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Abstract

We present approximation algorithms for Observer-
Aware Markov Decision Processes (OAMDPs).
OAMDPs model sequential decision-making prob-
lems in which rewards depend on the beliefs of
an observer about the goals, intentions, or capa-
bilities of the observed agent. The first proposed
algorithm is a grid-based value iteration (Grid-VI),
which discretizes the observer’s belief into regular
grids. Based on the same discretization, the sec-
ond proposed algorithm is a variant of Real-Time
Dynamic Programming (RTDP) called Grid-RTDP.
Unlike Grid-VI, Grid-RTDP focuses its updates
on promising states using heuristic estimates. We
provide theoretical guarantees of the proposed al-
gorithms and demonstrate that Grid-RTDP has a
good anytime performance comparable to the ex-
isting approach without performance guarantees.

1 INTRODUCTION

Effective communication of intentions, goals, and desires
is crucial in our daily interactions and is equally vital for
autonomous agents. For instance, consider an autonomous
vehicle (AV) approaching a crosswalk with a pedestrian
nearby. The AV might approach the crosswalk at high speed
and then decelerate just in time to avoid hitting the pedes-
trian. However, this can be unsettling for the pedestrian. A
more reassuring approach would be for the AV to slow down
well before reaching the crosswalk, signaling its intention
to stop. We term such actions that take into account the per-
spective or beliefs of an observing agent as observer-aware
behaviors. Observer-aware behaviors include making the
agent’s goal clear [Dragan and Srinivasa, 2013], demonstrat-
ing its capabilities [Kwon et al., 2018] or disguising possible
intentions [Masters and Sardina, 2017, Savas et al., 2022].

The Observer-Aware Markov Decision Process (OAMDP)

[Miura and Zilberstein, 2021] offers a general framework for
producing observer-aware behaviors. The OAMDP frame-
work assumes a model of how the agent’s actions would
be interpreted by the observer. In OAMDPs, possible goals,
intentions, or capabilities of the observed agent are repre-
sented as types. After the observed agent takes an action, the
observing agent updates its belief over the possible types,
which determines the reward function.

While OAMDP allows modeling various observer-aware
planning problems in a unified way, solving OAMDPs has
been shown to be intractable in the worst case [Miura and
Zilberstein, 2021]. The intractability stems from the fact that
rewards depend on the belief of the observer, which in turn
depends on the history so far. Previous work proposed using
Monte-Carlo Tree Search (MCTS) to solve OAMDPs for
the finite-horizon objective [Miura and Zilberstein, 2021].
While MCTS exhibits good anytime behavior, it does not
provide guarantees on the qualities of the resulting policies.

In this paper, we propose the first approximation algorithms
for OAMDPs. We begin by establishing that the domain
state and the observer’s belief are sufficient statistics in
OAMDPs (Proposition 1). Our first proposed algorithm is
a grid-based value iteration (Grid-VI), which discretizes
the belief of the observer into regular grids. We show that
Grid-VI converges to the unique fixpoint both in discounted
(Proposition 4) and undiscounted (Proposition 6) settings
under the standard assumptions, and provide error bounds
for the discounted setting (Proposition 5). A potential draw-
back of Grid-VI is that it can waste time updating values at
irrelevant states. To address the issue, we propose a variant
of Real-Time Dynamic Programming (RTDP) [Barto et al.,
1995] to solve OAMDPs, called Grid-RTDP. Grid-RTDP
utilizes heuristic estimates to focus updates on promising
states. We show that Grid-RTDP retains a key desirable
property of RTDP (Proposition 7). Our experimental re-
sults indicate that our proposed algorithms are capable of
computing near-optimal policies. Specifically, Grid-RTDP
solves problems significantly faster than Grid-VI and offers
anytime performance comparable to MCTS.



2 BACKGROUNDS AND NOTATIONS

2.1 MARKOV DECISION PROCESSES

A finite Markov decision process (MDP) models sequential
decision-making under uncertainty. An MDP is described by
a tuple M = ⟨S,A, T,R, γ, d0⟩. S and A are finite sets of
states and actions, respectively. St and At represent a state
and an action at time t. T (st, at, st+1) is the probability
of St+1=st+1 when At=at and St=st. R is a reward for
taking at at st. γ is a parameter called the discount factor.
d0 is the initial state distribution S0 ∼ d0.

A solution to an MDP is called a policy (π). We use the
following two types of policies in the paper. A stationary
policy is a conditional distribution of actions given a state.
A history-dependent policy is a conditional distribution of
actions given a history, where a history ht+1 is a sequence of
state-action pairs up to time t and the last visited state st+1.
An optimal policy for an MDP is a policy that maximizes
E[
∑∞

t=0 γ
tR(St, At)|d0, π]. A policy (π) induces a value

function V π(s) = E[γtR(St, At)|S0 = s, π]. The optimal
value function V ∗ is the value function corresponding to an
optimal policy.

2.2 STOCHASTIC SHORTEST PATH PROBLEMS

A stochastic shortest path problem (SSP) is an undiscounted,
cost-based counterpart of an MDP. An SSP is represented
by a tuple ⟨S,A, T,C, d0, G⟩ where: S, A, and T are the
same as in an MDP. C(st, at) : S × A → R+ is the cost
of performing at at st. d0 is the initial state distribution.
G ⊂ S is a set of goal states. The goal states are absorbing,
and transitions out of goal states have zero costs.

A solution of an SSP is a policy. An optimal policy π∗

is a policy that minimizes E[
∑∞

t=0 C(St, At)|d0, π]. We
restrict our attention to problems in which there exists at
least one proper policy, which reaches the goal from all
states with probability 1, and any improper policies incur
infinite costs. Under this assumption, an SSP is guaranteed
to have an optimal policy that is proper [Bertsekas and
Tsitsiklis, 1991].

2.3 OBSERVER-AWARE MDPS

Observer-Aware Markov Decision Processes (OAMDPs)
extend MDPs by allowing the reward to depend on the
observer’s assumed belief over the types of the observed
agent [Miura and Zilberstein, 2021].

Definition. An OAMDP is a tuple1

1The original work [Miura and Zilberstein, 2021] allowed an
arbitrary function from H∗ to ∆|Θ| to update the observer’s belief.
Here, we restrict our attention to a case where the observer updates
its belief in a Bayesian fashion.

M = ⟨S,A, T, γ, d0,Θ, b0, τ, R⟩ where:

• S, A, T , γ, and d0 are the same as in MDPs. In this
paper, we assume S and A are finite.

• Θ is a (finite) set of types, representing characteristics
of the agent, such as possible goals, intentions, or ca-
pabilities. The types in OAMDPs are analogous to the
types in Bayesian game theory [Harsanyi, 1968].

