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ABSTRACT

Deep neural policies have gained the ability to learn and execute sequences of
decisions in MDPs that involve complex and high-dimensional states. Despite the
growing use of reinforcement learning in diverse fields from language agents to
medical and finance, a line of research has focused on constructing reward functions
by observing how an optimal policy behaves, with the underlying premise that
this will result in policies that are aligned with the intended outcome. In this
line of research, several studies have proposed algorithms for learning a reward
function or an optimal policy from observed optimal trajectories, with the goal
of achieving sample-efficient, robust, and aligned policies. In this paper, we
analyze the implications of learning with reward beliefs in high-dimensional state
representation MDPs and we demonstrate that standard deep reinforcement learning
yields more resilient and value-aligned policies when compared to learning from
the behaviour of other policies in MDPs with complex state representations.

1 INTRODUCTION

Learning from raw high dimensional state observations became possible with the utilization of effec-
tive function approximators (Mnih et al.| 2015} |2016; |Kapturowski et al., 2023)). This enhancement
in the capabilities of reinforcement learning agents allowed these policies to be deployed in different
fields from autonomous vehicles to healthcare (Hargrave et al.,[2024) and language agents (Jaech
et al.}2024; Trinh et al.,[2024) with high-stake decision making tasks. One of the main limitations
of reinforcement learning is to require a reward function to be able to learn an optimal policy for a
given task. In some cases, constructing a reward function might be substantially more challenging
than learning one, as in language models, i.e. reinforcement learning from human feedback, that
requires to learn human rewards to align these models with human human values (Glaese et al.,
2022; Jaech et al., 2024)). To solve this problem a line of research focused on learning the reward
function solely based on observing expert trajectories, and several proposed to directly learn the
optimal policy from the expert demonstrations (Sammut et al.l [1992; Hayes| [1994). Even further,
recent work demonstrated that learning from demonstrations is substantially more sample-efficient
than deep reinforcement learning (Garg et al., 2021).

While deep reinforcement learning policies are vastly utilized in manifold settings, several concerns
have been raised on the robustness and adversarial weaknesses of these deep neural policies (Huang
et al., 2017 |Gleave et al., [2020; [Korkmaz) 2022} [2023)). In particular, it has been shown that
deep reinforcement learning policies can be manipulated via adversarial perturbations introduced
to their state observations. It has been discussed that the algorithms that target solving these issues
further introduce computational hardness (Garg et al.||2020), decrease in accuracy (Bhagoji et al.|
2019), induce fundamental trade-off between sensitivity and invariance (Tramer et al.| 2020), and
generalization problems (Korkmaz| 2023). The non-robustness and volatilities of deep reinforcement
learning limits the capabilities of policies trained in high dimensional state representation MDPs and
raises safety concerns. The effects of some of these safety concerns can even be vividly observed in
real time, in real life to have detrimental consequences. Therefore, in our paper we focus on analyzing
robustness and seek answers to the following questions:

i. How do the state-of-the-art algorithms that focus on learning via emulating affect the policy
robustness compared to standard vanilla training algorithms?
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ii. What are the costs of learning from expert demonstrations compared to learning via explo-
ration?

iii. Does learning without rewards in high-dimensional state representation MDPs yield learning
non-robust features independent from both the MDP and algorithm?

Hence, to investigate these questions further in this paper we focus on the alignment problem
and vulnerabilities of policies that can learn without a reward function within both the adversarial
formulations and natural changes and make the following contributions:

* We investigate the robustness of the state-of-the-art deep neural policies that focus on
learning via emulating against adversarial directions independent from both the algorithms
the policies are trained with and the MDPs the policies are trained in. Our paper is the first
one to focus on adversarial vulnerabilities of deep neural policies that can learn without a
reward function (i.e. imitation learning and inverse reinforcement learning).

* We provide a theoretical analysis on what causes these adversarial vulnerabilities, and intro-
duce a mathematically rigorous investigation that explains this phenomenon that learning
from expert demonstrations comes with a great cost compared to learning from exploring.
Learning without rewards causes sequential decision making processes to be extremely
sensitive towards slight deviations from their optimal trajectories.

* We compare the robustness of standard vanilla trained policies and the policies that can learn
without a reward function in high dimensional state representation MDPs. We demonstrate
that vanilla trained deep reinforcement learning policies are significantly more robust and
aligned compared to algorithms proposed to learn without the presence of a reward function.

