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Abstract

Out-of-distribution (OOD) 3D relighting requires novel view synthesis under un-
seen lighting conditions that differ significantly from the observed images. Existing
relighting methods, which assume consistent light source distributions between
training and testing, often degrade in OOD scenarios. We introduce MetaGS to
tackle this challenge from two perspectives. First, we propose a meta-learning
approach to train 3D Gaussian splatting, which explicitly promotes learning gen-
eralizable Gaussian geometries and appearance attributes across diverse lighting
conditions, even with biased training data. Second, we embed fundamental physical
priors from the Blinn-Phong reflection model into Gaussian splatting, which en-
hances the decoupling of shading components and leads to more accurate 3D scene
reconstruction. Results on both synthetic and real-world datasets demonstrate the
effectiveness of MetaGS in challenging OOD relighting tasks, supporting efficient
point-light relighting and generalizing well to unseen environment lighting maps.

1 Introduction

3D scene relighting generates novel lighting effects that interact with the observed 3D environment,
with recent advances in learning-based volume rendering offering effective solutions [21, 36, 23, 40,
24, 22, 3, 30]. A typical approach captures a substantial number of multi-view images of a scene
under individual lighting conditions, then trains a NeRF or 3D Gaussian splatting (3DGS) model to
generalize to new point light positions [28, 13, 9, 41, 8]. Notably, such idealized data requirements
are often impractical in real-world scenarios. To simulate a more realistic capturing process, we
build on prior work using a One Light At a Time (OLAT) setup [34, 14, 1], where training data
is collected with a moving point light and a moving camera. Recent studies have further explored
low-cost OLAT capture using a smartphone flashlight as the moving light source [5].

While most OLAT methods assume a coherent lighting distribution between training and testing,
real-world scenarios often involve light sources that are randomly distributed around the scene, which
may result in biased training data. This leads to an out-of-distribution (OOD) issue where test-time
light sources deviate from the training distribution. This OOD relighting presents a more natural and
challenging task, serving as a robust test for evaluating a model’s performance under “truly” novel
lighting conditions. Compared with the standard OLAT setup, it complicates the learning of true
object illumination properties and geometries due to a limited training corpus with entangled, time-
varying lighting and viewing directions and, more critically, spatially biased lighting. As shown in
Figure 1, existing OLAT methods struggle with the OOD relighting task, often producing unrealistic
lighting effects, such as chaotic specular highlights and shadows, due to overfitting to the training
samples. Also, because of the lack of generalizability, when new lighting distributions are introduced,
they typically require full retraining or finetuning to adapt.
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Figure 1: Preliminary results. NRHints [34] and GS3 [1] struggle with out-of-distribution light
positions (as specified in Section 2), as the blurry novel view synthesis results and erroneous normal
predictions indicate. GS3 does not require well-defined surface normals and does not directly output
the normal image.

In this paper, we present two novel techniques to enable better OOD relighting. First, we provide
a pilot study on meta-learning-based 3DGS and introduce MetaGS to mitigate overfitting and
improve the generalizability of the OLAT models. This approach leverages bilevel optimization
techniques to effectively address the challenges associated with limited training data and complex
lighting variations. Specifically, we frame OLAT as a multi-task learning problem, treating rendering
under specific lighting positions as distinct tasks. The core idea is to validate the learned Gaussian
illumination properties under a given lighting condition using data from other lighting conditions.
The resulting second-order gradients of 3DGS parameters can explicitly encourage the model to
generalize to unseen illumination rather than overfitting to specific training samples, as is common
with standard 3DGS loss functions.

Furthermore, MetaGS integrates simple yet fundamental physical priors into Gaussian splatting by
incorporating a learnable Blinn-Phong reflection model [2]. This approach effectively decou-
ples different shading components—diffuse, specular, and ambient—leading to a more physically
grounded understanding of the interactions between objects and lighting in the training data. This
design draws inspiration from prior research [39, 28, 13] indicating that modular and compositional
representations enhance generalization capabilities. The decoupled rendering improves the model’s
ability to generalize to novel lighting conditions, allowing it to independently adjust each shading
component according to the specific lighting scenario.

We evaluate MetaGS on both synthetic and real-world datasets. It supports efficient point-light
relighting under highly constrained training illuminations and significantly outperforms existing
OLAT methods in OOD relighting tasks. We further demonstrate that both meta-learning and the
differentiable Phong model individually contribute to improved generalization. Notably, MetaGS
generalizes well to unseen environment maps, despite being trained exclusively in OLAT scenarios.