• b0 ∈ ∆|Θ| is the initial belief of the observer over the
types, where ∆|Θ| is a simplex on Θ.

• τ : S × A × S × Θ → [0, 1] is the probability of
the observer witnessing a transition ⟨s, a, s′⟩ given s
and θ. τ can represent different policies and transition
functions of the observed agent depending on types.

• R : S × A × ∆|Θ| → R is a belief-dependent re-
ward function. In this paper, we assume that the re-
wards can be represented as a linear combination
of domain and belief-dependent rewards. That is,
R(s, a, b)=wdRd(s, a) + wbRb(b) for wd, wb∈R+,
where Rd and Rb represent domain and belief-
dependent reward, respectively.

After observing a transition ⟨s, a, s′⟩, the observer is as-
sumed to be Bayesian rational and updates its belief (bt)
using Bayes’ rule:

bs,a,s
′

t+1 (θ) =
τ(a, s′|s, θ) · bt(θ)∑

θ′∈Θ τ(a, s′|s, θ′) · bt(θ′)
. (1)

A solution to an OAMDP is a policy that maximizes the
expected discounted return:

E[
∞∑
t=0

γtR(St, At, Bt)|d0, π]. (2)

Figure 1 shows an example of an OAMDP with Θ =
{θA, θB , θC , θD, θE}, where each type corresponds to
the observed agent’s goal. τ(a, s′|s, θ) is typically set to
T j(s, a, s′)πθ(s, a), where πθ is an assumed policy of the
observed agent given a type θ, and T j is a transition function
according to the observer.

Note that since the observer’s belief is not directly accessible
to the acting agent, the observer’s belief in OAMDPs should
be understood as a second-order belief. That is, it is a belief
the acting agent believes the observer to have.

Observer’s Belief in Approximate Rationality One
possible choice for πθ is to assume that the acting agent
takes an approximately optimal action at each state given
their goals, desires, and intentions:

πθ(s, a) ∝ expβQ
∗
θ(s,a), (3)

where Q∗
θ is the optimal Q-value Q∗(s, a|θ) =

E[
∑∞

t=0 γ
tRt|S0=s,A0=a, π∗, θ] representing how good



(a) Environment (b) Observer’s belief (β = 0.3)

Figure 1: MazeWorld Domain

a is given s and θ. Note that Q∗
θ is computed with respect to

Mθ = ⟨S,A, Tθ, Rθ, γ, d0⟩ defined for each θ ∈ Θ. β ∈ R
serves as a hyperparameter representing the agent’s rational-
ity level. Intuitively, it is assumed that the observed agent se-
lects an action with a probability exponentially proportional
to the quality of the action. Figure 1b shows the observer’s
belief changes according to Equation 1 and 3. All the goals
are equally likely initially. As the agent moves out of the
first room, the beliefs in the goals B and D decrease. By the
time the agent enters the top right room, the goals A and E
are the two most likely goals.

The Bayesian update (Equation 1) using the Boltzmann ac-
tion model (Equation 3) is based on the idea that people
often infer goals, desires, and intentions from others’ be-
haviors by assuming that their behaviors are approximately
rational given their goals, desires, and intentions [Dennett,
1987]. Baker et al. [2009] showed that the Bayesian update
using Equation 3 largely agrees with human understanding
of goals.

Note that the definition of OAMDPs is not restricted to
using the Boltzmann action model as πθ. Other possibilities
include assuming that the observed agent follows maximum
entropy policies[Ziebart et al., 2008] or boundedly rational
policies [Zhi-Xuan et al., 2020] given its type.

Belief-Dependent Rewards OAMDP can produce various
observer-aware behaviors by changing Rb. For instance, to
clarify intentions, Rb might be defined as the negative total
variation (TV) or the Euclidean distance between the current
and target beliefs, where the target belief is b(θ∗) = 1 for
the intended type θ∗ ∈ Θ. On the other hand, if the observed
agent wants to obscure its intention, the reward could be the
entropy of the observer’s belief.

Relationship to POMDPs and I-POMDPs While both
OAMDPs and partially observable Markov decision pro-
cesses (POMDPs) operate on the belief of an agent, the two
models do not subsume each other. The belief in OAMDP is
the second-order belief of the acting agent about the belief
of the observer about the type of the acting agent. On the
other hand, the belief in POMDP is the first-order belief of

the acting agent about the states of the world. Similarly to
how beliefs over states are sufficient for optimal control in
POMDPs, we will next show that the current state and the
belief of the observer are sufficient statistics in OAMDPs.
However, while most solution methods for POMDPs [Mon-
ahan, 1982, Pineau et al., 2003] rely on piecewise linear
convexity (PWLC) of the value function, the value func-
tions for OAMDPs are not necessarily PWLC. For example,
consider using the negative Euclidean distance from the
intended type as Rb. Rb is not PWLC on ∆|Θ|. Therefore,
solution methods for POMDPs are not directly applicable
to OAMDPs.

OAMDPs can be seen as a restricted subset of Interactive
POMDPs (IPOMDPs) [Gmytrasiewicz and Prashant, 2005],
multi-agent extensions to POMDPs, where agents act by
recursively modeling the other agents’ beliefs. Several pre-
vious works have used IPOMDPs and related multi-agent
models to produce observer-aware behaviors[Lo et al., 2020,
Alon et al., 2023]. Multi-agent formulations are arguably
more general and let us reason about what others do in
response based on their beliefs. However, multi-agent for-
mulations are also notoriously hard to solve [Seuken and
Zilberstein, 2008]. Miura and Zilberstein [2021] showed
that OAMDPs can be seen as a subset of I-POMDPs, where
(1) the observer is completely passive, (2) the acting agent
knows the observer’s type, and (3) the environment is ob-
servable to both agents. In the following sections, we will
see how our proposed solution methods make use of the
additional assumptions.

Complexity of OAMDPs While OAMDPs make restric-
tive assumptions over I-POMDPs , computing an optimal
policy has been shown to be PSPACE-hard [Miura and Zil-
berstein, 2021]. This result suggests that solving OAMDPs
is intractable in the worst case. The reduction used in the
proof relies on OAMDPs with discontinuous rewards. In this
paper, we develop approximation algorithms with provable
bounds for OAMDPs with Lipschitz-continuous reward and
belief transitions.



