

EFFICIENT DISCRIMINATIVE JOINT ENCODERS FOR LARGE SCALE VISION-LANGUAGE RE-RANKING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

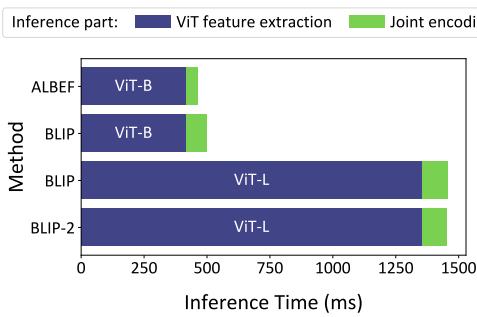
011 Multimodal retrieval still leans on embedding-based models like CLIP for fast vector
 012 search over pre-computed image embeddings. Yet, unlike text retrieval where
 013 joint-encoder re-rankers are standard, comparable vision–language re-rankers are
 014 largely absent. We find that seminal joint encoders such as BLIP are severely
 015 bottlenecked by an expensive visual feature-extraction stage, preventing practical
 016 deployment at scale. Motivated by this bottleneck, we introduce **EDJE**, an
 017 **Efficient Discriminative Joint Encoder** that precomputes vision tokens offline and
 018 compresses them via a lightweight attention-based adapter, so online inference runs
 019 only a compact joint encoder over a small set of visual tokens plus the text. **EDJE**
 020 preserves strong retrieval performance while drastically reducing storage and online
 021 compute, enabling high-throughput inference. Specifically, **EDJE** processes 50k
 022 image–text pairs/second while requiring 49kB of disk storage per image, matching
 023 prior art on Flickr (zero-shot) and COCO (fine-tuned) retrieval.¹

1 INTRODUCTION

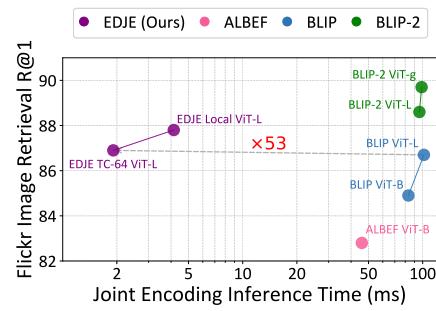
027 Large-scale multimodal retrieval — finding the most relevant images for a text query, or retrieving
 028 descriptive text given an image — is a fundamental challenge in vision–language modeling. Its
 029 importance spans a wide range of applications, including web-scale image search, multimodal dataset
 030 curation, content moderation, and retrieval-augmented generation. Because such applications often
 031 involve searching across millions of candidates, retrieval systems must be *both* efficient and accurate.

032 A major breakthrough came with the emergence of models that align visual and textual modalities
 033 within a shared embedding space, such as CLIP (Radford et al., 2021). By enabling efficient similarity
 034 search through simple vector comparisons, these models made content-based large-scale retrieval
 035 feasible. Beyond retrieval, they have also shown strong generalization to tasks such as zero-shot

037 ¹The paper’s code is publicly available at <https://github.com/gitanony04-lab/Simple-Efficient-Fusion>



040 (a) Inference time breakdown



041 (b) Retrieval vs. encoding time

042 **Figure 1: Inference efficiency and retrieval performance.** (a) Methods with strong discriminative capabilities
 043 are dominated by costly ViT feature extraction, prohibiting their practical use for re-ranking. (b) **EDJE** achieves
 044 competitive zero-shot retrieval performance with up to 53× faster inference. Its token compression makes
 045 storing visual features practical, enabling large-scale retrieval.

054 image classification, inspiring rapid improvements of this paradigm (Wang et al., 2022; Zhai et al.,
 055 2023; Cherti et al., 2023; Fang et al., 2023a;b; Tschannen et al., 2025).

056 In parallel, the remarkable success of large language models (LLMs) has driven efforts to integrate
 057 vision, enabling instruction-following over multimodal inputs. Early approaches (Chen et al., 2020;
 058 Li et al., 2021; 2022; 2023) aimed to build foundation vision–language models (VLMs) capable of
 059 both generative and discriminative tasks. However, the research community has shifted its interest
 060 towards generative-only models, typically by coupling a vision encoder with a pre-trained LLM (Liu
 061 et al., 2023; 2024; Wang et al., 2024; Gemma, 2025). This shift has effectively divided the research
 062 community into two main directions: (1) advancing embedding-based models for vision–language
 063 alignment, and (2) improving text generation over multimodal inputs — leaving the discriminative
 064 potential of joint encoders largely underexplored.

065 Unlike embedding-based models, joint encoders process both modalities together, allowing *richer*
 066 *cross-modal interactions*. Prior work (Li et al., 2021; 2022; 2023) has shown that such models can
 067 significantly improve cross-modal retrieval performance by re-ranking the top- k candidates retrieved
 068 by an embedding model. However, their adoption in practical retrieval pipelines has remained limited;
 069 each candidate pair must be evaluated independently, and existing architectures are slow. In particular,
 070 these models rely on heavy, high-resolution CLIP-style vision backbones to extract highly expressive
 071 image features that poses a severe efficiency bottleneck (Figure 1a). This raises a central question:

072 *Can we harness the benefits of joint modeling while achieving the efficiency required for large-scale
 073 retrieval?*

074 To this end, we introduce ***EDJE***, an efficient discriminative joint encoder that allows fine-grained
 075 cross-modal interactions without requiring online visual feature extraction. The core idea is to shift
 076 visual feature extraction offline: images are encoded once and stored on disk; at query time a compact
 077 encoder-only language model jointly processes these with text tokens to produce a re-ranking score.
 078 We further improve scalability by introducing a lightweight *token-compression adapter* that reduces
 079 the number of cached vision tokens. Instead of storing the full sequence produced by the vision
 080 backbone, the adapter utilizes a small set of learnable queries that aggregates the most relevant
 081 information through cross-attention and projects them to the embedding space of the joint encoder.
 082 This compressed representation substantially lowers storage requirements and decreases the number
 083 of tokens the joint encoder must process at query time.

084 Empirically, ***EDJE*** consistently improves zero-shot retrieval when paired with a variety of embedding-
 085 based models, spanning multiple visual backbones and input resolutions. This demonstrates its
 086 modularity as a drop-in re-ranker that can enhance retrieval pipelines regardless of the underlying
 087 embedding model. Moreover, when equipped with a strong visual backbone such as SigLIP2
 088 (Tschannen et al., 2025), ***EDJE*** surpasses or matches the retrieval performance of prior joint encoders
 089 on standard benchmarks (Flickr30k zero-shot; MS-COCO fine-tuned) (Plummer et al., 2015; Lin
 090 et al., 2014), while operating with substantially greater efficiency (Figure 1b). Finally, we evaluate
 091 the robustness of ***EDJE*** under compression, quantifying the trade-off between retrieval performance
 092 and storage cost as the number of compressed tokens is reduced, and conducting further ablations on
 093 re-ranking pool size and training objectives.

094 **Contributions.** In this work, we address the challenge of bringing the benefits of joint vision-
 095 language modeling to large-scale retrieval while maintaining efficiency. Our main contributions are
 096 as follows:

1. We introduce ***EDJE***, an efficient discriminative joint encoder that performs fine-grained
 100 cross-modal re-ranking while shifting heavy vision precomputation offline. We further
 101 propose a lightweight *token-compression adapter* that condenses vision features into a
 102 compact representation, substantially reducing storage and computation.
2. Empirically, ***EDJE*** demonstrates consistent gains over a variety of embedding-based models.
 104 With a strong visual backbone, ***EDJE*** achieves performance competitive with state-of-the-art
 105 joint encoders on standard benchmarks while operating with substantially greater efficiency.
3. We conduct comprehensive analyses of scalability and robustness, quantifying trade-offs
 107 between retrieval performance, storage costs, re-ranking pool size, and training objectives.

108

2 RELATED WORK

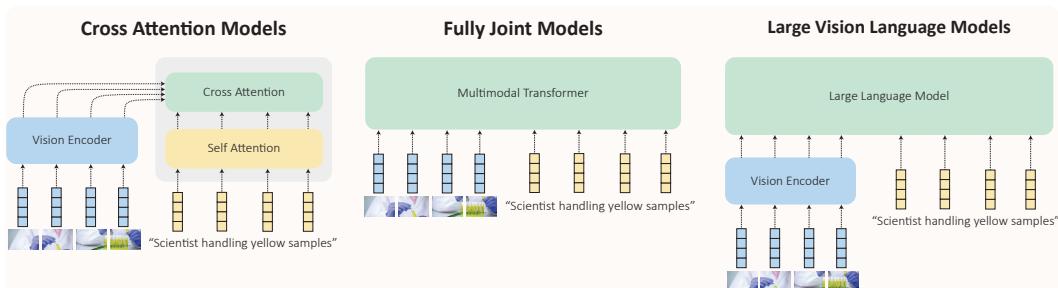
110 The success of CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) in aligning vision and
 111 language modalities within a shared embedding space marked a breakthrough in vision–language
 112 modeling. By scaling contrastive learning to large architectures and massive image–caption datasets,
 113 these models enabled efficient vector similarity search and inspired abundance of follow-up work.

114 Subsequent research has been directed towards reproducing and extending this paradigm in several
 115 directions. For example, LAION-400M (Schuhmann et al., 2021) released an open dataset of paired
 116 image–caption training data. Other efforts scaled model size and data (Xu et al., 2024; Fang et al.,
 117 2023b), filtered noisy captions (Fang et al., 2023a; Gadre et al., 2023), or generated synthetic ones (Li
 118 et al., 2022; Nguyen et al., 2023; kokitsi Maninis et al., 2025). Additional work explored alternative
 119 loss functions (Zhai et al., 2023) or auxiliary objectives to enrich localization (Naeem et al., 2024;
 120 kokitsi Maninis et al., 2025) and language generation capabilities (Wan et al., 2024; Tschanne et al.,
 121 2025). Despite their efficiency and scalability, embedding-based approaches compress modalities
 122 independently (*late interaction*), limiting fine-grained cross-modal interactions.