2 Preliminaries

Definition and challenges of OLAT. OLAT refers to a specialized setting for 3D reconstruction
and relighting. This involves illuminating the subject with a single point light in sequential exposures,
capturing one image at each light position. Each capture is represented as a tuple {Ot, Vt, Pt}, where
Ot denotes the observed image, Vt represents the camera configuration, and Pt contains lighting
information. In our context, Pt specifies the position of the point light. Unlike the “multiple lights,
multiple cameras” setup, which requires multi-view images captured by multiple time-synchronized
cameras for each lighting condition, OLAT relies on a single camera. This significantly simplifies data
collection, particularly in scenarios with dynamic lighting. The rapidly changing light positions in
OLAT introduce a new challenge for 3D reconstruction. The color of a 3D point can vary significantly,
increasing ambiguity for estimating true object geometries and illumination properties.

Preliminary findings. We summarize existing OLAT relighting methods in Table 1. In the prelim-
inary experiments, we evaluate NRHints [34], the prior art in NeRF-based relighting models. We
observe that it underperforms in testing scenarios with out-of-distribution (OOD) lighting positions,
a feature that we believe should be crucial for relighting methods. Specifically, in Figure 1, the
lighting in the training set is arranged on one side of the hemisphere, while the lighting in the test
set is arranged on the opposite side (cameras are located on both sides). In such cases, NRHints
fails to generate reasonable rendering results, likely due to its implicit modeling of shadows and
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Table 1: Comparison of the OLAT relighting methods.

[35] [5] [6] [34] [1] [12] Ours

Point light ✓ ✓ ✓ ✓ ✓ ✓ ✓
Shadow computation × × ✓ ✓ ✓ ✓ ✓
OOD light × × × × × × ✓

specular reflections. We additionally evaluate a concurrent 3DGS-based approach [1] and observe
similar degraded results under the OOD relighting setup. These findings highlight that understanding
intrinsic illumination properties under arbitrary lighting variations remains a challenging task, as the
model tends to overfit to perspective-constrained observations and fail to leverage enough physical
principles when dealing with unseen lighting distribution.

3 Method

In this section, we present the details of MetaGS for addressing the OOD OLAT learning challenge:
• In Section 3.1, we incorporate physical shading priors within Gaussian splatting via a differentiable

Phong reflection model to decouple mixed illumination components.
• In Section 3.2, we introduce a bilevel optimization scheme to estimate light-independent scene

geometries and intrinsic illumination properties, marking an early effort in volume rendering.
• In Section 3.3, we discuss the entire training pipeline and the implementation details.

3.1 Differentiable Phong Model

Our MetaGS method leverages simple yet generalizable physical priors from the Blinn-Phong
model [19], which captures three fundamental components of light transport: ambient, diffuse, and
specular reflections. The core idea is to disentangle these illumination components by learning the
interactions between (i) the normal vectors of the Gaussian points, (ii) the viewing directions, and
(iii) the ray direction from the point light.

Specifically, the ambient component represents constant environmental illumination, simulating
indirect scattering from surrounding surfaces to establish a baseline brightness level. The diffuse
component, based on Lambertian law, describes light scattering in multiple directions from rough
surfaces. The specular reflection is computed based on the angle between the light direction and the
bisector (h) between the viewing direction (v) and the light direction (l), with a shininess exponent
that represents different degrees of glossiness.

In MetaGS, we extend the original 3DGS by introducing the decoupled computation for different
shading components. As shown in Figure 2, in addition to the basic Gaussian attributes (e.g., position
x, rotation R, scale S, opacity α, and spherical harmonic coefficients f ), each Gaussian point is
further associated with a normal vector n, a 3-channel diffuse color kd, and a 1-channel specular
coefficient ks. The newly added attributes enhance the model’s understanding of lighting effects,
facilitating the learning process of light-independent object geometries. The overall color of a
Gaussian point is determined by:

Lp = La + Ld + Ls = La +
∑
|lights|

(kdId + ksIs), (1)

where k{d,s} and I{d,s} are the colors and intensities of the diffuse and specular components. |lights|=
1 in OLAT. In graphics, zero-order spherical harmonics (SH) coefficients typically represent the basic,
uniform component of a function defined over the sphere, essentially the average or constant part
of a lighting environment. Therefore, we restrict Gaussians’ SH coefficients to zero order, denoted
by f0, corresponding to the ambient color. We compute the diffuse and specular light transports by
multiplying the color and intensity of each component, where the intensities Id and Is are defined as:

Id =
I

r2
max(0,n · l), Is =

I

r2
max(0,n · h)p, (2)

where I denotes the light emitted intensity, which is a global learnable parameter, l denotes the point-
to-light normalized vector, and h = v+l

||v+l|| denotes the bisector of the point-to-camera normalized
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Figure 2: The model design of MetaGS. Our model decomposes the illumination effects by interacting
the learned Gaussian points with rays originating from both the viewer and the light source.

vector v and l. We model the coefficients kd and ks implicitly, where ks is multiplied by the RGB
color of the point light.

Shadow computation. We calculate shadow effects using a BVH-based ray tracing method [8].
Similar to the camera-to-point accumulated transmittance, the received light intensity T light

i represents
the total transmittance of light along the light-to-point ray. It is therefore affected by the opacity of
the surfaces encountered along this path. For each point, we determine light visibility by tracing a
ray from the Gaussian’s center to the light source. Since only the diffuse and specular colors are
influenced by incident light intensity, we update the color of each point by incorporating the light
visibility factor into the diffuse and specular terms from Eq. (1):

Lp = La + T light
i

∑
|lights|

(kdId + ksIs). (3)

This explicit formulation accounts for physics-based shadowing effects, provides strong interpretabil-
ity, and improves generalizability compared to the implicit, high-dimensional shadow modeling
methods. However, integrating this module directly into MetaGS’s pipeline presents challenges.
Under OLAT conditions, learning coherent geometry is challenging, leading to difficulties in accu-
rately separating shadows from the scene. This, in turn, results in erroneous color predictions. The
following meta-learning scheme promotes the mutual learning of scene geometry and appearance,
alleviating the difficulties in learning coherent attributes under varying illuminations.

3.2 Meta-Learned Gaussian Relighting

Existing 3D relighting methods exhibit performance degradation when handling out-of-distribution
relighting, primarily due to overfitting lighting patterns to perspective-constrained observations,
resulting in producing unreasonable lighting components (such as wrong specular and shadows).

To address this, we introduce a meta-learning framework based on bilevel optimization, which has
been shown to effectively bridge the distribution shift between the training and testing domains,
facilitating the generalization of optimized variables to unseen scenarios [4]. This training strategy
can also promote coherent geometry learning in complex OLAT tasks, as shown in the ablation study.
In MetaGS, the intuition of incorporating bilevel gradient update is to mitigate overfitting to specific
light conditions by explicitly simulating test samples with OOD light sources during each gradient
update, thereby improving the model’s ability to generalize to varied lighting scenarios.

As illustrated in Alg. 1, we organize the training processes with different {Ot, Vt, Pt} as multiple
learning tasks. We alternate model training between these tasks, validating the optimized variables
under one lighting condition using data sampled from other conditions. This learning procedure
encourages both the lighting attributes (f, ka, ks) and the geometric attributes (x,n, R, S, α) of the
Gaussian points to converge cohesively.

To simulate test-time conditions, the training data is divided into support (training) and query
(validation) sets. At each iteration, 2m samples are drawn from the training data to form the support
set Dsup

1:m and query set Dquery
1:m (Line 5). Each support sample pairs with a query sample, denoted

by subscript i. During each training step, the model alternates between these tasks in the inner
optimization loop (Lines 6-9) and the outer loop (Line 10).

4



Algorithm 1 Meta-Training for OOD Relighting
1: Input: Training set {Dt}1:T , where Dt = {light position, camera parameters, RGB image}
2: Hyperparameters: Learning rates α, β
3: Initialized parameters: Pretrained Gaussian attributes {θk}, where θk = (x,n, R, S, α, f0, kd, ks)
4: while not converge do
5: Sample disjoint data Dsup

1:m and Dquery
1:m from {Dt}1:T

6: for task i in {1 : m} do ▷ Inner optimization loop
7: θ′i ← θ − α∇θLfinal(θ;Dsup

i )
8: end for
9: {θ} ← {θ} − β

∑m
i=1∇θLfinal(θ

′
i;Dquery

i ) ▷ Outer optimization step
10: end while

Inner optimization loop. In the inner loop, the model is trained on each support set to independently
generate m sub-models, representing the hypothetical estimates θ′i under each lighting condition. All
sub-models start with the same parameters of θ. The light intensity I is a global parameter that is
also learnable and optimized jointly with the Gaussian attributes. It is omitted here for clarity. We
specify the loss function Lfinal in subsequent Section 3.3.