2.4 OASSPS

In this paper, we also consider OASSPs [Lepers et al., 2024],
an undiscounted and cost-based version of OAMDPs. An
OASSP is a tuple ⟨S,A, T, d0,Θ, b0, τ, C,G⟩ where C :
S × A ×∆|Θ| → R+ is a belief-dependent cost function,
and G is a set of goal states. The other components are the
same as in OAMDPs. An optimal policy for an OASSP is a
policy that minimizes:

E[
∞∑
t=0

C(St, At, Bt)|d0, π]. (4)

As in OAMDPs, we assume that C is a linear combination of
the domain cost (Cd) and belief-dependent cost (Cb). That is,
C(s, a, b) = wdCd(s, a)+wbCb(s, a) for wd, wb ∈ R+. A
domain SSP corresponding to an OASSP is an SSP defined
as Md = ⟨S,A, T, d0, Cd, G⟩.

3 PROPERTIES OF OAMDPS

In this section, we discuss properties of OAMDPs necessary
for developing the proposed algorithms.

3.1 SUFFICIENT STATISTICS

To compute policies for OAMDPs, previous work [Miura
and Zilberstein, 2021] used a general-purpose method such
as UCT [Kocsis and Szepesvári, 2006] to compute history-
dependent policies. However, we show that the current state
and the belief of the observer contain sufficient information
to choose the best action to take:

Proposition 1. The current state and the belief of the ob-
server are sufficient statistics in OAMDPs.

Proof. For all st, st+1 ∈ S, at ∈ A, bt ∈ ∆|Θ|, ht ∈ Ht:

Pr(st+1, bt+1|st, at, bt, ht) (5)
= Pr(bt+1|st, at, st+1, bt, ht) Pr(st+1|st, at, bt, ht) (6)
= [bt+1 = b

st,at,st+1

t ]T (st, at, st+1) by definition (7)
= Pr(st+1, bt+1|st, at, bt) (8)

where [·] is the Iverson bracket. Moreover, R only depends
on St, At, and Bt by definition.

With Proposition 1 in place, we can look for policies of the
forms π : S×∆|Θ|×A→ [0, 1]. In other words, we can look
for policies to belief MDP, whose state space is S ×∆|Θ|

instead of S. Note that, while the original OAMDP has a
finite number of states, the belief MDP has a continuous
state space.

3.2 DISCONTINUITY IN VALUE FUNCTIONS

Before delving into our proposed algorithms, we address a
potential issue in developing a value-based approximation
algorithm for OAMDPs. Both of our proposed algorithms
approximate values by grouping similar beliefs. This ap-
proach operates under the implicit assumption that nearby
beliefs should yield similar values. However, we demon-
strate that, in a general OAMDP, the rate at which the ob-
server’s belief changes can be unbounded, thus invalidating
this assumption. To illustrate this issue, consider the follow-
ing example:

Example. Let us assume that we have an OAMDP with:

• Θ = {θ1, θ2, θ3},
• b1 = (1− ϵ, ϵ, 0) ∈ ∆3,

• b2 = (1− ϵ, 0, ϵ) ∈ ∆3, and

• τs,a,s
′
= (τ0 = 0, τ1 > 0, τ2 > 0).

Then, bs,a,s
′

1 = (0, 1, 0) and bs,a,s
′

2 = (0, 0, 1). Thus,

∥bs,a,s
′

1 − bs,a,s
′

2 ∥∞
∥b1 − b2∥∞

=
∥(0, 1,−1)∥∞
∥(0, ϵ,−ϵ)∥∞

=
1

ϵ
. (9)

∥bs,a,s′
1 −bs,a,s′

2 ∥∞
∥b1−b2∥∞

diverges as ϵ→ 0.

3.3 LIPSCHITZ OAMDPS

Given the potential discontinuity in values, we discuss spe-
cial cases of OAMDPs with Lipschitz-continuous reward
and belief transitions.

Definition. An OAMDP is (Lr, Lp)-Lipschitz if for all
s, s′ ∈ S, a ∈ A, and b1, b2 ∈ ∆|Θ|:

|R(s, a, b)−R(s, a, b′)| ≤ Lr∥b1 − b2∥∞, (10)

∥bs,a,s
′

1 − bs,a,s
′

2 ∥∞ ≤ Lp∥b1 − b2∥∞. (11)

Intuitively, in Lipschitz OAMDPs, beliefs close to each
other have similar rewards and update to close beliefs. The
definition is analogous to Lipschitz continuity of continuous
MDPs in general [Rachelson and Lagoudakis, 2010].

Lipschitz continuity of reward and belief transitions can be
related to Lipschitz continuity of the value function under a
favorable assumption:

Proposition 2. For a (Lr, Lp)-Lipschitz OAMDP, if γLp <
1, then V ∗ is LV ∗ -Lipschitz continuous where:

LV ∗ =
Lr

1− γLp
. (12)

Proof. See Appendix A



As we will see later, Lipschitz continuity of V ∗ enables us
to provide the error bound for discretization (Proposition 5).
Note that Proposition 2 states a sufficient condition for Lips-
chitz continuity of V ∗. In other words, there could be cases
where the conditions of Proposition 2 are not met, but V ∗ is
still Lipschitz. Moreover, in OAMDPs, belief transitions are
assumed to be the Bayesian update using Equation 1. We
can establish a relationship between the Lipschitz continuity
of belief transitions and τ as follows:

Proposition 3. If τs,a,s
′
(θ) > 0 for all θ ∈ Θ, s, s′ ∈ S,

and a ∈ A, belief transitions are Lipschitz continuous.

Proof. See Appendix A

For example, using the Boltzmann action model (Equa-
tion 3) ensures that τs,a,s

′
(θ) > 0, which guarantees the

Lipschitz continuity of belief transitions.

4 APPROXIMATION ALGORITHMS

In this section, we propose approximation algorithms for
OAMDPs/SSPs. Our first proposed algorithm is a grid-based
value iteration (Grid-VI), which discretizes the observer’s
belief into regular grids. Our second proposed algorithm
is a variant of Real-Time Dynamic Programming (RTDP),
called Grid-RTDP. Grid-RTDP relies on the same grid-based
discretization scheme as Grid-VI, but focuses its updates on
promising states using heuristic estimates.

4.1 GRID-BASED VALUE ITERATION FOR
OAMDPS/SSPS

We first describe a grid-based value iteration algorithm for
OAMDPs/SSPs. Grid-VI uses a set of regular grid points
to approximate value functions. A regular grid with the
resolution K is defined as:

PK =
{
b = (

1

K
)k|k ∈ I

|Θ|
+ ,

|Θ|∑
i=1

k(i) = K
}
, (13)

where I
|Θ|
+ is the set of |Θ|-vectors of non-negative inte-

gers. PK divides ∆|Θ| into a set of equal-size sub-simplices.
Figure 2 shows a sample regular grid on ∆3 with K = 2.

