Under review as submission to TMLR

Auto-Rotating Neural Networks: An Alternative Approach
for Preventing Vanishing Gradients

Anonymous authors
Paper under double-blind review

Abstract

Neural networks with saturating activations are often not used due to vanishing gradients.
This problem is frequently tackled using Batch Normalization techniques, but we propose to
use a different approach. The Auto-Rotating Perceptron (ARP) alleviates this problem by
limiting the pre-activation to a region where the neurons do not saturate, but this method
is only defined for dense layers and requires additional hyperparameter tuning. This paper
presents the Auto-Rotating Neural Networks (ARNN), which extends the ARP concept to
convolutional layers, and allows for learnable pre-activation saturation regions. In all our
experiments, we got that the Auto-Rotation outperforms the Batch Normalization approach
in terms of preventing vanishing gradients. Also, our results show that our method enhances
the performance of convolutional nets that use saturated activations, even allowing them to
slightly outperform ReL.U-activated models. Besides that, with the Auto-Rotation we get
faster convergence and, due to less hyperparameter tuning, we obtain greater ease of use.
We expect that our Auto-Rotating layers will be used for deeper models with saturating and
non-saturating activations, since our approach prevents vanishing gradients and also issues
related to gradient continuity, like what occurs with ReL.Us.

1 Introduction

Artificial neural networks are state of the art for many tasks. They are built by arranging, in a layered
fashion, individual units such as perceptrons (see Figure 1) or convolutional kernels. Nevertheless, their
design is based not on intuition but on what works best on predictive datasets, without considering biological
plausibility or mathematical rigor.

While it is true that there exist other methods for training supervised neural networks (e.g., neuroevolution
,)), the most common approaches to train neural networks are gradient-based
methods, like backpropagation. Hence, the properties of the gradients during training have great importance.

In particular, at many modern neural networks, the activation functions employed to introduce non-linear

behavior have discontinuous gradients, like ReLU (,) and some of its variations (e.g.,
PReLU (:) and leaky ReLU ())). These activations are used because they are
non-saturating, which means that they allow gradients to not decrease too fast with layer depth as other
activations do. However, they have their own set of issues, like the dead ReL.U problem (,)

or discontinuous gradients that hinder the optimization of the loss function during training (,
).

Sigmoid and hyperbolic tangent are two saturating activations that are older than ReLU but are often not

used in hidden layers due to vanishing gradients. It is still interesting to use them, as their network output

is smoother than when using ReLU (due to the lack of the sparsification (, ; ,
) obtained when ReLU generates a true zero output). This smoothness property is desirable in some

applications like regression and control tasks (,).

On the other hand, despite all the advancements and research on Deep Learning, notice that the perceptron
unit has not been changed since it was formulated by (). () proposed

Under review as submission to TMLR

Zo
z1
In
_ _ L
f(x)=w- x4+ woxo z9 =1 9(x) = p f(x) P = TFxq)]
(a) Classic Perceptron (b) Auto-Rotating Perceptron

Figure 1: Internal structure of a classic perceptron (left) and an Auto-Rotating Perceptron (right). On both
neural units, there are two phases: a linear transformation and a non-linear activation. However, on the
ARP there is an additional intermediate phase in which the coefficient p is computed.

enhancing the perceptron itself, creating the Auto-Rotating Perceptron (ARP, see Figure 1). This is a novel
method designed to alleviate the vanishing gradient problem in saturating activations by constraining the
pre-activation to a desired value range in order to minimize saturation of the perceptrons. Previous works
with the ARPs show that they can boost neural network learning (,). Nevertheless,
this operation is only defined for dense layers to build multilayer perceptrons, and requires tuning of the
hyperparameters xg and L (,).

In this paper, we extend the Auto-Rotation (AR) concept from dense to convolutional layers. Thus, we
create the Auto-Rotating Convolutional Neural Networks. With them, we obtain a positive effect on the
predictive performance and on the slope of the learning curves (i.e., loss and accuracy). Additionally, we
enhance the ARP operation to allow for the Auto-Rotating hyperparameters to be automatically calculated
and adjusted.

The contributions of this paper are: 1) To deeply develop the ARP structure and improve its design by
automatically calculating the formerly hyperparameters xg and L, 2) to present three new L types, 3)
to extend the Auto-Rotating operation to convolutional layers (hence, obtaining the Auto-Rotating Neural
Networks), and 4) results that show the ARP operation successfully diminishes the vanishing gradient.

In this paper we claim: 1) The ARP reduces vanishing gradients that appear when using saturating activa-
tions. 2) Using the Auto-Rotation along with Batch Normalization (BN) leads to less vanishing gradients,
w.r.t. not using BN or using BN without AR. 3) Using the ARP can lead to better performance in terms of
obtaining better loss and accuracy, and reducing convergence times; but at a cost of the extra computations
related to the p coefficient.

This paper is highly relevant to practitioners that build neural network models for tasks that benefit from
activations that lead to non-sparse representations. For instance, a saturated activation like the sigmoid is
useful for allowing the network to behave like a smooth function, which is useful for regression and feature
learning tasks.

2 Preliminaries

In this section, we discuss concepts related to neural networks as a background review and nomenclature
presentation for then moving to the ideas and contributions of the paper. Additionally, we present our
concept of dynamic region.

Under review as submission to TMLR

2.1 Classic Perceptrons

A perceptron unit (,) is a function that maps an input vector x = (x1, 22, - ,2,) € R”
to an output § € R. This mapping is done in two phases, as shown in Figure 1. First, a weighted sum of
the inputs is computed and a bias is added: f(x) := w - x 4+ wp xo, where w € R™ is the weight vector and
o = 1. Usually, the bias is formulated as b := wq zg. Notice that we can consider the scalar value z as a
numerical measurement of the abstract feature extracted by the neuron. Then, a non-linear function o(z)
(i.e., the activation function) is applied to the weighted sum z to obtain the perceptron output § := o(f(x)),
which after the training is expected to be similar to y € R.

Because of their layered arrangement inside the network, neurons are hierarchical feature extractors. This
functionality is achieved by tuning the learnable parameters w and wy. Those values are adjusted during
the training to make the perceptron output g as close to the desired target y as possible. Theoretically, the
more number of layers a neural network has (i.e., if we increase the depth of the neural model), the better
learning capabilities it obtains (,). However, in practice, training deep neural networks is
difficult (, ; ,).

2.2 Vanishing Gradient Problem (VGP)

While it is true that by stacking more layers the neural model can learn more complex patterns from
the input data, a problem arises when training deep neural networks using gradient-based methods: the
Vanishing Gradient Problem (VGP) (, ,). It appears while adjusting
models that use saturated activations (e.g., sigmoid), and also at ReLU-activated models (i.e., dead ReLU
(,) when z < 0).