Outer optimization loop. In the outer loop, a global gradient update is performed across all
sampled tasks, updating the Gaussian attributes. We first compute the loss function for each query
sample, Lfinal(·, ·;Dsup

i ), using the corresponding inner-loop model hypotheses θ′i.We then aggregate
the m losses to update the initial θ.This approach, involving task-specific adaptation followed by
a global update, enables the model to learn generalizable representations across varying lighting
conditions.

3.3 Entire Training Pipeline

We employ a three-stage training scheme. The first stage, similar to 3DGS, focuses on training the
core Gaussian attributes, including position x, rotation R, scale S, opacity α, and spherical harmonic
coefficients f . After this stage, the model tends to capture a rough geometry and an average color
across different illuminations, serving as an effective initialization for further refinement. In the
second stage, we incorporate the normal attributes into the optimization process, acknowledging that
learning a Phong model heavily relies on accurate normal estimations. In the final stage, we integrate
the diffuse and specular components, training all parameters concurrently through meta-learning.

Objective functions. We follow 3DGS [10] to compute the deviation of the predicted image
from the ground truth, using an L1 regularization and a D-SSIM term as the RGB loss. We also
employ a sparse loss [9] to encourage the opacity values α of the Gaussian spheres to approach
either 0 or 1, thereby facilitating learning with opaque objects. For normal estimation, we follow
GaussianShader [9] to compute the normal vectors using Gaussian’s shortest axis direction, and
progressively align them with the depth-inferred pseudo-normals.

Implementation details. We implement MetaGS using PyTorch [18]. For optimization, we use the
Adam optimizer [11] with the same parameters as those specified by [10]. Our training procedure
contains three stages: the first stage last for 10k iterations, the second stage last for 5k iterations,
followed by the final meta-learning stage of 10k iterations. All experiments are conducted on a single
NVIDIA RTX 3090 GPU.

4 Experiments

4.1 Experimental Settings

We perform three types of OLAT relighting experiments:

• OOD relighting: We introduce a novel view synthesis setup to assess the generalizability of 3D
relighting models under OOD lighting conditions. The point lights in the training set are positioned
on one side of the upper hemisphere, while the lighting in the test set is placed on the opposite side.

• Camera-light-colocated relighting: This setup mirrors the one used in IRON [35], where the
camera and point light are co-located for each image. Similar to the OOD setting, the colocated
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Figure 3: OOD relighting results on synthetic data. We present rendered novel views and error maps.
While baselines often misrepresent shadows or light-dependent effects (e.g., incorrect shadows in
Plastic Cup), our model better infers surface appearance.

Table 2: PSNR results for OOD relighting. See our Appendix for full comparisons.

Method
Synthetic Real-world

Ball PlasCup RubCup Cat Catsmall CupFabric Fish FurScene Pikachu Pixiu

NRHints [34] 17.25 23.92 27.44 18.04 24.63 24.65 22.57 21.55 24.00 23.03
WildLight [5] 21.73 20.95 24.02 18.65 22.53 24.03 21.47 20.33 19.09 20.22
GS3 [1] 18.84 20.30 24.37 17.66 23.34 25.04 21.12 17.34 24.11 19.63
Ours 26.76 27.54 27.95 26.45 26.44 27.29 24.68 24.82 25.54 25.65

configuration also represents a constrained lighting regime, as the light source is fixed to the camera
pose. For fair comparison, we generate colocated versions of the synthetic scenes accordingly.

• Environment map relighting: We evaluate the generalization of the models exclusively trained in
the OLAT setup to novel view synthesis with unseen environment lighting maps.

We evaluate MetaGS on 3 synthetic scenes and 7 real captured scenes from NRHints [34], featuring a
diverse range of materials, complex object shapes, significant self-occlusion, and intricate shadow
effects. Each image is rendered (or captured) with a unique camera pose and point-light position.
Full details of the datasets are provided in the Appendix.
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Figure 4: OOD relighting results on real-world data. As highlighted with the red boxes, baseline
models struggle with some level of global shading consistency, including color shifts, incorrect
shadows, and floating artifacts. Our approach presents physically plausible specular highlights and
geometrically consistent shadows that closely match ground truths.
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Figure 5: Ablation studies with qualitative results. As shown in the decoupling components, the
meta-learning scheme is essential for learning object illumination properties and geometries. Without
it, the model generates plain lighting effects, particularly for the diffuse and specular components.