As previously done in grid-based approximation algorithms
for POMDPs [Lovejoy, 1991], the value at a given belief
point b ∈ ∆|Θ| is interpolated as using the barycentric
coordinates of b with respect to PK(b):

VK(s, b) =
∑

bi∈PK(b)

λiVK(s, bi), (14)

where PK(b) is the corners of the sub simplex containing b,
λi ≥ 0,

∑|Θ|
i=1 λi = 1, and b =

∑|Θ|
i=1 λibi. In Figure 2, the

𝑔𝑔1 = (1.0,0.0,0.0) 𝑔𝑔2 = (0.0,1.0,0.0)

𝑔𝑔3 = (0.0,0.0,1.0)
Δ3

𝑔𝑔4 = (0.5,0.5,0.0)

𝑔𝑔6 = (0.0,0.5,0.5)𝑔𝑔5 = (0.5,0.0,0.5)

𝑞𝑞1 = (2,0,0)
𝑞𝑞4 = (2,1,0)

𝑞𝑞2 = (2,2,0)

𝑞𝑞3 = (2,2,2)

𝑞𝑞6 = (2,2,1)𝑞𝑞5 = (2,1,1) ≅
𝑏𝑏 = 0.4,0.4,0.2

        

Figure 2: An example of discretized belief points PK (right)
with K = 2 and |Θ| = 3. The left is the corresponding
integer points (P ′

K).

value at b is interpolated using the values at g4, g5, and g6.
For each iteration, the algorithm updates values at all s ∈ S
and b ∈ PK using the Bellman optimality operator (T ):

(T VK)(s, b) =

max
a∈A

[
R(s, a, b) + γ

∑
s′∈S

T (s, a, s′)VK(s′, bs,a,s
′
)
]
, (15)

where values at b ̸∈ PK are interpolated using Equation 14.
The final policy is obtained by one-step lookahead using
values at given belief points:

πK(s, b) =

argmax
a∈A

[
R(s, a, b) + γ

∑
s′∈S

T (s, a, s′)VK(s′, bs,a,s
′
)
]
. (16)

For problems with undiscounted objectives (OASSPs),
Equation 15 is replaced with minimizing costs without the
discount factor.

Efficient Interpolation

One key advantage of using a regular grid is that finding λ
is quite efficient. To efficiently find barycentric coordinates
of b ∈ ∆|Θ| with respect to (PK(b) ⊂ ∆Θ), we use a
Freudenthal triangulation [Freudenthal, 1942]:

P ′
K =

{
q ∈ I

|Θ|
+ |K = q(1) ≥ q(2) ≥ · · · ≥ q(|Θ|)

}
. (17)

Note that, we have |P ′
K | = |PK | = (K+|Θ|−1)!

K!(|Θ|−1)! . Due to
one-to-one correspondence between points in PK and P ′

K ,
we can find a barycentric coordinate for b ∈ ∆|Θ| using
a barycentric coordinate for the corresponding v ∈ I

|Θ|
+

[Lovejoy, 1991, Zhou and Hansen, 2001] as follows:

1. Given b ∈ ∆|Θ|, let x(i) = K
∑|Θ|

j=i b(θj). For
example, given b = (0.4, 0.4, 0.2), we have x =
(2.0, 1.2, 0.4).

2. Let v(i) be the largest integer such that v(i) ≤ x(i). In
our example, v = (2, 1, 0).

3. Let d(i) = x(i) − v(i). In our example, d =
(0.0, 0.2, 0.4).



4. Let p be a permutation of 1 · · · |Θ| such that d(p(1)) ≥
d(p(2)) ≥ · · · ≥ d(p(|Θ)|)). In our example, p =
(2, 1, 0).

5. Identify the vertices (v1, v2, · · · , v|Θ|) of the subsim-
plex in P ′

K containing x as follows:

v1 = v, (18)

vj+1(i) =

{
vj(i) + 1 if i = p(j),

vj(i) otherwise.
(19)

In our example, v1 = q4 = (2, 1, 0), v2 =
q5 = (2, 1, 1), and v3 = q6 = (2, 2, 1). Because
of the one-to-one correspondence between PK and
P ′
K , this identifies the corresponding points in PK

(b1, · · · , b|Θ|) containing b. In our example, b1 =
g4 = (0.5, 0.5, 0.0), b2 = g5 = (0.5, 0.0, 0.5), and
b3 = g6 = (0.0, 0.5, 0.5).

6. The barycentric coordinates λ1, · · · , λ|Θ| are deter-
mined as:

λi = d(p(i− 1))− d(p(i)) for 2 ≤ i ≤ |Θ|, (20)

λ1 = 1−
∑
i=2

λi. (21)

In our example, λ1 = 0.6, λ2 = 0.2, and λ3 = 0.2.

As discussed by Zhou and Hansen [2001], finding a sub-
simplex can be done in O(|Θ| log |Θ|) time.

Theoretical Guarantees

We now discuss the theoretical guarantees of Grid-VI. Our
first result shows that Grid-VI converges to the unique fix-
point in the discounted setting.

Proposition 4. For an OAMDP, Grid-VI converges to the
unique fixpoint V ∗

K .

Proof. The interpolation (Equation 14) can be understood
as an operator on the value function. Let AK be the cor-
responding operator, then our Grid-VI can be seen as re-
peatedly applying (TK = AK ◦ T ) to the value function.
SinceAK is a nonexpansion and T is a contraction,AK ◦T
is also a contraction, and Grid-VI converges to the unique
fixpoint V ∗

K [Gordon, 1995].

The next result establishes the error bound for the approxi-
mate value function V ∗

K from the optimal value function V ∗

in the discounted setting. We first prove Lemma 1, which
bounds the one-step error due to approximation.

Lemma 1. For an OAMDP with Lipschitz-continuous value
function with the constant LV ∗ , one-step approximation
errors using a regular grid with resolution K are bounded
as:

∥TKV ∗ − V ∗∥∞ ≤
LV ∗

K
. (22)

Proof. See Section A.

In the discounted case, the overall value approximation error
can be bounded using the one-step approximation error.

Proposition 5. For an OAMDP whose value function is
LV ∗ -Lipschitz continuous, we have:

∥V ∗ − V ∗
K∥∞ ≤

LV ∗

(1− γ)K
. (23)

Proof. See Section A.

Note that the right-hand sides go to 0 as K →∞.