In an artificial neural network, layers closer to the input learn slower than those near the output (,
). The reason of this problem is the exponential decrease of the error gradients as we get closer to the
input layers during back-propagation learning (, ; ,).

To better understand the VGP, recall that the error gradient depends on the derivative o/(z) of the activation
function o(z). Hence, when we have more layers, we multiply many times a quantity that depends on that
derivative value. Thus, if ¢/(z) is close to zero, then the VGP appears.

Hence, if we could make the perceptrons to operate in a desired zone which we name the dynamic region, the
learning performance would improve. This design modification is indeed the core working principle analyzed
in this paper.

2.3 Dynamic Region of an Activation Function

We formally define the dynamic region of an activation function o(z) as a non-unique symmetric (w.r.t. 0)
L-bounded numerical range (i.e., z € [-L,+L], with L > 0) from where we would like the pre-activation
values z to belong in order to avoid node saturation.

This node dynamization (i.e., desaturation) is achieved in two ways. First, by preventing the derivative
of the activation function to take very small values. Recall that, to prevent the VGP, we do not want
the derivative o’(z) of the activation function o(z) to take tiny values. Second, by reducing the maximum
number of optimizing steps needed for reaching z = 0; hence, making it easier for the extracted feature z to
change sign during training. Recall that at each step of the optimization process executed during the model
training, we change a bit the weights, which slightly changes z.

For example, in the unipolar sigmoid activation function shown in Figure 2, we would like it to only receive
values from -3 to +3. We can choose this dynamic region because for inputs whose absolute values are higher
than 3, the derivative of the activation is too low. Thus, to obtain that desired dynamic region, the L value
chosen is 3. On the other hand, in the ReLU activation function drawn in Figure 2, we can choose that
depicted dynamic region to make z not to be too far from zero, and hence we can easier escape a potential
dead ReLU situation to improve learning performance.

Under review as submission to TMLR

1.0 o: Unipolar sigmoid 4 o: ReLU

— o2 — o(2)
0.8{ ---- 0'(2) 31 ——— Jd'(2)
0.6 2
0.4 1 !/ """
0.2 0

J~=emn
0.0 —L 0 +L -L 0 +L
z z

Figure 2: Two activation functions o(z) and their corresponding derivatives ¢’(z). The projection on ¢’(z)
of a desired dynamic region is depicted in gray.

3 From Auto-Rotating Perceptrons to Auto-Rotating Neural Networks

In order to avoid node saturation, the typical solutions are indirect: to change the activation or to use
Batch Normalization (,). In this paper, we delve into another approach: to modify
the pre-activation phase of the perceptrons so that we can force them to work in a desired dynamic region.
Notice that this modification is executed outside the activation chosen for the perceptrons. In other words,
we could still change the pre-activation mechanism while using a non-saturated activation function. This
direct approach, shown in Figure 1, is called the Auto-Rotating Perceptron (ARP) (,)
and was originally proposed only for dense layers. With the intermediate coefficient p, the ARP operation
generalizes and enhances the perceptrons by making the activation receive values that only come from —L
to +L, with L > 0 (this is the operating principle of the Auto-Rotation (,))-

3.1 Delving into the Auto-Rotating Operation

To deeply understand the ARP, we need to define the domain of the input vectors x € R™ that are given to a
generic perceptron of a hidden layer. Let xgmm) and xgmax) be the minimum and maximum scalar components
of those vectors, respectively. These definitions are valid for each i-th component of the n-dimensional input
space. Considering that the input of a perceptron that belongs to a hidden layer is composed of the o-
activated values provided by the previous layer, and assuming that the data that the input layer receives is

restricted to a value range whose limits are known, we obtain that:

(min) | . (minimum from data) s (max) . (maximum from data)
x; = min x; , min o(z) » and x; = max q &, , maxo(z) » .
VzER VzeR
These equations result in :cgmm) < x < xgmax), Vi € {1,2,---,n}; where ;vl(.mm), x;, and ximax) are the

i-th scalar elements of xﬁmi“), x, and xgmax) respectively. In other words, x(™") and x(represent the

minimum and maximum values that will ever be given to any neuron of a hidden layer. Also, note that these
domain limits are not hyperparameters. In fact, they depend on two factors:

max)

e The pre-processing method used for the input dataset. If we apply scaling, then we know these limits
beforehand. Hence, when using the Auto-Rotation it is strongly suggested to pre-process the dataset
using proportional scaling to a defined range, instead of standardizing it.

e The activation function of the neuron (or layer, if all the neurons in the layer use the same activation).

Besides that, if all the layers share the same activation, then these limits (x(mi“) and x(max)) can be defined
once for the whole network. Also, notice that for regression tasks, the Auto-Rotation must be turned off
(only) on the output layer, so that the outputs can behave as unrestricted real values.

Furthermore, recalling the formulas presented in Figure 1, we can see that if we set p = 1 on the AR equation,
we obtain the formula of the classic perceptron. Hence, the ARPs are a generalization of vanilla perceptrons.

Under review as submission to TMLR

Types of L on an Shared Indep

Auto-Rotating layer All neurons in the layer All neurons in the layer
share the same value of have their (independent)
L value of L

Frozen

L does not change during training frozen_shared frozen_indep

Auto

L is a trainable weight auto_shared auto_indep

Table 1: Valid types of L. There are four possible combinations, depending on: if L is constant or trainable
(frozen / auto), and if L is shared across the layer or not (shared / indep). Notice that frozen_shared
represents the standard ARP formulation presented in (,).

Finally, it is important to highlight that the AR is not an activation function, but a pre-activation mechanism
applicable to any activation function.

3.2 Different Types of L

In this paper, we give more flexibility to the AR operation by allowing the user to choose between four
different types of the hyperparameter L, which are the result of two new different ways of defining it.

First, we start with the original Auto-Rotating formula (,) where L is constant (frozen
setup), and now we make it automatically tunable by the network during training (auto setup).

Second, the original ARP approach indicates having one scalar value of L for the whole layer (shared setup).
In this paper, we propose changing L so that it can be a set of scalar values independently defined for each
one of the perceptrons (indep setup). In other words, if the L setup is indep, then L becomes a vector whose
elements affect the neurons of the Auto-Rotating layer on a one-to-one basis.

By combining these two ways of modifying L, we obtain the four L classes shown in Table 1. Also, notice
that for all L types, the initial L value (be it a scalar or a vector) must be provided by the user.