* Finally, our results reveal that despite a significant decrease in performance, the inverse
deep neural policy believes that it in fact received larger rewards than it did before, which
demonstrates that the correlation between predicted rewards and true rewards obtained from
the MDP is utterly broken, and there is a clear misalignment problem which reflecting that
there is a gap between what the policy actually did and what the policy itself believed what
it did.

2 RELEVANT WORK AND BACKGROUND

In reinforcement learning the environment is given by a Markov decision process (MDP) M =
{S, A, P, po,r,v} where S is the set of states, A is the set of actions, P(s’ | s, a) is the probability of
transitioning to state s’ given that action « is taken in state s, pg is the initial state distribution, (s, a)
is the reward received when taking action ¢ in state s, and 0 < v < 1 is the discount factor. A policy
(s, a) assigns a probability distribution on actions a € A to each state s € S. Given a starting state
distribution py, and transition probabilities P(- | s¢, a:), a policy 7 defines a probability distribution
P, on trajectories {s, a; }+>0 wWhere so ~ po, ay ~ m(s¢,-), and s;41 ~ P(- | s¢,a¢). In particular,
the distribution P, satisfies Pr[sg = s] = po(s), Prlas = a | st = s] = 7(s,a), Pr[siy1 = ¢ |
st = s,a; = a] = P(s’' | s,a). The goal in reinforcement learning is to learn a policy 7 (s, a) that
maximizes the expected discounted cumulative rewards Y, 7' E, 4,~p, [7(s¢, a;)]. The occupancy
measure p, for a policy 7 is the distribution over states and actions visited when executing the policy
given by p-(s,a) = m(s,a) >, v'Px[s; = s]. In soft-Q) learning the policy is determined by learning
the soft-Q function (s, a). Given a policy 7 and a function Q(s, a) the soft value function is given
by V7 (5) = Equn(s,) [Q(s,a) — log (s, a)], and the soft Bellman operator is

(TﬂQ)('S? a) = T(Sv a) + ’YES/NP('|s,a) [Vﬂ-(slv a)]

The soft Bellman operator is contractive and defines a unique soft-@) function satisfying the soft
Bellman equation @ = 7™ Q. In soft-Q learning the goal is to learn a policy m which maximizes the
entropy-regularized reward >, ' E;, o, ~p, [7(s¢, ar) — log(m(s¢, at))]. The optimal policy is given

by 7(s,a) = %, where () is the soft-() function satisfying the soft Bellman equation

Q(Sa a) = T(S7 (1) + VES’NP(-\s,a) [log Z Q(5/7 al)]'

Robustness in Deep Reinforcement Learning. The first work focusing on adversarial robustness
of deep reinforcement learning policies was conducted by Huang et al.| (2017). In particular, the
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study conducted by [Huang et al.|(2017) utilizes the fast gradient sign method produced perturbations
(Goodfellow et al.,|2015) added to the state observations of the deep reinforcement learning policies.
On this line of research while some studies focus on investigating more efficient ways of producing
these adversarial perturbations introduced to state observations, some utilize adversarial formulations
(Carlini & Wagner, [2017) to investigate frequency vulnerabilities and visualize the different patterns
of non-robust features learnt by different deep reinforcement learning algorithms. Along these lines,
some studies investigate the relationship between adversarial directions and natural directions intrinsic
to the MDP and demonstrate that adversarial training results in worse generalization capabilities
compared to vanilla training (Korkmaz, 2023). Following the research focusing on investigating
vulnerabilities of deep reinforcement learning policies towards adversarial perturbations several other
works focus on different strategies to make policies more robust towards these malicious perturbations.
More in particular, (Gleave et al.| (2020); [Pinto et al.| (2017) propose to formulate the relationship
between the adversary and the policy as a zero-sum Markov game. In some of these studies the
adversary is restricted to change environment dynamics (Pinto et al.,2017), and in others the adversary
is restricted to taking natural actions in the given environment (Gleave et al.,|2020). Some studies
focused on detection of these adversarial (i.e. non-robust) state observations by leveraging the
curvature of the deep reinforcement learning manifold to make robust decisions (Korkmaz & Brown+
Cohen, |2023). While several studies focused on trying to build robust deep reinforcement learning
policies, quite recently several studies demonstrated that deep reinforcement learning policies learn
shared adversarial features across MDPs including the state-of-the-art adversarially trained ones
(Korkmaz, 20225 2024]).