Next, we show that under the standard assumptions, Grid-
VI converges to the unique fixpoint when it is applied
to undiscounted problems (OASSPs) as well. To prove
the claim, we first note that, for an OASSP M =
⟨S,A, T, d0,Θ, b0, τ, C,G⟩, Grid-VI for OASSPs implic-
itly defines an SSP MK = ⟨S × PK , A, T, dK0 , CK , GK⟩
where

TK(⟨s, b⟩, a, ⟨s′, bi⟩) =

{
0 bi ̸∈ PK(bs,a,s

′
),

λiT (s, a, s
′) bs,a,s

′
=

∑
i λibi,

(24)

dK0 (⟨s, bi⟩) =

{
0 bi ̸∈ PK(b0),

λid0(s) b0 =
∑

i λibi,
(25)

CK(s, a, b) = C(s, a, b), (26)

GK = G× PK . (27)

The states in MK consist only of the corners of sub-
simplices. The transitions in MK are the same as in the
original OASSP, except that, after the belief update, bs,a,s

′

is transitioned to one of the belief points bi ∈ PK(bs,a,s
′
)

surrounding it. Note that, unlike belief MDPs corresponding
to OAMDPs/SSPs, the number of belief states in MK is
finite.

Since all M , Md and MK have the same dynamics in terms
of domain state transitions, we have:

Lemma 2. If Md has a proper policy, M and MK also
have at least one proper policy.

Proof. Let πd be a proper policy for Md. Then
π(⟨s, b⟩, a) = πK(⟨s, b⟩, a) = πd(s, a) are proper policies
for M and MK , respectively.

The fact that MK has a proper policy whenever Md has one
lets us prove the convergence of Grid-VI.

Proposition 6. If Md has a proper policy, Grid-VI for
OASSPs converges to the unique fixpoint V ∗

K .



Proof. From Lemma 2, MK has a proper policy when Md

has one. Our definition of OASSPs only allows positive
costs. Therefore, any improper policies trivially incur infi-
nite costs. For an SSP with a finite number of states, value
iteration converges to the unique fixpoint as long as there is
a proper policy and any improper policy incur infinite cost
[Bertsekas and Tsitsiklis, 1991].

Relationships to Grid-based Approximation Algorithms
for POMDPs Our algorithm shares similarities with
grid-based approximations for POMDPs [Lovejoy, 1991,
Brafman, 1997, Hauskrecht, 2000, Zhou and Hansen, 2001,
Bonet, 2002]. The main difference is that the belief is over Θ
in OAMDPs/SSPs instead of over S as in POMDPs. Approx-
imation using regular grids requires the number of points
exponential to the dimension of belief vectors. However, in
most scenarios, it is reasonable to assume that the number
of possible types (|Θ|) is much smaller than the number of
states. Thus, having grid points exponential to the dimension
of belief vectors is less of a constraint for OAMDPs/SSPs.

Relationships to Grid-based Approximation Algorithms
for Continuous MDPs Our Grid-VI for OAMDPs/SSPs
is a special case of grid-based value iteration for continuous
MDPs [Chow and Tsitsiklis, 1991, Munos and Moore, 2002]
in general. One main difference is that, in OAMDPs/SSPs,
the continuous part of the state space (∆|Θ|) is guaranteed
to be a simplex, which enables the efficient interpolation
method. Another difference is that, due to the structure
of OAMDPs/SSPs, discretization preserves the existence
of a proper policy (Lemma 2), which helped us prove the
convergence of Grid-VI for the undiscounted setting.

4.2 GRID-BASED REAL-TIME DYNAMIC
PROGRAMMING FOR OAMDPS/SSPS

We now propose an extension of Real-Time Dynamic Pro-
gramming (RTDP) [Barto et al., 1995] to OAMDPs/SSPs,
called Grid-RTDP. The potential issue for Grid-VI is that it
needs to update values at every state and grid points. How-
ever, many of these points could be irrelevant in computing
an optimal policy. RTDP is an asynchronous value iteration
algorithm that can converge to the optimal solution with-
out having to consider the entire state space. RTDP avoids
exploring a portion of the state space by utilizing an admis-
sible heuristic, i.e. lower bounds for the expected costs to
the goal. While Grid-RTDP could be applied to OAMDPs,
our presentation in this section will be based on OASSPs.

Similar to Grid-VI, Grid-RTDP discretizes beliefs into reg-
ular grids. The value at a belief b ∈ ∆|Θ| is interpolated
using Equation 14. Algorithm 1 shows a pseudocode for
Grid-RTDP. The algorithm consists of repeated trials, where
each trial starts from the initial state and belief of the ob-
server. During each trial, the algorithm first maps the current
belief b to one of the surrounding grid points bi ∈ PK(b)

Algorithm 1 Grid-RTDP

1: function GRID-RTDP
2: while within computational budget do
3: TRIAL(d0, b0)
4: end while
5: end function
6:
7: function TRIAL(d0, b0)
8: s ∼ d0
9: b← b0

10: while episode continues do
11: sample bi ∈ PK(b) with the weight λi

12: a∗ ← mina QK(s, bi, a)
13: VK(s, bi)← QK(s, bi, a

∗)
14: s′ ∼ Pr(·|s, a∗)
15: b← bs,a,s

′

i

16: end while
17: end function

randomly, where b =
∑|Θ|

i=1 λibi. Each bi has probability λi

of transitioning into (line 11). Then the algorithm selects an
action that minimizes the current cost estimate to the goal
QK(s, bi, a) (line 12):

QK(s, b, a) (28)

= C(s, a, b) +
∑
s′∈S

T (s, a, s′)VK(s′, bs,a,s
′
) (29)

= C(s, a, b) +
∑
s′∈S

T (s, a, s′)
∑

bi∈PK(bs,a,s′ )

λiVK(s′, bi),

(30)

where VK is initialized with a given heuristic function
h. In this paper, we consider the following two heuristic
functions:

• h0: which always returns 0 (i.e. no heuristics), and

• hd: which returns the scaled optimal cost to go for the
underlying domain cost (wd · V ∗

d (s)).

Note that both h0 and hd are admissible heuristics. After
selecting the best action a∗, the cost estimate for the current
state (VK(s, bi)) is updated to QK(s, bi, a

∗) (line 34). Note
that the values are updated only at beliefs in Pk. The next
state is then sampled according to the dynamics of the envi-
ronment (line 14) and the belief of the observer is updated
accordingly (line 15).

Relationships to RTDP-Bel Grid-RTDP is akin to RTDP-
Bel [Bonet and Geffner, 2009], a version of RTDP devel-
oped for POMDPs. Similar to Grid-RTDP, RTDP-Bel is
based on discretizing beliefs. Let d(b) be a discretization of
b. Unlike Grid-RTDP that updates the value at d(b) using
Q-values at d(b), RTDP-Bel updates the value at d(b) us-
ing Q-values at b. This may cause an oscillating behavior
of RTDP-Bel when two different belief points b1 and b2
discretize to the same point (i.e., d(b1) = d(b2)).