123 Parallel to contrastive approaches, researchers have pursued models that process modalities *jointly*.
 124 Early systems such as LXMERT and UNITER (Tan and Bansal, 2019; Chen et al., 2020) relied on
 125 region features from R-CNN (Ren et al., 2015) combined with text embeddings. [LightningDOT](#)
 126 (Sun et al., 2021) relies on these methods to perform re-ranking with pre-computed region-level
 127 representations to enable feasible storage. However, because each region is collapsed into a single
 128 vector, such re-ranker behaves much closer to an embedding model rather than a true joint encoder
 129 that sees the full image. In practice, this leads to performance that now lags behind modern embedding
 130 models such as [SigLIP2](#) (Tschanne et al., 2025).

131 The emergence of vision transformers made combining vision and language modalities more straight-
 132 forward as both modalities are represented as a sequence of tokens. Consequently, some works
 133 aimed at creating transformer models capable of processing both images and texts jointly (Wang
 134 et al., 2021; 2022). Such models require heavy pre-training by masking either text or both text
 135 and image tokens. Another line of work introduced cross-attention architectures such as ALBEF,
 136 BLIP, BLIP-2, and CoCa (Li et al., 2021; 2022; 2023; Yu et al., 2022), which fuse pretrained vision
 137 encoders and language models through cross-attention layers. These joint encoders not only unify
 138 discriminative and generative modeling, but also consistently outperform embedding-based models
 139 on discriminative tasks. In particular, multimodal retrieval performance can be significantly enhanced
 140 by re-ranking embedding-based results with a joint encoder (Li et al., 2021; 2022; 2023), echoing
 141 common practices in text retrieval where cross-encoders are widely used (Chen et al., 2024; Zhang
 142 et al., 2024).

143 A more recent trend is the integration of pretrained vision encoders into large language models
 144 (LLMs), yielding generative vision–language models (VLMs). Methods such as LLaVA (Liu et al.,
 145 2023) introduce a lightweight projection that maps vision tokens into the LLM embedding space,



157 Figure 2: Taxonomy of vision–language joint encoders. Left: Cross-attention models integrate
 158 modalities through cross-attention layers interleaved with textual self-attention (Li et al., 2021; 2022;
 159 2023). Middle: Joint foundation models such as BEiT-3 (Wang et al., 2022) employ unified self-
 160 attention over native visual and textual tokens, enabling full cross-modal interaction. Right: Modern
 161 generative VLMs (Liu et al., 2023) combine a pretrained vision encoder with a large language model,
 tuning the latter to process projected vision tokens as if they originated from text.

162 followed by fine-tuning on curated captioning datasets. Variants extend this with parameter-efficient
 163 fine-tuning (Hu et al., 2022) and supervised fine-tuning (Liu et al., 2024; Abdin et al., 2024; Zohar
 164 et al., 2025; Microsoft et al., 2025). While this approach makes it simpler to integrate various
 165 modalities into highly optimized LLMs (Zohar et al., 2025; Microsoft et al., 2025), it often emphasizes
 166 instruction-following and generation at the expense of discriminative power.

167 A taxonomy of contemporary vision-language joint encoders is provided in Figure 2.
 168

170 3 TOWARDS EFFICIENT JOINT ENCODERS

172 We now build up the design of our efficient discriminative joint encoder (**EDJE**) step by step. First,
 173 we examine why existing multimodal joint encoders remain impractical for retrieval, pinpointing the
 174 vision backbone as the critical bottleneck (Section 3.1). Next, we show how precomputing vision
 175 features offers an appealing solution, while also introducing a new challenge: the considerable cost
 176 of storing all tokens (Section 3.2). Next, we discuss an efficient integration of vision and language
 177 modalities through a compact joint encoder (Section 3.3). Finally, we present a token-compression
 178 adapter that resolves the storage challenge by compressing long sequences of vision tokens into a
 179 compact set of expressive tokens (Section 3.4).

181 3.1 ON THE ABSENCE OF MULTIMODAL RE-RANKERS

183 Existing joint encoders such as BLIP and BLIP-2 (Li et al., 2022; 2023) achieve strong performance
 184 but rely on visual feature extraction through large backbones like ViT-B/16 (384) and ViT-L/16 (384).
 185 This reliance introduces a severe bottleneck: encoding a batch of 64 images requires about 400 ms
 186 with ViT-B and nearly 1,400 ms with ViT-L on an A6000 GPU - before any cross-modal interaction
 187 even occurs. Specifically, for the BLIP family, the visual feature extraction alone consumes 83%
 188 of inference time in the ViT-B case and 93% with ViT-L. In practice, such inference times make
 189 it infeasible to use these models for retrieval, where thousands of candidates must be re-ranked
 190 per query. In comparison, the most downloaded text re-ranker model in HuggingFace² is based
 191 on the MiniLM architecture (Wang et al., 2020), has just 22M parameters and processes a similar
 192 batch of full-context sequences in under 60 ms, an order of magnitude faster. This gap explains the
 193 absence of multimodal re-rankers in real-world systems: the cost of extracting visual features alone is
 194 prohibitive.

195 3.2 PARADIGM SHIFT: VISION PRECOMPUTATION

197 With the vision backbone identified as the bottleneck, we next ask: must vision features always
 198 be extracted online? Cross-attention-based models and VLMs suggest otherwise: since the vision
 199 encoder operates purely on images, its output can be cached and reused. Thus, we propose treating
 200 the vision encoder as a preprocessing stage, with vision tokens computed and stored to disk *offline*.

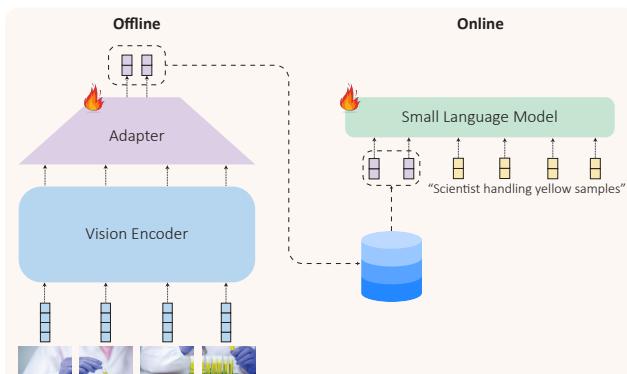
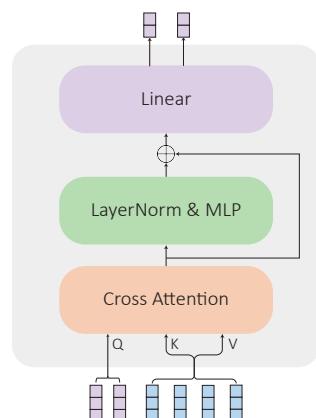
201 For a standard ViT-B (Dosovitskiy et al., 2021) projecting each 16×16 patch to a $d = 384$ embedding
 202 stored in FP16 occupies the same space as the uncompressed 8-bit RGB image³. These token represen-
 203 tations can reside on disk rather than in memory, as in late-interaction models like ColBERT (Khattab
 204 and Zaharia, 2020) and ColPali (Fayssse et al., 2025). Under fixed token dimensionality, scaling the
 205 vision encoder improves representation quality while leaving per-image storage unchanged—shifting
 206 heavy computation offline without increasing online cost. However, storing *all* tokens is intractable
 207 at scale: raw image size is typically too large, amounting to terabytes for web-scale databases. This
 208 problem motivates the development of strategies to compress the visual features.

210
 211 **Key takeaway:** Precomputing vision tokens moves expensive computation of-
 212 fline, enabling powerful vision encoders without slowing inference. However, it
 213 comes at large storage costs, motivating methods to compress the visual features.

214
 215 ²<https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2>

³ $16^2 \times 3 \times 8$ bits per patch vs. 384×16 bits per token.

216
217
218
219
220
221
222
223
224
225
226
227
228
229

(a) A high-level view of **EDJE**

(b) Token-compression adapter

230
231
232 Figure 3: **EDJE** architecture overview and adapter. (a) Offline stage (left): images are encoded by
233 the vision encoder and projected by the adapter into a compact set of tokens compatible with the
234 language model. Online stage (right): the small language model consumes the compressed tokens
235 together with text. (b) Token-compression adapter: cross-attention utilizes k universal query tokens
236 that act as feature extractors acting on the visual tokens. The MLP projects the extracted features to
237 the embedding space of the language model.

3.3 INTEGRATING THE VISION MODALITY

241 Once visual tokens are computed, the question becomes how best to integrate them with text.
242 Considering how the vision tokens are integrated into "cross-attention" models versus how they are
243 integrated into large vision-language-models, we make an interesting observation: while in "cross
244 attention" models vision tokens are considered in the cross attention layers, large VLMs instead
245 project vision tokens into the language embedding space and *concatenate* them with text tokens; this
246 allows the cross-modal interaction to be handled entirely by self-attention layers. In our setting, the
247 large language model can be replaced with a compact, efficient language model to meet throughput
248 targets. This yields an architecture with many benefits: (i) Fast: the language model can be as small
249 as MiniLM (Wang et al., 2020) or any other efficient language model. (ii) Modular: any ViT-based
250 vision encoder can be paired with any pre-trained language model via a lightweight adapter as a
251 bridge between modalities. (iii) Expressive: modern vision encoders produce highly expressive
252 tokens that capture both semantics and local spatial structure (Tschannen et al., 2025). (iv) Data
253 efficient: only the adapter has to be trained from scratch. In the VLM literature it has been observed
254 that the language model and vision encoder require minimal tuning (Liu et al., 2023; 2024; Abdin
et al., 2024). A high-level view of **EDJE** is given in Figure 3a.

255
256 **Key takeaway:** Replacing the LLM in a typical VLM with a small, efficient
257 language model yields a joint-encoder architecture well suited for discriminative
258 modeling: fast, expressive, modular and data efficient.