Learning without Rewards. Reinforcement learning from human feedback (RLHF) which infers a
reward function from human preferences, resulted in substantial progress in large language models.
To ensure safety and aligned values with human preferences, currently RLHF is the main method
used widely in large language models (Glaese et al.,|2022; Menick et al., 2022} |(OpenAll 2023}, [Trinh
et al.}2024). Quite recent work demonstrated the connection between learning from preferences and
inverse reinforcement learning, and further provided sample complexity bounds for these algorithms
(Zhu et al., [2023). Inverse reinforcement learning focuses on learning a reward function from a set of
expert trajectory observations. Hence, upon the construction of a reward function from observations
an optimal policy can be learnt via reinforcement learning. Another line of research that centers on
learning without a reward function focuses on the setting of learning a functioning policy from a
given set of observed expert trajectories via emulating expert behaviour (Sammut et al.;|1992)). Quite
recently, |Garg et al.|(2021) proposed to learn a single Q function from expert demonstrations to both
represent the reward function and the policy. The proposal of learning a soft-Q function is currently
the only algorithm that can achieve a performance level that can match deep reinforcement learning in
high dimensional state representation MDPs. Furthermore, the authors argue that the fact that inferred
rewards are highly correlated with the ground truth rewards shows that the proposed algorithms can
also be used in inverse reinforcement learning. For this reason in the remainder of the paper we will
refer to inverse reinforcement and imitation learning policies as inverse deep neural policies.

3 THE OUTCOMES OF LACK OF EXPLORATION IN LEARNING WITHOUT
REWARDS

In this section we fundamentally explain and theoretically motivate the results observed and reported
in Section [5] Thus, this section is dedicated to explain how training via the state-of-the-art deep
imitation learning algorithms leads to policies that are intrinsically non-robust. Let each state be
given by a d-dimensional feature vector s € R%, and for each action a € A there is a parameter
vector 6, € R%. The state-action value function is parameterized as Qy(s,a) = (0, s). The inverse
(2-learning objective is given by

E(s,a)~pp [@ (Qo(s,a) = YEs (. 15,0) Vo (s)])] = E(s,aymp [0 (Vo (s) = VEsrap(js,a)Vo(s)])] (D)

where Vy(s) =log ), exp Qq(s, a), and let pg be the occupancy measure of the expert policy, and
1 any valid occupancy measure. We will focus on the offline setting where y© = pg i.e. only samples
from expert trajectories are used. Later we will discuss extensions to the online setting where p is a
mixture of expert trajectories and previously sampled states from a replay buffer. Expert trajectories
will achieve higher rewards than the trajectories generated by an agent early on in the training process.
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Thus, we show that this corresponds to states in expert trajectories having larger projection onto a
low-dimensional subspace.

Lemma 3.1 (Low Dimensionality of Experts in High Dimensions). Let 0* be the parameters of the
optimal soft-Q function Q*(s,a) = (0%, s), and let Vo be the corresponding soft value function. Let
k > 1and s,s € RY be states such that Vg (s) > kVy=(s'). Then there is a subspace W C R4
of dimension at most |A| and a linear transformation ¥ : R? — RIAl with kernel W+ such that

K " _
1esll > A 198l — log ||

Proof. Let W be the span of 8% for a € A. Let U to be the linear map defined by the matrix
with rows given by 0. Clearly the kernel of W is the orthogonal complement 1/, Recalling that
V- (s) =1log ", exp Qo= (s,a) we have

1 1
Vo« (s') > max Qg+ (s',a) > —— Qo+ (s',0)2 = ——||Ts'|.
a€A V4] ; V14|

On the other hand

Vo« (s) < meai(Qg*(s,a) +log|A| < Z Qo= (s,a)? + log |A| = ||Ps|| + log |A].
acA

Combining the two inequalities with the assumption that Vg« (s) > xVy-(s’) completes the proof. [

Lemma states that for x > \/W , the projection onto W of s is much larger than that of s’ (as
measured by the transformation ). Thus, the intuitive conclusion is that states with higher value
(e.g. states sampled from expert trajectories) have larger projection onto a low-dimensional subspace.
The inverse ()-learning algorithm updates the parameters 6 by stochastic gradient descent, where the
average over pg in Equation[I]is approximated by sampling from stored expert trajectories. In order
to qualitatively demonstrate how the use of expert trajectories leads to lower robustness we take the
conclusion of Lemma 3.1]and define subspace-contained expert trajectories.

