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ABSTRACT

In this paper, we propose an embarrassing simple yet highly effective adversarial
domain adaptation (ADA) method for effectively training models for alignment. We
view ADA problem primarily from a neural network memorization perspective and
point out a fundamental dilemma, in that the real-world data often exhibits an im-
balanced distribution where the majority data clusters typically dominate and biase
the adaptation process. Unlike prior works that either attempt loss re-weighting or
data re-sampling for alleviating this defect, we introduce a new concept of dynamic
domain labels (DDLs) to replace the original immutable domain labels on the fly.
DDLs adaptively and timely transfer the model attention from over-memorized
aligned data to those easily overlooked samples, which allows each sample can be
well studied and fully unleashes the potential of adaption model. Albeit simple,
this dynamic adversarial domain adaptation (DADA) framework with DDLs ef-
fectively promotes adaptation. We demonstrate through empirical results on real
and synthetic data as well as toy games that our method leads to efficient training
without bells and whistles, while being robust to different backbones.

1 INTRODUCTION

Most deep models rely on huge amounts of labeled data and their learned features have proven brittle
to data distribution shifts (Torralba & Efros; Yosinski et al., 2014). To mitigate the data discrepancy
issue and reduce dataset bias, unsupervised domain adaptation (UDA) is extensively explored, which
has access to labeled samples from a source domain and unlabeled data from a target domain. Its
objective is to train a model that generalizes well to the target domain (Ganin & Lempitsky, 2015;
Ganin et al., 2016; Haeusser et al., 2017; Kang et al., 2019b; Cui et al., 2020a).

As a mainstream branch of UDA, adversarial domain adaptation (ADA) approaches leverage a domain
discriminator paired with a feature generator to adversarially learn a domain-invariant feature (Ganin
et al., 2016; Chen et al., 2018; Sankaranarayanan et al., 2018; Long et al., 2018; Cui et al., 2020b). For
the domain discriminator training, all source data are equally taken as one domain (e.g., positive ‘1’)
while target data as another one (e.g., negative ‘0’) (Ganin et al., 2016; Long et al., 2018; Cui et al.,
2020b). However, this fixed positive-negative separation criterion neglects a fact that most real-world
data exhibit imbalanced distributions: the clusters with abundant examples (i.e., majority clusters)
may swamp the clusters with few examples (i.e., minority clusters). Such imbalanceness contains two
aspects, intra-class long-tailed distribution and inter-class long-tailed distribution (Tan et al., 2020;
Wu et al., 2019b), and is widely existed in many UDA benchmarks. For example, in DomainNet, the
“dog” class in the “clipart” domain has 70 image samples while has 782 image samples in the “real”
domain. The majority “bike” samples (90%) in “Amazon” domain in Office31 have no background
scene (empty) while minority “bike” samples have real-world background instead.

Deep neural networks (DNNs), on the other hand, typically learn simple patterns first before mem-
orizing. In other words, DNN optimization is content-aware, taking advantage of patterns shared
by multiple training examples (Arpit et al., 2017). The majority domain clusters would therefore
dominate the memorization of domain discriminator in DA, so that bias its decision boundary and
hinder the effective adaptation. As shown in Figure 1(a), only the majority clusters of two domains
(i.e., two large circles) have been pulled close as the adaptation goes on, but those minority clusters
(four small circles) are still under-aligned. This biases the optimization of domain discriminator so
that misleads feature extractor to learn unexpected domain-specific knowledge from majority clusters.
As a result, the adapted model still can not correctly classify these under-explored samples.
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Figure 1: Motivation illustration. (×,4) denote two different classes, and (blue, orange) color mean
different domains. (a) Previous DA methods tend to be dominated by those large majority clusters
and neglects small minority clusters, which will biase the domain discriminator optimization, leading
to a sub-optimal adaptation accuracy. (b) Our method attempts to fully leverage both majority and
minority data clusters for alignment, to enhance the domain-invariant representation learning, and
thus achieving a better adaptation performance on the target set.

In this paper, we attempt to design an optimization strategy to progressively take full advantage of
both majority and minority data clusters across different domains, like shown in Figure 1(b). In this
way, the domain-invariant representation learning could be gradually enhanced, and the potential of
adaptation model will be unleashed, leading a satisfied classification performance.

To this end, we propose to replace the original immutable domain labels with a variable and
importance-aware alternative, dubbed Dynamic Domain Label (DDL). Its core idea is to adap-
tively reduce the importance of these dominated training data that have been aligned, and encourage
the domain discriminator to pay more attention to those easy-to-miss minority clusters, which ensures
each sample can be well studied. In the implementation, we assign a dynamic domain label to
each sample according to its own optimization situation: If one sample has ambiguous domain
predictions (e.g., ∼0.5) when passing through domain discriminator, it means such sample has been
“memorized”, or said, the learned feature w.r.t this sample has been domain-invariant. Then, we map
this well-aligned sample to an intermediate domain label space (i.e., use 0.5 as domain label), so as
to reduce its optimization importance. Our contributions are summarized as follows,

• We revisit ADA problem from a deep network memorization perspective, and pinpoint the
optimization defect caused by the common imbalanced data distributions.

• To alleviate this issue, we propose a novel concept of dynamic domain label (DDL) to
achieve a dynamic adversarial domain adaptation (DADA), which allows each sample can
be well studied to promote domain alignment without any increase in computational cost.

• As a byproduct, our work also provides a new perspective to better learn domain-invariant
features in a simple dynamic manner with variable domain labels.

We thoroughly study the proposed DDL with several toy cases, and conduct experiments on multiple
domain adaptation benchmarks, including Digit-Five, Office-31, Office-Home, VisDA-2017, and
large-scale DomainNet, upon various baselines, to show it is effective and reasonable.