Also, when the L setup is shared, the L value is the same for the whole layer but the internal hyperplane
rotation varies at each neuron (because p also depends on f(-)). Furthermore, the auto setup lowers the
impact of the initial L value chosen, because it allows the net to automatically change L to a value that
diminishes the prediction error. Thus, we can reduce additional manual tuning of L.

On the other hand, we must consider the L > 0 restriction. When we make the L value to be learnable
(i.e., auto setup), the model could assign it a negative value. To comply with the L > 0 condition without
considerably distorting the original L value, we applied the function softplus(z) := In(14€e") > 0 to it, in an
element-wise fashion. Hence, the effective L used for implementing the AR is Leg = softplus(L). Thus, in
practice the effective rotation coefficient we use is peg == U(Lxﬁ instead of p == WLQ)I' Notice that peg ~ p,

for L > 0 (because for positive L values, softplus(L) ~ L).

3.3 The Auto-Rotating layers can now work without extra hyperparameters

Recalling the coefficient peg = V(Lxﬁ € R used for the AR, we see that it has two hyperparameters: xg € R"

and Leg € R. Note that xg has the same shape as the inputs x € R" given to the neuron.

Regarding the first former hyperparameter, we geometrically obtained that the relation xg = 2 x(min) _
x(ma%) allows us to automatically calculate it. Thus, X is not a hyperparameter anymore, and the remaining
degree of freedom of the AR layer is controlled by L, which defines Leg-.

On the other hand, if all the neurons of the layer have the same activation, then xg is made up by identical
elements. Hence, in this case we can safely define xg as a scalar and rely on the broadcasting for the
calculation of peg. The same idea can be applied for computing p.

Under review as submission to TMLR

Regarding the former second hyperparameter (Leg := softplus(L)), we tested different scalar values of it
under the frozen_shared setup. The aim is to find a proper distribution of L values from which we can
sample the initial L value (shared setup) or values (indep setup) to be given to the AR layer as an alternative
of manually setting them (more details are provided on Subsection 4.2). This process is analogous to how
the initial weights of the layers are sampled from a probability distribution. We propose two probability
distributions for L (normal and uniform, see the bottom right part of Figure 3) to be used with any activation
and any L type. Thus, when changing from vanilla to AR layers, we now have a configuration that allows
us to choose not to add extra hyperparameters.

3.4 Convolutional Auto-Rotation: Conv-ARP

On the formulas § = o(pegr f(x)) and peg = Ifl(;ﬁ required for implementing the effective Auto-Rotation
on dense layers, we see that the function f(-) is a dot product. Hence, we can extend the concept to
convolutional layers, because the convolution can be seen as a dot product. Hence, when we originally talked
about the AR inside each one of many perceptrons of a dense layer, now we have an AR inside each one of
many kernels that belong to a convolutional layer. Observing f(z) = x x w + b, where « is the convolution
operation and recalling the nomenclature presented in Subsection 2.1, we can indeed see a clear similarity
with the equations from Figure 1. Thus, an extension of the ARP concept can be done directly by using the
same formulation as the standard ARP but with a convolution instead of a dot product.

4 Experiments

In this section, we describe the executed experiments to ensure reproducibility. Thereafter, we describe our
findings and how they relate to our claims.

4.1 Setup

The main objective of our experiments is to show that the Auto-Rotating formulation reduces the VGP, and
is competitive with standard batch-normalized models when using saturated activations like the sigmoid.
Also, we wanted to analyze the advantages and disadvantages of using different activations and methods to
define L. We applied the following configuration for all the experiments:

e Pre-processing: Scaling of the datasets to the range that goes from 0 to 1, by dividing the inputs over
255 (because all the datasets tested contain only 8-bit images).

o Input shape: Fashion MNIST (,) and MNIST (,): (28 x 28 x 1).
CIFAR-10 ()) and SHVN-normal ()): (32 x 32 x 3). STL-10
(,): (96 x 96 x 3).

o Neural architecture .A: Conv2D(16, 5 x 5, Activation) - BatchNormalization() - MaxPool2D(2 x
2) - Conv2D(8, 3 x 3, Activation) - BatchNormalization() - MaxPool2D(2 x 2) - Flatten() - Dense(15,
Activation) - Dense(10, Softmax). No padding at convolutional layers.

o Neural architecture B: Conv2D(8, 5 x 5, Activation) - BatchNormalization() - MaxPool2D(2 x 2) -
Conv2D(8, 3 x 3, Activation) - BatchNormalization() - MaxPool2D(2 x 2) - Conv2D(4, 3 x 3, Activation)
- BatchNormalization() - MaxPool2D(2 x 2) - Flatten() - Dense(10, Activation) - Dense(10, Activation)
- Dense(10, Activation) - Dense(10, Activation) - Dense(10, Softmax). At convolutional layers: zero
padding and output has the same size as the input.

At each experiment, we analyzed different types and/or initial values of L but making sure that the initial
non-Auto-Rotating weights of the models involved are the same.

We used the Adam optimizer (with learning rate a = 0.001) to train the models during 50 epochs on the
shallower architecture (Arch. .4) and 100 epochs on the deeper one (Arch. B), aiming for convergence of
the metrics on the test subdataset. In all the experiments, during training we recorded the loss (categorical
cross-entropy) and the accuracy (which is the percentage of correctly predicted samples).

Under review as submission to TMLR

Rel. best loss values (w.r.t. without Auto-Rot.) - Activ.: sigmoid Rel. best loss values (w.r.t. without Auto-Rot.) - Activ.: sigmoid
12 — cifarl0 —— cifar10
. X . 1.84 . v
—— fashion_mnist —}— fashion_mnist
§ —— mnist E —J— stl10
811 — stll0 £ 161
= —— svhn s
Qo Qo
2 2
2 1.0 Fmmm——Sxcmm——= = 1.4
VS —— !
c c
o o
é 0.9 g 1.24
a o
[[}
2 2 1.0 1 -
2087 2
= =1
© &
2 2 0.8
0.7 1
T T T T T 06 1 T T T T T T T T T T T T T T T T
2 4 6 8 None 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 None
L L

Best accuracy values - Activation: sigmoid

1.0 4=

Lefr uniform distrib. (in green) and Uniform distrib. U(a =0, b = 10) (in red)

|
|

B pre-softplus L
mm effective L

|
|

1
o
-
o

0.8 1
[T

i "

probability
)
o
o

o
=]
a

o
Q
)
S
©
T
Qo
3
@
o (0.6 e farsmrmrmrmrm—rm———r—————————————————————— -
s 0.00
g 0 2 4 6 8 10
z — -
© Less normal distrib. (in green) and Normal distrib. N(u =5, 0 =1.5) (in red)
S 0.4
E X |||||||||| mmm pre-softplus L
i cifarl0 502 .I||||| |||||I\ mm effective L
9 —— fashion_mnist £
02{— i : Y
— stl10 go.l | m
I —— svhn
T T T T T 0.0
2 4 6 8 None -2 0 2 4 6 8 10 12
L L

Figure 3: Analysis of the L value. Top left: relative test loss w.r.t. the vanilla model (lower is better),
top right: relative test loss on 10 trials (lower is better, median and IQR depicted), and bottom left: test
accuracy (higher is better). L type: frozen_shared. BN: off. Arch.: A. The best metric value found
is highlighted with a dot, and the dashed line indicates the metric value related to the vanilla net (where
L = None). Bottom right: two distributions proposed for the L value: uniform and normal.