Definition 3.2 (Subspace Contained). The set of expert trajectories pg is subspace-contained if there
exists a subspace W C R? of dimension / < d such that, when started in sq € W the expert policy
7 always transitions to states s € W. Consequently, s € W for all (s, a) in the support of pg.

While Lemma [3.1] proves that in general there will exist a subspace where higher value states have
larger projection than lower value states, Definition[3.2] posits the existence of a potentially lower-
dimensional subspace which entirely contains all the states encountered on expert trajectories due
to the fact that experts have higher values than an agent who started exploring a high-dimensional
environment. Now will prove that J-values for states in the orthogonal complement of W will remain
unchanged during training with inverse (-learning.

Proposition 3.3. Let the initial weights be 8©) € R®. Let pp be subspace-contained, and let
s € W+ be a state in the orthogonal complement of W. Let 0 be the weights after any number of
steps of training with inverse Q-learning. Then Qg (s,a) = Qpo (8, a) for all a € A.

Proof. We first show that the (stochastic) gradient of the cost function in Equation[I]is contained in
W. For any s the gradient of the state-action value function is

Vo, Qo(s,a) = Vg, (04,8 =s, Vo, Qa(s,a’) =V, (0,s)=0.
Further, the gradient of the value function is

exp Qo(s, a)
P expQo(s,a’)

Note that all the above gradients are multiples of the input state s. Next observe that the a component
gradient of the objective in Equationis a linear combination of Vg, Qg (s, a), Vg, Qg(s,a’), and
Vo, Vg (s), where s always lies in the support of pg. Thus, by Definition 3.2} the gradient update in
each step of inverse J-learning lies in the subspace W, as it is a linear combination of states s € W.
Therefore, after any number of steps the weights 6 will satisfy 6, — 6,(10) € W. To complete the proof

observe that for s € W+ we have Qg(s,a) — Qg (s,a) = (0, — o, sy =0. O

Vo, Vs (s) = Vg, log Z exp Qo(s,a) = s
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The initial weights #(°) are usually set randomly or to some default value, and thus one does not
expect 0(9) to have any reasonable relationship to the optimal weights. Therefore, the intuitive
consequence of Proposition [3.3]is that the soft ()-function learned from expert trajectories assigns
random or arbitrary values to actions in states s € W=. In fact, Proposition leads directly
to the following corollary which shows that the rewards estimated by inverse (J-learning become
uncorrelated to the true rewards.

Corollary 3.4. Suppose each coordinate of 0°) is an independent Gaussian random variable with
mean 0 and variance 1, and that the feature vectors corresponding to each state are normalized i.e.
lslla = 1. Then for each s € W+ the expectation over 0°) of the rewards r¢(s, a) estimated by
inverse QQ-learning will be independent of the state s.

Proof. The reward estimates for inverse reinforcement learning are obtained by assuming that
the learned Q-function satisfies the soft Bellman equation i.e. that Qp(s,a) = r(s,a) +
Eg p(.1s,0)[V™ (s")]. Thus, given the estimated optimal state-action value function (g, one solves
for the rewards (s, a) in the soft Bellman equation in order to obtain the reward estimate. Hence,
the reward estimated by inverse Q-learning in a state s € W is

ro(s,a) = Qo(s,a) — Eyop(s.0) [V ()] = Qo(5,0) — Eyop(fs.ayllog Y _ expQp(s’, )]

= Qoo (5,0) = Eyop(s.a)[108 > exp Qyeoy (s, a')]
where the last line follows from Proposition Because 0(”) has independent Gaussian coordinates,

its distribution is rotationally invariant i.e. U 0((10) has the same distribution as 0510) for any rotation
matrix U. Let U be any rotation such that U T sends s to the first standard basis vector e;. It is always
possible to choose such a rotation because ||s|| = 1. Then by rotational invariance Qg (s, a) =

<9((LO), s) has the same distribution as <U9((10)’ s) = <9((LO), UTs) = <9((10), e1) = Qg (e1,a). Thus the
expectation of the rewards estimated by inverse ()-learning is given by

Ego nr(0,0) [16(5,a)] = Ego) wpnr0,1) [Qoco) (5, a)]

Ep© ar(0,1) [log > expQyo (Slya/)H

a’€eA

- ]Es’N’P(-|s,a)

= Ego) on(o,1) [Qo (€1,a)] — Egup(s,a)