2 RELATED WORK

Unsupervised Domain Adaptation. Recent UDA works focus on two mainstream branches, (1)
moment matching and (2) adversarial training. The former works typically align features across
domains by minimizing some distribution similarity metrics, such as Maximum Mean Discrepancy
(MMD) (Borgwardt et al., 2006; Long et al., 2017; Wei et al., 2021) and second-/higher-order
statistics (Sun et al., 2016; Peng et al., 2019; Kang et al., 2019b). Adversarial domain adaptation
(ADA) methods have achieved superior performance and this paper focus on it. The pioneering works
of DANN (Ganin et al., 2016) and ADDA (Tzeng et al., 2017) both employ a domain discriminator
to compete with a feature extractor in a two-player mini-max game. CDAN (Long et al., 2018)
improves this idea by conditioning domain discriminator on the information conveyed by the category
classifier. MADA (Pei et al., 2018) uses multiple domain discriminators to capture multi-modal
structures for fine-grained domain alignment. Recent GVB (Cui et al., 2020b) gradually reduces the
domain-specific characteristics in domain-invariant representations via a bridge layer between the
generator and discriminator. MCD (Saito et al., 2018), STAR (Lu et al., 2020) and Symnet (Zhang
et al., 2019a) all build an adversarial adaptation framework by leveraging the collision of multiple
object classifiers. Unfortunately, all these methods ignore the imbalanced distribution issue in DA.
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Imbalanced Domain Adaptation. Several prior works have noticed the distribution imbalance
issues in domain-adversarial field, and provided rigorous analysis and explanations (Johansson
et al., 2019; Zhao et al., 2019; Jiang et al., 2020; Tan et al., 2020; Wu et al., 2019b). In particular,
IWAN (Zhang et al., 2018) leverages the idea of re-weighting for adaptation, and RADA (Jin et al.,
2021) enhances the ability of domain discriminator in DA via sample re-sampling and augmentation.
Besides, the works of (Wu et al., 2019b; Li et al., 2020a; Tan et al., 2020) pay their attention on
the label/subpopulation shift issue, where the source and target domains have imbalanced label
distribution. Differently, our paper focuses on the more general covariate shift setting in DA, which
contains two aspects of long-tailed intra-class and inter-class distribution. Such imbalanced problems
are widely existed in the existing UDA benchmarks.

Techniques for Training GANs. Our work is also related to the line of research which aims to
leverage or modify the discriminator output to further augment the standard GAN training (Nowozin
et al., 2016; Arjovsky et al., 2017; Gulrajani et al., 2017; Azadi et al., 2018; Wu et al., 2019a; Guo
et al., 2020; Sinha et al., 2020). Their core idea is to distill useful information from the discriminator
to further regularize generator to obtain a better generation performance. Although our work shares a
similar idea of enhancing adversarial training, the main contributions and target task are different.

3 DYNAMIC ADVERSARIAL DOMAIN ADAPTATION (DADA)

Prior Knowledge Recap. To be self-contained, we first simply review the problem formulation of
adversarial domain adaptation (ADA). Taking classification task as example, we denote the source
domain as DS = {(xsi , ysi , dsi )}

Ns
i=1 with Ns labeled samples covering C classes, ysi ∈ [0, C − 1].

dsi is the domain label of each source sample and it always equals to ‘1’ during the training (Ganin
et al., 2016; Long et al., 2018). The target domain is similarly denoted as DT = {xtj , dti}

Nt
j=1 with

Nt unlabeled samples that belong to the same C classes, dti denotes the domain label of each target
sample and it always equals to ‘0’ so as to construct a ‘positive-negative’ pair with source samples
for adversarial optimization. Most ADA algorithms tend to learn domain-invariant representations,
by adversarially training the feature extractor and domain discriminator in a minmax two-player
game (Ganin et al., 2016; Hoffman et al., 2018; Long et al., 2018; Cui et al., 2020b). They typically
use two loss functions, classification loss Lcls (i.e., cross-entropy loss Lce) and domain adversarial
loss Ladv (i.e., binary cross-entropy loss Lbce) for training,

Lcls =
1

Ns

Ns∑
i=1

Lce(C(F (x
s
i )), y

s
i ), (1)

Ladv =
1

Ns

Ns∑
i=1

Lbce(D(F (xsi )), d
s
i = 1) +

1

Nt

Nt∑
i=1

Lbce(D(F (xti)), d
t
i = 0), (2)

where F,C,D represents the feature extractor, the category classifier, and the domain discriminator,
respectively. They are shared across domains. The total optimization objective is described as follows,

min
D
Ladv, min

F,C
Lcls − Ladv, (3)

Note that, a gradient reversal layer (GRL) (Ganin et al., 2016) is often used to connect feature extractor
F and domain discriminator D to achieve the adversarial function by multiplying the gradient from
D by a certain negative constant during the back-propagation to the feature extractor F .

Problem Definition of Imbalanced Data Distributions in DA. This paper focuses on the general
covariate shift setting following (Shimodaira, 2000; Sugiyama et al., 2007) in the DA field, and
assumes each domain presents an “imbalanced” data distributions. Suppose a source/target domain
{(xi, yi)}ni=1 drawn i.i.d. from an imbalanced distribution P (x, y). Such imbalanceness comprises
two aspects: 1). the marginal distribution P (y) of classes are likely long-tailed, i.e., inter-class
long-tailed. 2). the data distribution within each class is also long-tailed, i.e., intra-class long-tailed
distribution. We expect to learn a well adapted model F (·; θ) with adversarial DA technique equipped
with a domain discriminator D(·;ω), to learn domain-invariant representations.

Motivation Re-clarification. Here we look into whether the imbalanced data distribution issue
actually hinders the effective ADA training, through a t-SNE (Saito et al., 2019) visualization results.
This experiment is conducted on Office31 (Saenko et al., 2010) (W→A setting) with the baseline of
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DANN (Ganin et al., 2016). We count the number of times each sample was misclassified by the
domain discriminator during the DA training, and use this number as the color parameter. The darker
the color, the better the alignment, the more possible to be mis-classified by domain discriminator.
From Figure 2, we see that, there obviously exists an imbalance situation with training going on,
where some samples (surrounded by a blue circle) have been well aligned/memorized by the domain
discriminator (the darker the color, the better the alignment/memorization), but some samples are still
under-studied or not aligned well. Therefore, treating those aligned and not aligned training data in
different ways to promise each sample being well explored is urgently required.