For each synthetic scene, we generate a total of 600 OLAT images using Blender, with 500 for training
and 100 for testing, following out-of-distribution or colocated data patterns. For the real-world scenes,
we split the data according to their point light positions to construct out-of-distribution datasets, and
use 600 training images per scene—a significantly smaller subset than the full NRHints dataset.

We compare MetaGS against both NeRF-based and Gaussian-based models, with a particular focus
on the OOD relighting setup. The baseline models include state-of-the-art approaches from the past
two years: GS3 [1], NRHints [34], WildLight [5], Relightable 3DGS [8], GaussianShader [9], and
IRON [35]. The evaluation metrics include PSNR, SSIM [25], and LPIPS [38].

4.2 Results for Out-of-distribution OLAT Relighting

We evaluate MetaGS in scenarios with OOD point light positions to explore its generalizability to
unseen illuminations. The qualitative and quantitative results are respectively presented in Figure 3,
Figure 4, and Table 2. Our model remarkably outperforms the baselines in handling complex light
interactions. For example, in Figure 4, the lighting and shading effects on the cat’s fur are rendered
with high fidelity, while baseline models tend to produce incorrect color tones. Furthermore, as
indicated by the error maps in Figure 3, all of three OLAT baselines tend to provide unrealistic results,
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Figure 6: Relighting with environment maps: Our method, trained under OLAT settings, successfully
generalizes to unseen environmental lighting; while the compared method is trained in an all-light-on
setup that provides multiple lighting conditions per training view, it still fails to generalize to perform
relighting with novel environment maps and exhibits visible artifacts.

especially for regions with significant specular reflections or shadows. Please see our Appendix for
video visualizations on OOD relighting, where baselines’ performance drops as the light enters the
OOD region, while our model provides better relighting results.

The generalizability of MetaGS to OOD illumination stems from two key factors. First, it is due
to the Phong model’s ability to capture the underlying principles of light interaction. For example,
instead of simply viewing specular highlights as the view-dependent color of a point (which is not
generalizable), our method explicitly calculates the interactions of rays and surface normals, enabling
the model to generate accurate highlights even in areas not directly illuminated during training.
Second, meta-learning further enhances generalization by simulating test-time conditions during
training, effectively reducing overfitting to specific illuminations. In the Appendix, we empirically
show that the benefit of meta-learning does not come from a larger batch size.

Table 3: Ablation studies of each model component
for OOD relighting. We show the average results
of all three synthetic scenes.

Method PSNR↑ SSIM↑ LPIPS↓

Full model 27.42 0.9546 0.0505
w/o Meta-learning 19.14 0.8781 0.0892
w/o Shadow 21.53 0.9105 0.0735

Ablation studies. We conduct a series of ab-
lation studies to validate the effectiveness of
the meta-learning scheme as well as the shadow
computing. From Table 3 and Figure 5, we ob-
serve that the proposed meta-learning training
scheme strongly impacts performance. Without
it, the model struggles to converge smoothly and
make unrealistic component estimations, result-
ing in plain rendering quality.

4.3 Generalization to Other Relighting Setups with Constrained OLAT Training

Table 4: Novel view synthesis results in
PSNR under camera-light-colocated relight-
ing setup. Full results in all evaluation met-
rics are included in the Appendix.

Method Ball PlaCup RubCup

IRON [35] 26.99 34.43 36.22
Ours 38.72 36.90 38.89

Camera-light-colocated relighting. We evaluate
MetaGS in the camera-light-colocated setup, as intro-
duced by IRON [35]. Like the OOD scenario, the colo-
cated setup also imposes limited lighting diversity, as
the point light is tied to the camera’s position through-
out training. Quantitative results in Table 4 show that
MetaGS outperforms IRON, achieving more accurate
illumination inference under new point positions, and
generating fewer rendering artifacts. Visualizations are
presented in the Appendix.

Few-light and Fixed-elevation-light Relighting. To evaluate MetaGS under constrained illumina-
tion conditions, we additionally design the following settings that vary in light distribution, coverage,
and sparsity, simulating more realistic capture scenarios. In the few-light setting, only three training
lights are sampled, each paired with 200 camera views in a one-light–multi-camera configuration.
Two variants are considered: (1) interpolation, where training lights are uniformly distributed over
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Table 5: Novel view synthesis results in the few-light and fixed-elevation relighting setup.