Eg© ~a(0,1) [log Z exp Qg (617QI)H

a’€A

= Ep) ~nr0,1) [Qoo (€1, a)] — Eg) onro,1) llog > exp Qo (e, a/)] .
a’'eA

This completes the proof as the above expression for Ego) (0,1 [ro(s,a)] does not depend on the
state s. O

In general, the inverse -learning policy still may perform well. Indeed, if following the learned
policy causes the agent to only encounter states s € W, then performance in the standard setting will
be unaffected by inaccuracy in states s € W . However, the robustness of the policy may still be
affected, as a slight deviation from the optimal path may cause the policy to transition into s € W+
where the (-function is completely untrained. We now formalize the above intuition regarding the
consequences of Proposition Let 7* be the optimal soft policy and let (Qy be the soft @-function
obtained by training with inverse -learning with corresponding soft policy my. We assume that
mo(s,a) = *(s,a) for all s € W i.e. training with inverse Q-learning has succeeded in accurately
learning the optimal soft policy in W. The optimal policy 7* started at sg € S never transitions out
of S. However, 7* receives the same expected cumulative rewards R when started in either s € W
or s’ € W+, Taking non-optimal actions in a p fraction of states s € W and utilizing 7* in all other
states results in a transition to s’ € WW=. There are no transitions from s’ € W+ to s € W. We now
show that under these assumptions, slight deviations from the optimal policy have no impact on the
optimal policy 7*, but cause the inverse deep neural policy 7y to perform at the same level as an
untrained policy.
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Proposition 3.5. Taking non-optimal actions in a p fraction of states does not change the reward
received by the optimal policy *, but causes the inverse reinforcement learning policy Ty to receive
the same rewards received by g (o).

Proof. After taking non-optimal actions in a p fraction of states, the optimal policy 7* transitions
to s’ € W+, and by assumption never transitions out. However, 7* receives the same rewards after
transitioning to s’ € W= as it would have from remaining in . The policy 7y is equal to 7* on W,
Thus, taking non-optimal actions in a p fraction of states causes a transition to W -. However, by
Proposition mp(s’,a) = Ty (8', a) for all s € W, By assumption there are no transitions out
of W+, so 7y receives the same rewards as TH(0) - O]

4 PROBING THE INVERSE REINFORCEMENT LEARNING MANIFOLD VIA
ADVERSARIAL DIRECTIONS

Section [3]is dedicated to provide theoretical analysis on the causes of the adversarial vulnerabilities
of inverse deep neural policies observed and reported in Sectiond and[5] Hence, in this section we
describe the methods used to cause deviations from the optimal trajectory in order to understand the
robustness of policies. To achieve this there are two main approaches we will take, one is based on
moving along the adversarial directions in the deep neural policy manifold, and the second is a direct
slight push to the policy from its optimal course of trajectory. These are described below in more
detail. For the adversarial directions we utilize the methodology described in |Korkmaz| (2022]).

Definition 4.1 (Algorithm and MDP independent adversarial direction AZ‘,‘;’i"/’\",l). Given a
random state s(M) sampled from a random episode of e of an MDP M from a policy
m(s(M),-), the minimum length adversarial direction v(s(M), w(s(M),-)) is computed satisfying,
arg max, 7(s(M), a) # arg max, 7(s(M) +v(s(M),n(s(M), ")), a). The computed adversarial
direction v(s(M), w(s(M), -)) norm-bounded by ~ > 0 is added to the visited states of another
policy 7' (s(M), -)) trained with a completely different algorithm, in a distinct MDP M’. Hence,
the state obtained moving along the adversarial direction is

v(s(M), m(s(M),-))

o = SN S M), (M) )

Note that if My, # My, this means that the policies are trained with the same algorithm but in
different MDPs; thus, the adversarial direction is computed from M and transferred to a distinct
MDP M’. The setting of M, # My, will be referred as A“’M"dom.

Definition 4.2 (The §-deviation from the optimal trajectory). For a policy 7(s,a) and state s let
a(s) = argmin, (s, a) denote the worst action in state s. The notation A, refers to a setting in
which in state s the policy is set to take action a,, (s), rather than the optimal action selected by the
policy 7 (s, a) for a d-fraction of the visited states where delta is § < 1. The notation Aypgom refers
to the setting in which the policy 7 (s, a) is set to take an action uniformly at random a ~ U 4 in s for
a d-fraction of the visited states where delta is § < 1.