3.4 VISION-LANGUAGE ADAPTER LAYER

260
261
262 The adapter projects cached vision tokens into the language embedding space. It has been demon-
263 strated in the VLM literature that even very simple adapters — linear layers (Liu et al., 2023) or
264 multi-layer perceptrons (MLPs) (Liu et al., 2024) are surprisingly effective despite their parameter
265 count. However, local adapters map each vision token to one language token, limiting flexibility:
266 vision encoders with larger context improve expressiveness but proportionally inflate storage.

267
268 To address this, we propose an attention-based token compression layer that compresses vision token
269 sequences into a compact set of tokens. Specifically, we introduce a set of m learnable universal

270 query tokens $\mathbf{Q} = [\mathbf{q}_1, \dots, \mathbf{q}_m]$ that attend over the n vision encoder tokens $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$:

272
$$\mathbf{K} = \mathbf{XW}_K, \quad \mathbf{V} = \mathbf{XW}_V \quad (1)$$

273
$$\mathbf{H} = \text{MultiHeadAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) \quad (2)$$

275 The output $\mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_m]$ is composed of m tokens that share their dimensionality with the vision
 276 encoder, $\mathbf{h}_i \in \mathbb{R}^{d_{\text{vision}}}$. It is useful to regard the query tokens as a universal feature extractors, that
 277 softly select visual features most relevant for semantic matching. These states are then passed through
 278 a standard residual block and projected into the language model embedding space $\mathbb{R}^{d_{\text{language}}}$ through a
 279 simple linear projection:

280
$$\mathbf{O} = \mathbf{H} + \text{MLP}(\text{LayerNorm}(\mathbf{H})) \quad (3)$$

282
$$\mathbf{Y} = \mathbf{OW}_{\text{proj}} \quad \mathbf{W}_{\text{proj}} \in \mathbb{R}^{d_{\text{vision}} \times d_{\text{language}}} \quad (4)$$

284 This mechanism provides a more flexible way of integrating visual information. Note that it generalizes
 285 attention pooling strategies used in embedding models (Zhai et al., 2023) and has some
 286 connection to the Q-Former layer (Li et al., 2023). The token compression layer is depicted in
 287 Figure 3b.

288 We refer to **EDJE** with a simple MLP adapter layer as the "local" variant vs. when equipped with a
 289 token-compression adapter which we refer to as the "token-compressed" variant.

291 **Key takeaway:** The proposed token compression layer substantially decreases
 292 storage costs, seamlessly enabling vision encoders with longer context, higher
 293 input resolution and capacity.

296 4 EFFECTIVE DISCRIMINATIVE TRAINING

299 To obtain a joint encoder with strong discriminative performance, a natural choice is to optimize it
 300 for image–text matching. This involves determining the correspondence $f_{\theta}(t, v)$ of a given image v
 301 to a textual description t , where each positive pair must be contrasted against non-matching samples.
 302 Directly training the encoder in this way poses several challenges:

303 **Negative pairs.** While obtaining positive pairs from paired image–caption datasets is straightfor-
 304 ward, selecting negative pairs is considerably more challenging. Random negatives are typically too
 305 easy, failing to distinguish fine-grained matches from loosely related examples. Conversely, mining
 306 negatives with another model introduces an inevitable dependence on that model’s quality. To address
 307 this, we adopt an in-batch hard-negative mining strategy utilizing an embedding model (matching to
 308 the vision encoder). For each mini-batch \mathcal{B} , we compute pairwise similarities between all texts and
 309 images using the embedding model, obtaining weak similarity matrix $\tilde{\mathbf{S}}_{ij}$. For every anchor pair, we
 310 then select the top- k most similar (non-anchor) images and texts according to $\tilde{\mathbf{S}}_{ij}$ as negatives. This
 311 approach effectively exposes the joint encoder to the most confusable candidates without requiring
 312 full pairwise late interaction. Although this procedure may introduce occasional false negatives, in
 313 practice the abundance of informative negatives improves discriminative performance.

315 **Vision-language alignment.** While image–text matching is the central task of interest, it only
 316 provides a limited signal for aligning vision–language features and learning a meaningful global
 317 representation. Large vision–language models like LLaVA (Liu et al., 2023; 2024) achieve this
 318 alignment through a pre-training phase in which the model is encouraged to reproduce the caption
 319 matching a certain image. Inspired by the pre-training phase of such models and to exploit the
 320 bidirectionality of our joint encoder, we employ masked language modeling with aggressive text-only
 321 masking. To strengthen the dependence of the [CLS] token on textual inputs, we introduce a
 322 projection layer on top of the [CLS] representation and encourage it to recover the text embedding
 323 of the underlying embedding model when provided with text-only inputs.

324 Thus, our pre-training strategy jointly optimizes three heads on top of a shared backbone:

324 1. **Image–text matching:** binary classification over matched image–caption pairs vs. mined
 325 in-batch hard negatives.
 326
 327 2. **Masked language modeling:** we mask 50% of caption tokens and predict the masked
 328 tokens given visual tokens and unmasked text.
 329
 330 3. **Text-embedding recovery:** we opt for recovering the embeddings of the text encoder g
 331 paired with the vision encoder using a cosine objective $\mathcal{L}_{\text{text}}(\theta) = 1 - \cos(\mathbf{f}_\theta(t), \mathbf{g}(t))$

332 **Local-to-compressed distillation.** To further enhance the performance of the token-compressed
 333 models we perform logit-level knowledge distillation using the local-adapter model variant as a
 334 teacher. Specifically, we encourage the token-compressed model (student) to imitate the image-text
 335 matching logits of the full-adapter joint encoder (teacher). For each positive, negative-image and
 336 negative-text pair we consider the binary cross-entropy between student and teacher predictions:

$$\mathcal{L}_{\text{distil}} = -[y_t \cdot \log(\hat{y}_s) + (1 - y_t) \cdot \log(1 - \hat{y}_s)]$$

339
 340 with $y_t = \sigma(s_{\text{teacher}}(t, v))$ and $\hat{y}_s = \sigma(s_{\text{student}}(t, v))$ where σ is the sigmoidal function and $s(t, v)$
 341 denotes the similarity logit that corresponds to t and v .

343 5 EXPERIMENTS

345 To goal of this section is to extensively investigate the empirical benefits of integrating **EDJE** into
 346 large scale retrieval pipelines. Specifically, we aim to address the following questions:
 347

348 (Q1) Can **EDJE**, as a minimal-scale joint encoder, beat highly-optimized embedding models?
 349
 350 (Q2) How **EDJE** compares with existing joint encoders in terms of performance and efficiency?
 351 (Q3) What is the significance of each component constituting **EDJE**?

353 5.1 EXPERIMENTAL SETUP

355 We train **EDJE** using a two-phase protocol consisting of pre-training and fine-tuning phases as
 356 described in Section 4. During both phases we freeze the vision encoder and train only the adapter of
 357 interest and the language model to process both modalities. We experiment with a variety of vision
 358 encoder families at multiple scales and input resolutions, including CLIP (Radford et al., 2021),
 359 DFN (Fang et al., 2023a), MetaCLIP (Xu et al., 2024) and SigLIP2 (Tschanne et al., 2025). Except
 360 for SigLIP2, we use the penultimate-layer hidden states as the vision-encoder output. The language
 361 model is fixed to be MiniLM-L12-uncased (Wang et al., 2020) in all experiments. To ensure fair
 362 comparison, we use the smaller dataset mixture of BLIP for training; the pre-training data is composed
 363 of CC12M (Changpinyo et al., 2021), CC3M (Sharma et al., 2018), SBU (Ordonez et al., 2011),
 364 Visual Genome (Krishna et al., 2016), and COCO (Lin et al., 2014), totaling 14M image–caption pairs
 365 while fine-tuning only utilizes COCO. Full training hyperparameters are provided in Appendix A.

366 For evaluation, we follow a two-stage retrieval pipeline: for each query, we first retrieve the top- k
 367 candidates using embedding-based retrieval with a CLIP-like model. These candidates are then
 368 re-ranked by **EDJE**, which jointly processes image token embeddings and captions. Unless otherwise
 369 stated, we fix the pool-size to $k = 10$. We report both text-to-image (T2I) and image-to-text (I2T)
 370 performance under Recall@{1, 5, 10}, consistent with prior foundation model benchmarks (Li et al.,
 371 2021; 2022; 2023; Wang et al., 2022). Since most embedding-based models report other or non-
 372 retrieval metrics, we reproduce them using the OpenCLIP framework (Ilharco et al., 2021), verifying
 373 agreement with their reported numbers before presenting the aforementioned metrics. We evaluate on
 374 Flickr30k (Plummer et al., 2015) for zero-shot retrieval and on COCO (Lin et al., 2014) for fine-tuned
 375 retrieval. Following standard practice, we adopt the Karpathy split for COCO and the standard test
 376 split of 1,000 images for Flickr30k, each paired with five captions. **We additionally evaluate EDJE**
 377 under a more challenging retrieval setup in which all training images and captions are inserted into the
 candidate pool, following LightningDOT (Sun et al., 2021). This makes the task considerably more
 challenging and resemble real-world scenarios. We provide the full details and results in Appendix F.

378
 379 Table 1: **Zero-shot retrieval results on Flickr30K.** We report Recall@1/5/10 for text-to-image and
 380 image-to-text tasks across four backbones (CLIP, DFN, MetaCLIP and SigLIP 2) using various ViT
 381 scales and resolutions. Rows marked red represent **EDJE** with the corresponding ViT backbone.

