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Abstract

Signed graph clustering is a critical technique for discovering com-

munity structures in graphs that exhibit both positive and negative

relationships. We have identified two significant challenges in this

domain: i) existing signed spectral methods are highly vulnerable

to noise, which is prevalent in real-world scenarios; ii) the guiding

principle “an enemy of my enemy is my friend”, rooted in Social Bal-
ance Theory, often narrows or disrupts cluster boundaries in main-

stream signed graph neural networks. Addressing these challenges,

we propose the Deep Signed Graph Clustering framework (DSGC),

which leverages Weak Balance Theory to enhance preprocessing

and encoding for robust representation learning. First, DSGC in-

troduces Violation Sign-Refine to denoise the signed network by

correcting noisy edges with high-order neighbor information. Sub-

sequently, Density-based Augmentation enhances semantic struc-

tures by adding positive edges within clusters and negative edges

across clusters, following Weak Balance principles. The framework

then utilizesWeak Balance principles to develop clustering-oriented
signed neural networks to broaden cluster boundaries by emphasiz-

ing distinctions between negatively linked nodes. Finally, DSGC op-

timizes clustering assignments by minimizing a regularized cluster-

ing loss. Comprehensive experiments on synthetic and real-world

datasets demonstrate DSGC consistently outperforms all baselines,

establishing a new benchmark in signed graph clustering. The code

is provided in https://anonymous.4open.science/r/DSGC-C05C/.
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1 Introduction

Deep graph clustering has emerged as a pivotal technique for uncov-

ering underlying communities within complex networks. However,

existing methods [2, 28, 32, 35, 37] predominantly target unsigned

graphs, which represent relationships solely with “non-negative”

edges and inherently fail to capture conflicting node interactions,

such as friendship versus enmity, trust versus distrust, and ap-

proval versus denouncement. Such dynamics are commonplace in

social networks and can be effectively modeled by signed graphs
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Figure 1: Effects of different perturbations, including flipping

signs and randomly adding negative edges, on the clustering

performance of popular spectral methods in signed graphs.

that incorporate both positive and negative edges. Although sig-

nificant work has studied link prediction tasks in deep signed

graphs [8, 16, 17, 24, 38, 43], deep signed graph clustering remains

substantially unexplored. In this paper, we aim to develop a deep

signed graph clustering method that enhances the robustness of

graph representations, facilitating more distinctive clusters and

better reflecting the intricate relationships within signed graphs.

Signed graph clustering is broadly applied in the analysis of

social psychology [7, 21, 30], biologic gene expressions [11, 33], etc.

Recent studies have predominantly focused on spectral methods [5–

7, 30], which design various Laplacian matrices specific to a given

network to derive node embeddings, aiming to find a partition of

nodes that maximizes positive edges within clusters and negative

edges between clusters. However, these methods are vulnerable

to random noise, a common challenge in real-world scenarios. For

instance, on shopping websites, the signed graph encoding user-

product preferences often includes noisy edges, typically when

customers unwillingly give positive ratings to items in exchange

for meager rewards or coupons. Fig. 1 illustrates the significant

impact of noise on signed spectral methods like BNC and SPONGE

[5, 6]. As perturbation ratios increase, which indicates a higher

percentage of randomly flipped edge signs or inserted negative

edges in a synthetic signed graph with five clusters, these methods

suffer a sharp decline in clustering accuracy. Therefore, denoising

the graph structure is essential to enhance robust representation

learning in deep signed clustering.

Furthermore, the investigation on deep signed graph neural net-

works (SGNNs) reveals that existing SGNNs — which are mostly

developed for link prediction [8, 16, 17, 24, 38, 43] — do not adapt

well to signed clustering. Specifically, mainstream SGNNs mod-

els typically leverage principles from the well-established Social
Balance Theory [14] (or Balance Theory) to design their messaging-

passing aggregation mechanisms, including the classical principle

“an Enemy of my Enemy is my Friend (EEF)”, “a Friend of my Friend
is my Friend (FFF)”, “an Enemy of my Friend is my Enemy (EFE)”.
However, “EEF" implies an assumption that a given signed network

has only 2 clusters, which is not directly applied to signed graphs

with 𝐾 (𝐾 > 2) clusters. Specifically, as illustrated in Fig. 2, “EEF”
1
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Figure 2: Illustration of “an Enemy of my Enemy is my Friend
(EEF)” narrowing cluster boundaries. Aggregating positive (/

negative) neighbor 2 (/ 3) causes Z+
𝑖
(/ Z−

𝑖
) mapped far from

its clusters or even cross the boundary, where positive (/

negative) neighbors 2 (/ 3) are defined by “EEF”.

can narrow cluster boundaries, leading to more nodes being located

at the margins of clusters, which makes it difficult to assign them

to the correct clusters and thus results in poor performance. For

example, node 𝑣𝑖 aggregates its positive neighbor 𝑣2 (recognized by

“EEF” but inconsistent to the real semantic relationship in clusters),

which causes its positive representation Z+
𝑖
mapped closer to the

cluster of node 𝑣2, thus leading to narrowed or even overlapped

cluster boundaries. In contrast,Weak Balance Theory [7] (or Weak

Balance), introducing a new principle, “an enemy of my enemy
might be my friend or enemy”, can generalize Balance Theory to

𝐾-way (𝐾 > 2) clustering situation but remains underexplored.

To address these challenges, we propose eep Signed Graph Clus-

tering (DSGC) for 𝐾-way clustering, designed to enhance represen-

tations’ robustness against noisy edges and reduce the impact of the

ill-suited principle on cluster boundaries. DSGC first introduces the

Signed Graph Rewiring module (SGR) in the preprocessing stage

for denoising and graph structure augmentation. SGR provides

two rewiring strategies, including Violation Sign-Refine, which can

identify and correct noisy edges with long-range neighbor rela-

tionships, and Density-based Augmentation, which follows Weak

Balance principles to insert new positive edges to increase positive

density within clusters and negative edges to increase negative

density across clusters. Such refined graph topology can promote

signed encoders to enhance the robustness of node representations.

DSGC then constructs a clustering-oriented signed neural network

that utilizes Weak Balance. This helps design clustering-specific

neighbor aggregation mechanism for enhancing the discrimination

among node representations, specifically for nodes with negative

edges to widen cluster boundaries. Finally, DSGC designs a 𝐾-way

clustering predictor that optimizes a non-linear transformation

function to learn clustering assignments. This framework is de-

signed to refine the clustering process by correcting noisy edges

and enhancing the discriminative capability of node representa-

tions, ultimately leading to more accurate clustering outcomes.

Overall, our major contributions are as follows:

• We develop DSGC, the first Deep Signed Graph Clustering

framework, by leveraging Weak Balance Theory.

• We design two graph rewiring strategies to denoise and

augment the overall network topology.

• We propose a task-oriented signed graph encoder to learn

more discriminative representations, particularly for nodes

connected by negative edges.

• Extensive experiments on synthetic and real-world datasets

demonstrate the superiority and robustness of DSGC.

2 Related Work

In this section, we succinctly review existing studies for signed

graph neural networks and signed graph clustering.

Signed Graph Neural Networks (SGNNs) , which maps nodes

within a signed graph to a low-dimensional latent space, has increas-

ingly facilitated a variety of signed graph analytical tasks, including

node classification [29], signed link prediction [18, 40, 42], node

ranking [13, 34], and signed clustering [5, 6, 15, 21, 36]. Most works

of signed graph center around integrating Social Balance Theory
to signed convolutions into Graph Neural Networks (GNNs). As

the pioneering work, SGCN [9] adapts unsigned GNNs for signed

graphs by aggregating and propagating neighbor information with

Balance Theory. Thereafter, other work has integrated additional

social-psychological theories. [4] appends the status theory, which

is applicable to directed signed networks, interpreting positive

or negative signs as indicators of relative status between nodes.

SiGATs [16], which extends Graph Attention Networks (GATs) to

signed networks, also utilizes these two signed graph theories to

derive graph motifs for more effective message passing. SiNEs [39]

proposes a signed network embedding framework guided by the

extended structural balance theory. SGDNET [19] leverages a ran-

dom walk technique specifically tailored for signed graphs, effec-

tively diffusing hidden node features in line with Social Balance

Theory. GS-GNN [25] applies a dual GNN architecture that com-

bines a prototype-based GNN to process positive and negative

edges to learn node representations. SLGNN [23] especially design

low-pass and high-pass graph convolution filters to capture both

low-frequency and high-frequency information from positive and

negative links.