Both Definition .1 and Definition[4.2] will be used in Section[5]to lay out precise non-robustness of
inverse deep neural policies and their comparison to vanilla trained deep reinforcement learning.

Experts and Alignment: Note that the initial and foundational objective of inverse reinforcement
learning on inferring a reward function from observed trajectories opened a new channel on the
value alignment problem (Ng & Russell, 2000; |[Russell, [1998)). More precisely, the current unethical
behaviour observed in large language models that are trained with RLHF (i.e. learning a reward
function from human preferences to align language agents with human values) is one of the concrete
substantial safety concerns that is tightly connected to what we highlight in our paper. Section [3]
demonstrates that policies that can explore, i.e. standard deep reinforcement learning, are more robust
and aligned compared to algorithms that are specifically focused on resolving the value-alignment
problem. In particular, the fact that the policy’s perception on the environmental (i.e. ground truth)
rewards is broken as reported in Section [5.1] further demonstrates that the value-alignment problem is
far beyond being solved, and in fact most critically, the claimed alignment is extremely fragile.
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Table 1: The performance drop results with algorithm and MDP independent adversarial direction
;?gﬁ‘;’}\“/l and MDP independent adversarial direction A%4%™ for vanilla trained deep reinforcement
learning policies and inverse deep neural policies in Seaquest.

Training Method Adversarial Setting RoadRunner BankHeist TimePilot
Deep Inverse-() Learning g“l“g‘ff/‘\“/l 0.93439+0.0075 0.9882+0.03457  0.9503740.01454
Vanilla Trained Aandom 0.28496+0.09693  0.18527+£0.14817  0.46938+0.08672
Training Method Adversarial Setting JamesBond CrazyClimber Gaussian
Deep Inverse-() Learning Agﬁ‘fb}i"/‘\“,l 0.9169471+0.01371  0.7628240.02146  0.05277+0.0821
Vanilla Trained Aandom 0.30818840.12931  0.180897+£0.13982  0.055364-0.12091

5 THE COST OF LEARNING FROM EXPERT DEMONSTRATIONS

In this paper the straightforward vanilla trained deep reinforcement learning policies are trained with
Deep Double Q-Network (DDQN) initially proposed by Hasselt et al.|(2016]) with the architecture
introduced in Wang et al.[(2016). The state-of-the-art imitation and inverse reinforcement learning
policy is trained via the inverse (Q-learning algorithm described in Section 2] The experiments
are conducted in the Arcade Learning Environment (ALE) (Bellemare et al., 2013)) with OpenAl
wrappers (Brockman et al,, [2016). See supplementary material for further details. The results
are averaged over 10 runs and the standard error of the mean is included in all the tables and
figures presented in the paper. The normalized performance drop of the policies is computed as
P = (Scoremax — Scorege)/(Scoremax — Scorey;,). Here Scoren,y is the score obtained by the
baseline trained policy following the learned policy with a clean run in a given environment, Scorege
is the score obtained by the policy in the test time, and Score;, is the score obtained by the trained
policy when the policy chooses the worst possible action in each state. Note that Ay, refers to the
unmodified run of the policy in an unmodified MDP.

As described in detail in Section 2|the inverse Q-learning algorithm learns both an optimal policy and
a reward function from observed trajectories; thus, the fact that inverse-() learning simultaneously
learns both a reward function and an optimal policy is the reason that throughout the paper imitation
learning and inverse reinforcement learning will be used interchangeably. Note that the inverse
@-learning algorithm is the only algorithm that can achieve equivalent performance with standard
deep reinforcement learning policies in MDPs with high-dimensional observations. Table [2and Table
[ report the performance drop results with the environment and algorithm independent adversarial
direction Affl‘gflfj{}l and the environment independent adversarial direction A74%™ for vanilla trained
deep reinforcement learning policies and inverse deep neural policies in Arcade Learning Environment
(ALE). Recall that A;ﬁ‘;‘_jfj{‘,l represents the adversarial setting in which the adversarial direction is
computed from a completely different MDP and from a policy trained with a completely different
algorithm. Note that in these experiments the /5-norm bound & level is set to the magnitude where
simple Gaussian noise with the ¢{5-norm & has insignificant effect on the policy performance.