Properties We discuss some properties of Grid-RTDP.
When applied to SSPs, RTDP has the following guarantee:

Theorem 1 (Barto et al. [1995]). If there exists a proper
policy for an SSP and the initial value is admissible, then
RTDP converges to the optimal value at relevant states.

We will now show that Grid-RTDP inherits the properties
analogous to Theorem 1 under the following conditions:

A1 The domain SSP Md has a proper policy.

A2 The initial value estimates are admissible.

Combining Lemma 2 with Theorem 1, we get:

Proposition 7. Under A1-2, Grid-RTDP converges to the
optimal values (V ∗

K) at relevant states.

Note that Proposition 7 proves the convergence to the opti-
mal value for discretized problems V ∗

K , but not to V ∗.

4.2.1 Grid-Based Labeled RTDP for OASSPs

We now propose labeled RTDP (LRTDP) [Bonet and
Geffner, 2002] for OASSPs, called Grid-LRTDP. The origi-
nal RTDP does not explicitly check for convergence, and can
keep visiting states that are already solved, resulting in its
slow convergence behavior. LRTDP alleviates the issue by
labeling these states as solved. The algorithm labels states
as solved if residuals of Bellman updates in the states that
could be visited under the current best policy are smaller
than a given threshold.

Grid-LRTDP simply adds the LRTDP labeling procedure
to Grid-RTDP. Alternatively, Grid-LRTDP can be under-
stood as applying LRTDP to a discretized problem MK .
The pseudocode for the algorithm is available in the ap-
pendix (Appendix B).

The final policy for Grid-(L)RTDP is obtained as:

πK(s, b, a) =
∑

bi∈PK(b)

λi[a = argmin
ai∈A

QK(s, bi, ai)].

(31)
This means we take the optimal actions at the corners of
subsimplices, proportional to the corresponding weights λi.
The reason we do not use the one-step lookahead policy
(Equation 16) is that it could lead us to regions of beliefs
where the values have not yet converged. When an action is
selected at b such that it is not optimal at any bi ∈ PK(b), the
updated belief might not have been checked for convergence
by Grid-LRTDP.

5 EXPERIMENTS

We present experimental results solving OASSPs using
the proposed algorithms. In the first experiment, we com-

pare Grid-VI and Grid-LRTDP on the time until val-
ues are ϵ-consistent (the maximum residual is smaller
than a given threshold). In the second experiment, we
compare Grid-(L)RTDP and UCT in terms of their any-
time performances. All the codes used in the experiments
are available from https://github.com/dosydon/
approximation_algorithm_for_oamdp.

5.1 DOMAINS

We briefly describe the problem domains used in the experi-
ments.

MazeWorld Figure 1a shows an example of MazeWorld.
The agent’s goal is to reach either one of the possible goals
{A,B,C,D,E}. The domain costs are proportional to the
distance traveled. To encourage being clear about the in-
tention, Cb is the TV distance from the target belief. To
make the problem more challenging, the agent can get trans-
ported to the initial state with probability 0.1 at each state.
wd = 0.1 and wb = 1.0.

BlocksWorld Figure 3 shows an example of Blocksworld
from Miura and Zilberstein [2021], where the goal is to
stack blocks to spell “ARMS". Picking up a block always
succeeds with probability 1, while putting down a block
fails with probability 0.3 (the block falls on the table). Each
domain action has a cost of 1. Cb is the TV distance from
the target belief. wd = 0.1 and wb = 1.0. The optimal
policy first stacks “R" on top of “S". This is not optimal in
terms of task progression, but tells the observer that the goal
“ARMS" is more likely than “RAMS".

Acronym Figure 4 illustrates the Acronym domain. There
are four locations with letters. The agent can move in eight
different directions. Once the agent is in the locations with
letters, it can toggle the letters among A → M → R →
S → A. The potential goals are to spell “ARMS", “RAMS",
or “MARS" from top left to bottom right. When toggling
among letters, there is 0.3 probability of accidentally tog-
gling too much. The objective is to spell ”ARMS" while
being ambiguous about the intention. Cb(b) = Hmax−H(b)
where Hmax is the entropy of the uniform distribution and
H(b) represents the entropy of b. wd = 0.5 and wb = 1.0.

5.2 COMPUTING Q∗
θ

Using the Boltzmann action model (Equation 3) for the
belief update (Equation 1) requires computing Q∗

θ at each
state for each θ ∈ Θ. For Grid-VI, we used Value Iteration
to compute Q∗ since Grid-VI needs to enumerate all states.
For Grid-LRTDP and UCT, we used LRTDP from s ∈ S as
needed to compute Q∗

θ(s, a) to avoid generating the entire
state space. The running times for each algorithm include
the running times for computing Q∗

θ .

https://github.com/dosydon/approximation_algorithm_for_oamdp
https://github.com/dosydon/approximation_algorithm_for_oamdp
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Figure 3: Task optimal behavior (top) and legible behavior (bottom) in Blocks World from [Miura and Zilberstein, 2021]
Red blocks are the ones the agent is holding. Blue blocks represent blocks that were just put down. The possible goals are
“ARMS” or “RAMS”.
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5.3 OFFLINE CONVERGENCE

We compare the following algorithms on the time before the
maximum residual is smaller than ϵ = 10−3:

• Grid-VI with K = 1, 4, 8;

• Grid-LRTDP with K = 1, 4, 8 using h0 and hd.

Each run has time limit 10m and memory limit 8Gbytes.

Table 1 shows the results. Grid-LRTDP using hd was over-
all the best algorithm, generating fewer belief states to
solve problems. The exception was the MazeWorld domain,
where, due to the random transition back to the initial state,
Grid-(L)RTDP had to generate most of the belief points.
While some problems required only coarse discretization
of beliefs, other problems required finer discretization to
compute near optimal policies.

5.4 ANYTIME PERFORMANCE

We compare the following algorithms in terms of the any-
time behaviors:

• Grid-(L)RTDP with K = 4, 8 using hd;

• UCT where the rollout policy π∗
d is an optimal policy

for the domain SSP.

Each algorithm was run for 102, 103, 5 · 103, 104, 5 · 104,
105, 5 · 105, 106 Grid-(L)RTDP/UCT trials. For UCT, the

specified number of trials are performed at each timestep
online. For Grid-(L)RTDP, the trials are performed offline.
Since both UCT and Grid-LRTDP before convergence do
not necessarily reach the goal state, both of the algorithms
are evaluated on the average costs for the first 50 time steps.
Each run has time limit 10m and memory limit 2Gbytes.