SignedGraphClustering. The study of signed graph clustering

has its roots in Social Balance Theory [3], which is equivalent to

the 2-way partition problem in signed graphs [30]. Building upon

this foundational concept, [21] propose a signed spectral clustering

method that utilizes the signed graph Laplacian and graph kernels

to address the 2-way partition problem. However, [41] argues that

community detection in signed graphs is equivalent to identifying

𝐾-way clusters using an agent-based heuristic. TheWeak Balance
Theory [7] relaxes balance theory to enable 𝐾-way clustering. Fol-

lowing [21], [5] proposed the “Balanced Normalized Cut (BNC)”

for 𝐾-way clustering, aiming to find an optimal clustering assign-

ment that minimizes positive edges between different clusters and

negative edges within clusters with equal priority. SPONGE [6]

transforms this discrete NP-hard problem into a continuous gener-

alized eigenproblem and employs LOBPCG [20], a preconditioned

eigensolver, to solve large positive definite generalized eigenprob-

lems. In contrast to the above 𝐾-way complete partitioning, [36]

targets detecting𝐾 conflicting groups in a signed network, allowing

other nodes to be neutral regarding the conflict structure in search.

This conflicting-group detection problem can be characterized as

2
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the maximum discrete Rayleigh’s quotient problem and solved by

two spectral methods.

While GNNs have been extensively applied to unsigned graph

clustering [2, 28, 32, 35, 37], their adoption in signed graph cluster-

ing remains overlooked. A notable exception is the Semi-Supervised

Signed NETwork Clustering (SSSNET) [15], which simultaneously

learns node embeddings and cluster assignments by minimizing

the clustering loss and a Cross-Entropy classification loss. In con-

trast, our work develops an unsupervised method for signed graph

clustering, eliminating the reliance on ground truth labels.

3 Preliminaries

3.1 Notations

We denote an undirected signed graph as G = {V, E,X}, where
V = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is the set of nodes, E is the set of edges, and

X ∈ R |V |×𝑑0
is the 𝑑0-dimensional node attributes. Each edge

𝑒𝑖 𝑗 ∈ E between 𝑣𝑖 and 𝑣 𝑗 can be either positive or negative, but

not both. A is the adjacency matrix of G, where A𝑖 𝑗 = 1 if 𝑣𝑖
has a positive link to 𝑣 𝑗 ; A𝑖 𝑗 = −1 if 𝑣𝑖 has a negative link to 𝑣 𝑗 ;

A𝑖 𝑗 = 0 otherwise. The signed graph is conceptually divided into

two subgraphs sharing the common vertex setV: G = {G+,G−},
where G+ = {V, E+} and G− = {V, E−} contain all positive

and negative edges, respectively. Let A+
and A−

be the adjacency

matrices ofG+
andG−

with A = A+−A−
, where A+

𝑖 𝑗
=𝑚𝑎𝑥 (A𝑖 𝑗 , 0)

and A−
𝑖 𝑗

= −𝑚𝑖𝑛(A𝑖 𝑗 , 0).

3.2 Relaxation of Social Balance

Balance and Weak Balance Theories, essential for signed graph

clustering, are briefly explained here; more details are in Appx. A.

Balance Theory [14] consists of four fundamental principles:

“the friend of my friend is my friend”, “the enemy of my friend is my
enemy”, “the friend of my enemy is my enemy”, and “the enemy of
my enemy is my friend (EEF)”. A signed network is balanced if it

does not violate these principles. Theoretically, the Balance Theory

is equivalent to 2-way clustering on graphs [30].

Weak Balance Theory [7] relaxes Balance Theory to accom-

modate 𝐾-way clustering, by replacing the “EEF” principle with
“the enemy of my enemy might be my enemy (EEE)”. This principle
allows nodes in a triangle to belong to three different clusters, e.g.,

the blue triangle in Fig. 10 (b), thus relaxing Social Balance Theory.

The partition {C1, . . . , C𝐾 } of a signed graph G satisfying either

theory can be uniformly defined as the following conditions:{
A𝑖 𝑗 > 0 (𝑒𝑖 𝑗 ∈ E) ∩ (𝑣𝑖 ∈ C𝑘 ) ∩ (𝑣 𝑗 ∈ C𝑘 )
A𝑖 𝑗 < 0 (𝑒𝑖 𝑗 ∈ E) ∩ (𝑣𝑖 ∈ C𝑘 ) ∩ (𝑣 𝑗 ∈ C𝑙 ) (𝑘 ≠ 𝑙)

, (1)

where A𝑖 𝑗 is the weight of edge 𝑒𝑖 𝑗 and 0 < 𝑘, 𝑙 < 𝐾 .

3.3 Problem Definition

This paper aims to leverage the capabilities of deep representation

learning to enhance robust graph signed clustering. Unsupervised

Deep Signed Graph Clustering is formally defined below.

Problem 1. Given a signed graph G = {V, E,X}, deep signed
graph clustering is to train a function 𝑓 (A,X) −→ Z that transforms
each node 𝑣 ∈ V into a low-dimensional vectors Z𝑣 ∈ R𝑑 . It aims
to optimize a partition to divide all nodes {Z𝑖 } |V |

𝑖=1
into 𝐾 disjoint

clustersV = C1 ∪ · · · ∪ C𝐾 , by minimizing a signed clustering loss
objection that makes as many as positive edges exist within clusters
and as many as negative edges exist across clusters.

4 Methodology

As illustrated in Fig. 3, DSGC consists of 4 major components, in-

cluding Violation Sign-Refine and Density-based Augmentation for

graph rewiring, signed clustering encoder, and cluster assignment.

4.1 Signed Graph Rewiring

In real-world signed graphs, noisy edges(violations)—negative edges

within clusters and positive edges across clusters—can disrupt

ideal clustering structures. To address this, we propose two graph

rewiring methods to enhance clustering integrity: Violation Sign-

Refine (VS-R), which corrects the signs of violated edges to align

negative and positive edges with the expected inter-cluster and

intra-cluster relationships; and Density-based Augmentation (DA),

which adds new edges based on long-range interaction patterns to

reinforce message passing. Both methods leverage Weak Balance

and are used as preprocessing steps to denoise and augment the

initial graph topology—specifically, the message-passing matrix.

4.1.1 Violation Sign-Refine. To address noisy edges, we utilize

high-order neighbor interactions to correct their signs. Based on

Weak Balance, we first adapt the definitions of positive and nega-

tive walks for 𝐾-way clustering. Following Social Balance Theory,

[10] defines a positive walk as one containing an even number of

negative edges and a negative walk as one containing an odd num-

ber of negative edges. However, they are not suitable for 𝐾-way

clustering due to the uncertainty brought by the “the enemy of my
enemy might be my enemy or my friend” principle of Weak Balance.

We formally redefine positive and negative walks as follows.

Definition 1. A walk of length 𝑙 ∈ N+ connecting nodes 𝑣𝑖 and
𝑣 𝑗 is positive if all its edges are positive; it is negative when it contains
exactly one negative edge and all other edges are positive.

Since violations are sparse in graphs, we assume that leveraging

higher-order information from longer-range neighbors helps revise

the signs of violated edges. Lemma 1 specifies the non-noise score

between 𝑣𝑖 and 𝑣 𝑗 w.r.t. the 𝑙-length positive and negative walks.

Lemma 1. For 𝑣𝑖 , 𝑣 𝑗 ∈ V in a signed graph G = {V, E,X}, let
𝜇+
𝑙
(𝑖, 𝑗) and 𝜇−

𝑙
(𝑖, 𝑗) be the number of positive and negative walks

with length 𝑙 connecting 𝑣𝑖 and 𝑣 𝑗 , respectively. Then, ∀𝑎 ∈ N,

𝜇+
𝑙
(𝑖, 𝑗) − 𝜇−

𝑙
(𝑖, 𝑗) = (A+)𝑙𝑖 𝑗 −

𝑙−1∑︁
𝑎=0

((A+)𝑎A− (A+)𝑙−1−𝑎)𝑖 𝑗 . (2)

If we consider all walks up to length 𝐿′, the non-noise score of
the connection between 𝑣𝑖 and 𝑣 𝑗 can be defined:

Γ𝑖 𝑗 (𝐿′) =
𝐿′∑︁
𝑙=1

𝛼𝑙 (𝜇+𝑙 (𝑖, 𝑗) − 𝜇
−
𝑙
(𝑖, 𝑗)), (3)

where 𝛼𝑙 =


1, 𝑙 = 1

1/(𝑙 !), 1 < 𝑙 < 𝐿′

1 −∑𝐿′−1

𝑙 ′=1
1/(𝑙 ′!), 𝑙 = 𝐿′

. (4)

3
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Figure 3: The overall framework of DSGC. The Violation Sign-Refine first computes non-noise scores to correct the signs of

noisy edges. Then, the Density-based Augmentation adds positive edges within clusters and negative edges across clusters.

These two rewiring methods generate a new adjacency matrix with reduced noise and enhanced semantic structures. Thereafter,

clustering-specific signed convolutional networks can be trained by minimizing the differential clustering loss for learning

and strengthening the discrimination among node representations linked negatively.