5.1 THE CATASTROPHIC RESULTS OF SMALL DIVERGENCE FROM THE OPTIMAL POLICY

In this section we investigate effects of small deviations from the optimal policy followed by the
inverse deep neural policy. This is achieved by A,,, with a,, = arg min,, . 4 Q(s, a’) for a random
small fraction of visited states in a given episode, the A andom Setting explained in Definition @ and
the A{ﬁ‘é‘flfj\“,[ setting explained in Definition Either moving along adversarial directions in the deep
neural policy manifold or slight alterations in the actions taken by the policy causes slight deviation
from the optimal course of the inverse deep neural policy. Figure[I]reports the true rewards obtained
from the environment and the reward predictions of inverse ()-learning, the Pearson correlation
coefficient between reward predictions and environment rewards, and the performance drop computed
from environment rewards and the inverse (-learning predictions with respect to §-deviation from
optimal trajectory with A, and Apndom. Thus, the results in Figure [I] demonstrate the outcome
of slight deviation of the optimal trajectory and its effects on the reward predictions and the true
rewards obtained from the environment. The fact that small deviations from the optimal policy result
in significant decrease in both the rewards obtained, and the accuracy of the predicted rewards
for the inverse deep neural policy, provide empirical verification of Corollary [3.4] In particular, this
lends credence to the claim that the lower exploration of state space and being limited to expert
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Figure 1: The effects of J-deviation from the optimal trajectory with Appdom and A, . Left:
Cumulative rewards obtained from the environment, and inverse (-learning reward predictions.
Center: Pearson correlation coefficient. Right: Performance drop based on true environment rewards
and inverse ()-learning reward predictions. Up: §-deviation Aandom. Down: d-deviation A, .

Table 2: The performance drop results with algorithm and MDP independent adversarial direction

;‘fgi’ﬁ‘,[ and MDP independent adversarial direction A74%°™ for vanilla trained deep reinforcement

learning policy and inverse deep neural policy in Pong.

Training Method Adversarial Setting RoadRunner BankHeist TimePilot
Deep Inverse-() Learning flﬁ‘gﬂ_"}\“/l 1.0£0.0 0.9153+0.01128 0.9880+0.0112
Vanilla Trained Arandom 0.0819+0.0500  0.0265+0.01284 0.2963+0.0573
Training Method Adversarial Setting JamesBond CrazyClimber Gaussian
Deep Inverse-@) Learning A;?gfj\“,l 1.0+0.0 0.98574:0.006 0.0428540.01572
Vanilla Trained Aandom -0.0024+0.0037  0.0602440.02970  0.0451+0.0182

trajectories cause the inverse deep neural policies to overfit to the expert’s beliefs and experience
significant performance loss under subtle departures from the policy’s optimal course.

Notably, when § is initially increased from zero, the performance drop of the inverse -learning
reward predictions is negative. That is, despite a significant decrease in performance caused by
the deviation, the inverse deep neural policy believes it will actually receive larger rewards than
it did before. In fact, as the true environment rewards decrease, their Pearson correlation with the
predicted rewards also decreases, indicating that in general small deviations cause the policy to form
an inaccurate view of the rewards it will obtain. The cost of learning from experts instead of exploring
is revealed in Table 2| where the foundational reason of this vulnerability is that experts in fact limit
the ability of an agent to develop more comprehensive knowledge of the MDP as shown in Figure[I]

Black-Box Adversaries. The results reported in Table [2 and [1| are for an adversarial direction
that is computed from a vanilla trained policy in one MDP M, and added to the observations in a
different MDP M’ of the inverse @Q-learning policy and the vanilla trained policy respectively. This
corresponds to the Af24°, setting for the inverse Q-learning policy, and AR;*™ for the vanilla policy.
Of particular significance is the fact that, even though the perturbation is specifically computed from
a vanilla trained policy and for a vanilla trained policy, the impact of the adversarial direction is
much larger on the inverse-(@ learning policy than on the vanilla policy. Thus, the results in Table 2]
and[T]demonstrate that the inverse (Q-learning policies are more susceptible to the shared adversarial
directions across both MDPs and algorithms compared to vanilla trained reinforcement learning
policies. These results demonstrate that not only are inverse deep neural policies are vulnerable, they
can be attacked via black-box adversarial attacks.