Figure 5 shows the results. UCT and Grid-(L)RTDP exhib-
ited performances that complement each other. While UCT
showed better anytime performance in Acronym, it took
some time to achieve good performance in Blocks World,
a small problem instance with |Θ| = 2. Comparing Grid-
(L)RTDP with different resolutions (K), using coarser grids
generally resulted in better anytime behaviors as long as
the resolution is sufficient. Between Grid-RTDP and Grid-
LRTDP, they exhibited comparable anytime behaviors.

6 RELATED WORK

OAMDP is a framework that unifies different kinds of
observer-aware behaviors. Observer-aware behaviors in-
clude Legible behavior [Dragan and Srinivasa, 2013, Miura
et al., 2021], which implicitly conveys intentions via the
choice of actions. Similarly, explicable behaviors [Zhang
et al., 2017, Gong and Zhang, 2022] conform to observers’
expectations. Deceptive behaviors [Dragan et al., 2015, Mas-
ters and Sardina, 2017, Savas et al., 2022] hide agents’ in-
tentions or actively deceive observers. Predictable behav-
iors enable observers to predict future actions [Fisac et al.,



Domain |Θ| K Grid-VI Grid-LRTDP(h0) Grid-LRTDP(hd)
V t(s) |S| |PK | V t(s) |S| |PK | V t(s) |S| |PK |

MazeWorld 5
1 18.90 18.07 148 740 19.14 3.79 148 739 19.11 3.95 148 602
4 - - - - 17.08 208.35 148 10164 16.98 259.28 148 9711
8 - - - - - - - - - - - -

Acronym 3
1 15.25 15.25 6379 19137 15.76 9.93 6379 19137 15.72 9.95 6379 19137
4 7.89 346.90 6379 95685 8.63 38.91 6379 88765 8.70 31.81 6379 81728
8 - - - - 8.43 221.75 6379 286953 8.48 165.40 6379 265752

BlocksWorld 2
1 3.67 3.98 125 250 3.56 3.34 125 250 3.58 1.72 125 134
4 3.13 10.02 125 625 3.04 6.99 125 543 3.03 5.24 124 392
8 3.14 17.36 125 1125 3.04 12.0 125 890 3.04 8.85 123 625

Table 1: Time until convergence for different algorithms. V represents the value when the policy is evaluated under the true
environment (M ). t(s) is the running time in seconds. |S| and |PK | represent the number of generated domain and belief
states, respectively.

(a) MazeWorld (b) Acronym (c) BlocksWorld

Figure 5: Anytime behaviors for different algorithms.

2020, Lepers et al., 2024]. Agents can also express their
(in)capability via the choice of their actions [Kwon et al.,
2018]. OAMDP can also model the combination of implicit
communication through behaviors and explicit communica-
tion with messages [Miura and Zilberstein, 2024].

OAMDP could be regarded as a special case of Decision
Process with non-Markovian Reward (NMRDP) [Bacchus
et al., 1996, Thiébaux et al., 2006]. Unlike OAMDPs, ex-
isting works on NMRDPs Bacchus et al. [1996], Thiébaux
et al. [2006], Brafman et al. [2018] utilize temporal logic
to describe rewards over histories. OAMDP, on the other
hand, employs the belief of the observer to capture the non-
Markovian nature of rewards.

Recent years have seen a surge of interest in the human
tendency to ascribe intentionality to autonomous agents
[Thellman et al., 2017, Perez-Osorio and Wykowska, 2020].
In other words, humans often interpret the behaviors of au-
tonomous agents as rational behaviors driven by intentions,
beliefs, and desires. While people do not necessarily un-
derstand the internal mechanisms of the agents, people can
still predict the behaviors of the agents by ascribing inten-
tionality to them. OAMDPs rely on the tendency to take
intentional stances to autonomous agents.

7 CONCLUSION

In this paper, we propose the first approximation algorithms
for solving OAMDPs/SSPs, Grid-VI and Grid-(L)RTDP.
Both of the algorithms are based on discretizing the ob-
server’s beliefs into regular grids. To justify the proposed
algorithms, we show that the domain state and the belief of
the observer constitute a sufficient statistics for OAMDPs
(Proposition 1). Furthermore, we show that both algorithms
converge to the unique value (Proposition 4, 6, and 7) and
provide performance guarantees under the standard assump-
tions (Propositions 5 and 7). Our experimental results show
that the proposed algorithms can compute near-optimal poli-
cies for OAMDPs/SSPs. In particular, Grid-(L)RTDP can
converge to a solution faster than Grid-VI and has anytime
performance competitive with UCT.
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A PROOFS

To prove Proposition 2, we first prove the Lip-
schitz continuity of n-step value function. Let
V (0)(s, b) = 0 and V (n+1)(s, b) = maxa R(s, a, b) +
γ
∑

s′ T (s, a, s
′)V (n)(s′, bs,a,s

′
). Then we have:

Lemma 3. For a (Lr, Lp)-Lipschitz OAMDP, V (n) is
LV (n) -Lipschitz continuous, where LV (n) satisfies:

LV (n+1) = Lr + γLpLV (n) (32)

Proof. Proof by induction on n. For the base case with
n = 1,

|V (1)(s, b1)− V (1)(s, b2)| (33)
= |max

a
R(s, a, b1)−max

a
R(s, a, b2)| (34)

≤ max
a
|R(s, a, b1)−R(s, a, b2)| (35)

≤ Lr∥b1 − b2∥∞ (36)



For the induction step,

|V (n+1)(s, b1)− V (n+1)(s, b2)| (37)

= |max
a

R(s, a, b1) + γ
∑
s′

T (s, a, s′)V (n)(s′, bs,a,s
′

1 )

(38)

−max
a

R(s, a, b2) + γ
∑
s′

T (s, a, s′)V (n)(s′, bs,a,s
′

2 )|

(39)

≤ max
a
|R(s, a, b1) + γ

∑
s′

T (s, a, s′)V (n)(s′, bs,a,s
′

1 )

(40)

−R(s, a, b2) + γ
∑
s′

T (s, a, s′)V (n)(s′, bs,a,s
′

2 )| (41)

≤ max
a
|R(s, a, b1)−R(s, a, b2)| (42)

+ γ
∑
s′

T (s, a, s′)|V (n)(s′, bs,a,s
′

1 )− V (n)(s′, bs,a,s
′

2 )|

(43)

≤ (Lr + γLpLV (n))∥b1 − b2∥∞ (44)

Proposition 2. For a (Lr, Lp)-Lipschitz OAMDP, if γLp <
1, then V ∗ is LV ∗ -Lipschitz continuous where:

LV ∗ =
Lr

1− γLp
. (12)

Proof. Consider a sequence {Ln}n≥1 where L1 = Lr and:

Ln+1 = Lr + γLpLn (45)

Then,

Ln = Lr + γLpLr + (γLp)
2Lr + · · ·+ (γLp)

n−1Lr

(46)

=
1− (γLp)

n

1− γLp
Lr (47)

By our assumption, γLp < 1, so the sequence converges.
Let LV ∗ = limn→∞ Ln. LV ∗ must satisfy LV ∗ = Lr +
γLpLV ∗ . Thus, we get Equation 12.