382 Model	383 ViT variant	384 Res.	385 Text-To-Image			386 Image-To-Text		
			387 R@1	388 R@5	389 R@10	390 R@1	391 R@5	392 R@10
393 CLIP	394 ViT-B/16	395 224 ²	396 62.1	397 85.6	398 91.8	399 81.3	400 96.1	401 98.3
			402 76.8	403 90.7	404 91.7	405 91.1	406 98.2	407 98.4
	408 ViT-L/14	409 224 ²	410 65.2	411 87	412 92.1	413 85.1	414 97.1	415 98.9
416 DFN	417 ViT-L/14	418 336 ²	419 80.6	420 91.4	421 92.2	422 92.8	423 98.5	424 98.9
			425 67.7	426 88.8	427 93.3	428 86.7	429 98.2	430 99
	431 ViT-L/14	432 224 ²	433 81.9	434 92.8	435 93.3	436 93.8	437 98.6	438 99.9
439 MetaCLIP	440 ViT-L/14	441 224 ²	442 75.1	443 92.7	444 96	445 90	446 98.6	447 99.4
			448 77.5	449 94	450 96.1	451 91.1	452 98.4	453 99.4
	454 ViT-L/14	455 384 ²	456 76.3	457 93.6	458 96.3	459 90.6	460 98.5	461 99.5
462 SigLIP 2	463 ViT-B/16	464 384 ²	465 79.2	466 94.5	467 96.3	468 91.9	469 99.0	470 99.5
			471 82.1	472 95.5	473 97.9	474 93.8	475 99.3	476 99.9
	477 ViT-L/16	478 384 ²	479 84.3	480 96.6	481 97.9	482 94.3	483 99.9	484 99.9

405 5.2 MAIN RESULTS

406
 407 We first examine whether **EDJE**, when considered as a lightweight joint encoder with minimal
 408 capacity, can substantially improve retrieval performance over embedding-based pipelines. To this
 409 end, we deploy the local variant as a top- k re-ranker: for each embedding model tested, **EDJE** reuses
 410 its vision backbone and pairs it with MiniLM as the shared language encoder. We evaluate zero-shot
 411 retrieval performance on Flickr30k with standard text-to-image and image-to-text retrieval tasks. The
 412 results are summarized in Table 1.

413 **EDJE** boosts retrieval performance across all tested embedding models, emphasizing the potential of
 414 integrating re-rankers to existing retrieval pipelines. Specifically, we observe massive gains for the
 415 original CLIP (Radford et al., 2021) model, with Recall@1 improvements of up to 15% for image
 416 retrieval and 10% for text retrieval. Noticeable gains are also obtained for the SigLIP2 backbone,
 417 despite it being a highly optimized state-of-the-art embedding model. The improvements for DFN
 418 and MetaCLIP are less noticeable; however, DFN relies on a filtering network fine-tuned on Flickr.

419 We next assess **EDJE** when considered as a practical alternative to prior joint encoders (Li et al., 2021;
 420 2022; 2023), fixing the visual backbone to SigLIP 2 with a resolution of 384² to match their setup. To
 421 ensure fairness, we evaluate both local and token-compressed variants under a cached-vision regime.
 422 Namely, we assume that the visual features are precomputed, so that only the online joint-encoding
 423 part is considered allowing us to compare against previous methods. Under this setup we compare
 424 methods along several axes: retrieval accuracy (Recall@1 on Flickr, zero-shot, and COCO, fine-tuned,
 425 for both image-to-text and text-to-image), per-image storage (kilobytes), joint-encoder parameter
 426 count, online inference time (milliseconds for a batch of 64 on an A6000 GPU), and the amount of
 427 training data used. The results are summarized in Table 2.

428 **EDJE** achieves a favorable accuracy–efficiency profile relative to existing joint encoders. The local
 429 variant matches prior work on Flickr (zero-shot) and remains competitive on COCO (fine-tuned),
 430 while using a much smaller joint-encoder (tens of millions of parameters rather than hundreds) and
 431 substantially lower online latency. Crucially, these gains come with affordable storage costs: even
 432 in its uncompressed form it may be suitable for some use-cases, and the token-compressed variant

432
 433 **Table 2: Comparison to prior art.** We compare **EDJE** in its Local and token-compressed (Com-
 434 pressed) variants (highlighted in red) against ALBEF, BLIP, and BLIP-2 Li et al. (2021; 2022;
 435 2023) in both base and large configurations. The table reports retrieval performance: text-to-image
 436 and image-to-text R@1 on Flickr (zero-shot) and COCO (fine-tuned). We also report the amount
 437 of training data used. Finally, we include per-image storage, joint-encoder parameter count, and
 438 inference time for a batch of 64 samples.

439 440 Method	441 Training 442 data	443 Flickr-ZS		444 COCO-FT		445 Storage 446 per image	447 Joint encoding 448 parameters	449 Inference 450 time (ms)
		T2I	I2T	T2I	I2T			
441 ALBEF <small>ViT-B/16</small>	442 12M	443 82.8	444 94.1	445 60.7	446 77.6	447 1,769 kB	448 147M	449 45.92
442 BLIP <small>ViT-B/16</small>	443 12M	444 84.9	445 94.8	446 63.1	447 80.6	448 1,769 kB	449 139M	450 83.27
443 BLIP <small>ViT-L/16</small>	444 129M	445 86.7	446 96.7	447 65.1	448 82.4	449 2,359 kB	450 139M	451 101.61
444 BLIP-2 <small>ViT-L/16</small>	445 400M	446 88.6	447 96.9	448 66.3	449 83.5	450 2,359 kB	451 167M	452 98.64
445 Local <small>ViT-B/16</small>	446 12M	447 84.3	448 94.3	449 60.9	450 76.1	451 442kB	452 33M	453 2.86
446 Local <small>ViT-L/16</small>	447 12M	448 87.8	449 96.5	450 64.9	451 81	452 442kB	453 33M	454 4.14
447 Compressed-128 <small>ViT-L/16</small>	448 12M	449 87.1	450 96.3	451 64.6	452 81	453 98kB	454 33M	455 2.04
448 Compressed-64 <small>ViT-L/16</small>	449 12M	450 86.9	451 96.4	452 64.6	453 80.9	454 49kB	455 33M	456 1.91

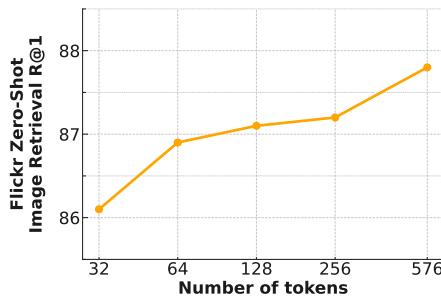
450 has minimal storage costs while preserving most of the retrieval accuracy. Interestingly, we find out
 451 that quantizing the compressed tokens before storing them, then de-quantizing upon inference yields
 452 minimal performance degradation and can further improve storage-performance tradeoff. We refer
 453 the reader to Appendix H for more details.

455 5.3 ABLATION STUDIES

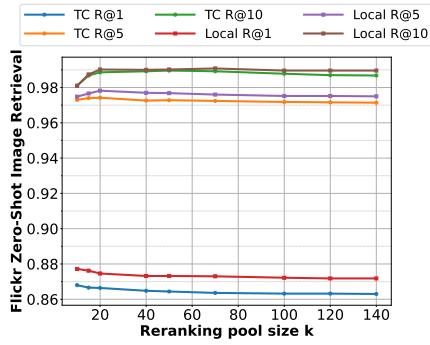
456 We conduct a series of ablation experiments to assess the robustness of **EDJE**, isolating the contributions
 457 of different design choices.

458 We begin by analyzing how varying the number of compressed tokens affects retrieval performance.
 459 Specifically, we evaluate Flickr30k zero-shot image retrieval using $\{32, 64, 128, 256\}$ target tokens
 460 in the token-compression adapter (Figure 4). As expected, increasing the number of tokens yields
 461 better performance, with a clear gap between the heavily compressed 32-token variant and the
 462 uncompressed "local" variant (576 tokens). Notably, 64 tokens strike an attractive balance between
 463 efficiency and retrieval quality. We additionally compare against simpler token-reduction strategies,
 464 providing alternative baselines to the proposed adapter; see Appendix G for details.

465 Next, we examine the sensitivity of **EDJE** to the size of the re-ranked pool k . Larger pools increase
 466 the likelihood of including relevant candidates but also introduce more distractors. It is therefore



481 **Figure 4: Retrieval performance vs.**
 482 **number of tokens.** Flickr image retrieval
 483 for varying token counts, illustrating the
 484 compression–performance tradeoff.



485 **Figure 5: Retrieval performance vs. re-**
 486 **ranking pool size.** Robustness of local
 487 and 64-token variants under different pool
 488 sizes on Flickr.

486 important to test the robustness of the re-ranker to different pool sizes and evaluate its tolerance to
 487 noise. We measure zero-shot retrieval under Recall@{1, 5, 10} across varying pool sizes for both
 488 the local and 64-token variants (Figure 5). Results remain stable: while individual metrics fluctuate
 489 slightly, overall retrieval performance is consistent.

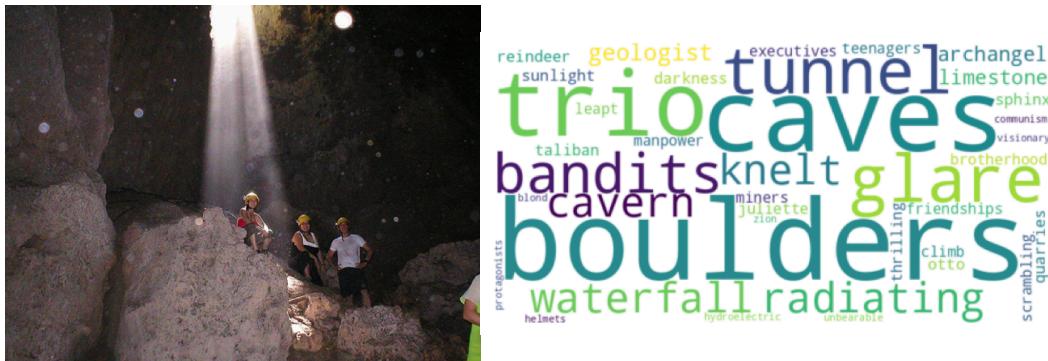
490 Finally, we ablate the pre-training objectives introduced in Section 4. For the local variant, we
 491 compare: (i) optimizing image–text matching (ITM) alone, (ii) ITM combined with masked language
 492 modeling (MLM), and (iii) the full objective that further adds text-embedding recovery. Each
 493 auxiliary loss contributes positively, with the full objective delivering the strongest results. We further
 494 evaluate the impact of local-to-compressed knowledge distillation, which provides further gains for
 495 compressed variants by transferring discriminative capacity from the local model. **We also investigate**
 496 **cross-model negative selection to understand how *EDJE* behaves under different vision-encoder**
 497 **geometries. We refer the reader to Appendix B and Appendix E for more details.**

498

499 5.4 INTERPRETABLE SEMANTICS OF COMPRESSED VISION TOKENS

500

501 To better understand the information preserved by the compressed visual tokens produced by ***EDJE***,
 502 we aim to analyze their semantic structure regardless of any caption that may be equipped with the
 503 original image. We achieve this by inspecting the projection of each visual token into the language-
 504 model embedding space and assigning its nearest textual token from the LM vocabulary. Collecting
 505 these nearest neighbors (one per compressed tokens) reveals which language tokens the model most
 506 frequently associates with visual tokens, as depicted in Figure 6.