Method
Fixed-elevation Few lights (Interp) Few lights (Extrap)

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NRHints [34] 25.76 0.9633 0.0402 18.05 0.8823 0.0911 18.62 0.8960 0.0681
GS3 [1] 22.93 0.9393 0.0580 19.92 0.9165 /0.0693 18.06 0.8781 0.0920
Ours 27.48 0.9590 0.0371 24.90 0.9476 0.0462 23.94 0.9369 0.0533

Table 6: Results of the proposed meta-learning scheme integrated with various relighting models.
PSNR values demonstrate the generalization performance, with ∆ (Meta–Base) indicating the
improvement from applying meta-learning.

Method Ball PlasCup RubCup Cat Catsmall CupFabric Fish FurScene Pikachu Pixiu Avg. ∆

Ours 26.76 27.54 27.95 26.45 26.44 27.29 24.68 24.82 25.54 25.65 26.31 –

NRHint 17.25 23.92 27.44 18.04 24.63 24.65 22.57 21.55 24.00 23.03 22.71 –
+meta 17.70 24.57 28.18 19.75 25.44 25.83 24.04 21.90 24.51 24.18 23.61 0.90

RNG 20.22 22.72 24.94 NaN 24.20 25.09 NaN 20.81 23.55 NaN 23.08 –
+meta 22.65 23.93 25.88 21.94 25.07 26.52 23.66 21.75 24.90 22.75 23.91 1.31

GS3 18.84 20.30 24.37 17.66 23.34 25.04 21.12 17.34 24.11 19.63 21.18 –
+meta 21.54 23.18 26.15 21.55 25.16 26.96 24.38 21.22 25.02 22.98 23.81 2.63

the hemisphere and test lights are randomly sampled from the full hemisphere, and (2) extrapolation,
where training lights are restricted to one side forming a triangular configuration, and test lights are
sampled from the opposite side. In the fixed-elevation-light setting, all training lights are placed at a
fixed elevation of 45◦, uniformly distributed along a horizontal ring, while test lights are drawn from
elevation bands outside this range (i.e., ≤ 30◦ or ≥ 55◦), simulating fixed-height capture trajectories.
We report average results on three synthetic scenes in Table 5. Our method consistently achieves
strong performance across various lighting settings. In contrast, both baselines degrade significantly
under sparse or biased lighting. In particular, NRHints fails to reconstruct the Ball scene under the
Three Lights setting, producing a collapsed geometry, which is similar to the failure case described in
the paper’s OOD setting. These results demonstrate that MetaGS not only generalizes well to unseen
lighting conditions, but also remains robust under extremely limited or clustered illumination. This
highlights its practical applicability in real-world relighting scenarios where lighting is sparse, biased,
or expensive to capture.

Environment map generalization. Our model generalizes effectively to environment map relight-
ing. We approximate global illumination by importance sampling point lights from the environment
map based on their pixel intensities. Notably, for our model in particular (unlike the compared
methods), the sampled light directions at test time may follow a distribution different from those
encountered during training, presenting a significant challenge for OOD generalization. Instead of
assuming infinite light source distance, we simulate distant lighting by placing point lights along envi-
ronment directions at a fixed distance (twice the scene radius). We compare our method with R3G [8]
and GaussianShader [9]. Both methods fail to converge when trained directly on out-of-distribution
(OOD) data, so we construct training data that covers the full hemispherical illumination space.
Even with this setup, GaussianShader still fails to converge, while Relightable 3DGS struggles with
the OLAT learning task and exhibits noticeable artifacts. As shown in Figure 6, MetaGS produces
diverse and visually plausible relighting results under complex environment maps, demonstrating its
robustness and generalization capability.

To further validate MetaGS’s capability in handling complex lighting conditions, we conduct exper-
iments with test sets containing 2–3 light sources. We also present the results for free-viewpoint
relighting with in-distribution point light positions. Please refer to the Appendix for details.

4.4 Meta-Learning with Different Relighting Models

The proposed meta-learning scheme is inherently applicable to other rendering frameworks. To
evaluate the generality of the proposed meta-learning scheme, we integrate it into several alternative
relighting models across diverse families, including both NeRF-based and 3DGS-based methods,

9



and spanning from BRDF-based to fully implicit formulations, including NRHints [34], GS3 [1] and
RNG [7]. The PSNR results are summarized in Table 6.