Aligned source samples Aligned target samples

Iteration 50 Iteration 500 Iteration 5000

Aligned source samples Aligned target samples Aligned source samples Aligned target samples

Figure 2: Red and green points denote source and target domain data, respectively. The darker the
color, the better the alignment, the more possible to be mis-classified by domain discriminator.
Proposed Dynamic Domain Labels. To alleviate the optimization difficulty caused by imbalanced
data distributions and thus enhance the domain-invariant representation learning, we propose a
dynamic adversarial domain adaptation (DADA) framework: when calculating the domain adversarial
loss on a mini-batch that contains both source and target domain samples, we replace the original
immutable domain labels of samples (source as ‘1’, target as ‘0’) with a variable dynamic domain
labels (DDLs) on the fly. In formula, we modify the domain adversarial loss Ladv of Eq. 2 to

Ladv =
1

Ns

Ns∑
i=1

Lbce(D(F (xsi )), d̂
s
i ) +

1

Nt

Nt∑
i=1

Lbce(D(F (xti)), d̂
t
i), (4)

where d̂si and d̂ti are the updated domain labels for i-th source sample and i-th target sample in the
mini-batch, they are no longer a fixed ‘1’ or ‘0’, but become variable and data-adaptive. Intuitively, a
reliable metric to distinguish the well-aligned majority cluster data and not aligned minority cluster
data is needed for the new updated domain labels assignment/decision.

Measurement of Alignment. The critic, domain discriminator D, can be seen as an online scoring
function for data: one sample will receive a higher score (∼1) if its extracted feature is close to the
source distribution , and a lower score (∼0) if its extracted feature is close to the target distribution.
Thus, we directly take the predicted domain results of domain discriminator, denoted as d̃s/d̃t,
as the alignment measurement metric for each source/target sample. For example, if the domain
discriminator prefers to classify a source sample (dsi = 1) as target data, i.e., d̃si → 0, we believe the
learned feature w.r.t this sample has been well aligned and is fake enough to fool domain discriminator.
In this way, we could online distinguish the well-aligned and not aligned data in training.

Dynamic Domain Label Assignment. In the implementation, we merge the alignment measurement
(i.e., well-aligned samples selection) and new domain label assignment into a single step. Formally,
we leverage a non-parametric mathematical rounding Round(·) to modify the original domain label
dsi=1, dti=0 of i-th source, target sample according to their predicted domain results d̃si , d̃ti:

d̂si = (dsi +Round(d̃si ))/2 =

{
1, d̃si > 0.5,

0.5, d̃si ≤ 0.5.
(5)

d̂ti = (dti +Round(d̃ti))/2 =

{
0.5, d̃ti ≥ 0.5,

0, d̃ti < 0.5.
(6)

where new domain labels of d̂si , d̂ti are dynamic and variable, depending on the different domain
prediction results d̃si , d̃ti. It can be see that we remain the raw domain labels unchanged for those
correctly classified samples by D, because they have not been well aligned (i.e., d̃si > 0.5 and
d̃ti < 0.5). We only assign a new median label (i.e., 0.5) to these mis-classified well-aligned samples
(i.e., d̃si ≤ 0.5 and d̃ti ≥ 0.5), which reduces the optimization importance of these aligned training
data and encourage the domain discriminator to pay more attention to those not aligned data.
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Implementation in PyTorch. A simple PyTorch-like (Paszke et al., 2019) pseudo-code snippet is
shown below. Our DADA with dynamic domain label (DDL) modification amounts simply to the
addition of lines 9, 10 of the example code, which indicates its ease of implementation and generality.

1 # Extract features from source (s) or target (t) domain samples
2 feat_s, feat_t = Extractor(sample_s, sample_t)
3
4 # Get true domain labels and domain predictions
5 d_s, d_t = 1, 0
6 p_s, p_t = Domain_Discriminator(feat_s, feat_t)
7
8 # Get updated dynamic domain labels
9 d’_s = (d_s + torch.Round(p_s.detach()) / 2.0

10 d’_t = (d_t + torch.Round(p_t.detach()) / 2.0
11
12 # Compute adversarial loss with dynamic domain labels
13 loss_adv = torch.BCELoss(p_s, d’_s) + torch.BCELoss(p_t, d’_t)

Discussion: Why use 0.5 as threshold? and why use Rounding? Using 0.5 as a threshold is
because considering that in the most cases (for the most UDA benchmarks), the size of source dataset
and the target one are comparable, and 0.5 is an intermediate domain label space between [0, 1].
Rounding-based dynamic domain labels only reduce the importance for these well-aligned (i.e.,
mis-classified by discriminator) majority samples progressively, while keep unchanged for those not
aligned minority data. This design makes the “dynamically change” of domain labels more “targeted”.
If no rounding, the real-valued soft dynamic labels will be always affected by the probability scores
of domain discriminator, even the discriminator has not yet been well-trained at early stage. In short,
the physical meanings behind DDL is to softly reduce the importance for these dominated majority
samples on the fly while progressively transferring optimization focus to those minority data.

4 EXPERIMENTS

4.1 VALIDATION ON TOY PROBLEMS

2D Random Point Classification. First, we observe the behavior of our DADA method on toy
problem of 2D random point classification, in which we use numpy.random (Oliphant, 2006) to
generate the source and target samples that share the same label space. For the source samples, we
generate point samples with 2 classes, labeled as ‘0’ (marked as red) and ‘1’ (marked as green),
respectively. For each class, it contains 3 data clusters with different scales (i.e., large head cluster
has 10,000 samples, middle cluster has 5,000 samples, small tail cluster has 200 samples), this design
aims to simulate the data imbalance situation in real-world, i.e., the problem we focused. For the
target samples, we totally generate 10,200 samples for each class. Each class has two clusters, one
large head cluster with 10,000 samples and one small tail cluster with 200 samples. We compared the
class decision boundary of our DADA method with Baseline obtained from the domain discriminator
trained with immutable domain labels. To better evaluate adaptation performance of the trained
model, we visualize source and target data separately. Other details are provided in Appendix.