Here, 𝛼𝑙 decreases with 𝑙 , indicating that shorter walks have more

influence. Γ is utilized to correct violations as Γ𝑖 𝑗 extracts high-
order information from neighbors of 𝑣𝑖 and 𝑣 𝑗 within 𝐿

′
-hop. With

Γ𝑖 𝑗 , we obtain a refined adjacency matrix 𝐴 via the following rules:

Â𝑖 𝑗 =


1, Γ𝑖 𝑗 > 𝛿

+

A𝑖 𝑗 , 𝛿− ≤ Γ𝑖 𝑗 ≤ 𝛿+

−1, Γ𝑖 𝑗 < 𝛿
−

, (5)

where 𝛿+ > 0 and 𝛿− < 0 are two thresholds. 𝑣𝑖 and 𝑣 𝑗 are consid-

ered effective friends when Γ𝑖 𝑗 > 𝛿
+
, indicating a positive edge (+);

𝑣𝑖 and 𝑣 𝑗 are considered effective enemies when Γ𝑖 𝑗 < 𝛿
−
, indicating

a negative edge (−); otherwise, the original adjacency entries in A
retains. The magnitude

��Γ𝑖 𝑗 �� represents the confidence level of two
nodes being effective friends or enemies. A larger (resp. smaller)

��Γ𝑖 𝑗 ��
represents a stronger (resp. weaker) positive or negative relation-

ship between 𝑣𝑖 and 𝑣 𝑗 . This method refines the adjacency matrix

by reinforcing accurate relational signals and reducing the impact

of noisy edges, thereby facilitating more effective clustering.

4.1.2 Density-based Augmentation. Following the noise correc-

tions made by VS-R, the revised graph, denoted as
ˆG = {V, ˆE,X},

is processed through Density-based Augmentation to increase the

density of positive edges within clusters and negative edges be-

tween clusters. The revised adjacency matrices for positive and

negative edges, Â+
and Â−

, are augmented as below:

A′+ = (Â+)𝑚
+
; A′− =

𝑚−∑︁
𝑎=0

(Â+)𝑎Â− (Â+)𝑚
−−𝑎, (6)

where𝑚+
and𝑚−

are scalar hyper-parameters indicating the extent

of augmentation. The augmented adjacency matrices are:

A′′+ =


1, A′+

𝑖 𝑗
> 0, 𝑖 ≠ 𝑗

0, A′+
𝑖 𝑗

= 0, 𝑖 ≠ 𝑗

0, A′+
𝑖 𝑗
, 𝑖 = 𝑗

; A′′− =


1, A′−

𝑖 𝑗
> 0, 𝑖 ≠ 𝑗

0, A′−
𝑖 𝑗

= 0, 𝑖 ≠ 𝑗

0, A′−
𝑖 𝑗
, 𝑖 = 𝑗

. (7)

If𝑚+ = 1 (resp.𝑚− = 0), no augmentation is performed on Â+

(resp. Â−
). For𝑚+ > 1, it adds a positive edge between any two

nodes connected by a𝑚+
-length positive walk (Dfn. 1). For𝑚− > 0,

it adds a negative edge between any two nodes connected by a (𝑚−+
1)-length negative walk. This strategy effectively enhances the

clustering potential by reinforcing intra-cluster connectivity with

positive edges and inter-cluster separations with negative edges. It

is particularly effective for a signed graph with few violations.

4.2 Signed Clustering Encoder

Signed Graph Convolution Network, our signed graph encoder in

DSGC, is tailored for 𝐾-way clustering. It leverages Weak Balance

Theory principles to learn discriminative node representations that

signify greater separation between nodes connected by negative

edges and closer proximity between those by positive edges
1
.

Based on the rewired graph topology defined by A′′+
and A′′−

,

we first introduce self-loops to each node using Ã+ = A′′+ + 𝜖+I,
Ã− = A′′− + 𝜖−I, where I is the identity matrix and 𝜖+ and 𝜖− are

the balance hyperparameters. The adjacency matrices are then nor-

malized as follow: Ā+ = (D̃+)−1Ã+
and Ā− = (D̃−)−1Ã−

, where

D̃+
and D̃−

are diagonal degree matrices with D̃+
𝑖𝑖

=
∑
𝑗 Ã+

𝑖 𝑗
and

D̃−
𝑖𝑖

=
∑
𝑗 Ã−

𝑖 𝑗
. We learn 𝑑-dimensional positive and negative em-

beddings, Z+
𝑖
and Z−

𝑖
, for each node 𝑣𝑖 ∈ V , and concatenate them

as the final node representation: Z𝑖 = CONCAT(Z+
𝑖
,Z−
𝑖
), where

Z+
𝑖
∈ R1×𝑑

and Z−
𝑖

∈ R1×𝑑
are computed through layers of our

signed graph convolution network:

Z+
𝑖 =

𝐿∑︁
𝑙=0

𝜔+(𝑙 )Z+(𝑙 )
𝑖

, Z−
𝑖 =

𝐿∑︁
𝑙=0

𝜔−(𝑙 )Z−(𝑙 )
𝑖

. (8)

𝜔+(𝑙 )
and 𝜔−(𝑙 )

, shared by all nodes, are layer-specific trainable

weights that modulate the contribution of different convolution

layers to the final node representation. 𝐿 is the number of layers

1
This goal is often reflected in the loss function designs in previous work [9, 16, 23–25]

for link prediction. However, its importance has been overlooked in signed encoders.
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in the neural network. This design allows the encoder to leverage

information from different neighborhood ranges. The intermediate

representations of all nodes, Z+(𝑙 ) ∈ R |V |×𝑑
and Z−(𝑙 ) ∈ R |V |×𝑑

,

can be obtained as

Z+(𝑙 ) = (Ā+)𝑙Z+(0) , (9)

Z−(𝑙 ) =
𝑙−1∑︁
𝑏=0

(Ā+)𝑏 (−Ā−) (Ā+)𝑙−1−𝑏Z−(0) , (10)

where the superscript (𝑙) and 𝑙 denote the layer index and power

number, respectively. The initial node embeddings, Z+(0) ∈ R |V |×𝑑

and Z−(0) ∈ R |V |×𝑑
, are derived from the input feature matrix

X ∈ R |V |×𝑑0
by two graph-agnostic non-linear networks:

Z+(0) = W+
1
(𝜎 (XW+

0
)), (11)

Z−(0) = W−
1
(𝜎 (XW−

0
)), (12)

where 𝜎 is the 𝑅𝑒𝐿𝑈 activation function. W+
0
∈ R𝑑0×𝑑

and W+
1
∈

R𝑑×𝑑 are the trainable parameters of the positive network; W−
0
∈

R𝑑0×𝑑
and W−

1
∈ R𝑑×𝑑 are that of the negative network. We claim

that the positive aggregation function, Eq. (9), can pull the nodes

linked by positive walks, thus reducing the intra-cluster variances.

Meanwhile, the negative aggregation function, Eq. 10, can push

nodes linked by negative walks, thus increasing the inter-cluster

variances. We also investigate Weak Balance principles implied in

Eq. (9) and Eq. (10), as well as the effect of the minus sign “-” in

the term (−Ā−) to nodes representations linked negatively and the

clustering boundary in App. B.

4.3 𝐾-way Signed Graph Clustering

With node representations Z ∈ R |V |×2𝑑
learned in our encoder,

we propose a non-linear transformation to predict clusters.

Clustering Assignment. Considering a 𝐾-way clustering prob-

lem, where 𝐾 is the number of clusters, node 𝑣𝑖 is assigned a proba-

bilities vector Π𝑖 = [𝜋𝑖 (1), . . . , 𝜋𝑖 (𝐾)], representing the likelihood
of belonging to each cluster. 𝑘 ∈ {1, . . . , 𝐾} denotes the index of a
cluster and

∑𝐾
𝑘=1

𝜋𝑖 (𝑘) = 1. This probability is computed using a

learnable transformation followed by a softmax operation:

𝜋𝑖 (𝑘) = 𝑞𝜃 (𝑘 |Z𝑖 ) =
exp(Z𝑖 · 𝜃𝑘 )∑𝐾

𝑘 ′=1
exp(𝜃𝑘 ′ · Z𝑖 )

, (13)

where 𝜃𝑘 ∈ R𝑑×1
is a parameter for cluster 𝑘 to be trained by

minimizing the signed clustering loss. The assignment vectors of

all nodes {Π𝑖 } |V |
𝑖=1

form an assignment matrix Π ∈ R |V |×𝐾
.

Differential Signed Clustering Loss. Signed graph clustering

aims to minimize violations, which was historically considered

as an NP-Hard optimization problem [21] with designed discrete

(non-differential) objectives in spectral methods. We transform it

into a differentiable format by utilizing a soft assignment matrix

Π in place of a hard assignment matrix C. Specifically, given that

the cluster number 𝐾 is known, let C ∈ {0, 1} |V |×𝐾
be a hard

cluster assignment matrix where C(:,𝑘 ) (𝑖) = 1 if node 𝑣𝑖 belong

to the cluster 𝑘 ; otherwise C(:,𝑘 ) (𝑖) = 0. The number of positive

edges between cluster 𝑘 and other clusters can be captured by

C𝑇(:,𝑘 )L
+C(:,𝑘 ) with the positive graph Laplacian L+ = D+ − A+

.

