022a) is a straightforward video prediction framework that utilizes a simple
convolutional architecture to model spatiotemporal dependencies in dynamic systems. By minimiz-
ing architectural complexity, SimVP achieves competitive performance with reduced computational
overhead, making it effective for various forecasting tasks in scientific computing and engineering
applications.

• PastNet Wu et al. (2024e) is a spatiotemporal predictive network that leverages physical information
to enhance video prediction accuracy. PastNet integrates past states through a time-aware state
transition mechanism, allowing the model to capture complex temporal dynamics and improve
stability in long-term predictions, particularly in scenarios involving fluid dynamics and weather
forecasting.

• FNO Li et al. (2020) uses Fourier transforms for global feature extraction, suitable for processing
continuous field data and efficiently solving PDEs.

• UNO Ashiqur Rahman et al. (2022) combines the U-Net architecture with optimization methods to
enhance feature extraction and fusion capabilities, improving model performance.

• CNO Raonic et al. (2024) combines convolution operations with operator learning, focusing on
high-dimensional continuous data and modeling complex dynamic systems.

• MGN Pfaff et al. (2020) employs multiple graph neural network layers to effectively capture
intricate relationships and interactions within dynamic systems. By utilizing multi-scale graph
representations, MGN models the complex dependencies inherent in scientific computing tasks,
thereby enhancing prediction accuracy and robustness across diverse applications such as turbulence
simulation and climate modeling.

• EGNN Satorras et al. (2021) (Equivariant Graph Neural Network) is designed to preserve geometric
symmetries in data, making it highly suitable for physical simulations and dynamical system model-
ing. EGNN ensures equivariance with respect to rotations and translations, maintaining the physical
consistency of predictions. This characteristic improves the reliability and interpretability of model
outputs, particularly in applications involving rigid body dynamics and molecular simulations.

19


	Introduction
	Benchmark
	Methodology
	Problem Formulation
	Stage 1: Foundational Model Pre-training for Numerical Fidelity
	Stage 2: Distillation of a Human Preference Oracle
	Exploratory Candidate Generation
	Maximum Likelihood Estimation of the Preference Model

	Stage 3: Policy Fine-tuning via Direct Preference Optimization

	Experiments
	Main Results
	Model Analysis

	Conclusion
	Theoretical Convergence Analysis
	Problem Formulation
	Assumptions
	Convergence Theorem
	Discussion on Equilibrium

	Model Summary
	Evaluation Metrics
	Mean Squared Error (MSE)
	Structural Similarity Index (SSIM)
	Critical Success Index (CSI)
	Mean Percentage Absolute Error (MPAE)
	Mean Absolute Error (MAE)
	Application of Metrics in Datasets

	Related Work
	Details of Compared Approaches