As shown in Figure 3, the Baseline scheme is prone to miss the small tail cluster, especially when it
is very closed to a large cluster belonged to the different class. In contrast, our method could better
leverage both large/head and small/tail data clusters in the different domains to reduce discrepancy.
The trend of our classification boundary in the source domain has demonstrated this point. As a result,
the adaptation performance on the target set of ours is obviously superior to that of Baseline.
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Figure 3: 2D random point classification. Red and green points indicate the samples of class ‘0’ and
‘1’, respectively (left). The solid line denotes the class decision boundary, and we use “color change”
to indicate its changing trend (middle). Adaptation performance on the target set is shown on right.
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Inter-twinning Moons. Furthermore, we observe the behavior of our DADA with DDL on toy
problem of inter-twinning moons (Ganin et al., 2016; Saito et al., 2018). In particular, we additionally
generate some outlier samples near the center of each moon to mimic the imbalanced data distribution.
For the source data, a lower moon and an upper moon are generated, and labeled as ‘0’ and ‘1’. Each
of them is accompanied by two extra outliers, totally 152 samples. Target data are generated by
re-sampling from the source distribution. Then, we rotate each sample by 35◦ and remove its label to
obtain an unlabeled target set. We compare our method with the model trained with source data only
and DANN (Ganin et al., 2016) in the Figure 4. We observe that both baselines of Source only and
DANN neglect the outlier samples. In contrast, our method not only gets a satisfactory classification
boundary between two classes in the source domain, but also covers these minority tail data well and
classifies them to the correct class. Besides, after performing PCA, we can easily see that our method
also achieves a better feature alignment in comparison with other two baselines, where target samples
that denoted as black points are homogeneously spread out among source points.

Source Only DANN Ours

(a) Label Classification (b) Representation PCA

Source Only DANN Ours

Figure 4: The second toy game of inter-twinning moons. Red “+”, green “-”, and black “·” markers
indicate the source positive samples (label 1), source negative samples (label 0), and target samples,
respectively. (a) The solid black line is the class decision boundary. (b) We also show the feature
alignment situations of different schemes via a principal components analysis (PCA) transformation.

4.2 EXPERIMENTS ON THE GENERAL UDA BENCHMARKS

Datasets. Except for toy tasks, we also conduct experiments on the commonly-used domain adapta-
tion (DA) datasets, including Digit-Five (Ganin & Lempitsky, 2015), Office31 (Saenko et al., 2010),
Office-Home (Venkateswara et al., 2017), VisDA-2017 (Peng et al., 2017), and DomainNet (Peng
et al., 2019). These datasets cover various kinds of domain gaps, such as handwritten digit style
discrepancy, office supplies imaging discrepancy, and synthetic↔real-world environment discrepancy.
The data distribution imbalanced issue is also widely existed, and especially serious for the large-scale
set, like DomainNet. The detailed introductions for each dataset can be found in Appendix.

Implementation Details. As a plug-and-play optimization strategy, we apply our DDL on top of three
representative ADA baselines, DANN (Ganin et al., 2016), CDAN (Long et al., 2018), and GVB (Cui
et al., 2020b) for validation. DANN has been described in Sec. 3, and CDAN additionally conditions
the domain discriminator on the information conveyed by the category classifier predictions (class
likelihood). Recently-proposed GVB equips the adversarial adaptation framework with a gradually
vanishing bridge, which reduces the transfer difficulty by reducing the domain-specific characteristics
in representations. All reported results are obtained from the average of multiple runs (Appendix).

Effectiveness of Dynamic Domain Label. Our proposed DDL is generic and can be applied into
most existing ADA frameworks, to alleviate the optimization difficulty caused by imbalanced domain
data distributions, and thus enhance the domain-invariant representation learning. To prove that,
we adopt three baselines, DANN (Ganin et al., 2016), CDAN (Long et al., 2018), GVB (Cui et al.,
2020b), and evaluate adaptation performance on Digit-Five and Office31, respectively. Table 1(a)(b)
shows the comparison results, we observe that, regardless of the difference in framework design, our
DDL (all +DDL schemes) consistently improves the accuracy of all three baselines on two datasets,
i.e., 2.8%/4.0%, 2.2%/1.1%, 2.3%/1.1% gains on average for DANN, CDAN, GVB, respectively on
Digit-Five/Office31. With the help of DDL, each sample can be well explored in a dynamic way,
resulting in better adaptation performance.

What Happens to Domain Discriminator When Updating with DDL? For this experiment, we
made statistics on the mis-classified cases of the domain discriminator during the training, and then
visualize the changing trend in Figure 5. There are two symmetrical mis-classified cases that need to
be counted: mis-classify the raw source sample into the target domain or mis-classify the raw target
sample into the source domain. Experiments are conducted on the Office31 and VisDA-2017 datasets,
the compared baseline scheme is DANN (Ganin et al., 2016). As shown in Figure 5, we observe that,
the number of mis-classified cases by domain discriminator in our method is more than that in the
baseline. We know that, ‘mis-classified by domain discriminator’ can be approximately equivalent
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Table 1: Classification accuracy (mean ± std %) of different schemes. We evaluate the effectiveness
of our DDL with different baselines, including DANN (Ganin et al., 2016), CDAN (Long et al.,
2018), GVB (Cui et al., 2020b), on the Digit-Five/Office31 datasets with Cov3FC2 (Peng et al.,
2019)/ResNet-50 (He et al., 2016) as backbone. Note that, we re-implement all the baselines, thus
the results are sightly different from the reported ones in the original papers.

(a) Comparison results on Digit-Five.
Method mn→ sv mn→ sy sv→ mn sv→ sy sy→ mn sy→ sv Avg.