The number of negative edges within cluster 𝑘 can be measured by

C𝑇(:,𝑘 )A
−C(:,𝑘 ) . So the violations w.r.t. cluster 𝑘 can be measured by

C𝑇(:,𝑘 ) (L
+ +A−)C(:,𝑘 ) . By replacing the hard assignment C(:,𝑘 ) with

the soft assignment probability Π (:,𝑘 ) , the differential clustering
loss is constructed as:

L =
1

|V|

𝐾∑︁
𝑘=1

Π𝑇(:,𝑘 ) (L
+ + A−)Π(:,𝑘 ) + 𝜆Lregu, (14)

where 𝜆 is a hyperparameter, and Lregu is a regularization term

computing the degree volume in cluster to prevent model collapse:

Lregu = − 1

|V|

𝐾∑︁
𝑘=1

Π𝑇(:,𝑘 )DΠ(:,𝑘 ) , (15)

where D is the degree matrix of A. Minimizing L equals finding

a partition with minimal violations. We iteratively optimize the

signed encoder and non-linear transformation by minimizing L.

Inference stage. Each node 𝑣𝑖 ∈ V is assigned to the cluster

with the highest probability in its vector Π𝑖 :

𝑠𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘Π𝑖 , (16)

where 𝑠𝑖 ∈ {1, . . . , 𝐾} is the cluster index for 𝑣𝑖 . The set of all node
cluster assignments, {𝑠𝑖 } |V |

𝑖=1
, is used to evaluate the performance

of the clustering approach.

5 Experiments

This section evaluates our DSGCmodel with both synthetic and real-

world graphs to address the following research questions.RQ1:Can

DSGC achieve state-of-the-art clustering performance on signed

graphs without any labels? RQ2: How does each component con-

tribute to the effectiveness of DSGC? RQ3: How does the Violation

Sign-Refine (VS-R) impact signed topology structures by correcting

noisy edges? RQ4: How do the strategies in our signed encoder,

specifically abandoning the “EEF” principle and the minus sign in

term (−Ā−), contribute to forming wider clustering boundaries?

5.1 Experimental Settings

5.1.1 Datasets. Follow SPONGE [6], we evaluate DSGC with a

variety of synthetic and real-world graphs: (i) Synthetic SSBM

graphs. The Signed Stochastic Block Model (SSBM) is commonly

used to generate labeled signed graphs [6, 31], parameterized by 𝑁

(number of nodes), 𝐾 (number of clusters), 𝑝 (edge probability or

sparsity), and 𝜂 (sign flip probability). This model first sets edges

within the same cluster as positive, and edges between clusters as

negative. It then models noises by randomly flipping the sign of

each edge with probability 𝜂 ∈ [0, 1/2). Each generated graph can

be represented as SSBM (𝑁 ,𝐾 ,𝑝 ,𝜂). (ii) Real-world graphs. S&P

is a stock correlation network from market excess returns during

2003 − 2005, consisting of 1, 193 nodes, 1, 069, 319 positive edges,

and 353, 930 negative edges. Rainfall is a historical rainfall dataset

from Australia, where edge weights are computed by the pairwise

Pearson correlation. Rainfall is a complete signed graph with 306

nodes, 64, 408 positive edges, and 29, 228 negative edges.
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5.1.2 Baselines. DSGC is compared against 9 representative signed

spectral clustering methods. Five are basic signed spectral methods

utilizing various forms of Laplacianmatrix: (1) symmetric adjacency

matrix A∗ = 1

2
(A + A𝑇 ); (2) simple normalized signed Laplacian

L𝑠𝑛𝑠 = D
−1 (D+−D−A∗); (3) balanced normalized signed Laplacian

L𝑏𝑛𝑠 = D
−1 (D+ − A∗); (4) signed Laplacian graph L = D − A with

a diagonal matrix D; and (5) its symmetrically normalized version

L𝑠𝑦𝑚 [21]. Two are 𝐾-way spectral clustering methods: (6) Bal-

anced Normalized Cut (BNC) and (7) Balanced Ratio Cut (BRC) [5].

The last two [6] are two generalized eigenproblem formulations:

(8) SPONGE and (9) SPONGE𝑠𝑦𝑚 . Moreover, we compare with

6 state-of-the-art deep unsigned graph clustering methods: (10)

DAEGC [37], (11) DFCN [35], (12) DCRN [28], (13) Dink-net [27],

(14) DGCLUSTER [1] (15) MAGI [26]. Please refer to App. E for

hyperparameters settings and experiment details.

5.1.3 Evaluation Metrics. For Labeled graphs (SSBM), Accuracy
(ACC), Adjusted Rand Index (ARI) [12], Normalized mutual infor-

mation (NMI), and F1 score are used as the ground truths of nodes

are available. For Unlabeled graphs (S&P and Rainfall), due to the
lack of ground truths, clustering quality is visualized by plotting

network adjacency matrices sorted by cluster membership. See

more detailed settings in App. E.

5.2 Overall Performance

To address RQ1, we evaluated our DSGC and baselines on a va-

riety of labeled signed graphs generated from four SSBM config-

urations, including SSBM (𝑁 = 1000, 𝐾 = 5, 𝑝 = 0.01, 𝜂) with

𝜂 ∈ {0, 0.02, 0.04, 0.06, 0.08}, SSBM (𝑁 = 1000, 𝐾 = 10, 𝑝 , 𝜂 = 0.02)

with 𝑝 ∈ {0.01, 0.02, 0.03, 0.04, 0.05}, SSBM (𝑁 , 𝐾 = 5, 𝑝 = 0.01,

𝜂 = 0) with 𝑁 ∈ {300, 500, 800, 1000, 1200}, and SSBM (𝑁 = 1000,

𝐾 , 𝑝 = 0.01, 𝜂 = 0.02) with 𝐾 ∈ {4, 5, 6, 7, 8}. The performance of

each experiment was measured by taking the average of 5 repeated

executions. Table 1 reports the results in ACC and NMI. Appendix F

provides the results in ARI and F1 score.

Table 1 shows: (i) Superior performance: Our DSGC significantly

outperforms all baseline models across all metrics, even though

SPONGE and SPONGE𝑠𝑦𝑚 are known for their effectiveness on

such datasets. (ii) Robustness: Regardless of whether the graph is

dense or sparse (𝑝), large or small (𝑁 ), noisy or clean (𝜂), and the

number of clusters is few or many (𝐾), DSGC maintains notably

superior performance on all 20 labeled signed graphs. (iii) Compar-
ative analysis: While deep unsigned clustering methods (DAEGC,

DFCN, DCRN, Dink-net, DGCLUSTER MAGI) consistently under-

perform our DSGC due to the limitation of their capabilities to

only handle non-negative edges. DSGC still has a clear advantage,

highlighting the effectiveness of its design specifically tailored for

signed graph clustering.

5.3 Ablation Study

To address RQ2 and evaluate the contributions of key components

of DSGC, we performed an ablation study using labeled signed

graphs, including SSBM (1000, 10, 𝑝 , 0.01), SSBM (1000, 5, 0.01, 𝜂),

SSBM (𝑁 , 5, 0.01, 0.01), and SSBM (1000, 𝐾 , 0.01, 0.01). The variants

of DSGC tested are: w/o VS-R is DSGC without Violation Sign-

Refine; w/o DA is DSGC without Density-based Augmentation;
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Figure 4: Ablation study. (a)∼(d) The ACC(%) performance vs.

edge probability (𝑝), flip probability (𝜂), node number 𝑁 and

cluster number 𝐾 .

w/o Regu is DSGC without Regularization term; w/o VS-R & DA

is DSGC without VS-R and DA; w/o DA & Regu is DSGC without

DA and Regu; w/o VS-R & Regu is DSGC without VS-R and Regu;

and w/o All is DSGC without VS-R, DA, and Regu.

From the results depicted in Fig. 4, it is evident that: (i) Perfor-
mance trends: As the edge probability (𝑝) and the number of nodes

(𝑁 ) increase, the accuracy (ACC) of DSGC and its variants consis-

tently improves. Conversely, increases in the sign flip probability

(𝜂) and the number of clusters (𝐾 ) lead to a decline in ACC across all

models. (ii) Component impact: DSGC outperforms all variants on

all labeled signed graphs, demonstrating the significant role each

component plays in enhancing clustering performance. Specifically,

DA emerges as the most influential component, affirming its ef-

fectiveness in reinforcing the graph structure and improving node

representations by adding strategically placed new edges.

5.4 Analysis of Violation Sign-Refine

To investigate RQ3, we analyzed the impact of applying Violation

Sign-Refine (VS-R) on the performance of spectral clustering meth-

ods. VS-R was first used to pre-process and denoise signed graphs

to generate new graphs. Then we compared the performance of all

spectral methods before and after applying VS-R. Signed graphs

were generated by fixing 𝑁 = 1000 and varying (𝐾,𝜂, 𝑝), including

SSBM (1000, 𝐾, 0.01, 0.02) with 𝐾 ∈ {5, 6}, SSBM (1000, 5, 0.01, 0.04),

and SSBM (1000, 10, 𝑝, 0.02) with 𝑝 ∈ {0.01, 0.02}.
Table 2 shows that VS-R significantly improves the clustering per-

formance across all tested spectral methods w.r.t. ACC and NMI by

generating cleaner graphs with better clustering structure. Specifi-

cally, the performance increments vary inversely with the strength

of the baseline methods—stronger baselines show smaller gains,

whereas weaker baselines benefit more substantially from the VS-R

preprocessing. VS-R also consistently reduces the violation ratio,
defined as the ratio of the number of violated edges to the number

of non-violated edges, across various graph configurations.