While meta-learning consistently enhances OOD generalization across various rendering models, its
benefits are most pronounced when paired with explicit geometric modeling and shading methods.
Notably, the meta-learning approach yields the largest improvement on our Gaussian-Phong rendering
model. This is because the Phong model’s simple yet physically grounded design introduces strong
inductive biases that enable meta-learning to capture generalized scene structural information even
under limited lighting conditions.

5 Related Work

Recent differentiable volume rendering techniques, including NeRF-based [17], SDF-based [32, 33],
and 3DGS-based [10] methods, have significantly improved the quality and efficiency of novel view
synthesis for 3D scenes. NeRF-based methods utilize deep neural networks to model volumetric scene
functions, encoding color and density to synthesize high-quality images from sparse viewpoints [17,
15, 37]. However, these approaches typically require substantial training time. 3DGS significantly
reduces both training and inference time. It converts point cloud data into a continuous volumetric
representation by applying Gaussian kernels to point cloud data, facilitating rendering and further
processing. This technique is now widely adopted for efficient 3D and 4D reconstructions across
varied data types [28, 9, 16, 26, 31].

The task of 3D relighting involves altering the illumination in a 3D scene while maintaining its
geometry. It requires decomposing materials and lighting of a scene from multiple images, which is
challenging due to its high-dimensional nature. Recent advances in volume rendering have introduced
various solutions for this task, including those based on neural fields [39, 27, 22, 20, 21, 13, 23, 22, 30]
and the methods based on Gaussian point clouds [28, 9, 8, 36]. A limitation of these methods is that
they require a substantial volume of multi-view images captured under individual lighting conditions,
making them impractical in real-world scenarios. Several studies have proposed NeRF-based 3D
relighting techniques within the OLAT framework [29, 39, 34], which greatly reduce the demands
on training data. Nonetheless, these techniques tend to be computationally intensive because of
NeRF’s inherent complexity in the volume rendering process. In parallel, concurrent 3DGS-based
approaches [6, 1] have also explored the OLAT relighting challenge. Despite their efforts, these
approaches still face difficulties when dealing with lighting conditions not encountered during training,
similar to the limitations observed in NeRF-based methods.

In contrast, our method addresses this issue by incorporating specific physical priors, represented
by the Phong reflection model, into the Gaussian splatting framework. We have also designed a
meta-learning approach to enhance the method’s generalizability to OOD relighting scenarios.

6 Conclusions and Limitations

In this paper, we explored a novel and challenging problem: out-of-distribution (OOD) 3D relighting.
To address this, we proposed MetaGS, which builds on Gaussian splatting and presented a novel
bilevel optimization-based meta-learning framework that explicitly promotes generalizable Gaussian
geometry and appearance learning. This meta-learning formulation allows the model to adapt to
varying light sources and viewpoints, even when the training data is biased or sparsely sampled in
the lighting space. Furthermore, MetaGS incorporates a differentiable Blinn-Phong reflection model
within Gaussian splatting, effectively disentangling lighting effects into ambient, diffuse, and specular
shading components, thereby improving the physical realism and reconstruction fidelity under diverse
lighting. Extensive experiments on both synthetic and real-world datasets demonstrate that MetaGS
significantly outperforms existing OLAT relighting approaches under OOD relighting conditions. It
also achieves strong generalization to complex environment maps.

Despite these advances, several limitations remain. An open challenge is ensuring the robustness
of our approach under more complex lighting conditions. Moreover, our current framework only
accounts for direct illumination; incorporating indirect lighting could further enhance the quality of
relighting. Additionally, the current model assumes simple Phong reflection, which may limit fidelity
when modeling materials with strong subsurface scattering or anisotropic reflectance.
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to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
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material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See 4 for the discussion of statistical significance.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 3.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics in
all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The ability to synthesize realistic lighting effects and relight scenes from novel
viewpoints could enhance the quality of visual media, including movies, video games, and
virtual reality experiences. This could lead to more immersive and engaging entertainment,
thereby benefiting society by providing richer visual experiences. However, the ability
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media.
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve the responsible release of data or models that have
a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our dataset includes assets modified from licensed assets acquired from Adobe
Stock. According to Adobe’s Terms of License, we have obtained the full Adobe Stock
license for our dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is only used for writing, editing, or formatting purposes.
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• The answer NA means that the core method development in this research does not
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