DANN (Ganin et al., 2016) 23.2±0.5 40.0±0.3 71.0±0.3 84.6±0.1 93.6±0.4 84.7±0.3 66.2
+DDL 26.3±0.4 40.7±0.3 79.0±0.2 87.7±0.7 95.3±0.2 85.1±0.2 69.0
CDAN (Long et al., 2018) 29.8±0.3 39.3±0.5 69.3±0.1 90.5±0.0 92.5±0.5 86.3±0.1 67.9
+DDL 28.1±0.5 41.3±0.3 78.6±0.0 90.6±0.0 95.5±0.5 86.4±0.1 70.1
GVB (Cui et al., 2020b) 30.0±0.1 40.4±0.2 72.5±0.2 90.8±0.5 91.9±0.3 86.6±0.3 68.7
+DDL 30.3±0.1 42.1±0.2 79.6±0.1 90.9±0.5 95.9±0.3 87.2±0.0 71.0

(b) Comparison results on Office31.
Method A→ D A→W D→W W→ D D→ A W→ A Avg.

DANN (Ganin et al., 2016) 82.9±0.5 88.7±0.3 98.5±0.3 100±0.0 64.9±0.4 62.8±0.3 82.9
+DDL 89.9±0.4 92.4±0.3 98.9±0.2 100±0.0 71.6±0.0 68.3±0.2 86.9
CDAN (Long et al., 2018) 92.2±0.3 93.1±0.5 98.7±0.1 100±0.0 72.8±0.5 70.1±0.0 87.8
+DDL 93.2±0.5 93.3±0.3 98.6±0.0 100±0.0 73.8±0.5 74.2±0.3 88.9
GVB (Cui et al., 2020b) 94.8±0.1 92.2±0.3 94.5±0.3 100±0.0 75.3±0.2 73.2±0.3 88.3
+DDL 95.0±0.3 93.7±0.2 98.5±0.2 100±0.0 74.9±0.4 74.3±0.5 89.4

to ‘well-aligned’. Therefore, more ‘mis-classified’ samples by domain discriminator indicates that
our method with DDL has a capability to align more samples, or said, could better cover those
easy-to-miss minority clusters for alignment.
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(a) Analysis results on office31 (b) Analysis results on VisDA-2017
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Figure 5: Trend analysis of the mis-classified cases statistics for the domain discriminator in the
training. Here, baseline is DANN (Ganin et al., 2016) with ResNet-50 as backbone.

Loss Curve Comparison. Here we also show and compare the loss curves of domain discriminator
for baseline DANN and our method. From Figure 6, we can observe that the loss curve of baseline
first drops quickly and gradually rises to near a constant as training progresses. In comparison,
the domain discriminator loss curve of our method drops slowly, because more samples (including
majority and minority cluster data) need to be studied/aligned during the training, which could in
turn further drive better domain-invariant representations learning.

Epoch

Loss curve of domain discriminator of Baseline

Loss curve of domain discriminator of Ours

1.0

0.0

1.0

0.0

Epoch

Figure 6: Domain discriminator loss curves com-
parison of baseline (DANN) and our method
(DANN + DDL). Experiments are conducted on
the setting of W→A of Office31.

Why Not Ignore Well-Aligned Data Directly?
The core idea of our dynamic adversarial domain
adaptation with DDL is to transfer the model
attention from over-memorized aligned data to
those easily overlooked samples progressively,
so as to allow each sample can be well studied.
Therefore, an intuitive alternative solution is to di-
rectly discard these over-aligned data, e.g., simply
zero out their gradients. We conduct this exper-
iment on the Office31 based on DANN (Ganin
et al., 2016). In Table 2, we see the scheme of
DANN + Zero Out that directly discards these
well-aligned samples is even inferior to Baseline
(DANN) by 2.1% on average. This indicates that
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such ‘hard and rude’ data filtering trick is sub-optimal because it may lose some important knowl-
edge by mistake. Differently, our DDL training strategy could softly and progressively transfer the
focus of optimization from the over-aligned samples to the under-explored data.

Table 2: Comparison with gradient penalization and re-weighting related methods on Office31. The
adopted baseline is DANN.

Method A→D A→W D→W W→D D→A W→A Avg.

DANN (Ganin et al., 2016) 82.9±0.5 88.7±0.3 98.5±0.3 100±0.0 64.9±0.4 62.8±0.3 82.9
DANN + Zero Out 84.3±0.2 82.9±0.1 98.2±0.3 100±0.0 58.0±0.4 61.1±0.5 80.8

DANN + E (Long et al., 2018) 86.3±0.1 91.0±0.2 98.8±0.3 100±0.0 69.6±0.3 69.8±0.5 85.9
DANN + IWAN (Zhang et al., 2018) 85.9±0.1 91.9±0.1 98.3±0.2 100±0.0 68.3±0.4 67.5±0.5 85.3

DANN + DDL 89.9±0.4 92.4±0.3 98.9±0.2 100±0.0 71.6±0.0 68.3±0.2 86.9
DANN + E + DDL 91.2±0.2 91.4±0.4 99.1±0.1 100±0.0 71.4±0.1 71.9±0.3 87.5

Comparison with Re-weighting based Methods. As pointed in previous researches (Kang et al.,
2019a; Li et al., 2020b), the re-weighting schemes have the risks of over-fitting the tail data (by over-
sampling) and also have the risk of under-fitting the global data distribution (by under-sampling), when
data imbalance is extreme (Zhou et al., 2020). Besides, most sample re-weighting techniques (Yang
et al., 2020) start re-weighting operation from the beginning of the entire training process. However,
the non-converged feature extractor may affect the re-weighting decision, and cause unstable training.
To prove that, we further compare our DDL with some sample (re)weighting based methods, including
entropy-based re-weighting (+ E) (Long et al., 2018), IWAN (Zhang et al., 2018). Entropy-based
re-weighting (+ E) aims to prioritize the easy-to-transfer samples according to predictions of the
category classifier to ease the entire adaptation optimization. IWAN (Zhang et al., 2018) re-weights
the source samples to exclude the outlier classes in the source domain.