518

519 Figure 6: Semantic structure of the 64-token compressed representation. Left: example image from
 520 the Flickr-30k test set. Right: nearest-neighbor textual tokens assigned to compressed vision tokens;
 521 word size reflects frequency in the token distribution.

522

523 The compressed tokens map to meaningful object and scene descriptors such as *boulders*, *caves*,
 524 *glare*, or *trio*, indicating that the adapter preserves important semantic information. In contrast, we
 525 find that interestingly many of the uncompressed 576-token representation map to a meaningless
 526 special tokens (`unused80`), suggesting that a large portion of native ViT tokens carry redundant
 527 content for retrieval. We refer the reader to Appendix D for further explanations and experiments.

528

529 6 DISCUSSION

530

531 We studied how to make joint vision–language re-rankers practical at scale. We recognize visual
 532 feature extraction as the key bottleneck in existing joint encoders. We tackle this problem by
 533 introducing ***EDJE***. The approach of ***EDJE*** is to precompute the vision tokens and compress them
 534 with a lightweight adapter in an offline manner, in addition to a compact joint encoder that can deliver
 535 high-throughput inference while retaining high performance.

536

537 **Limitations and future work.** We think of this paper as a proof of concept that may inspire
 538 follow-up work; for instance, we did not cover multilingual-multimodal retrieval, which has drawn
 539 attention recently (Thapliyal et al., 2022) or other modalities such as audio or video. More broadly,
 540 we believe joint encoders are largely underexplored; putting effort into improving them can benefit a
 541 variety of applications including zero-shot classification and filtering large paired datasets.

540 REFERENCES
541

542 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
543 Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko, et al.
544 Phi-3 technical report: A highly capable language model locally on your phone. *arXiv preprint*
545 *arXiv:2404.14219*, 2024. URL <https://arxiv.org/abs/2404.14219>.

546 Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing
547 web-scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.

548 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
549 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge
550 distillation, 2024.

551 Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
552 Jingjing Liu. Uniter: Universal image-text representation learning. In *European conference on*
553 *computer vision*, pages 104–120. Springer, 2020.

554 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
555 Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
556 contrastive language-image learning. In *Proceedings of the IEEE/CVF Conference on Computer*
557 *Vision and Pattern Recognition*, pages 2818–2829, 2023.

558 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
559 bidirectional transformers for language understanding. In *North American Chapter of the Association*
560 *for Computational Linguistics*, 2019. URL <https://api.semanticscholar.org/CorpusID:52967399>.

561 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
562 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
563 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
564 scale. In *International Conference on Learning Representations (ICLR)*, 2021. URL <https://arxiv.org/abs/2010.11929>.

565 Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander Toshev, and Vaishaal
566 Shankar. Data filtering networks. *arXiv preprint arXiv:2309.17425*, 2023a.

567 Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong
568 Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation learning at scale. In
569 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
570 pages 19358–19369, June 2023b.

571 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, CELINE HUDELOT,
572 and Pierre Colombo. Colpal: Efficient document retrieval with vision language models. In
573 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ogjBpZ8uSi>.

574 Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao
575 Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim
576 Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen
577 Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander
578 Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex
579 Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, and Ludwig Schmidt. Datacomp: in
580 search of the next generation of multimodal datasets. In *Proceedings of the 37th International*
581 *Conference on Neural Information Processing Systems*, NIPS ’23, Red Hook, NY, USA, 2023.
582 Curran Associates Inc.

583 Team Gemma. Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

584 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
585 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International*
586 *Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

594 Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
 595 Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
 596 Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL <https://doi.org/10.5281/zenodo.5143773>. If you use this software, please cite it as below.
 597

598 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 599 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 600 with noisy text supervision. In *International conference on machine learning*, pages 4904–4916.
 601 PMLR, 2021.

602

603 Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
 604 late interaction over bert. In *Proceedings of the 43rd International ACM SIGIR Conference on
 605 Research and Development in Information Retrieval*, SIGIR '20, page 39–48, New York, NY,
 606 USA, 2020. Association for Computing Machinery. ISBN 9781450380164. doi: 10.1145/3397271.
 607 3401075. URL <https://doi.org/10.1145/3397271.3401075>.

608

609 Kevins kokitsi Maninis, Kaifeng Chen, Soham Ghosh, Arjun Karpur, Koert Chen, Ye Xia, Bingyi
 610 Cao, Daniel Salz, Guangxing Han, Jan Dlabal, Dan Gnanapragasam, Mojtaba Seyedhosseini,
 611 Howard Zhou, and Andre Araujo. TIPS: Text-image pretraining with spatial awareness. In
 612 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=DaA0wACTY7>.

613

614 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 615 Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-
 616 Fei. Visual genome: Connecting language and vision using crowdsourced dense image
 617 annotations. *International Journal of Computer Vision*, 123:32 – 73, 2016. URL <https://api.semanticscholar.org/CorpusID:4492210>.

618

619 Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
 620 Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
 621 distillation. *Advances in neural information processing systems*, 34:9694–9705, 2021.

622

623 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 624 training for unified vision-language understanding and generation. In *International conference on
 625 machine learning*, pages 12888–12900. PMLR, 2022.

626

627 Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. Blip-2: Bootstrapping language-image
 628 pre-training with frozen image encoders and large language models. In *International Conference
 629 on Machine Learning*, 2023. URL <https://api.semanticscholar.org/CorpusID:256390509>.

630

631 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 632 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision-
 633 ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
 634 Part V 13*, pages 740–755. Springer, 2014.

635

636 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Advances
 637 in Neural Information Processing Systems*, 2023. URL <https://arxiv.org/abs/2304.08485>.

638

639 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 640 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 (CVPR)*, pages 26296–26306, June 2024.

641

642 Muhammad Maaz, H. Rasheed, Salman H. Khan, and F. Khan. Video-chatgpt: Towards detailed video
 643 understanding via large vision and language models. In *Annual Meeting of the Association for Com-
 644 putational Linguistics*, 2023. URL <https://api.semanticscholar.org/CorpusId:259108333>.

645

646 Microsoft, :, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen
 647 Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, Dong Chen,
 Dongdong Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen, Yi ling Chen, Qi Dai, Xiyang

648 Dai, Ruchao Fan, Mei Gao, Min Gao, Amit Garg, Abhishek Goswami, Junheng Hao, Amr Hendy,
 649 Yuxuan Hu, Xin Jin, Mahmoud Khademi, Dongwoo Kim, Young Jin Kim, Gina Lee, Jinyu Li,
 650 Yunsheng Li, Chen Liang, Xihui Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinia Lopez, Chong
 651 Luo, Piyush Madan, Vadim Mazalov, Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan, Daniel
 652 Perez-Becker, Jacob Platin, Thomas Portet, Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy,
 653 Ning Shang, Yelong Shen, Saksham Singhal, Subhajit Som, Xia Song, Tetyana Sych, Praneetha
 654 Vaddamanu, Shuohang Wang, Yiming Wang, Zhenghao Wang, Haibin Wu, Haoran Xu, Weijian
 655 Xu, Yifan Yang, Ziyi Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang, Li Lyra Zhang, Yunan
 656 Zhang, and Xiren Zhou. Phi-4-mini technical report: Compact yet powerful multimodal language
 657 models via mixture-of-loras, 2025. URL <https://arxiv.org/abs/2503.01743>.

658 Muhammad Ferjad Naeem, Yongqin Xian, Xiaohua Zhai, Lukas Hoyer, Luc Van Gool, and Federico
 659 Tombari. SILC: Improving vision language pretraining with self-distillation, 2024. URL <https://openreview.net/forum?id=fCcSt2T4e4>.

660

661 Thao Nguyen, Samir Yitzhak Gadre, Gabriel Ilharco, Sewoong Oh, and Ludwig Schmidt. Improving
 662 multimodal datasets with image captioning. In *Thirty-seventh Conference on Neural Information
 663 Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=VIRKdeFJ1g>.

664

665 Vicente Ordonez, Girish Kulkarni, and Tamara L. Berg. Im2text: Describing images using 1 million
 666 captioned photographs. In *Neural Information Processing Systems (NIPS)*, 2011.

667

668 Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and
 669 Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
 670 image-to-sentence models. In *Proceedings of the IEEE international conference on computer
 671 vision*, pages 2641–2649, 2015.

672

673 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 674 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 675 models from natural language supervision. In *International conference on machine learning*, pages
 676 8748–8763. PMLR, 2021.

677

678 H. Rasheed, Muhammad Uzair Khattak, Muhammad Maaz, Salman H. Khan, and F. Khan. Fine-tuned
 679 clip models are efficient video learners. *2023 IEEE/CVF Conference on Computer Vision and Pat-
 680 tern Recognition (CVPR)*, pages 6545–6554, 2022. URL <https://api.semanticscholar.org/CorpusId:254366626>.

681

682 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 683 detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
 684 R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 28. Curran Asso-
 685 ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

686

687 Cristoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
 688 Jenia Jitsev, and Aran Komatsuzaki. LAION-400M: Open dataset of CLIP-filtered 400 million
 689 image-text pairs. In *Proceedings of Neurips Data-Centric AI Workshop*, 2021.

690

691 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
 692 hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of ACL*, 2018.

693

694 Siqi Sun, Yen-Chun Chen, Linjie Li, Shuohang Wang, Yuwei Fang, and Jingjing Liu. Lightningdot:
 695 Pre-training visual-semantic embeddings for real-time image-text retrieval. In *NAACL-HLT*, 2021.