The Keras library (Chollet et al., 2015) of the Auto-Rotating layers is available in (Anonymous, 2023), along
with some use examples.

4.2 Effect of the L value

To choose the value of the hyperparameter L (which defines the dynamic region), it is required to analyze
the priorly selected activation function and its derivative. In fact, there is a trade-off: with a bigger L, you
accept more non-linearity for the activation function (which increases the neural plasticity of the model),
but at the same time you get more saturation (which slows down the learning).

We tested different scalar values of L (see Figures 4 and 3), to analyze its impact on the learning performance
of the net. On Figure 3, we can see that for an architecture that uses the unipolar sigmoid activation, the
L value that leads to the lowest loss tends to be around L = 5. Besides that, we see that the loss and its
dispersion worsen when L > 10. Hence, we proposed the two L distributions shown in Figure 3. Also, we can
see that in all the tested datasets the AR models can outperform the vanilla network. All the experiments
executed in this subsection are with the L type set to frozen_shared.

Under review as submission to TMLR

4.3 Effect of the L types

In the experiments depicted in Figure 4, we first trained the models with the L type set to frozen_shared,
and gave them the L values 2,4,6,8,and None. Then, we selected the non-None L value that led to the
lowest loss (which for our experiments is the categorical cross-entropy), as the starting L value used to
create models with the same initial weights but employing the remaining three types of L: frozen_indep,
auto_shared, and auto_indep. The vanilla model (where L = None) is taken as a baseline. Hence, to ease
the comparison with the other configurations of L, we plot its value as an horizontal dashed line. Also, to
have more statistical strength of our claims, we executed each of the experiments five times. In the plots of
Figure 4, the middle lines and shades represent the median and interquartile range (IQR), respectively.

Note that by applying the most flexible AR type (auto_indep) on the sigmoid-activated nets (see the orange
plots on Figure 4), they can outperform their ReLU and leaky ReLU vanilla counterparts.

4.4 Effect on the Gradient Magnitude and interaction with Batch Normalization

The main claim of the Auto-Rotating operation is that it can alleviate the VGP by constraining the elements
of the Auto-Rotating layers (perceptrons, at dense layers; and kernels, at convolutional layers) to only operate
in a desired dynamic region (which is controlled by the value of L). To verify this claim, we recorded the
gradients of the non-AR weights. This process was done for each one of the network layers across all training
epochs. However, one of most common ways to avoid the VGP is to use BN. Hence, to compare BN and AR,
we tested the four combinations of activating them or not. We used the deeper net (Arch. B), and ensured
having the same initial network weights.

Observe in the experiments done on the CIFAR-10 dataset (see Figure 5) that the vanilla model has indeed
much lower gradient values than its AR counterpart. Besides that, we see that using only BN clearly makes
the heatmap more red-coloured than the vanilla case, eliminating all the blue and most of the green parts
(low gradients). In addition, we observe that using only AR does a much better job on alleviating the VGP
than using only BN: with only AR there are absolutely no yellow zones on the later epochs. Interestingly,
when using both BN and AR, we obtain the best VGP mitigation: the model does not suffer from the initial
stagnation on the upper left part of the heatmap and there are no yellow areas. Other experiments with
similar results are presented in the Appendix.

Furthermore, with AR (with and without BN), we obtain a much more uniform gradient value, which means
a more undeviating speed of learning across the layers. This enhancement is also seen in all the other
experiments (see the Appendix).

Hence, we can graphically see a diminishing of the VGP. This decrease leads to a marginal gain on the
learning performance, as depicted in the bottom of Figure 5. However, the advantages gained with the AR
are a faster convergence and a steeper slope of the loss and accuracy plots.

4.5 Discussion and Analysis

We obtained evidence that changing classic (vanilla) layers to Auto-Rotating layers can lead to an improve-
ment in the learning and predictive performance of neural networks.

On Figure 5 we can see that the lowest values of the gradient heatmaps corresponding to the non-AR models
(without and with BN) are located on the bottom area, which means that the layers closer to the input
(related to the bottom region of all heatmaps) learn slower than the layers next to the output (because
the learning speed of a layer is related to the module of the gradient (,)). By changing the
layers from vanilla to Auto-Rotating, but keeping the same initial weights of the networks, we obtain a
much more uniform learning speed across all network layers. Because the earlier layers can learn from better
characteristics extracted by the layers closer to the output, the predictive performance improves. This
outcome can be seen at the loss and accuracy graphs (see the bottom part of Figure 5).

Under review as submission to TMLR

[Without BatchNorm] Test accuracy - Dataset: fashion_mnist [Without BatchNorm] Test accuracy - Dataset: fashion_mnist

0.90 0.90
£ 0.89 £ 0.89
))
g g
>0.88 >0.881
g g
§ 0.87 —— atan § 0.871 —— leaky_relu
s sigmoid & —— relu
0.86 —}— tanh 0.86. sigmoid
2 4 6 8 S None 2 4 6 8 S None
(_\(\@e‘? C}\a(e 0.\(\699 (_\(\66\) C)\\a@ 0_\(\@@9
« T 7 o «© T 7 "
L L

Figure 4: Effect of changing the L type (five trials, Arch: A). First, we trained four frozen_shared L
values, along with the vanilla model. After that, we highlighted with a dot the non-None L value with the
resulting lowest median test loss (not test accuracy). Then, we took it as the starting L value used for the
remaining three L types. In total, five different sets of initial non-AR weights were used.

Our experimental results (see Figure 5 and the Appendix) show that AR is better than BN in terms of
tackling the VGP, and at allowing all the network layers to learn at a stable speed. Furthermore, the best
results were obtained when using the AR along with BN.