Table 2 shows the comparison results. We can observe that even all the sample re-weighting strategies
bring performance gains, 3.0% for + E and 2.4% for + IWAN, but our DDL strategy still outperforms
all these strategies. In addition, our DDL is also complementary to these re-weighting techniques, the
scheme of DANN + E + DDL still could achieve 1.6% gain in comparison with DANN + E.

DDL is Well-suited to DA Settings with Intra-class and Inter-class Imbalance. The results on
DomainNet (Peng et al., 2019) can be taken as experimental evidence to prove this point. Because
DomainNet has multiple domains, when testing the model adaptation ability on the certain target
domain, the rest domains are mixuped as a large source domain. Such large source domain is
seriously imbalanced, with both of intra-class and inter-class situations (Tan et al., 2020). From the
Table 3, we can observe that our DDL consistently achieves gains on the different sub-settings, which
demonstrates it is always effective to DA settings with the different imbalances to some extents.

Table 3: Classification accuracy (mean ± std %) on DomainNet. ResNet-101 as backbone.

Multi-Source Setting Venue clipart infograph painting quickdraw real sketch Average

MDAN (Zhao et al., 2018) NIPS’18 60.3±0.41 25.0±0.43 50.3±0.36 8.2±1.92 61.5±0.46 51.3±0.58 42.8
M3SDA (Peng et al., 2019) ICCV’19 58.6±0.53 26.0±0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.7
CMSS (Yang et al., 2020) ECCV’20 64.2±0.18 28.0±0.20 53.6±0.39 16.0±0.12 63.4±0.21 53.8±0.35 46.5

CDAN+E (Baseline) (Long et al., 2018) NIPS’18 63.3±0.21 23.2±0.11 54.0±0.34 16.8±0.41 62.8±0.14 50.9±0.43 45.2
CDAN+E+DDL This work 65.7±0.22 25.7±0.34 55.6±0.21 18.4±0.31 63.6±0.28 53.6±0.13 47.1

Analysis about Rounding Operation. To validate the rounding design in DDL, we experimented
with real-valued soft dynamic domain labels (based on the probability scores without rounding) for
comparison. Actually, this is the initial version of our DDL. This scheme of using real-valued soft
dynamic domain labels (built upon DANN) is inferior to our rounding version by 9.4% in average
accuracy on Office31 (77.5% vs. 86.9%, baseline of DANN is 82.9%).

We analyze such large drop is because that the real-valued soft dynamic domain labels of training
samples are always affected by the probability scores of domain discriminator, even the discriminator
has not yet been well-trained at early stage. On the contrary, our rounding-based DDL makes no
influence for the entire optimization at the stage where the domain discriminator could clearly/-
correctly classify source-target sample. And, it only reduce the importance for these well-aligned
(mis-classified by discriminator) majority samples progressively while keep unchanged for those not
aligned minority data. In short, the rounding design makes DDL more effective and robust.
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Table 4: Performance (%) comparisons with the state-of-the-art UDA approaches on Office31. All
experiments are based on ResNet-50 pre-trained on ImageNet.

Method Venue A→D A→W D→W W→D D→A W→A Avg.

MDD (Zhang et al., 2019b) ICML’19 93.5±0.2 94.5±0.3 98.4±0.1 100.0±.0 74.6±0.3 72.2±0.1 88.9
TADA (Wang et al., 2019) AAAI’19 91.6±0.3 94.3±0.3 98.7±0.1 99.8±0.2 72.9±0.2 73.0±0.3 88.4

Symnets (Zhang et al., 2019a) CVPR’19 93.9±0.5 90.8±0.1 98.8±0.3 100.0±.0 74.6±0.6 72.5±0.5 88.4
SAFN (Xu et al., 2019) ICCV’19 90.3±0.8 92.1±0.2 98.7±0.0 100.0±.0 73.4±0.2 71.2±0.3 87.6

DANCE (Saito et al., 2020) NeurIPS’20 89.4±0.1 88.6±0.2 97.5±0.4 100.0±.0 69.5±0.5 68.2±0.2 85.5

CDAN + E (Baseline) (Long et al., 2018) NIPS’18 90.8±0.3 94.0±0.5 98.1±0.3 100.0±.0 72.4±0.4 72.1±0.3 87.9
CDAN + E + DDL This work 94.2±0.3 93.3±0.1 99.0±0.1 100.0±.0 75.8±0.1 75.2±0.3 89.6

GVB (Baseline) (Cui et al., 2020b) CVPR’20 94.8±0.1 92.2±0.2 94.5±0.2 100.0±.0 75.3±0.3 73.2±0.4 88.3
GVB + DDL This work 95.0±0.3 93.7±0.1 98.5±0.1 100.0±.0 74.9±0.1 74.3±0.3 89.4

4.3 COMPARISON WITH STATE-OF-THE-ARTS

To compare with previous state-of-the-art domain adaptation methods, we insert our DDL optimization
strategy into the recent strong domain adaptation frameworks GVB (Cui et al., 2020b) and CDAN
with entropy conditioning regularization (i.e., CDAN+E (Long et al., 2018)). Our new dynamic
adversarial domain adaptation (DADA) schemes are termed as GVB+DDL and CDAN+E+DDL.
Table 4, Table 5 and Table 6 show the comparisons with the state-of-the-art approaches on Office31,
Office-Home and VisDA-2017, respectively. For fair comparison, we report the results from their
original papers if available, and we also report the results of our baseline schemes GVB and CDAN+E
reproduced by our implementation. We find GVB+DDL and CDAN+E+DDL both outperform their
corresponding baselines GVB and CDAN+E, and also achieves the best performance on three datasets.

Table 5: Performance (%) comparisons with the state-of-the-art UDA approaches on Office-Home.
All experiments are based on ResNet-50 pre-trained on ImageNet.

