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ABSTRACT

Multimodal retrieval still leans on embedding-based models like CLIP for fast vec-
tor search over pre-computed image embeddings. Yet, unlike text retrieval where
joint-encoder re-rankers are standard, comparable vision—language re-rankers are
largely absent. We find that seminal joint encoders such as BLIP are severely
bottlenecked by an expensive visual feature-extraction stage, preventing practi-
cal deployment at scale. Motivated by this bottleneck, we introduce EDJE, an
Efficient Discriminative Joint Encoder that precomputes vision tokens offline and
compresses them via a lightweight attention-based adapter, so online inference runs
only a compact joint encoder over a small set of visual tokens plus the text. EDJE
preserves strong retrieval performance while drastically reducing storage and online
compute, enabling high-throughput inference. Specifically, EDJE processes 50k
image—text pairs/second while requiring 49kB of disk storage per image, matching
prior art on Flickr (zero-shot) and COCO (fine-tuned) retrieval. E|

1 INTRODUCTION

Large-scale multimodal retrieval — finding the most relevant images for a text query, or retrieving
descriptive text given an image — is a fundamental challenge in vision-language modeling. Its
importance spans a wide range of applications, including web-scale image search, multimodal dataset
curation, content moderation, and retrieval-augmented generation. Because such applications often
involve searching across millions of candidates, retrieval systems must be both efficient and accurate.

A major breakthrough came with the emergence of models that align visual and textual modalities
within a shared embedding space, such as CLIP (Radford et al.,|2021). By enabling efficient similarity
search through simple vector comparisons, these models made content-based large-scale retrieval
feasible. Beyond retrieval, they have also shown strong generalization to tasks such as zero-shot
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Figure 1: Inference efficiency and retrieval performance. (a) Methods with strong discriminative capabilities
are dominated by costly ViT feature extraction, prohibiting their practical use for re-ranking. (b) EDJE achieves
competitive zero-shot retrieval performance with up to 53 x faster inference. Its token compression makes
storing visual features practical, enabling large-scale retrieval.
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image classification, inspiring rapid improvements of this paradigm (Wang et al., [2022} Zhai et al.|
2023} |Cherti et al., [2023}; |[Fang et al., [2023ajb; Tschannen et al.| [2025)).

In parallel, the remarkable success of large language models (LLMs) has driven efforts to integrate
vision, enabling instruction-following over multimodal inputs. Early approaches (Chen et al., 2020
Li et al.; 2021} [2022;|2023)) aimed to build foundation vision—language models (VLMs) capable of
both generative and discriminative tasks. However, the research community has shifted its interest
towards generative-only models, typically by coupling a vision encoder with a pre-trained LLM (Liu
et al.,[2023} 2024} [Wang et al.| 2024; Gemma, [2025)). This shift has effectively divided the research
community into two main directions: (1) advancing embedding-based models for vision-language
alignment, and (2) improving text generation over multimodal inputs — leaving the discriminative
potential of joint encoders largely underexplored.

Unlike embedding-based models, joint encoders process both modalities together, allowing richer
cross-modal interactions. Prior work (Li et al.| |[2021}; (2022} [2023)) has shown that such models can
significantly improve cross-modal retrieval performance by re-ranking the top-% candidates retrieved
by an embedding model. However, their adoption in practical retrieval pipelines has remained limited;
each candidate pair must be evaluated independently, and existing architectures are slow. In particular,
these models rely on heavy, high-resolution CLIP-style vision backbones to extract highly expressive
image features that poses a severe efficiency bottleneck (Figure[Ta)). This raises a central question:

Can we harness the benefits of joint modeling while achieving the efficiency required for large-scale
retrieval ?

To this end, we introduce EDJE, an efficient discriminative joint encoder that allows fine-grained
cross-modal interactions without requiring online visual feature extraction. The core idea is to shift
visual feature extraction offline: images are encoded once and stored on disk; at query time a compact
encoder-only language model jointly processes these with text tokens to produce a re-ranking score.
We further improve scalability by introducing a lightweight foken-compression adapter that reduces
the number of cached vision tokens. Instead of storing the full sequence produced by the vision
backbone, the adapter utilizes a small set of learnable queries that aggregates the most relevant
information through cross-attention and projects them to the embedding space of the joint encoder.
This compressed representation substantially lowers storage requirements and decreases the number
of tokens the joint encoder must process at query time.