In addition to numerical analysis, Fig. 14 in App. D provides

visual evidence of the impact of VS-R. the embeddings of new
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Table 1: Performance comparison of graph clustering methods on SSBM graphs with ACC (%) and NMI (%). Bold values indicate

the best results; underlined values indicate the runner-up.

SSBM (𝑁 = 1000, 𝐾 = 5, 𝑝 = 0.01, 𝜂) (𝑁 = 1000, 𝐾 = 10, 𝑝 , 𝜂 = 0.02)

SSBM 𝜂 = 0 𝜂 = 0.02 𝜂 = 0.04 𝜂 = 0.06 𝜂 = 0.08 𝑝 = 0.01 𝑝 = 0.02 𝑝 = 0.03 𝑝 = 0.04 𝑝 = 0.05

Metrics ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

A∗
71.60 41.06 68.10 35.95 62.20 27.86 41.60 15.25 43.80 12.65 16.70 3.90 2.13 7.89 42.80 24.43 79.70 62.52 93.30 86.60

L𝑠𝑛𝑠 21.20 0.96 21.20 0.85 21.10 1.23 20.50 0.83 20.60 1.05 12.20 1.86 14.30 2.91 18.30 6.34 18.80 7.55 34.20 23.08

L𝑑𝑛𝑠 41.70 16.39 38.30 12.47 31.70 6.45 31.20 6.46 29.10 3.75 15.70 2.91 19.10 5.80 27.60 12.29 46.90 30.57 83.50 68.80

L 20.30 0.79 20.30 0.79 20.30 0.79 20.30 0.79 20.30 0.79 10.70 1.75 10.70 1.75 10.70 1.94 10.70 2.02 10.70 1.75

L𝑠𝑦𝑚 75.80 46.49 69.40 37.06 62.30 28.46 48.20 19.35 47.70 15.68 16.00 2.69 19.60 6.47 40.00 21.55 78.60 61.12 93.70 86.03

BNC 41.00 14.76 39.50 12.66 35.70 7.28 27.90 5.34 27.50 3.84 15.10 2.31 19.30 5.77 23.80 12.22 49.00 32.98 83.60 69.19

BRC 20.30 0.79 20.30 0.79 20.40 0.78 20.30 0.79 20.30 0.79 11.10 1.95 10.70 1.82 12.10 3.20 13.80 4.73 10.70 1.75

SPONGE 86.40 65.49 81.40 55.73 71.70 41.85 55.00 28.61 49.90 22.21 18.40 6.41 2.86 15.08 62.70 41.71 90.50 80.30 97.70 94.59

SPONGE𝑠𝑦𝑚 88.60 77.89 67.60 57.00 63.20 46.35 35.00 20.90 32.20 12.12 19.90 11.34 19.50 20.53 81.60 78.10 95.90 90.92 98.90 97.30

DAEGC 32.20 5.12 32.70 6.75 31.40 5.07 31.20 4.37 29.10 2.90 14.60 14.60 15.90 3.22 17.10 4.38 18.50 7.43 21.80 11.70

DFCN 34.70 6.56 32.60 4.82 30.30 3.45 28.80 3.00 28.50 3.65 14.90 2.37 14.30 2.17 15.70 2.93 16.80 3.74 16.20 3.47

DCRN 48.40 23.18 44.40 18.80 43.70 21.07 37.10 11.40 33.30 10.37 16.70 3.61 19.60 8.18 25.30 12.92 33.50 25.56 48.30 38.44

Dink-net 27.20 2.21 27.00 1.73 27.70 1.87 26.50 1.59 26.40 2.03 14.60 1.80 15.10 2.00 15.20 25.20 16.90 3.47 18.80 4.57

DGCLUSTER 20.30 0.79 20.30 0.79 20.30 0.79 20.30 0.79 20.30 0.79 10.40 1.75 10.60 1.75 10.70 1.75 10.70 1.75 10.60 1.75

MAGI 41.80 10.09 34.10 7.28 30.70 5.78 32.50 5.09 29.5 4.23 16.40 3.43 16.20 3.46 19.60 6.56 20.40 8.99 29.20 14.66

DSGC 95.30 85.40 90.80 73.60 82.80 57.30 66.50 33.50 57.70 23.30 28.70 13.10 64.90 44.80 85.40 71.90 96.90 92.80 99.20 98.10

SSBM (𝑁 , 𝐾 = 5, 𝑝 = 0.01, 𝜂=0) (𝑁 = 1000, 𝐾 , 𝑝 = 0.01, 𝜂 = 0.02)

SSBM 𝑁 = 300 𝑁 = 500 𝑁 = 800 𝑁 = 1000 𝑁 = 1200 𝐾 = 4 𝐾 = 5 𝐾 = 6 𝐾 = 7 𝐾 = 8

Metrics ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

A 28.67 4.62 35.80 11.40 50.62 20.98 71.60 41.06 83.08 58.26 90.70 71.11 68.10 35.95 32.80 9.20 24.70 6.62 20.70 3.74

L𝑠𝑛𝑠 21.67 2.69 21.60 1.78 21.25 1.44 21.20 0.96 21.67 1.48 25.30 0.70 21.20 0.85 17.80 1.29 16.40 1.36 16.00 2.09

L𝑑𝑛𝑠 21.33 3.00 23.60 2.50 24.38 2.16 41.70 16.39 50.42 18.22 60.90 33.87 38.30 12.47 24.20 3.56 18.60 2.17 19.30 2.75

L 25.20 0.59 20.30 0.79 17.10 0.98 15.00 1.55 12.90 1.37 21.33 2.17 21.20 0.94 20.37 0.98 20.30 0.79 20.25 0.66

L𝑠𝑦𝑚 21.00 3.15 30.00 7.47 50.12 20.91 75.80 46.49 83.92 59.47 91.80 73.31 69.40 37.06 32.00 8.85 26.80 7.99 20.80 4.55

BNC 21.67 2.11 25.20 3.08 24.88 1.89 41.00 14.76 54.50 21.56 60.80 31.74 39.50 12.66 25.80 4.61 18.50 1.74 19.10 3.09

BRC 21.00 2.54 20.60 1.45 24.88 1.89 20.30 0.79 20.25 0.66 25.40 0.71 20.30 0.79 17.10 1.02 14.80 1.17 13.00 1.37

SPONGE 21.33 3.07 29.20 11.43 20.50 0.98 86.40 65.49 94.75 83.37 95.70 84.24 81.40 55.73 43.10 20.83 45.30 19.93 23.10 8.97

SPONGE𝑠𝑦𝑚 27.67 7.24 35.20 15.56 82.12 66.43 88.60 77.89 91.33 81.92 94.70 82.10 67.60 57.00 62.90 44.58 32.70 21.65 25.00 10.52

DAEGC 26.67 3.56 27.00 2.74 27.88 3.47 32.20 5.12 35.42 9.17 39.30 8.00 32.70 6.75 24.30 2.66 20.60 2.24 18.20 2.74

DFCN 28.33 4.95 36.80 6.00 31.50 4.47 34.70 6.56 30.25 3.79 43.70 8.47 32.60 4.82 23.70 1.59 19.40 1.60 17.40 1.95

DCRN 28.00 4.53 33.40 8.69 32.00 10.69 48.40 23.18 49.83 29.91 67.30 39.13 44.40 18.80 33.60 12.89 24.20 6.66 19.80 4.47

Dink-net 29.33 2.74 28.60 2.41 27.38 1.75 27.20 2.21 29.33 2.46 35.00 2.76 27.00 1.73 21.90 1.61 20.70 1.55 18.00 1.74

DGCLUSTER 20.67 2.55 20.80 1.55 20.37 0.98 20.30 0.79 20.25 0.66 25.20 0.59 20.30 0.79 17.00 0.98 14.60 1.18 12.80 1.37

MAGI 33.00 6.11 35.00 5.46 32.38 5.79 41.80 10.09 45.42 14.34 46.70 13.49 34.10 7.28 24.00 2.76 20.60 2.64 17.30 2.16

DSGC 37.70 10.30 54.60 30.80 89.40 71.40 95.30 85.40 98.40 94.40 97.40 90.10 90.80 73.60 70.90 45.10 51.30 23.90 35.90 14.40

Table 2: Improvements in ACC (%) (↑) and NMI (%) (↑) and
reductions in violation ratio (↓) with VS-R.