696

697 Hao Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from
 698 transformers. In *Conference on Empirical Methods in Natural Language Processing*, 2019. URL
 699 <https://api.semanticscholar.org/CorpusID:201103729>.

700

701 Ashish Thapliyal, Jordi Pont-Tuset, Xi Chen, and Radu Soricut. Crossmodal-3600: A Massively
 702 Multilingual Multimodal Evaluation Dataset. In *EMNLP*, 2022.

702 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 703 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,
 704 Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language
 705 encoders with improved semantic understanding, localization, and dense features. *arXiv preprint*
 706 *arXiv:2502.14786*, 2025.

707 Bo Wan, Michael Tschannen, Yongqin Xian, Filip Pavetic, Ibrahim Alabdulmohsin, Xiao Wang,
 708 André Susano Pinto, Andreas Peter Steiner, Lucas Beyer, and Xiaohua Zhai. Locca: Visual
 709 pretraining with location-aware captioners. In *The Thirty-eighth Annual Conference on Neural*
 710 *Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=jfHkAEgKwH>.

711 Jiahui Wang, Yutong Bai, Vijay Vasudevan, Dit-Yan Yeung, C Lawrence Zitnick, and Zhuowen
 712 Tu. Simvilm: Simple visual language model pretraining with weak supervision. *arXiv preprint*
 713 *arXiv:2108.10904*, 2021.

714 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 715 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 716 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 717 perception of the world at any resolution, 2024. URL <https://arxiv.org/abs/2409.12191>.

718 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: deep self-
 719 attention distillation for task-agnostic compression of pre-trained transformers. In *Proceedings*
 720 *of the 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red
 721 Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

722 Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
 723 Owais Khan Mohammed, Saksham Singhal, Subhajit Som, et al. Image as a foreign language:
 724 Beit pretraining for all vision and vision-language tasks. *arXiv preprint arXiv:2208.10442*, 2022.

725 Hu Xu, Saining Xie, Xiaoqing Tan, Po-Yao Huang, Russell Howes, Vasu Sharma, Shang-Wen
 726 Li, Gargi Ghosh, Luke Zettlemoyer, and Christoph Feichtenhofer. Demystifying CLIP data.
 727 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=5BCFlnfElg>.

728 Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
 729 Coca: Contrastive captioners are image-text foundation models. *arXiv preprint arXiv:2205.01917*,
 730 2022.

731 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 732 image pre-training. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 733 pages 11975–11986, 2023.

734 Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
 735 Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text representation and
 736 reranking models for multilingual text retrieval. In *Proceedings of the 2024 Conference on*
 737 *Empirical Methods in Natural Language Processing: Industry Track*, pages 1393–1412, 2024.

738 Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta, Tong Xiao, Philippe Hansen-Estruch, Licheng
 739 Yu, Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, Serena Yeung-Levy, and Xide Xia. Apollo: An
 740 exploration of video understanding in large multimodal models. In *Proceedings of the IEEE/CVF*
 741 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 18891–18901, June 2025.

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A TRAINING HYPERPARAMETERS
757

758 Table A summarizes the main hyperparameters used throughout pre-training and fine-tuning. We fix
759 the language model to MiniLM-L12-H384-uncased and freeze the vision encoder in all runs. Unless
760 otherwise stated, all experiments use in-batch negative mining with three negatives per sample, and a
761 re-ranking pool size of $k = 10$. These settings were chosen to balance training efficiency and retrieval
762 quality and remained consistent across all backbones.

Setting	Value
Language model	MiniLM-L12-H384-uncased
Adapter hidden dim	8192
Re-ranking pool size k	10
Negatives per sample	3
Negative mining	In-batch, softmax-weighted top- k
Hard negatives	None
Distillation	Sigmoid-BCE on pos/neg logits
Masking target	Caption tokens only
MLM masking probability	0.5
Mask excludes	Special tokens, image tokens
Truncation policy	only_first
Text max length	64
Batch size (evaluation)	32
Optimizer	AdamW
Weight decay	0.05
Pre-train LR	3e-4
Fine-tune LR	2e-5
Warmup steps	100
Warmup LR	1e-6
Min LR	1e-6
LR decay rate	0.9
Input resolution	384

783 Table 3: Key hyperparameters, masking strategy, and negative sampling settings used in our experi-
784 ments.

810
811 **B ABLATION STUDY: TRAINING OBJECTIVES**812 We provide additional ablations on the training objectives. Table 4 shows the incremental effect of
813 adding masked language modeling (MLM) and text–image contrastive learning (ITC) on top of the
814 ITM baseline. Each component contributes positively to retrieval accuracy on Flickr30k with the
815 SigLIP2-Large 384² backbone, with ITM+MLM+ITC yielding the strongest results.816 Table 5 focuses on token compression and highlights the effect of applying distillation. Here,
817 knowledge distillation provides additional improvements when compressing visual tokens. This
818 section analyzes the interpretability properties of the compressed visual tokens produced by EDJE.
819 Although the token compression module discards a large portion of the original vision encoder
820 sequence, we find that the resulting compact representation retains coherent semantic structure. We
821 study two aspects: (1) the emergence of high-level concepts within individual compressed tokens,
822 and (2) the alignment between compressed visual tokens and text features used during retrieval.823 **Table 4: Ablation on training objectives.** We evaluate the effect of adding MLM and ITC on top
824 of ITM. All configurations are evaluated on **SigLIP2 Large 384** backbone. Results are reported in
825 terms of R@1 on Flickr30k.826
827

ITM	MLM	ITC	R@1
✓	✗	✗	82.3
✓	✓	✗	85.5
✓	✓	✓	87.8

832 **Table 5: Effect of distillation with token compression.** We report R@1 on Flickr30k using **SigLIP2**
833 **Large 384** with 64 tokens compression.834
835

Distillation	R@1
✗	83.8
✓	86.9

864 **C USING *EDJE* IN PRACTICE**
865866 We provide a pseudo-code for using *EDJE* in practical retrieval pipelines, combining a clip-like
867 embedding model, a vector store and *EDJE* as an efficient re-ranking model. A pseudo-code for the
868 indexing stage is given in Algorithm 1 while the retrieval stage is summarized in Algorithm 2.
869870 **Algorithm 1** Indexing (offline)871 **Input:** Images (images), vector store (store), CLIP-like vision encoder (vision_encoder),
872 finetuned *EDJE* token adapter (adapter)
873 1: image_loader = DataLoader(images)
874 2: **for** image_batch in image_loader **do**
875 3: // Extract both the usual embeddings and patch features in one pass
876 4: features, embeddings = vision_encoder(image_batch)
877 5: // Apply the token adapter on the encoders' features
878 6: features = adapter(features)
879 7: // Store embeddings on RAM and features on disk
880 8: store.insert(
881 9: embeddings=embeddings,
882 10: extra_data={"features": features})
883 11:)
884 12: **end for**885 **Algorithm 2** Retrieval886 **Input:** Query text (query), vector store (store), CLIP-like text encoder (text_encoder),
887 finetuned *EDJE* re-ranker (re-ranker), re-ranking pool size (k)888 **Output:** re-ranked retrieval results889 1: // Compute the usual query text-embedding
890 2: text_embedding = text_encoder(query)
891 3: // Retrieve candidates from vector store
892 4: candidates = store.knn_query(text_embedding, k=k)
893 5: // Compute re-ranking scores with *EDJE*
894 6: features = torch.cat([candidate["features"] for candidate in
895 candidates], dim=0)
896 7: scores = re-ranker(query, features)
897 8: results = candidates[scores.argsort(descending=True)] **return**
898 results899 **C.1 TOKEN-FETCH I/O CONSIDERATIONS**900 Beyond compute, a practical deployment of *EDJE* must also account for the cost of fetching
901 precomputed vision tokens from storage. In our experiments, each image is represented by 64
902 compressed tokens in BF16, corresponding to roughly 49 kB per image. For a re-ranking pool of 50k
903 candidates, this amounts to reading approximately 2.46 GB of data per query.904 To estimate the expected I/O overhead, we benchmark two storage layouts on a PCIe 4.0 NVMe
905 SSD: (i) a single contiguous NumPy array storing all image representations, and (ii) a more realistic
906 memory-mapped array accessed via random indices. In the contiguous case, loading the full 2.46 GB
907 block takes around 0.39 ± 0.003 s over 10 runs (approximately 6.3 GB/s), which is in line with the
908 advertised bandwidth of the SSD. With random access over a 100k-image memory-mapped index
909 (50k random entries), the same amount of data is loaded in 0.59 ± 0.04 s.910 These measurements indicate that, on modern local SSDs, the I/O cost of fetching compressed tokens
911 is on the same order as the compute cost of the joint encoder and still allows end-to-end processing of
912 tens of thousands of pairs per second. Note however that networked storage can exhibit substantially
913 lower throughput, so we do not recommend it for *EDJE* deployments.914
915
916
917

D VISUAL TOKENS INTERPRETABILITY

D.1 EMERGING VISION-TOKEN SEMANTICS

We next study the semantic content of the visual tokens produced by **EDJE** in a caption-independent manner. The goal is to qualitatively understand what information the compressed visual tokens carry, regardless of any ground-truth caption that may or may-not be provided.

Given an image, let $\{v_i\}_{i=1}^n$ denote either the compressed visual tokens (e.g. 64 tokens from the token-compression adapter) or the full ViT sequence (e.g. 576 tokens, transformed locally). We first project each v_i into the language-model embedding space using the same projection as in the joint encoder. For every visual token v_i , we then retrieve its nearest language token w_i from the LM vocabulary (using cosine similarity). Collecting these nearest neighbors $\{w_i\}_{i=1}^n$ over the Flickr30k test set allows us to analyze which language-tokens the model most frequently associates with visual tokens.

This analysis has two desirable properties: (i) it evaluates the semantics of visual tokens purely through the geometry of the joint embedding space, without using the paired captions for that image, and (ii) it yields interpretable text tokens that can be visualized as through frequency histograms. We perform this analysis for two concrete example images for the compressed tokens, as illustrated in Figure 7.