Breaking the Link Between Imitation and Inverse Reinforcement Learning. Table 3| shows
the Pearson and Spearman correlation coefficients between cumulative rewards obtained from the
environment and the cumulative reward prediction of the deep imitation learning policy for the
algorithm and MDP independent adversarial direction Ag‘i‘gflfj\“,l, 0-deviation A, , and J-deviation
Aandom 10 Seaquest, BeamRider and Breakout MDPs with §-deviation from the optimal trajectory
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Table 3: Pearson and Spearman correlation coefficient between true cumulative rewards obtained from
the environment and cumulative reward prediction made by the state-of-the-art inverse deep neural
policy for a baseline run Apyse, with A, , §-deviation Aandom, and with Aﬁgj‘r"j\“,l where § = 0.003.

Seaquest Apase d-deviation A, o-deviation Ayangom f;fgi’/"\},
Pearson 0.857880+0.025528  -0.447874+0.140356  0.324616+0.22191 0.202436+0.24088
Spearman  0.688300+0.1257206  -0.3512940.20131  0.023051+0.12057  0.02370140.20764
BeamRider Apase d-deviation A, o-deviation Ayangom A;‘i“;i"}\“,l
Pearson 0.6543754+0.005274  -0.2741440.026496  -0.10209+0.076554  -0.22879+0.199385
Spearman  0.688300+0.1257206 -0.34725+0.022020  -0.11846+0.092472  -0.43719+0.115118
Breakout Abase d-deviation Ay, o-deviation A ndom A;‘i‘gfif/“\‘,t
Pearson 0.850592+0.013398  -0.12104+0.083332  0.248250+0.046503  -0.09089+0.092005

Spearman 0.76653624+0.04679  -0.13360+0.030187  0.24327440.012255 -0.2548140.089637

setting with § = 0.003. The results in Table 3| demonstrate that even a slight change in the trajectory
(i.e. a change in the trajectory with frequency of 0.003) is more than enough to break the correlation
between true rewards obtained from the environment and the reward predictions of the inverse deep
neural policy. Hence, without the correlation between true rewards and reward predictions the
decisions of the policy will be random, i.e. untrained.

Misalignment with the Intended Objective: These results further verify the theoretical predictions
of Corollary where the estimated rewards for states that deviate subtly from expert trajectories
are uncorrelated with their true rewards. Inverse deep neural policy is designed so that there is a tight
coupling between the trained policy and the estimated rewards. In particular, the rewards are derived
in such a way that the policy is optimal for those rewards. Thus, decoupling of the estimated rewards
and environment rewards implies that the learned policy is optimized for a very different objective
than intended. The fact that subtle deviations from the optimal trajectory break the beliefs of the
inverse deep neural policy on the MDP rewards, raises significant questions regarding misalignment.

MDP Rewards and Agent’s Beliefs: The agent’s beliefs on the MDP rewards define what the
task is and how the task should be solved. The fact that the deep imitation learning policy’s beliefs
experience an extreme shift under slight deflections from its optimal path is evidence that the policy
has a completely different vision on what the objective is and how the task should be completed (i.e.
the misalignment problem) (Wiener, |1960; |Good, [1965). While these results may raise questions
and concerns on the safety and Al-alignment of the deep imitation and deep inverse reinforcement
learning policies respectively, one of our main objectives is to layout the exact fundamental trade-off
made with learning from expert demonstrations instead of exploring the MDP.

6 CONCLUSION

In this paper we study the vulnerabilities of policies trained without rewards in high-dimensional state
representation MDPs, and seek answers for the following questions: (i) Does learning without a re-
ward function in complex state representation MDPs cause learning non-robust features independent
from the MDP it is trained in and the algorithms it is trained with? (ii) How is the policy robustness
affected by the state-of-the-art algorithms that can learn without rewards compared to vanilla trained
deep reinforcement learning? (iii) What is the cost of learning from expert demonstrations instead of
learning purely from exploration? To answer these questions we first provide a theoretical analysis
that shows that learning from experts instead of from exploration comes with a cost. Moving along the
adversarial directions independent from both the MDP and algorithm in the neural policy manifold,
we demonstrate that vanilla trained deep reinforcement learning policies are more robust compared
to the state-of-the-art algorithms that can learn without rewards. We further demonstrate that even
though there is a significant decrease in performance, the inverse deep neural policy believes that it
in fact received larger rewards than it did before, which demonstrates that the correlation between
predicted rewards and true rewards obtained from the MDP is completely broken. These results
provide a clear demonstration of the violation of alignment where there is a gap between what the
policy actually did and what the policy itself believed that it did. Our work highlights that there is
a misalignment problem and the algorithms proposed to solve this problem are learning extremely
fragile policies with misaligned values.
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