Method Venue Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

MDD (Zhang et al., 2019b) ICML’19 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
Symnets (Zhang et al., 2019a) CVPR’19 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2

TADA (Wang et al., 2019) AAAI’19 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SAFN (Xu et al., 2019) ICCV’19 54.4 73.3 77.9 65.2 71.5 73.2 63.6 52.6 78.2 72.3 58.0 82.1 68.5
BNM (Cui et al., 2020a) CVPR’20 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

DANCE (Saito et al., 2020) NeurIPS’20 54.3 75.9 78.4 64.8 72.1 73.4 63.2 53.0 79.4 73.0 58.2 82.9 69.1

CDAN + E (Long et al., 2018) NeurIPS’18 55.6 72.5 77.9 62.1 71.2 73.4 61.2 52.6 80.6 73.1 55.5 81.4 68.1
CDAN + E + DDL This work 56.0 74.4 78.2 63.9 72.7 72.0 63.7 54.1 81.7 73.3 59.6 83.0 69.4

GVB (Cui et al., 2020b) CVPR’20 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
GVB + DDL This work 57.4 76.2 79.6 65.9 74.6 73.7 65.9 55.9 82.9 75.2 61.0 84.6 71.1

Table 6: Performance (%) comparisons with the state-of-the-art UDA approaches on VisDA-2017.
All experiments are based on ResNet-50 pre-trained on ImageNet.

Method Venue Avg.

MDD (Zhang et al., 2019b) ICML’19 74.61
SAFN (Xu et al., 2019) ICCV’19 76.10

DANCE (Saito et al., 2020) NeurIPS’20 70.20
RADA (Jin et al., 2021) ICCV’21 76.30

CDAN + E (Baseline) (Long et al., 2018) NIPS’18 70.83
CDAN + E + DDL This work 75.12

GVB (Baseline) (Cui et al., 2020b) CVPR’20 75.34
GVB + DDL This work 76.42

5 CONCLUSION

We pinpoint a optimization defect faced by existing adversarial domain adaptation (ADA) methods,
which is caused by imbalanced data distribution. To address this issue, we propose a simple
plug-and-play technique dubbed dynamic domain label (DDL) to achieve a dynamic adversarial
domain adaptation (DADA) framework, which effectively alleviates the negative influence brought by
imbalanced data distribution and significantly enhances the domain-invariant representation learning.
DDL requires changing only two lines of code that yields non-trivial improvements across a wide
variety of adversarial based UDA architectures. In fact, improvements of DDL come without bells
and whistles on all domain adaptation benchmarks we evaluated, despite embarrassingly simple.
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A APPENDIX

A.1 DATASETS INTRODUCTION

Here we introduce in detail the five datasets we used and their characteristics, Figure 7 shows some
samples of these datasets:

• 1). Digit-Five consists of five different digit recognition datasets: MNIST (mn) (LeCun
et al., 1998), MNIST-M (mm) (Ganin & Lempitsky, 2015), USPS (up) (Hull), SVHN (sv)
(Netzer et al., 2011) and SYN (sy) (Ganin & Lempitsky, 2015). Among the five domains,
there are a total of 20 DA tasks. The large differences of the two domains of SVHN and
SYN with other domains make the adaptation harder. Thus, we evaluate our method on 6
transfer tasks: mn→ sv, mn→ sy, sv→ sy, sv→ mn, sy→ sv and sy→ mn.

• 2). Office31 (Saenko et al., 2010) is the most widely used dataset for visual domain
adaptation, with 4,652 images and 31 categories collected from three distinct domains:
Amazon (A), Webcam (W) and DSLR (D). Among the three domains, there are a total of
6 DA tasks. Office31 has lots of intra-category long-tailed situations, e.g., majority “bike”
samples (90%) in “Amazon” domain in Office31 dataset have no background scene (empty)
while minority “bike” samples have real-world background instead, which makes these
minority samples look like come from “Webcam” domain.

• 3). Office-Home (Venkateswara et al., 2017) is a more difficult dataset (with relative large
domain discrepancy) than Office-31. It consists of 15,500 images of 65 object classes in
office and home settings. It has four dissimilar domains: Artistic images (Ar), ClipArt (Cl),
Product images (Pr), and Real-World images (Rw). There are a total of 12 DA tasks.

• 4). VisDA-2017 (Peng et al., 2017) is a simulation-to-real dataset for DA with over 280,000
images across 12 categories in the training, validation and testing domains.

• 5). DomainNet (Peng et al., 2019) is a recently introduced benchmark for large-scale
multi-source domain adaptation (Peng et al., 2019), which includes six domains (Clipart,
Infograph, Painting, Quickdraw, Real and Sketch) and 600k images with 345 classes. Note
that, because the dataset of DomainNet has multiple domains, when testing the model
adaptation ability on the certain target domain, the rest domains are mixuped as a large
source domain. Such large source domain is seriously imbalanced, for example, the “dog”
class in the “clipart” domain has 70 image samples while has 782 image samples in the
“real” domain. And, when changing another domain as target domain, such large source
domain will also change. Besides, the label shift issue is also existed in DomainNet (Tan
et al., 2020).
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Figure 7: Some examples covering different domains of datasets we used.

A.2 TRAINING DETAILS

In all experiments, SGD with momentum is used as the optimizer and the cosine annealing
rule (Loshchilov & Hutter, 2017) is adopted for learning rate decay. All our experiments are
implemented on PyTorch and conducted on a single 12G NVIDIA 1080ti GPU.

For Digit-Five, the CNN backbone is constructed with three convolution layers and two fully
connected layers, termed as Cov3FC2 following (Peng et al., 2019). For each mini-batch, we sample
64 images for training. The model is trained with an initial learning rate of 0.05 for totally 30 epochs.

For Office-31 and Office-Home, following (Long et al., 2018; Zhang et al., 2019a; Cui et al., 2020b),
we use ResNet-50 as backbone. The initial learning rate is set to 1e-3. The input image size is
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224×224 and the batch size is 36. We train the models for 500 epochs (nearly 16,000 iterations) and
evaluate their adaptation performance. We use the default train/test/val split protocol as (Cui et al.,
2020b; Long et al., 2018) for both the two datasets.