Figure 7: Emerging token semantics for the 64-token compressed representation. Left (per row): example images from Flickr test set. Right (per row): textual tokens word cloud, size indicates frequency according to vision token nearest-neighbors histogram.

The compressed tokens exhibit stable and highly interpretable semantics. Tokens frequently correspond to concrete object categories (e.g., dog, collar, boulders, trio) and scene attributes (e.g., glare, shadows). Despite the large reduction in sequence length, the model preserves a rich vocabulary of visual cues. We then repeated the analysis using the "local" *EDJE* variant, as illustrated in Figure 8.

Figure 8: Token semantics for the 576-local **EDJE** representation. Left (per row): example images from Flickr test set. Right (per row): textual tokens word cloud, size indicates frequency according to vision token nearest-neighbors histogram.

In this case, however, a large fraction of tokens map to a special vocabulary item, unused80, or to scattered low-frequency words, resulting in much less concentrated distributions. This suggests that many of the original ViT tokens have low semantic content in the joint space and are largely redundant for downstream retrieval.

1026
1027

D.2 IMAGE-CAPTION TOKEN ALIGNMENT

1028
1029
1030
1031

We complement the caption-independent analysis above with a quantitative study of how well the compressed visual tokens align with caption tokens. The goal is to measure to what extent cross-modal alignment is preserved when reducing the number of visual tokens from the full ViT sequence to the compressed **EDJE** representation.

1032
1033
1034

For each image-caption pair, we first preprocess the caption by lowercasing all words and removing punctuation and standard English stopwords (e.g., "A child playing in the ocean." \rightarrow "child playing ocean").

1035
1036
1037
1038

Let $\{t_j\}_{j=1}^m$ denote the remaining textual tokens and $\{v_i\}_{i=1}^n$ the set of visual tokens for the corresponding image, where $\{v_i\}$ is either the full (locally transformed) ViT sequence (e.g., $n = 576$) or the compressed set produced by **EDJE** (e.g., $n = 64$).

1039
1040
1041
1042

We embed both text tokens and visual tokens into the joint embedding space using the same projections as in the joint encoder, and compute a ColBERT-like alignment score (Khattab and Zaharia, 2020; Faysse et al., 2025). For each textual token t_j , we compute its maximum cosine similarity to any visual token,

1043

$$s_j = \max_{1 \leq i \leq n} \cos(f(t_j), g(v_i)),$$

1044
1045
1046

where $f(\cdot)$ and $g(\cdot)$ are the corresponding text and vision projections. We then define the *alignment score* for the image–caption pair as the average of these maxima,

1047
1048
1049

$$S = \frac{1}{m} \sum_{j=1}^m s_j.$$

1050
1051

Intuitively, S measures how well each caption word can “find” at least one strongly related visual token in the image. Note that we didn’t directly optimize S as a scoring criterion.

1052
1053
1054

We compute the distribution of alignment scores S over all Flickr30k test pairs for both the full 576-token representation and the 64-token compressed representation as depicted in Figure 9.

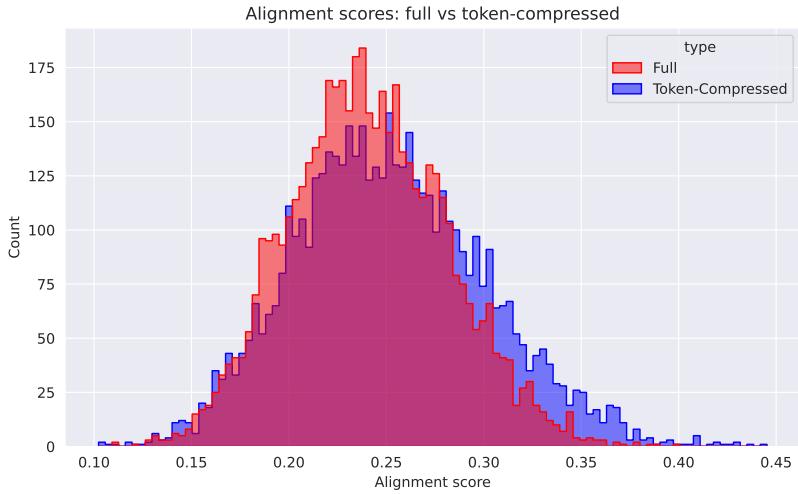
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
10711072
1073
1074
1075

Figure 9: Distribution of alignment scores for full token sequences and their token compressed counterparts. The histogram shows that compression preserves the overall alignment structure while slightly shifting the distribution toward lower but still tightly concentrated scores. This supports the claim that the compressed representations retain most of the semantic signal needed for retrieval.

1076
1077
1078
1079

The token-compressed representation achieves an average alignment score of 0.2516 ± 0.0491 , while the full-sequence representation achieves 0.2404 ± 0.0405 . The corresponding histograms overlap and exhibit very similar shapes, with the compressed representation showing a slightly higher mean. A two-sided paired t-test on the per-pair scores indicates that this difference is statistically significant ($p = 3.0 \times 10^{-153}$), with a small-to-moderate effect size ($d = 0.39$). Overall, these results show that

1080 *EDJE* ’s 64-token representation preserves, and slightly improves, image-caption alignment relative
1081 to the full 576-token ViT sequence, despite using 9 \times fewer visual tokens.
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **E CROSS MODEL NEGATIVE MINING**
11351136 In the main experiments, hard negatives for **EDJE** are mined using the same embedding model family
1137 as the underlying retriever (e.g., SigLIP2 for a SigLIP2-based **EDJE**). To assess the impact of this
1138 design choice, we additionally study *cross-model* negative mining, where the miner and the backbone
1139 come from different embedding models.1140 Concretely, we consider two settings: (i) using SigLIP2 as a negative miner for a CLIP-based **EDJE**,
1141 and (ii) using CLIP as a negative miner for a SigLIP2-based **EDJE**. In both cases, the joint encoder
1142 and token-compression components remain fixed; only the model used to select hard negatives during
1143 fine-tuning is changed.1144 Table 6: Using SigLIP2 as a negative miner for a CLIP based EDJE. Mining with SigLIP2 does not
1145 substantially affect CLIP performance.
1146

Model	Flickr Zero-Shot		COCO Finetuned	
	Text-to-Image	Image-to-Text	Text-to-Image	Image-to-Text
CLIP ViT L/14@336	81.9	93.8	54.6	70.7
+SigLIP2 L miner	81.8	93.5	54.6	70.8

1153 Table 7: Using CLIP as a negative miner for a SigLIP2 based EDJE. Mining with CLIP significantly
1154 degrades SigLIP2 performance.

Model	Flickr Zero-Shot		COCO Finetuned	
	Text-to-Image	Image-to-Text	Text-to-Image	Image-to-Text
SigLIP2 ViT L/16@384	87.8	96.5	64.9	81.0
+CLIP L miner	81.5	93.0	58.9	74.48

1161 The results in Tables 6 and 7 reveal an interesting pattern. When SigLIP2 is used as a negative miner
1162 for a CLIP-based **EDJE**, performance changes only marginally: Flickr30k zero-shot R@1 remains
1163 essentially unchanged, and COCO fine-tuned scores are within a similar range. This suggests that in
1164 this setting, overall performance is largely limited by the vision backbone rather than by the precise
1165 geometry of the negative miner. In contrast, when CLIP is used as a miner for a SigLIP2-based
1166 EDJE, performance drops substantially on both Flickr30k and COCO, for both text-to-image and
1167 image-to-text retrieval. This degradation emphasizes the importance of selecting sufficiently hard
1168 negatives. Overall, these experiments support the practical guideline that hard-negative mining
1169 should be performed with a model that is at least as strong as, and well aligned with, the underlying
1170 vision-encoder used in **EDJE**.
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **F FULL DATASET RETRIEVAL EVALUATION**

1189

1190 To provide a more comprehensive evaluation, we adopt the full-dataset retrieval protocol used in
 1191 LightningDOT (Sun et al., 2021), where retrieval is performed against all images and captions in
 1192 the dataset, including the train/validation splits. This setting is considerably more challenging and
 1193 better reflects real-world retrieval scenarios. We follow LightningDOT’s setup for both Flickr Full
 1194 and COCO Full, and scale the re-ranking pool size to 100 in all experiments.

1195

1196 Table 8: Flickr Full retrieval results under the LightningDOT setup. Retrieval is performed against
 1197 all dataset’s images/captions as retrieved instances. **EDJE** is evaluated in a zero-shot setting and
 1198 substantially outperforms LightningDOT in both text-to-image and image-to-text retrieval.

1199

Model	Text-to-Image			Image-to-Text		
	R@5	R@10	R@20	R@5	R@10	R@20
LightningDOT	60.1	69.5	78.3	75.1	83.9	90.5
EDJE	78.32	84.54	89.58	92.4	95.9	97.7

1200

1201 Table 9: COCO Full retrieval results under the LightningDOT setup. Retrieval is performed against
 1202 all dataset’s images/captions as retrieved instances. **EDJE** significantly outperforms LightningDOT
 1203 across all recall levels and directions.

1204

Model	Text-to-Image			Image-to-Text		
	R@5	R@10	R@20	R@5	R@10	R@20
LightningDOT	37.3	46.8	56.4	48.0	59.0	68.9
EDJE	52.23	60.55	68.08	69.86	76.96	82.64

1205

1206 As shown in Tables 8 and 9, **EDJE** substantially improves full-dataset retrieval performance over
 1207 LightningDOT on both Flickr Full and COCO Full. On Flickr Full (zero-shot), **EDJE** yields large
 1208 gains in both directions and at all recall levels (e.g., text-to-image R@5 improves from 60.1 to
 1209 78.32, and image-to-text R@5 from 75.1 to 92.40). On COCO Full (fine-tuned), **EDJE** again
 1210 surpasses LightningDOT by a wide margin (e.g., text-to-image R@5 from 37.3 to 52.23, image-to-
 1211 text R@5 from 48.0 to 69.86). These results confirm that **EDJE** remains effective in more realistic
 1212 large-candidate retrieval scenarios.