Besides that, our experiments varying the L types (see Figure 4) show that learning the L value sometimes
outperforms fixing it manually. Also, having isolated L values (frozen_indep or auto_indep structures)
tends to bring an extra accuracy enhancement w.r.t. the standard ARP (i.e., frozen_shared) on Fashion
MNIST, indicating that the pre-activation saturation region should be set independently for each neuron
(or convolutional kernel). Notably, when using AR layers there is also an upgrade in performance of ReL.U-
activated networks (see the right graph on Figure 4).

5 Conclusions and Future Work

In this paper we present the ARNN, which allow adjusting the pre-activation regions to prevent gradient
saturation. Additionally, we propose methods to automatically tune that dynamic region by setting L as a
trainable weight, and to make this value independent for each element of the layer.

On our experiments, we found that the performance boost due to the AR w.r.t. vanilla models is present in
all the datasets tested. Also, observe on Figure 3 that we obtained more than a 4x improvement in accuracy
using the simplest (i.e., the least flexible) of the L types available (frozen_shared).

However, in other experiments, the learning performance upgrade given by the AR is marginal. It is impor-
tant to notice that the boost is stronger if we have a deeper model and a harder prediction task (which is
consistent with the results of (,)). On the other hand, the strength of our method relies
on providing a much better diminishing of the VGP when using AR along with BN, instead of only BN.
More tests are needed with more complex networks and datasets to better analyze the AR capabilities.

We hope this work encourages deeper pursuing the research on the AR operation. For instance, further
investigation is required in order to extend the AR concept to more layer types (like GRU, LSTM, and
others), and to apply the AR to pre-trained models. Likewise, an experimental analysis is required for the
ARNN on regression tasks. Also, more research is needed for designing specific L distributions for each
activation function.

References

Anonymous. Reference withheld due to double-blind review process., September 2023.

Under review as submission to TMLR

[Without BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: cifar10

Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal
8 8
7 7 F2
x 6 x 6
o) 3
2s Zs
o o ro
g4 g4
EE] 33
-2
2 2
! ‘ ‘ ‘ ‘ ‘ ‘ : ‘ ‘ It -4
10 20 30 40 50 60 70 80 90 100 10 20 30 100
Epoch Epoch
[With BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: cifar10
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal
8 8
7 7 2
x 6 x 6
ko) ko)
gs Egs
= o ro
% 4 % 4
=3 =3
-2
2 2
1 1 4
10 20 30 40 50 60 70 80 90 100 100
Epoch Epoch
Learning curves - Activation: sigmoid - Dataset: cifarl0 — Auto-Rotating parameters: L_type: auto_indep - L_value: normal
24 Loss curves Accuracy curves
’ ke ~—- train (BN/AR: no/no) -+ train (BN/AR: nojyes)
22 i1 test (BN/AR: no/no) test (BN/AR: nofyes) | O
i % ~ -~ train (BN/AR: yes/no) -+ train (BN/AR: yes/yes)
test (BN/AR: yes/no) test (BN/AR: yes/yes) 05

14
kS

accuracy

o
W

categorical_crossentropy

02 === train (BN/AR: no/no) ===+ train (BN/AR: no/yes) |
12 test (BN/AR: no/no) test (BN/AR: no/yes)
~=- train (BN/AR: yes/no) - train (BN/AR: yes/yes)
1o 0.1 test (BN/AR: yes/no) test (BN/AR: yes/yes) |
X T ; T
0 20 40 60 80 100
Epoch Epoch

Figure 5: Gradient heatmaps and learning curves of four models with the same initial weights. We tested
the four combinations of BN and AR. Dataset: CIFAR-10. Neural architecture: B.

Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-term dependencies with gradient descent
is difficult. IEEE Transactions on Neural Networks, 5(2):157-166, 1994.

Yoshua Bengio et al. Learning deep architectures for Al. Foundations and trends® in Machine Learning, 2
(1):1-127, 20009.

Frangois Chollet et al. Keras. https://keras.io, 2015.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth International Conference on Artificial Intelligence and Statistics,
pp- 215-223. JMLR Workshop and Conference Proceedings, 2011.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics, pp. 315-323. JMLR
Workshop and Conference Proceedings, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification. In Proceedings of the IEEE international conference on
computer vision, pp. 1026-1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770778, 2016.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jiirgen Schmidhuber, et al. Gradient flow in recurrent nets:
the difficulty of learning long-term dependencies, 2001.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

10

https://keras.io

Under review as submission to TMLR

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. University
of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature, 521(7553):436, 2015.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying ReLU and initialization: Theory and
numerical examples. arXiv:1903.06733, 2019.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon, Bala Raju,
Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep neural networks. pp. 293-312,
2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814, 2010.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. Proceedings of the NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Michael A Nielsen. Neural Networks and Deep Learning, volume 25. Determination press USA, 2015.

Thomas Parisini and Riccardo Zoppoli. Neural networks for feedback feedforward nonlinear control systems.
IEEFE Transactions on Neural Networks, 5(3):436-449, 1994.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386, 1958.

Daniel Saromo, Elizabeth Villota, and Edwin Villanueva. Auto-Rotating Perceptrons. LXAI Workshop,
NeurIPS 2019, 2019.

Daniel Saromo, Leonardo Bravo, and Elizabeth Villota. Smart Sensor Calibration with Auto-Rotating
Perceptrons. LXAI Workshop, ICML 2020, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion MNIST: A Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv preprint arXiv:1708.07747, 2017.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in convolutional
network. arXiv:1505.00853, 2015.

Bing Xu, Ruitong Huang, and Mu Li. Revise saturated activation functions. arXiv:1602.05980, 2016.

11

Under review as submission to TMLR

A Appendix

Experimentation with the Neural Architecture A

[Without BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: cifar10

[With BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: cifarl0

Model Vanilla Model AutoRot - L_type: auto_indep - L_value: uniform
4
25
85 85
2 2 2.0
g g
52 52 15
1 10
25 30 35 40 a5 50 5 10 15 20 25 30 35 40 a5 50
Epoch Epoch

Model Vanilla Model AutoRot - L_type: auto_indep - L_value: uniform
4
25
g3 83
H 2 2.0
22 22
3 3 15
1 10
20 25 30 35 40 45 50 10 15 20 25 35 40 45 50
Epoch Epoch
Learning curves - Activation: sigmoid - Dataset: cifarl0 — Auto-Rotating parameters: L_type: auto_indep - L_value: uniform
Loss curves Accuracy curves
07
~== train (BN/AR: no/no) train (BN/AR: nofyes)
22 test (BN/AR: no/no) test (BN/AR: nojyes)
~=~ train (BN/AR: yes/no) train (BN/AR: yes/yes) 06
220 test (BN/AR: yes/no) test (BN/AR: yes/yes)
g
H 05
218 >
g g
Y16 3 04
S14 03
5., === train (BN/AR: no/no) train (BN/AR: no/yes)
0.2 test (BN/AR: no/no) test (BN/AR: nojyes)
1o === train (BN/AR: yes/no) train (BN/AR: yes/yes)
! 01 test (BN/AR: yes/no) test (BN/AR: yes/yes)
[10 2 30 40 50 [10 20 30 40 50
Epoch Epoch

Figure 6: Gradient heatmaps and learning curves of four models with the same initial weights. We tested

the four combinations of BN and AR. Dataset: CIFAR-10. Neural architecture: A.