For VisDA-2017, following (Long et al., 2018; Cui et al., 2020b), we also use ResNet-50 as backbone.
The initial learning rate is set to 1e-4. The input image size is 224×224, and the batch size is 36. We
follow the train/val/test split protocol of (Cui et al., 2020b) and train the models for 150 epochs.

For DomainNet, we use ResNet-101 as the CNN backbone, the same as (Peng et al., 2019), and
sample from each domain 6 images to form a mini-batch. The model is trained with an initial learning
rate of 0.002 for 40 epochs.

A.3 SOURCE CODE

We have uploaded the source code that corresponds to our proposed dynamic adversarial
domain adaptation (DADA) method, with dynamic domain label (DDL). Please find details
and reproduce the main experimental results in the uploaded supplementary materials of ‘Dy-
namic Adversarial Domain Adaptation.zip’.

A.4 MORE DETAILS ABOUT TOY EXPERIMENTS

Random Point Classification. In the main manuscript, we observe the behavior of our proposed train-
ing strategy of Dynamic Adversarial Domain Adaptation (DADA) method with dynamic domain label
(DDL) on toy problem of 2D random point classification, in which we used numpy.random (Oliphant,
2006) to synthesize the toy source and target samples that share the same label space for validation.

For the network structure, we use the totally same architecture for two schemes of Baseline and
Ours. We adopt a multilayer perceptron (MLP) (Gardner & Dorling, 1998) as the feature extractor
F (refer to Eq. (1) of the main manuscript for notation), which MLP is composed of three fully
connected layers with BatchNorm1d and ReLU layers for stable training. The category classifier C is
an one-layer fully connected layer followed by a sigmoid function to output the classification result
(‘0’ – red point or ‘1’ – green point). For the domain discriminator D (refer to Eq. (2) of the main
manuscript for notation), it is also composed of three fully connected layers with inserted dropout
and ReLU layers for stable training following (Long et al., 2018; Cui et al., 2020b), followed by a
sigmoid function to output the domain classification result. A gradient reversal layer (GRL) (Ganin
& Lempitsky, 2015; Ganin et al., 2016; Long et al., 2018) is used to connect feature extractor F and
domain discriminator D to achieve the adversarial function by multiplying the gradient from D with
a certain negative constant during the back-propagation to the feature extractor F .

For the basic optimization hyper-parameters, we employ stochastic gradient descent (SGD) as
optimizer with an initial learning rate of 0.01 train all the schemes of Baseline and Ours. Batch size
is set as 100 and total training epoch is set as 10.

Inter-twinning Moons. For this toy problem, we conduct experiment fully based on the codebase 1

released by (Ganin et al., 2016), we recommend readers to get more details from their original paper.

A.5 MORE EXPERIMENTAL RESULTS

Feature Distributions Visualization. Here, we further visualize the learned feature distributions by
t-SNE (Saito et al., 2019) for W→A setting of Office31 in Figure 8. We observe the scheme of Source
Only that without considering domain adaptation only works well in source domain but poorly in
target domain. The adversarial training based baseline scheme of DANN (Ganin et al., 2016) aligns
most samples in the source and target domains well. When applying the proposed dynamic domain
label (DDL) technique into DANN, the scheme of DANN + DDL (ours) achieves a much better
domain alignment results, where the clusters with the same class are more compact and less data
points scatter at the boundaries between clusters. This group of visualization results validates the
effectiveness of our DDL for adversarial domain adaptation.
Feature Map Visualization. Except t-SNE visualization results, in Figure 9, we also visualize the
learned feature maps of DANN (Baseline) and DANN + DDL (ours) by Grad-CAM (Selvaraju et al.,

1https://github.com/GRAAL-Research/domain adversarial neural network
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Source Only DANN (Baseline) DANN + DDL (ours)

Figure 8: Visualization of t-SNE distributions, where samples are from source webcam (W) and
target amazon (A) domains of Office31.

2017) w.r.t. object category classification. This group of experimental visualization aims to explore
whether dynamic domain label (DDL) could help the feature extractor to learn better domain-invariant
and object-focus visual representations. We see that the baseline scheme DANN (Baseline) is prone
to ignore some discriminative regions, which impedes the transferability across domains. In contrast,
with DDL, the learned feature representations could better focus on the discriminative regions that
related to foreground objects, enabling a higher classification accuracy.

Input DANN (Baseline) DANN+DDL (ours) Input DANN (Baseline) DANN+DDL (ours) Input DANN (Baseline) DANN+DDL (ours)

Figure 9: Visualization of inner feature maps, where samples are also from source webcam (W) and
target amazon (A) domains of Office31.

Clarification of Viewing ADA from Memorization Perspective. Our work is the first work to view
the adversarial domain adaptation problem from a neural network memorization perspective, and
point out that the imbalanced distribution defect will make the majority data clusters dominate/biase
the adaptation process. To prove that, here we deliberately provide empirical evidence to show
that standard adversarial DA methods tend to systematically align majority samples before minority
samples.

First, our main manuscript (the third paragraph in the introduction section) has given some references
that related to deep network memorization: DNNs learn simple patterns first, before memorizing. In
other words, DNN optimization is content-aware, taking advantage of patterns shared by multiple
training examples (Arpit et al., 2017). Therefore, the DNN-based adversarial DA methods tend to
align well those majority samples before minority samples in the adaptation process.

Moreover, we further conduct a toy experiment as evidence to support the above statement: the
majority “bike” samples (90%) in “Amazon” domain of Office31 have no background scene (empty)
while minority “bike” samples have real-world background instead (which makes these minority
samples look like come from “Webcam” domain). We use CDAN as baseline, and train it for just
5 epochs in the “A→W” setting on Office31. Then, we test its category classification accuracy and
domain distinguishment accuracy w.r.t the majority “bike” samples and the minority “bike” samples,
respectively. We found that 1). the object classification average accuracy (recognized as “bike”) on
the former majority outperforms that on the latter minority by 37.9% (77.9% vs. 40.0%); 2). the
domain distinguishment accuracy (recognized as “Amazon”) outperforms by 72.2% (92.2% vs. 20%).
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