1242 **G TOKEN COMPRESSION BASELINES**
1243

1244 In this section we compare the proposed token-compression adapter in **EDJE** to several alternative
1245 ways of reducing the number of visual tokens produced by the SigLIP2 ViT-L encoder. All methods
1246 start from the same 576-token ViT sequence (384×384 resolution) and compress it to 64 tokens per
1247 image. We evaluate on Flickr30k (zero-shot) and COCO (fine-tuned).

1248 We consider the following token-compression strategies:

1249
1250 1. **Striding.** A simple subsampling baseline that keeps every 9th token from the 576-token ViT
1251 sequence, yielding 64 tokens in total ($576/9 = 64$).
1252 2. **Token clustering.** We run k-means++ over the 576 visual tokens for each image to obtain
1253 64 clusters, and use the cluster centroids as compressed tokens.
1254 3. **Attention pruning.** We compute the attention scores of each token in the last ViT layer and
1255 keep the 64 most attended tokens (where attendance is averaged across heads).
1256

1257 For fairness, each configuration is pretrained and fine-tuned end-to-end with the same protocol as our
1258 token-compression model. Particularly, we distill from the uncompressed (576-token) teacher as in
1259 the main **EDJE** experiments.

1260 Table 10: Comparison of token-compression strategies applied to the SigLIP2 ViT-L image encoder.
1261 We report Recall@1 on Flickr30k (zero-shot) and COCO (fine-tuned). *SigLIP2 (Baseline)* denotes
1262 the original embedding-only model. All other methods compress the 576 ViT tokens to 64 tokens per
1263 image and use the same joint encoder architecture.

1264

Model	Flickr Zero-Shot		COCO Finetuned	
	Text-to-Image	Image-to-Text	Text-to-Image	Image-to-Text
SigLIP2 (Baseline)	82.3	94.8	–	–
Striding	83.24	94.1	60.09	77.2
Clustering	85.66	96.1	63.31	79.76
Attention Pruning	82.4	93.7	58.6	76.4
EDJE	86.9	96.4	64.6	80.9

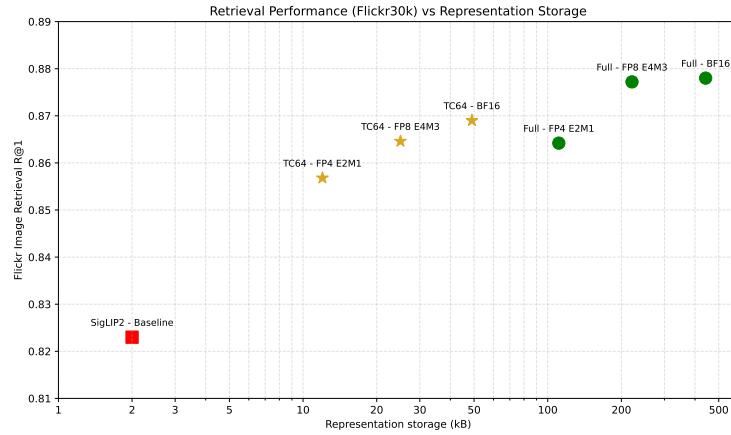
1273 We observe that **EDJE**’s token-compression adapter consistently outperforms striding, clustering,
1274 and attention pruning across both datasets and directions (text-to-image and image-to-text). This
1275 emphasizes the superiority of the learned query-based adapter over generic pooling or pruning
1276 schemes.

1296 H QUANTIZING THE VISION TOKENS

1298 In all main experiments, the precomputed vision tokens are stored in BF16 (or FP16) format. Because
 1299 *EDJE* is designed for large-scale retrieval with potentially billions of stored image representations, it
 1300 is interesting to examine how far the storage footprint can be reduced via quantizing the numerical
 1301 precision of the vision tokens.

1302 We perform post-training quantization only on the precomputed vision tokens, while keeping the
 1303 joint encoder itself in BF16. For each quantization type, the cached tokens are quantized on disk and
 1304 de-quantized immediately before being fed to the joint encoder at inference time, with no additional
 1305 finetuning.

1306 We consider two representation families: (i) the full 576-token ViT sequence, and (ii) the 64-token
 1307 compressed representation. For each family we evaluate three numeric formats: (a) BF16 (no
 1308 quantization), (b) FP8-E4M3, and (c) FP4-E2M1. We measure Flickr30k zero-shot image retrieval
 1309 performance (R@1) and compute the average storage per image in kilobytes, taking into account
 1310 the number of tokens, hidden dimension, and numeric precision. This allows experimentation with a
 1311 wide range of formats including FP4 and 1-bit signed vectors.



1327 Figure 10: Retrieval performance (Flickr30k zero-shot image retrieval Recall@1) versus image
 1328 representation storage size (in kilo-bytes, log scaled). We compare the full 576-token ViT representa-
 1329 tion and the 64-token compressed representation under BF16, FP8-E4M3, and FP4-E2M1 formats.
 1330 *EDJE*’s compressed tokens retain strong performance even under aggressive quantization, while
 1331 substantially reducing storage.

1332 Figure 10 summarizes the trade-off between retrieval performance and representation storage. The
 1333 plot shows that the token-compression is remarkably robust to aggressive quantization: moving
 1334 from BF16 to FP8 and even FP4 leads to only minor changes in R@1, while substantially reducing
 1335 storage. Moreover, combining FP8 quantization with 64-token compression cuts the per-image
 1336 storage in half beyond the already compact 49 kB, with negligible loss in retrieval quality, pushing
 1337 the storage-performance tradeoff even further.

1350 1351 I ON EXTENDING *EDJE* TO VIDEO RETRIEVAL

1352 Although video retrieval lies outside the scope of this work, *EDJE* naturally admits several extensions
 1353 to the video domain. A video may be represented as a sequence of frames $[f_1, \dots, f_T]$, each processed
 1354 independently by the vision encoder to produce $\mathbf{X}_t = g_\phi(f_t) \in \mathbb{R}^{n \times d}$. Concatenating per-frame
 1355 features yields a high-dimensional tensor

$$1356 \mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_T] \in \mathbb{R}^{T \times n \times d},$$

1358 corresponding to $T \times n$ visual tokens. The central challenge is therefore to compress hundreds
 1359 of frames efficiently while preserving temporal structure and producing a compact representation
 1360 suitable for re-ranking.

1361 Below, we outline two concrete strategies for adapting *EDJE* to video-text retrieval.

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

1. ***EDJE*’s adapter as a temporal compressor.** A direct extension is to repurpose the *EDJE* token-compression adapter to operate *across time*. Each frame is first mapped to a single visual token using any image embedding model, yielding a temporal sequence of T tokens. A temporal adapter can then be trained to compress these tokens into a small set of temporally aggregated tokens. This design captures long-range semantics across many frames and improves upon simple temporal pooling strategies such as averaging frame embeddings (Rasheed et al., 2022; Maaz et al., 2023). Temporal positional encodings can be incorporated by adding a learned position vector to each frame token before passing it to the adapter.
2. **Spatial compression followed by temporal compression.** An improvement over the aforementioned idea is to enhance single frame representations by replacing naive embeddings by compressing frames via a pretrained version of *EDJE*’s token-compression adapter, applied to each frame to better compress information spatially. Then, a similar token-compression adapter is learned to temporally aggregate all of the compressed tokens from each frame in an efficient manner (e.g $576 \rightarrow 64$ per frame).

1404
1405
J IMPACT OF TEXT-ENCODER CHOICE ON RETRIEVAL1406
1407 The joint encoder in *EDJE* uses an extremely lightweight MiniLM-L12-H384 text model for joint
1408 encoding. A natural question is whether replacing MiniLM with a larger, more expressive language
1409 encoder such as BERT-Base could further improve retrieval performance. Prior work in vision lan-
1410 guage modeling suggests that stronger language encoders sometimes offer marginal gains in caption
1411 understanding, but they also introduce greater computational cost and may provide diminishing
1412 returns in retrieval settings where the visual features dominate (Devlin et al., 2019; Radford et al.,
1413 2021; Jia et al., 2021; Li et al., 2022).1414 To study this trade-off, we replace MiniLM with *BERT-Base* (uncased) while keeping all other
1415 components fixed. In particular, we use the same SigLIP2 Base visual encoder, the same token-
1416 compression module, and the same training protocol used in our main experiments. The joint encoder
1417 therefore differs only in the text backbone. We evaluate this configuration on Flickr30k using the
1418 standard zero-shot retrieval protocol.1419 Table 11: Flickr30k zero-shot retrieval results when substituting MiniLM with BERT-Base as the
1420 text encoder in the joint module. The visual encoder is SigLIP2-Base in all configurations. *EDJE*
1421 (MiniLM) denotes the baseline from the main paper.1422
1423
1424
1425
1426

Text Encoder	Text-to-Image			Image-to-Text		
	R@1	R@5	R@10	R@1	R@5	R@10
MiniLM with Siglip Base	84.3	96.6	97.9	94.3	99.9	99.9
BERT-Base with Siglip Base	84.52	96.58	97.9	93.9	99.9	99.9

1427 As shown in Table 11, substituting MiniLM with BERT-Base produces mixed but notable effects.
1428 BERT-Base yields slight improvements in the text-to-image setting, particularly on R@1 and R@10
1429 (e.g., R@1 increases from 84.3 to 84.52, and R@10 from 97.9 to 97.98). In contrast, MiniLM
1430 remains marginally stronger for image-to-text retrieval (e.g., R@1 improves from 93.9 with BERT to
1431 94.3 with MiniLM), while both models tie at higher recall levels.1432 Although these results do not indicate that larger language encoders provide substantial gains in our
1433 setup, it is important to note that our model is trained on only 12M images, considered small-scale
1434 relative to typical vision-language pretraining regimes. Nevertheless, MiniLM, despite its compact
1435 size, does not appear to bottleneck the token-compressed retrieval pipeline.1436 Overall, this experiment shows that BERT-Base can slightly improve specific aspects of retrieval, but
1437 lightweight, well-distilled text encoders like MiniLM remain highly competitive and more efficient
1438 for *EDJE*’s joint-encoder design.1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457