Layer index

w

Layer index
~

a

2

1“ 1
5 10 15 20 25 30 35 40 45 50

[Without BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: cifar10
Model Vanilla

Model AutoRot - L_type: auto_indep - L_value: normal

a

Layer index
w

~

| —

Epoch

Epoch

[with BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: cifar10

Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal

w

Layer index

1 1.0
5 20 25 30 35 40 s 50 10 15 20 25 35 40 s 50
Epoch Epoch
Learning curves - Activation: sigmoid - Dataset: cifar10 — Auto-Rotating parameters: L_type: auto_indep - L_value: normal
Loss curves Accuracy curves
=~ train (BN/AR: no/no) train (BN/AR: nojyes) o7
22 test (BN/AR: no/no) test (BN/AR: nolyes)
=~ train (BN/AR: yes/no) train (BN/AR: yesiyes) | 0.6
220 test (BN/AR: yes/no) test (BN/AR: yes/yes)
g
£ 05
518
2 3
4 8
516 £oa
514 03
g
C12 == train (BN/AR: nofno) train (BN/AR: nojyes)
02 test (BN/AR: no/no) test (BN/AR: nolyes)
10 ==~ train (BN/AR: yes/no) train (BN/AR: yes/yes)
o1 test (BN/AR: yes/no) test (BN/AR: yes/yes)
0 10 2 30 40 50 o 10 20 30 40 50
Epoch Epoch

Figure 7: Gradient heatmaps and learning curves of four models with the same initial weights. We tested
the four combinations of BN and AR. Dataset: CIFAR-10. Neural architecture: A.

12

Under review as submission to TMLR

[without BatchNorm]: Log10 of median of gradients - Activation: atan - Dataset: cifarl0
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: uniform

3

x x
3 3
k-l k<l
2 2
I3 I3
ES ES
8 5

~
N
°

25 30 35 40 45 50 5 10 15 20 25 30 35 40 a5 50
Epoch Epoch

[With BatchNorm]: Log10 of median of gradients - Activation: atan - Dataset: cifarl0
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: uniform

x x
1 €3
g g 25
g g
K 52 2.0
15
20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Epoch Epoch
Learning curves - Activation: atan - Dataset: cifar10 — Auto-Rotating parameters: L_type: auto_indep - L_value: uniform
Loss curves. Accuracy curves
07
2.75 -~ train (BN/AR: no/no) train (BN/AR: no/yes)
test (BN/AR: no/no) test (BN/AR: no/yes)
250 =~ train (BN/AR: yes/no) train (BN/AR: yes/yes) 06
> test (BN/AR: yes/no) test (BN/AR: yes/yes) .
g22s
% 200 505
4 g
F 175 g
H 04
g1s0
g -~ train (BN/AR: no/no) train (BN/AR: no/yes)
1.25 03 test (BN/AR: no/no) test (BN/AR: nofyes)
Loo =~ train (BN/AR: yes/no) train (BN/AR: yes/yes)
test (BN/AR: yes/no) test (BN/AR: yes/yes)
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 8: Gradient heatmaps and learning curves of four models with the same initial weights. We tested
the four combinations of BN and AR. Dataset: CIFAR-10. Neural architecture: A.

[Without BatchNorm]: Log10 of median of gradients - Activation: atan - Dataset: cifarl0
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal

3

~
N
o

3
3
k]
£
]
T
3

Layer index

25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Epoch Epoch
[With BatchNorm]: Log10 of median of gradients - Activation: atan - Dataset: cifar10
Model Vanilla Model AutoRot - L_type: auto_indep - L value: normal

x x
3 €3
£ £ 25
g g
5 72 2.0
15
20 25 30 35 40 a5 50 5 10 15 20 25 30 35 40 a5 50
Epoch Epoch
Learning curves - Activation: atan - Dataset: cifar10 — Auto-Rotating parameters: L_type: auto_indep - L_value: normal
Loss curves Accuracy curves
22 07
! ~=~ train (BN/AR: no/no) train (BN/AR: no/yes)
test (BN/AR: no/no) test (BN/AR: nofyes)
20 === train (BN/AR: yes/no) train (BN/AR: yes/yes) 0.6
2 test (BN/AR: yes/no) test (BV/AR: yes/yes)
18
H 05
2 >
216 g
> g
g Soa
€14
s
3
2
€12 03 i ~== train (BN/AR: no/no) train (BN/AR: no/yes)
test (BN/AR: no/no) test (BN/AR: no/yes)
1o . ; == train (BN/AR: yes/no) train (BN/AR: yes/yes)
% 021 test (BN/AR: yes/no) test (BN/AR: yes/yes)
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 9: Gradient heatmaps and learning curves of four models with the same initial weights. We tested
the four combinations of BN and AR. Dataset: CIFAR-10. Neural architecture: A.

13

Under review as submission to TMLR

[without BatchNorm]: Log10 of median of gradients - Activation: relu - Dataset: fashion_mnist
Model Vanilla

Model AutoRot - L_type: auto_indep - L_value: uniform

6
4
5
3 3
53 s
£ £ 4
2 s 3
1 2
5 10 15 20 25 30 35 40 45 50 10 15
Epoch Epoch
[With BatchNorm]: Log10 of median of gradients - Activation: relu - Dataset: fashion_mnist
Model Vanilla
6
2
5
3 3
53 s
£ £ 4
g g
g2 3 3
1 2
5 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35
Epoch Epoch
Learning curves - Activation: relu - Dataset: fashion_mnist — Auto-Rotating parameters: L_type: auto_indep - L_value: uniform
Logarithmic loss curves Logarithmic accuracy curves
100
108 ~=- train (BN/AR: no/no) train (BN/AR: nofyes) _— -
test (BN/AR: no/no) test (BN/AR: nolyes) 7 -
train (BN/AR: yes/no) train (BN/AR: yes/yes) s
2 test (BN/AR: yes/no) test (BN/AR: yes/yes) 6107
£ 102
Zaxiot ~=- train (BN/AR: no/no) train (BN/AR: nofyes)
g 8 test (BN/AR: no/no) test (BN/AR: nofyes)
=100 2 s train (BN/AR: yes/no) train (BN/AR: yes/yes)
o ® 3x10 test (BN/AR: yes/no) test (BN/AR: yes/yes)
&
£
8, o 2x107
4 10 20 30 40 50 [10 20 30 40 50
Epoch Epoch

Figure 10: Gradient heatmaps and learning curves of four models with the same initial weights. We tested
the four combinations of BN and AR. Dataset: Fashion MNIST. Neural architecture: A.