SSBM (1000, 𝐾, 0.01, 0.02) (1000, 5, 0.01, 𝜂) (1000, 10, 𝑝, 0.02)

SSBM 𝐾 = 5 𝐾 = 6 𝜂 = 0.04 𝑝 = 0.01 𝑝 = 0.02

Metrics ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

A -12.10 1.49 15.00 15.89 13.70 0.74 9.00 3.42 19.80 27.24

L𝑠𝑛𝑠 61.11 55.75 39.10 25.88 56.10 47.02 5.10 2.54 51.10 40.57

L𝑑𝑛𝑠 44.20 44.28 33.10 24.69 45.50 41.77 2.50 1.90 46.10 38.18

L 0.10 -0.01 -0.1 0.00 0.10 -0.01 0.00 0.00 0.00 0.00

L𝑠𝑦𝑚 12.80 19.74 25.10 19.78 16.40 22.15 3.80 3.84 45.70 36.68

BNC 42.70 43.87 32.10 24.72 41.70 41.18 2.00 26.80 47.20 39.31

BRC 0.1 -0.01 -0.1 -0.04 0.00 0.00 -0.7 -0.2 -0.3 -0.06

SPONGE 2.70 4.35 14.70 8.30 5.60 6.38 0.30 0.50 29.40 24.15

SPONGE𝑠𝑦𝑚 17.10 9.34 9.70 8.99 12.40 3.64 5.10 3.71 25.40 22.50

violation ratio 2.72 1.18 3.48 0.46 0.3

graphs, displayed in the bottom row, exhibit clearer clustering

boundaries than those of the original graphs in the top row.

5.5 Impact of Signed Encoder to Clustering

To address RQ4, we developed two variants of DSGC encoder,

including DSGC w/o (−Ā−) that replaces (−Ā−) with (Ā−), and
DSGC w/ EEF that incorporates the “the enemy of my enemy is my
friend (EEF)” principle from Balance Theory to DSGC. Both variants

and DSGC used the layer number 𝐿 = 2.

0 50 100 150 200 250

0.4

0.6

AC
C

DSGC
w/o ( A )
w/ EEF 

0 50 100 150 200 250
Epochs

0.2

0.0

So
EN

DSGC
w/o ( A )
w/ EEF 

Figure 5: The impact of the term (−Ā−) and “EEF” principle
on ACC (%) (Top) and SoEN (Bottom).

The positive and negative representations of DSGC w/ EEF are

Z+
eef = Z+ + (Ā−)2Z+(0)

; Z−
eef = Z−

where Z+
and Z−

are the posi-

tive and negative representations computed by Eq. 8 in DSGC. Sim-

ilarly, the positive and negative embeddings of DSGC w/o (−Ā−)
are Z+

−𝑎 = Z+
; Z−

−𝑎 = −Z− . . We define a metric, SoEN, to measure

the distance between nodes linked by negative edges:

SoEN =
|E+ |
|E− | ·

∑
𝑒𝑖 𝑗 ∈E− 𝑠 (z𝑖 , z𝑗 )∑
𝑒𝑖′ 𝑗 ′ ∈E+ 𝑠 (z𝑖′ , z𝑗 ′ )

,

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

where 𝑠 (·, ·) is the inner product, indicating the similarity between

two nodes. Ideally, SoEN is a negative value and a lower SoEN
indicates a greater distance between nodes connected by nega-

tive edges and a clearer clustering boundary. Fig. 5 illustrates the

ACC and SoEN of DSGC and its variants. The results show that:

(i) DSGC consistently outperforms its variants. Incorporating the

“EEF” principle or altering the sign of (−Ā−) significantly impacts

clustering performance because DSGC achieves lower SoEN along

with epochs than its variants. This demonstrates its advantage in

separating nodes linked by negative edges, leading to clearer clus-

tering boundaries and larger inter-cluster variances. (ii) The term

(−Ā−) has higher impact than the inclusion of EEF, suggesting the

original negative edge handling in DSGC is critical for maintaining

clear cluster separations.

(a) BNC (b) SPONGE (c) SPONGE𝑠𝑦𝑚 (d) Ours

Figure 6: Visualization of clustering results from different

algorithms. The ground truth class number is 5.

5.6 Visualization

We utilized t-SNE to visualize the embeddings produced by DSGC

and several strong baselines, including BNC [5], BRC [5], SPONGE [6],

and SPONGE𝑠𝑦𝑚 [6], on SSBM (𝑁 = 1000, 𝐾 = 5, 𝑝 = 0.01,

𝜂 = 0.02) in Fig. 6. Both BNC and BRC exhibit mode collapse,

where most nodes are grouped into one or a few clusters. SPONGE

and SPONGE𝑠𝑦𝑚 show improved clustering structures. However,

SPONGE lacks a clear boundary between clusterswhile SPONGE𝑠𝑦𝑚

appears to form 6 clusters with a central cluster where nodes from

different true clusters are mixed. This indicates its potential issue

with handling nodes connected by negative edges, which are typi-

cally located at cluster boundaries. In contrast, DSGC successfully

pushes nodes linked by negative edges apart, effectively eliminat-

ing the central cluster phenomenon in SPONGE𝑠𝑦𝑚 . This result is

attributed to the exclusion of the “EEF” principle and the incorpo-

ration of the term (−A−) in the graph encoder.

5.7 Unlabeled Graphs

We also evaluated DSGC on unlabeled real-world signed graphs,

S&P1500 [6] and Rainfall [6], comparing it against three baselines,

BRC [5], BNC [5], and SPONGE_sym [6]. The adjacency matrices

of these graphs were sorted by predicted cluster membership to

visually assess clustering outcomes.

Rainfall. Following [6], we analyzed the clustering structures

for 𝐾 = {5, 10} in Fig. 7, where blue and red denote positive and

negative edges, respectively
2
. Both BRC and BNC fail to identify

the expected number of clusters, resulting in model collapse. In

contrast, DSGC successfully identifies the specified clusters (5 or 10)

2
Darker blue diagonal blocks indicate more cohesive clusters, while darker pink non-

diagonal blocks signify stronger negative relationships between clusters, enhancing

the clarity of the clustering semantics.

and exhibits higher ratios of positive internal edges and stronger

negative inter-cluster edges compared to SPONGE, indicating more

cohesive and well-defined clusters.

(a) BRC (b) BNC (c) SPONGE (d) Ours

(e) BRC (f) BNC (g) SPONGE (h) Ours

Figure 7: Sorted adjacency matrix for the Rainfall dataset

with 𝐾 = 5 (top row) and 𝐾 = 10 (bottom row).

S&P1500. Fig. 8 shows the clustering structures for 𝐾 = {5, 10}.
BRC and BNC suffer model collapse, placing most nodes into a sin-

gle large, sparse cluster. In contrast, DSGC produces clear, compact

clusters with significantly higher ratios of positive to negative inter-

nal edges than the entire graph, indicating more effective clustering

that even surpasses SPONGE in identifying relevant groupings.

(a) BRC (b) BNC (c) SPONGE (d) Ours

(e) BRC (f) BNC (g) SPONGE (h) Ours

Figure 8: Sorted adjacencymatrix for S&P1500 with𝐾 = 5 (top

row) and 𝐾 = 10 (bottom row).

6 CONCLUSION

In this paper, we introduce DSGC, a novel deep signed graph clus-

tering method, to enhance the clarity of cluster boundaries by

effectively utilizing positive and negative edge connections for

node partitioning. Existing approaches generally rely on the Social

Balance Theory, which is primarily suitable for 2-way clustering.

In contrast, DSGC leverages the Weak Balance Theory to address

more general 𝐾-way clustering without the need for explicit labels.

DSGC first introduces two pre-processing techniques, VS-R and DA,

to denoise and structurally enhance signed graphs before clustering.

Then, DSGC constructs a clustering-oriented signed neural network

that produces more discriminative representations, specifically for

nodes linked negatively. By optimizing a non-linear transformation

for node clustering assignments, DSGC significantly outperforms

existing methods, establishing clearer and more meaningful cluster

distinctions in complex multi-cluster scenarios.
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A Sociological Theories

The study of clusterability in signed graphs can be traced back to

the foundational Social Balance Theory [14], stating that a signed

undirected network without attributes can naturally exhibit a global

structure conducive to 2-way clustering.
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Figure 9: Illustrations of sociological theories. Triads in boxes

are considered as balanced andweakly balanced, respectively.

(a) 2-way clustering (b) 3-way clustering

Figure 10: Illustrative comparison of Balance and Weak Bal-

ance Theory in signed graph clustering. (a) 2-way clustering.

The orange triangle proves the principle “the enemy of my
enemy is my friend”. (b) 𝐾-way (𝐾 = 3) clustering. The blue

triangle proves the principle “the enemy of my enemy might
be my enemy”.

Theorem 1 (Social Balance Theory). The signed network
is balanced if and only if (i) all the edges are positive, or (ii) the node
set can be partitioned into two mutually exclusive subsets, such that
all edges within the same subset are positive and all edges between
the two subsets are negative.

Social Balance Theory induces four fundamental principles: “the
friend of my friend is my friend (FFF)”, “the enemy of my friend is
my enemy (EFE)”, “the friend of my enemy is my enemy (FEE)”, and
“the enemy of my enemy is my friend (EEF)”. A signed network is

balanced if it does not violate these principles. For example, triads

with an even number of negative edges are balanced, as shown by

the first two triads in Fig. 9(a), which have 0 and 2 negative edges,

respectively. These principles are traditionally applied to 2-way

clustering.