Empirically, EDJE consistently improves zero-shot retrieval when paired with a variety of embedding-
based models, spanning multiple visual backbones and input resolutions. This demonstrates its
modularity as a drop-in re-ranker that can enhance retrieval pipelines regardless of the underlying
embedding model. Moreover, when equipped with a strong visual backbone such as Sigl.IP2
(Tschannen et al.l|2025)), EDJE surpasses or matches the retrieval performance of prior joint encoders
on standard benchmarks (Flickr30k zero-shot; MS-COCO fine-tuned) (Plummer et al., 2015}, [Lin
et al., 2014), while operating with substantially greater efficiency (Figure [Ib). Finally, we evaluate
the robustness of EDJE under compression, quantifying the trade-off between retrieval performance
and storage cost as the number of compressed tokens is reduced, and conducting further ablations on
re-ranking pool size and training objectives.

Contributions. In this work, we address the challenge of bringing the benefits of joint vision—
language modeling to large-scale retrieval while maintaining efficiency. Our main contributions are
as follows:

1. We introduce EDJE, an efficient discriminative joint encoder that performs fine-grained
cross-modal re-ranking while shifting heavy vision precomputation offline. We further
propose a lightweight foken-compression adapter that condenses vision features into a
compact representation, substantially reducing storage and computation.

2. Empirically, EDJE demonstrates consistent gains over a variety of embedding-based models.
With a strong visual backbone, EDJE achieves performance competitive with state-of-the-art
joint encoders on standard benchmarks while operating with substantially greater efficiency.

3. We conduct comprehensive analyses of scalability and robustness, quantifying trade-offs
between retrieval performance, storage costs, re-ranking pool size, and training objectives.
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2 RELATED WORK

The success of CLIP (Radford et al., [2021) and ALIGN (Jia et al., [2021) in aligning vision and
language modalities within a shared embedding space marked a breakthrough in vision—language
modeling. By scaling contrastive learning to large architectures and massive image—caption datasets,
these models enabled efficient vector similarity search and inspired abundance of follow-up work.

Subsequent research has been directed towards reproducing and extending this paradigm in several
directions. For example, LAION-400M (Schuhmann et al.,[2021) released an open dataset of paired
image—caption training data. Other efforts scaled model size and data (Xu et al., [2024} |Fang et al.,
2023b), filtered noisy captions (Fang et al., [2023a;|Gadre et al., 2023)), or generated synthetic ones (L1
et al.|[2022; Nguyen et al.; 2023} kokitsi Maninis et al., |2025). Additional work explored alternative
loss functions (Zhai et al.| 2023)) or auxiliary objectives to enrich localization (Naeem et al., [2024;
kokits1 Maninis et al.,2025) and language generation capabilities (Wan et al., [2024; [Tschannen et al.|
2025). Despite their efficiency and scalability, embedding-based approaches compress modalities
independently (late interaction), limiting fine-grained cross-modal interactions.

Parallel to contrastive approaches, researchers have pursued models that process modalities jointly.
Early systems such as LXMERT and UNITER (Tan and Bansal| 2019} (Chen et al.| 2020) relied on
region features from R-CNN (Ren et al.l 2015) combined with text embeddings. LightningDOT
(Sun et al.| [2021)) relies on these methods to perform re-ranking with pre-computed region-level
representations to enable feasible storage. However, because each region is collapsed into a single
vector, such re-ranker behaves much closer to an embedding model rather than a true joint encoder
that sees the full image. In practice, this leads to performance that now lags behind modern embedding
models such as Sigl.IP2 (Tschannen et al., [2025)).

The emergence of vision transformers made combining vision and language modalities more straight-
forward as both modalities are represented as a sequence of tokens. Consequently, some works
aimed at creating transformer models capable of processing both images and texts jointly (Wang
et al.l 2021; 2022). Such models require heavy pre-training by masking either text or both text
and image tokens. Another line of work introduced cross-attention architectures such as ALBEEF,
BLIP, BLIP-2, and CoCa (Li et al., 2021} 20225 2023} |Yu et al., [2022)), which fuse pretrained vision
encoders and language models through cross-attention layers. These joint encoders not only unify
discriminative and generative modeling, but also consistently outperform embedding-based models
on discriminative tasks. In particular, multimodal retrieval performance can be significantly enhanced
by re-ranking embedding-based results with a joint encoder (L1 et al.,[2021;[2022; 2023)), echoing
common practices in text retrieval where cross-encoders are widely used (Chen et al.,|2024; Zhang
et al.l [2024).