[Without BatchNorm]: Log10 of median of gradients - Activation: relu - Dataset: fashion_mnist

Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal
6
4
5
33 3
2 2 4
g g
52 g 3
1 2
5 10 15 20 25 30 35 40 a5 50
Epoch Epoch
[with BatchNorm]: Log10 of median of gradients - Activation: relu - Dataset: fashion_mnist
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal
6
4
5
s $s
2 2 4
g g
72 3 3
1 2
5 10 15 20 25 30 35 40 45 50 10 15 20 25 30
Epoch Epoch
Learning curves - Activation: relu - Dataset: fashion_mnist — Auto-Rotating parameters: L_type: auto_indep - L_value: normal
Logarithmic loss curves Logarithmic accuracy curves
100
1074 === train (BN/AR: no/no) train (BN/AR: nofyes) e
test (BN/AR: no/no) test (BN/AR: nojyes)
train (BN/AR: yes/no) train (BN/AR: yes/yes)
> test (BN/AR: yes/no) test (BV/AR: yes/yes)
& 107
e
g > -~ train (BN/AR: no/no) train (BN/AR: no/yes)
g 8 test (BN/AR: no/no) test (BN/AR: nojyes)
2ot 3 train (BN/AR: yes/no) train (BN/AR: yes/yes)
£ ® test (BN/AR: yes/no) test (BN/AR: yes/yes)
s
8
100
...... ot
[10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 11: Gradient heatmaps and learning curves of four models with the same initial weights. We tested
the four combinations of BN and AR. Dataset: Fashion MNIST. Neural architecture: A.

14

Under review as submission to TMLR

Experimentation with the Neural Architecture B

[Without BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: stI10
Model Vanilla

Model AutoRot - L_type: auto_indep - L_value: normal

8
7 2
x6 5
3 3
25 H .
24 ES
gy k) -
2 4
1
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30
Epoch Epoch
[with BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: stI10
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal
8
7 2
x6 x
3 3
Zs g o
g4 B
: s QA B [
5, 5 2
2 4
1
5 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35
Epoch Epoch
Learning curves - Activation: sigmoid - Dataset: sti10 — Auto-Rotating parameters: L_type: auto_indep - L_value: normal
Loss curves Accuracy curves
~=- train (BN/AR: nojno) +++++ train (BN/AR: nofyes) - train (BN/AR: nojno) -+ train (BN/AR: nofyes)
275 test (BN/AR: no/no) test (BN/AR: nojyes) - test (BN/AR: no/no) test (BN/AR: no/yes)
=~ train (BN/AR: yes/no) train (BN/AR: yes/yes) ==~ train (BN/AR: yes/no) train (BN/AR: yes/yes)
2250 test (BN/AR: yes/no) test (BN/AR: yes/yes) test (BN/AR: yes/no) test (BN/AR: yes/yes) =
£ 04 .
g 225 o
g g
212,00 go3
g17s
K] 0.2
150
125 = 01 = TS e, <
10 20 30 40 50 10 20 30 40 50
Epoch Epoch

Figure 12: Gradient heatmaps and learning curves of four models with the same initial weights. We tested

the four combinations of BN and AR. Dataset: STL-10. Neural architecture: B.

[without BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: cifar10
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal

Layer index
Layer index

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30
Epoch Epoch
[with BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: cifar10
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal

8
7 2
5 3¢
® Es
o o o
SIE TINRNI : .
5 5y
-2
2
1 -4
5 10 15 20 25 30 35 40 45 50 15 20 25 30 35
Epoch Epoch
Learning curves - Activation: sigmoid - Dataset: cifarl0 — Auto-Rotating parameters: L_type: auto_indep - L_value: normal
Loss curves Accuracy curves
~=- train (BN/AR: nofno) -+ train (BN/AR: nojyes) 06
. -~ test (BN/AR: no/no) test (BN/AR: no/yes)
=~ train (BN/AR: yes/no) train (BN/AR: yes/yes) s
> test (BN/AR: yes/no) test (BN/AR: yes/yes) -
820
2 504
18 g
2 2
5 S g
g — 803
£ 16
&
£
814 02 - train (BN/AR: no/no) - train (BN/AR: nofyes)
- test (BN/AR: no/no) test (BN/AR: nofyes)
12 . =~ train (BN/AR: yes/no) train (BN/AR: yes/yes)
01 : test (BN/AR: yes/no) test (BN/AR: yes/yes)
10 20 30 40 50 10 20 30 40 50
Epoch Epoch

Figure 13: Gradient heatmaps and learning curves of four models with the same initial weights. We tested

the four combinations of BN and AR. Dataset: CIFAR-10. Neural architecture: B.

15

Under review as submission to TMLR

[Without BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: fashion_mnist
Model Vanilla Model AutoRot - L_typ

uto_indep - L_value: normal

8 8 2
7 7
1
56 56
Bs Es
C c 0
g4 g4
B B
a3 d3
2 2
-1
1 1
5 10 15 20 25 30 35 40 a5 50 5 10 15 20 25 30 35 40 a5 50
Epoch Epoch
[With BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: fashion_mnist
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal
8 8 2
7 7
56 56 1
3 3
2s 2s .
1110 |1 [
d3 g3
2 2
-1
1 1
5 10 15 20 25 30 35 40 a5 50 5 10 15 20 25 30 35 40 a5 50
Epoch Epoch
Learning curves - Activation: sigmoid - Dataset: fashion_mnist — Auto-Rotating parameters: L_type: auto_indep - L_value: normal
Loss curves Accuracy curves
225 - =~ train (BN/AR: no/no) train (BN/AR: no/yes) 09
test (BN/AR: no/no) test (BN/AR: no/yes) 08
200 == train (BN/AR: yes/no) train (BN/AR: yes/yes) .
x test (BN/AR: yes/no) test (BN/AR: yes/yes) 07
g1
g 06
& 150 >
S Eos
5125 g
g 04
S 1.00
H 03
8o - === train (BN/AR: no/no) train (BN/AR: no/yes)
02 test (BN/AR: no/no) test (BN/AR: no/yes)
050 ¢ == train (BN/AR: yes/no) train (BN/AR: yes/yes)
025 01f test (BI/AR: yes/no) test (BN/AR: yes/yes)
[10 20 30 40 50 [10 20 30 40 50
Epoch Epoch

Figure 14: Gradient heatmaps and learning curves of four models with the same initial weights. We tested

the four combinations of BN and AR. Dataset: Fashion MNIST. Neural architecture: B.