Proposition 3. If τs,a,s
′
(θ) > 0 for all θ ∈ Θ, s, s′ ∈ S,

and a ∈ A, belief transitions are Lipschitz continuous.

Proof. Let fs,a,s′(b) = bs,a,s
′
: ∆Θ → ∆Θ be the be-

lief transition after observing ⟨s, a, s′⟩. From the defini-

tion (Equation 1), fs,a,s′(b)(θi) =
τs,a,s′
i bi∑

k τs,a,s′
k bk

, where

τs,a,s
′

i = τs,a,s
′
(θi) and bi = b(θi). Then we have:

Jfs,a,s′ (b)i,j =


τs,a,s′
i (

∑
k ̸=i τ

s,a,s′
k bk)

(
∑

k τs,a,s′
k bk)2

i = j,

−τs,a,s′
i τs,a,s′

j bj

(
∑

k τs,a,s′
k bk)2

i ̸= j,
(48)

∥Jfs,a,s′ (b)∥∞ = max
1≤i≤n

∑
1≤j≤n

|Jfs,a,s′ (b)i,j |, (49)

= max
1≤i≤n

2τs,a,s
′

i (
∑

k ̸=j τ
s,a,s′

k bk)

(
∑

k τ
s,a,s′

k bk)2
, (50)

where Jf is the Jacobian of f and ∥ · ∥∞ is the in-
duced operator norm. Let τmin = mins,a,s′,k τ

s,a,s′

k and
τmax = maxs,a,s′,k τ

s,a,s′

k . Note that, for every b ∈ ∆n,∑
k ̸=i τ

s,a,s′

k bk ≤ τmax and
∑

k τ
s,a,s′

k bk ≥ τmin > 0.
Then we get ∥Jfs,a,s′ (b)∥∞ ≤ 2( τmax

τmin
)2.

Lemma 1. For an OAMDP with Lipschitz-continuous value
function with the constant LV ∗ , one-step approximation
errors using a regular grid with resolution K are bounded
as:

∥TKV ∗ − V ∗∥∞ ≤
LV ∗

K
. (22)

Proof. For all n ≥ 0,K ≥ 1, s ∈ S, and b ∈ ∆|Θ|,

|V ∗(s, b)− TKV ∗(s, b)| (51)

= |V ∗(s, b)−
∑

bi∈PK(b)

λiT V ∗(s, bi)| (by definition)

(52)

= |
∑

bi∈PK(b)

λi(V
∗(s, b)− V ∗(s, bi))| (T is a fixpoint of V ∗)

(53)

≤
∑

bi∈PK(b)

λi|V ∗(s, b)− V ∗(s, bi)| (triangle inequality)

(54)

≤
∑

bi∈PK(b)

λiLV ∗∥b− bi∥∞ (55)

≤ LV ∗
1

K
(56)

Proposition 5. For an OAMDP whose value function is
LV ∗ -Lipschitz continuous, we have:

∥V ∗ − V ∗
K∥∞ ≤

LV ∗

(1− γ)K
. (23)



Proof.

∥V ∗ − V ∗
K∥∞ (57)

≤ ∥V ∗ − TKV ∗ + TKV ∗ − V ∗
K∥∞ (58)

≤ ∥V ∗ − TKV ∗∥∞ + ∥TKV ∗ − TKV ∗
K∥∞ (59)

≤ LV ∗

K
+ γ∥V ∗ − V ∗

K∥∞ (60)

B PSEUDOCODE FOR GRID-LRTDP

Algorithm 2 shows the pseudocode for Grid-LRTDP. The
algorithm operates identically to Grid-RTDP, except that at
the end of each trial, the algorithm checks if states visited
during the trial can be labeled as solved.

Algorithm 2 Grid-LRTDP

1: function GRID-LRTDP(s0, b0, ϵ, K)
2: while ∃bi ∈ PK(b0)¬⟨s0, b0⟩.solved do
3: LRTDPTRIAL(s0, b0, ϵ, K)
4: end while
5: end function
6:
7: function LRTDPTRIAL(s0, b0)
8: visited← Stack :: new()
9: s ∼ s0

10: b← b0
11: while episode continues do
12: sample bi ∈ PK(b) with the weight λi

13: visited.push(⟨s, bi⟩)
14: a∗ ← mina QK(s, bi, a)
15: VK(s, bi)← QK(s, bi, a

∗)
16: s′ ∼ Pr(·|s, a∗)
17: b← bs,a,s

′

i

18: end while
19:
20: while ¬visited.is_empty() do
21: ⟨s, b⟩ ← visited.pop()
22: if ¬ CHECKSOLVED(s, b, ϵ, K) then
23: break
24: end if
25: end while
26: end function

Algorithm 3 shows the procedure for labeling states. Starting
from a given ⟨s, b⟩ the algorithm visits state that could be
visited under the current best policy, and checks if the resid-
uals of Bellman updates are smaller than a given threshold
ϵ.

Algorithm 3 CHECKSOLVED

1: function CHECKSOLVED(s, b, ϵ, K)
2: rv ← true
3: open← Stack :: new()
4: closed← Stack :: new()
5: if ¬⟨s, b⟩.solved then
6: open.push(⟨s, b⟩)
7: end if
8: while ¬open.is_empty() do
9: ⟨s, b⟩ ← open.pop()

10: closed.push(⟨s, b⟩)
11: a∗ ← mina QK(s, b, a)
12: ϵres ← |VK(s, b)−QK(s, b, a∗|
13: VK(s, b)← QK(s, b, a∗)
14: if ϵres < ϵ then
15: continue
16: end if
17: for all s′ ∈ S such that T (s, a, s′) > 0 do
18: for all bi ∈ PK(bs,a,s

′
) such that λi > 0

do
19: if ¬⟨s′, bi⟩.solved∧¬⟨s′, bi⟩ ∈ open∧
¬⟨s′, bi⟩ ∈ closed then

20: open.push(⟨s′, bi⟩)
21: end if
22: end for
23: end for
24: end while
25:
26: if rv = true then
27: for all ⟨s, b⟩ ∈ closed do
28: ⟨s, b⟩.solved← true
29: end for
30: else
31: while ¬closd.is_empty() do
32: ⟨s, b⟩ ← open.pop()
33: a∗ ← mina QK(s, b, a)
34: VK(s, b)← QK(s, b, a∗)
35: end while
36: end if
37: end function
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