To accommodate 𝐾-way clustering, [7] proposes Weak Balance

Theory, a relaxed version of Social Balance Theory.

Theorem 2 (Weak Balance Theory). The signed network is
weakly balanced if and only if (i) all the edges are positive, or (ii) all
nodes can be partitioned into 𝐾 ∈ N+ disjoint sets, such that positive
edges exist only within clusters, and negative edges exist only between
clusters.

Conceptually, Weak Balance Theory replaces the “EEF” principle
in Social Balance Theory with “the enemy of my enemy might be
my enemy (EEE)”. Accordingly, the first three triads in Fig. 9(b) are

considered weakly balanced. Importantly, the “EEE” principle, ap-
plicable for 𝐾-way (𝐾 > 2) clustering, allows nodes in a triangle to

belong to three different clusters (e.g., the blue triangle in Fig. 2(b)),

illustrating a relaxation of the stricter Social Balance Theory.
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Comparison of Social Balance Theory and Weak Balance

Theory. The partition {C1, . . . , C𝐾 } of a signed graph G satisfying

both theories can be uniformly defined such that the following

conditions hold:{
A𝑖 𝑗 > 0 (𝑒𝑖 𝑗 ∈ E) ∩ (𝑣𝑖 ∈ C𝑘 ) ∩ (𝑣 𝑗 ∈ C𝑘 )
A𝑖 𝑗 < 0 (𝑒𝑖 𝑗 ∈ E) ∩ (𝑣𝑖 ∈ C𝑘 ) ∩ (𝑣 𝑗 ∈ C𝑙 ) (𝑘 ≠ 𝑙)

(17)

where A𝑖 𝑗 is the weight of edge 𝑒𝑖 𝑗 and 0 < 𝑘, 𝑙 < 𝐾 . However, the

“EEE” principle is specific to 𝐾-clusterable (𝐾 > 2) networks (e.g.,

Fig. 10(b)) and does not appear in 2-clusterable systems (Fig. 10(a)).

Recent literature [8, 16, 17, 24, 24, 38, 43] has primarily leveraged

Social Balance Theory principles to improve node representations

for signed graphs, potentially overlooking the broader applicability

of Weak Balance Theory in datasets with more than 2 antagonistic

groups, especially when explicit labels are lacking. Our work aims

to fully explore Weak Balance Theory and its principles in the

design of a signed graph encoder for 𝐾-way clustering.

B Analyzing the impact of the signed encoder

to node representations and clustering

boundary

In this section, we specifically analyze the principles of Weak Bal-

ance Theory implied in positive and negative aggregation functions

(Eq. (9) and Eq. (10)) and the term (−Ā−) in Eq. (10) for the perspec-

tive of their impact to the node representations and the clustering

boundaries.

The term (−Ā−). The minus sign "−" helps push nodes linked

by negative edges further apart in the latent space. For example,

in Fig. 11 (a), the node 𝑢 has three “friend neighbors”, 𝑣1, 𝑣2, and 𝑣3.

The positive embedding 𝑢+ of 𝑢 is placed at the mean of these three

“friend neighbors” according to Eq. (9), thus narrowing the distance

between them and its central node 𝑢. In Fig. 11 (b), the node 𝑢

has three “enemy neighbors”, 𝑣4, 𝑣5, and 𝑣6. "−" in the term (−Ā−
)

indicates that two vertices with a negative edge should be placed

on opposite sides. Then, the negative embedding𝑢− is placed at the

mean of −𝑣4, −𝑣5, and −𝑣6, which are the opposite coordinates of 𝑣4,

𝑣5, and 𝑣6, respectively. This leads to further distance between𝑢 and

its “enemy neighbors”. As nodes linked negatively are likely to be

located at the cluster boundary, pushing them away from each other

will create clearer cluster boundaries, thus effectively increasing

inter-cluster variances. Section 5.5 quantitatively analyzes the effect

of (−Ā−) on node embeddings.

Positive and Negative aggregation. Eq. (9) aggregates the

node embeddings of all 𝑙-hop "friend neighbors" along the 𝑙-length

positive walk (Dfn 1), implying the principle “the friend of my friend
is my friend (FFF)” and its transitivity. It pulls “friend neighbors”
within 𝐿-hop toward the central node, thus reducing intra-cluster

variances. Eq. (10) aggregates the node embeddings of all 𝑙-hop
“enemy neighbors” along the 𝑙-length negativewalk (Dfn 1), implying

the principles of “the enemy of my friend is my enemy (EFE)”, “the
friend of my enemy is my enemy (FEE)”, and the transitivity of

“FFF”. Importantly, we no longer consider the specific principle “the
Enemy of my Enemy is my Friend (EEF)” of Social Balance so that the
distance between nodes linked negatively can effectively increase,

which can be verified by quantitatively comparing our DSGC and

its variant that incorporates “EEF”. Taking a signed graph with

��

�� ��

�
�+

(a) Eq. (9)

�� ��

�

-��

−��−��

�−

��

(b) Eq. (10)

Figure 11: Impact of the term (−Ā−) in Eq. (10) when both 𝜏+

and 𝜏− are 0. (a) The positive embedding 𝑢+ is placed at the

mean of its “friend neighbors”, including 𝑣1, 𝑣2, and 𝑣3. (b) Due

to "-" in the term, the negative embedding 𝑢− is placed at the

mean of its “enemy neighbors’” antipodal points, including
−𝑣4, −𝑣5, and −𝑣6, resulting in 𝑢− further away from 𝑣4, 𝑣5,

and 𝑣6.

𝐿 = 2 as an example, Fig. 12 illustrates our positive and negative

aggregation rules in Eq. (9) and (10).

��

� = 1
� = 2

��
+ (�)

��
− (�) ��

− (�)

��
+ (�)

Signed Graph

pos. aggregator

neg. aggregator

Figure 12: The illustration of positive and negative aggrega-

tions in Eq. (9) and Eq. (10) on a signed graph with the central

node 𝑣𝑖 and its 2-hop neighbors.

C Hyperparameter sensitivity analysis

This section explores the sensitivity of DSGC’s performance to

variations in its hyperparameters, specifically focusing on 𝛿+, 𝛿− ,
𝑚+

, and𝑚−
. 𝛿+, 𝛿− are thresholds that determine the confidence

levels for nodes being classified as effective friends or effective ene-
mies, respectively.𝑚+

and𝑚−
control the augmentation of positive

and negative edge densities within and across clusters, respectively.

We used synthetic signed graphs from SSBM (1000, 5, 0.01, 0.02)

for this analysis. The results illustrated in Fig. 13 show that: (i)

Optimal performance is achieved when both 𝛿+ and 𝛿− are set to 1.

Increasing 𝛿+ generally worsens accuracy (ACC) as less noisy edges

are effectively refined. (ii) Both excessively high and low values of

𝑚+
degrade clustering performance due to imbalances in capturing

local versus more extended neighborhood information. Setting𝑚+

to 3 and𝑚−
to 2 achieve optimal performance.
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Table 3: Performance comparison of signed graph clustering on SSBM with ARI (%) and F1 (%). Bold values indicate the best

results; underlined values indicate the runner-up.

SSBM (N=1000, K=5, p=0.01, 𝜂) (N=1000, K=10, p, 𝜂 = 0.02)

SSBM 𝜂 = 0 𝜂 = 0.02 𝜂 = 0.04 𝜂 = 0.06 𝜂 = 0.08 p=0.01 p=0.02 p=0.03 p=0.04 p=0.05

Metrics ARI F1 ARI F1 ARI F1 ARI F1 ARI F1 ARI F1 ARI F1 ARI F1 ARI F1 ARI F1

A 41.66 71.58 35.90 68.26 28.09 62.14 12.03 41.74 9.94 43.98 0.77 16.13 3.01 21.32 16.85 43.04 60.21 79.80 86.91 93.91

L𝑠𝑛𝑠 0.01 10.17 0.01 10.36 0.01 9.01 0.00 8.36 0.00 8.08 0.00 8.17 0.11 11.34 1.68 13.48 3.40 11.20 15.78 25.01

L𝑑𝑛𝑠 15.11 31.92 11.42 30.52 5.32 24.17 6.11 24.47 3.05 21.12 0.62 12.63 2.14 18.09 6.26 27.56 23.36 45.17 67.10 83.40

L 0.00 7.29 0.00 7.29 0.00 7.29 0.00 7.29 0.00 7.29 0.00 3.22 0.00 3.22 0.00 3.22 0.00 3.21 0.00 3.22

L𝑠𝑦𝑚 48.56 75.91 38.62 69.37 28.83 62.26 16.16 48.49 14.01 47.88 0.49 15.91 2.41 19.64 14.66 39.91 58.49 78.69 86.48 93.69