[Without BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: sti10
Model Vanilla

Model AutoRot - L_type: auto_indep - L_value: normal

Layer index
Layer index

10 20 30 40 50 60 70 80 90 100
Epoch Epoch
[With BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: stI10
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal

Layer index
Layer index

* I
2

7
o1 | HIHNN
s I 0
4
3 -2
2 ‘ -4
1

10 20 30 40 50 60 70 80 % 10
8 2
7
6
® 0
s }MHJ\H 1[0
3 -2
2
1 -4

10 20 30 40 50 60 70 80 9 10

0

10 20 30 40 50 60 70 80 90 100 0
Epoch Epoch
Learning curves - Activation: sigmoid - Dataset: sti10 — Auto-Rotating parameters: L_type: auto_indep - L_value: normal
Loss curves Accuracy curves
3.0
=== train (BN/AR: no/no) train (BN/AR: no/yes) 0.7 === train (BN/AR: no/no) - train (BN/AR: no/yes)
test (BN/AR: no/no) test (BN/AR: no/yes) test (BN/AR: no/no) test (BN/AR: no/yes)
=== train (BN/AR: yes/no) train (BN/AR: yes/yes) 061 train (BN/AR: yes/no) train (BN/AR: yes/yes) .
25

test (BN/AR: yes/yes) test (BN/AR: yes/no) test (BN/AR: yes/yes)

categorical_crossentropy
>
accuracy
°
2

15 03
02
10 I
L
0 20 a0 60 80 100 0 20 a0 60 80 100
Epoch Epoch

Figure 15: Gradient heatmaps and learning curves of four models with the same in
the four combinations of BN and AR. Dataset: STL-10. Neural architecture: B.

16

itial weights. We tested

Under review as submission to TMLR

[without BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: cifar10
Model Vanilla

Model AutoRot - L_type: auto_indep - L_value: normal

Layer index
F N W e Lo N
Layer index
[

10 20 30 40 50 60 70 80 90 100 100
Epoch Epoch
[With BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: cifar10
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal

8 8
7 7 2
56 56
Bs Bs o
RATLEVQU U P A ERRRAY =«
43 a3 5
2 2
1 1 4
10 20 30 40 50 60 70 80 EY 100 100
Epoch Epoch
Learning curves - Activation: sigmoid - Dataset: cifarl0 — Auto-Rotating parameters: L_type: auto_indep - L_value: normal
e Loss curves Accuracy curves
=== train (BN/AR: no/no) - train (BN/AR: nofyes)
22 <~ test (BN/AR: no/no) test (BN/AR: nofyes) 06
~== train (BN/AR: yes/no) - train (BN/AR: yes/yes)
> test (BN/AR: yes/no) test (BN/AR: yes/yes)
g20 1 os
16 >
4 M go4 p————
! — Y 3 Lo
T16 TEses g .l
g H e
£ 03
&
214
g 02 ~=- train (BN/AR: no/no) -+ train (BN/AR: nofyes)
12 : <~ test (BN/AR: no/no) test (BN/AR: nofyes)
-~ train (BN/AR: yes/no) - train (BN/AR: yes/yes)
o 01 test (BN/AR: yesino) test (BI/AR: yes/yes)
[20 40 60 80 100
Epoch Epoch

Figure 16: Gradient heatmaps and learning curves of four models with the same initial weights. We tested
the four combinations of BN and AR. Dataset: CIFAR-10. Neural architecture: B.

[Without BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: fashion_mnist
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal

Layer index

FN L s 0o
—
Layer index

PN W s U o N
I
| | oorEN
= o o wnowo
s &

10 20 30 40 50 60 70 80 90 100 10 20 100
Epoch Epoch
[With BatchNorm]: Log10 of median of gradients - Activation: sigmoid - Dataset: fashion_mnist
Model Vanilla Model AutoRot - L_type: auto_indep - L_value: normal

8 8 20
7 7 15
10
56 3° 05
2s 2s g
e e 00
g4 54
5y 33
-0
2 2
1 1 -10
10 20 30 40 50 60 70 80
Epoch Epom
Learning curves - Activation: sigmoid - Dataset: fashion_mnist — Auto-Rotating parameters: L_type: auto_indep - L_value: normal
Loss curves Accuracy curves
225 -=- train (BN/AR: nofno) -+ train (BN/AR: nofyes) 09
test (BN/AR: no/no) test (BN/AR: nolyes) o8 cmmnnnnnnn
2001 & ~~~ train (BN/AR: yes/no) train (BN/AR: yes/yes) - I L i
2 & test (BN/AR: yes/no) test (BN/AR: yes/yes) 07 =
g1rs &)
2
% 150 50¢
g \ g
Sias 3 Sos
g M, 8
% 100l 04
H 03 i
€o7s g -=-- train (BN/AR: nojno) -+ train (BN/AR: no/yes)
B 02l - test (BN/AR: no/no) test (BN/AR: nolyes)
0.50 T - = train (BN/AR: yes/no) -+ train (BN/AR: yes/yes)
s 01 test (BN/AR: yes/no) test (BI/AR: yes/yes)
20 40 6 80 100 20 40 60 80 100
Epoch Epoch

Figure 17: Gradient heatmaps and learning curves of four models with the same initial weights. We tested
the four combinations of BN and AR. Dataset: Fashion MNIST. Neural architecture: B.

17

	Introduction
	Preliminaries
	Classic Perceptrons
	Vanishing Gradient Problem (VGP)
	Dynamic Region of an Activation Function

	From Auto-Rotating Perceptrons to Auto-Rotating Neural Networks
	Delving into the Auto-Rotating Operation
	Different Types of L
	The Auto-Rotating layers can now work without extra hyperparameters
	Convolutional Auto-Rotation: Conv-ARP

	Experiments
	Setup
	Effect of the L value
	Effect of the L types
	Effect on the Gradient Magnitude and interaction with Batch Normalization
	Discussion and Analysis

	Conclusions and Future Work
	Appendix