BNC 14.55 35.93 12.32 32.50 6.80 29.86 4.56 23.78 1.67 22.18 0.17 13.06 2.31 18.78 6.09 23.47 24.89 48.76 67.28 83.51

BRC 0.00 7.29 0.00 7.29 0.00 7.48 0.00 7.29 0.00 7.29 0.00 3.88 0.00 3.22 0.04 5.56 0.50 6.40 0.00 3.22

SPONGE 68.90 86.39 58.65 81.42 41.36 71.73 24.28 50.20 17.22 45.82 1.61 15.17 8.25 28.01 35.52 6.31 80.11 90.48 94.94 97.69

SPONGE𝑠𝑦𝑚 71.34 89.38 46.42 63.15 38.31 58.64 14.79 21.07 9.02 18.91 1.64 17.44 7.94 9.90 67.53 79.43 90.97 95.93 97.56 98.90

DAEGC 3.66 27.98 5.27 26.81 3.65 26.57 3.09 26.55 2.03 24.29 0.26 11.99 0.73 12.78 1.05 15.40 2.51 16.14 4.93 19.97

DFCN 4.26 35.07 3.10 32.73 2.09 30.42 1.71 27.97 1.92 28.51 0.23 14.74 0.19 13.85 0.39 14.39 0.83 16.48 0.68 15.83

DCRN 11.20 48.95 9.10 44.13 11.34 40.30 4.05 36.09 4.05 34.72 0.84 13.95 2.59 18.99 5.45 25.27 13.70 32.84 24.72 49.26

Dink-net 1.37 26.40 0.93 26.12 1.09 27.03 0.90 26.43 1.15 26.22 0.00 14.37 0.06 15.08 0.22 13.80 0.83 15.85 1.54 15.56

DGCLUSTER 0.00 7.29 0.00 7.29 0.00 7.29 0.00 7.29 0.00 7.29 0.00 2.63 0.00 3.02 0.00 3.22 0.00 3.22 0.00 3.02

MAGI 9.47 39.24 6.69 28.48 4.42 28.25 4.03 30.40 3.09 26.75 0.79 13.83 1.03 14.45 2.59 19.62 4.06 20.18 7.98 29.16

DSGC 88.50 94.30 78.30 90.80 61.60 82.80 34.40 66.40 23.50 57.60 6.90 29.10 38.40 65.30 70.40 85.30 93.20 96.90 98.40 99.40

SSBM (𝑁 , 𝐾 = 5, 𝑝 = 0.01, 𝜂 = 0) (𝑁 = 1000, 𝐾 , 𝑝 = 0.01, 𝜂 = 0.02)

SSBM 𝑁 = 300 𝑁 = 500 𝑁 = 800 𝑁 = 1000 𝑁 = 1200 K=4 K=5 K=6 K=7 K=8

Metrics ARI F1 ARI F1 ARI F1 ARI F1 ARI F1 ARI F1 ARI F1 ARI F1 ARI F1 ARI F1

A 0.64 25.13 6.24 35.70 15.11 51.42 41.66 71.58 62.24 83.10 76.81 90.69 35.90 68.26 6.44 31.68 3.45 24.20 1.48 19.77

L𝑠𝑛𝑠 0.00 11.42 0.01 11.00 0.02 9.15 0.01 10.17 0.04 10.54 0.00 10.81 0.01 10.36 0.00 7.98 0.01 9.90 0.07 11.16

L𝑑𝑛𝑠 0.01 9.36 0.27 17.36 0.46 15.22 15.11 31.92 16.88 49.98 32.63 53.01 11.42 30.52 2.10 18.55 0.77 15.11 0.96 16.26

L 0.00 9.95 0.00 12.35 0.00 7.44 0.00 7.29 0.00 7.18 0.00 10.42 0.00 7.29 0.00 5.59 0.00 4.98 0.00 3.59

L𝑠𝑦𝑚 0.02 8.71 4.86 29.81 19.16 50.35 48.56 75.91 63.80 83.91 79.31 91.79 38.62 69.37 6.17 31.87 4.93 26.51 1.96 20.80

BNC 0.00 11.06 0.62 18.09 0.60 15.88 14.55 35.93 21.13 53.83 30.89 53.48 12.32 32.50 3.51 20.71 0.65 15.29 1.34 16.76

BRC 0.00 8.71 0.00 8.92 0.00 7.69 0.00 7.29 0.00 7.18 0.00 10.83 0.00 7.29 0.00 5.76 0.00 4.59 0.00 3.79

SPONGE 0.01 9.38 3.72 20.06 25.22 58.50 68.90 86.39 87.28 94.75 88.84 95.71 58.65 81.42 16.74 35.71 15.30 42.37 3.86 19.64

SPONGE𝑠𝑦𝑚 0.85 22.87 4.65 30.32 58.48 83.23 71.34 89.38 78.18 91.82 86.32 94.70 46.42 63.15 31.01 65.55 9.08 30.05 3.87 19.21

DAEGC 0.63 21.81 0.68 22.89 1.72 22.66 3.66 27.98 6.74 29.28 6.47 36.34 5.27 26.81 1.27 19.82 0.85 15.16 0.80 15.89

DFCN 1.23 26.14 3.94 36.00 2.75 31.70 4.14 34.61 2.34 30.45 6.61 44.18 3.10 32.73 0.72 23.27 0.40 19.14 0.47 17.23

DCRN 0.67 26.21 3.59 33.40 3.50 30.88 11.20 48.95 18.67 50.84 29.98 68.75 9.10 44.13 6.09 31.83 2.61 24.23 1.10 17.04

Dink-net 0.70 28.18 1.33 25.38 0.97 27.12 1.37 26.40 1.72 29.36 2.68 32.11 0.93 26.12 0.60 21.79 0.40 18.95 0.28 16.55

DGCLUSTER 0.01 8.05 0.00 8.30 0.00 7.44 0.00 7.29 0.00 7.18 0.00 10.42 0.00 7.29 0.00 5.39 0.00 4.19 0.00 3.39

MAGI 3.99 31.39 3.74 35.09 4.55 30.30 9.32 38.42 13.19 42.20 13.64 42.45 6.74 27.46 1.52 22.54 1.49 16.92 0.46 15.46

DSGC 6.80 37.40 34.10 66.60 75.40 89.30 88.50 95.30 96.10 98.40 93.20 97.40 78.30 90.80 44.40 70.50 21.10 50.90 10.00 35.90
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Figure 13: Hyperparameter analysis on the signed graph.

D Visualization of signed spectral clustering

after applying VS-R

In addition to numerical analysis, Fig. 14 provides visual evidence

of the impact of VS-R. Utilizing 𝑡-SNE, we compared the embed-

dings of original and denoised graphs learned by strong spectral

methods on SSBM (1000, 5, 0.01, 0.04). We can observe that the

embeddings of new graphs, displayed in the bottom row, exhibit

clearer clustering boundaries than those of the original graphs in

the top row. That is, spectral methods, including BNC, SPONGE,

(a) BNC (b) SPONGE (c) SPONGE𝑠𝑦𝑚

(d) BNC+VS-R (e) SPONGE+VS-R (f) SPONGE𝑠𝑦𝑚+VS-R

Figure 14: Node embeddings of three signed spectral methods

before and after applying VS-R. Different colors represent

different clusters.

and SPONGE𝑠𝑦𝑚 , achieve enhanced clustering performance on

cleaner graph structures after employing VS-R.
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E Implementation Setting

All experiments are implemented on PYtorch. The length of posi-

tive and negative walks 𝐿′ in VS-R is set to 3. The balance parameter

𝜆 in loss L is set to 0.03. The layer number 𝐿 in our graph encoder

is set to 2. Node features X are derived from the 𝐾-dimmensional

embeddings corresponding to the largest 𝐾 eigenvalues of the sym-

metrized adjacency matrix. The hidden dimension 𝑑 is 32 in the our

cluster-specific signed graph clustering. Besides, the hyperparame-

ters sensitivity analysisi of 𝛿+, 𝛿− ,𝑚+
, and𝑚−

in Eq. (5) and Eq. (6)

can be found in App. C. Following [22], we change a signed graph to

an unsigned graph by revising all negative edges to positive edges,

which are inputted to above unsigned graph clustering methods

(DAEGC, DFCN, DCRN, Dink-net, DGCLUSTER MAGI).

F ARI and F1 score of overall performance

This results in ARI and F1 score for DSGC and all baselines are

reported in Table 3. They are generally consistent with the ACC and

NMI results presented in the main text, reinforcing the conclusions

drawn from those analyses. We can observe: (i) Superior perfor-
mance: DSGC still significantly outperforms all baseline models in

ARI and F1 score. (ii) Robustness: DSGC exhibits notably superior

performance on all 20 labeled signed graphs in ARI and F1 score.

This observation highlights the effectiveness and robustness of

our approach regarding 𝜂, 𝑝 , 𝑁 , and 𝐾 . (iii) Comparative analysis:
In terms of ARI and F1 score, while unsigned clustering meth-

ods (DAEGC, DFCN, and DCRN) generally outperform non-deep

spectral methods due to their advanced representation learning

capabilities, DSGC still maintains a significant advantage, confirm-

ing that the specialized design of DSGC is effective for the unique

challenges of signed graph clustering.
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