A more recent trend is the integration of pretrained vision encoders into large language models
(LLMs), yielding generative vision—language models (VLMs). Methods such as LLaVA (Liu et al.|
2023) introduce a lightweight projection that maps vision tokens into the LLM embedding space,
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Figure 2: Taxonomy of vision—language joint encoders. Left: Cross-attention models integrate
modalities through cross-attention layers interleaved with textual self-attention (Li et al., [2021}; [2022;
2023)). Middle: Joint foundation models such as BEiT-3 (Wang et al.,[2022) employ unified self-
attention over native visual and textual tokens, enabling full cross-modal interaction. Right: Modern
generative VLMs (Liu et al., [2023) combine a pretrained vision encoder with a large language model,
tuning the latter to process projected vision tokens as if they originated from text.
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followed by fine-tuning on curated captioning datasets. Variants extend this with parameter-efficient
fine-tuning (Hu et al.,|2022) and supervised fine-tuning (Liu et al., 2024} |Abdin et al., [2024}; |Zohar
et al.| 2025} Microsoft et al., [2025). While this approach makes it simpler to integrate various
modalities into highly optimized LLMs (Zohar et al.| 2025} Microsoft et al., 2025)), it often emphasizes
instruction-following and generation at the expense of discriminative power.

A taxonomy of contemporary vision-language joint encoders is provided in Figure 2]

3 TOWARDS EFFICIENT JOINT ENCODERS

We now build up the design of our efficient discriminative joint encoder (EDJE) step by step. First,
we examine why existing multimodal joint encoders remain impractical for retrieval, pinpointing the
vision backbone as the critical bottleneck (Section [3.1)). Next, we show how precomputing vision
features offers an appealing solution, while also introducing a new challenge: the considerable cost
of storing all tokens (Section[3.2)). Next, we discuss an efficient integration of vision and language
modalities through a compact joint encoder (Section[3.3). Finally, we present a token-compression
adapter that resolves the storage challenge by compressing long sequences of vision tokens into a
compact set of expressive tokens (Section [3.4).

3.1 ON THE ABSENCE OF MULTIMODAL RE-RANKERS

Existing joint encoders such as BLIP and BLIP-2 (Li et al.} 2022} 2023)) achieve strong performance
but rely on visual feature extraction through large backbones like ViT-B/16 (384) and ViT-L/16 (384).
This reliance introduces a severe bottleneck: encoding a batch of 64 images requires about 400 ms
with ViT-B and nearly 1,400 ms with ViT-L on an A6000 GPU - before any cross-modal interaction
even occurs. Specifically, for the BLIP family, the visual feature extraction alone consumes 83%
of inference time in the ViT-B case and 93% with ViT-L. In practice, such inference times make
it infeasible to use these models for retrieval, where thousands of candidates must be re-ranked
per query. In comparison, the most downloaded text re-ranker model in HuggingFaceE] is based
on the MinilLLM architecture (Wang et al.| |2020), has just 22M parameters and processes a similar
batch of full-context sequences in under 60 ms, an order of magnitude faster. This gap explains the
absence of multimodal re-rankers in real-world systems: the cost of extracting visual features alone is
prohibitive.

3.2 PARADIGM SHIFT: VISION PRECOMPUTATION

With the vision backbone identified as the bottleneck, we next ask: must vision features always
be extracted online? Cross-attention-based models and VLMs suggest otherwise: since the vision
encoder operates purely on images, its output can be cached and reused. Thus, we propose treating
the vision encoder as a preprocessing stage, with vision tokens computed and stored to disk offline.

For a standard ViT-B (Dosovitskiy et al.,[2021)) projecting each 16 x 16 patch to a d =384 embedding
stored in FP16 occupies the same space as the uncompressed 8-bit RGB imageﬂ These token represen-
tations can reside on disk rather than in memory, as in late-interaction models like ColBERT (Khattab
and Zaharial, |2020) and ColPali (Faysse et al.,[2025). Under fixed token dimensionality, scaling the
vision encoder improves representation quality while leaving per-image storage unchanged—shifting
heavy computation offline without increasing online cost. However, storing all tokens is intractable
at scale: raw image size is typically too large, amounting to terabytes for web-scale databases. This
problem motivates the development of strategies to compress the visual features.

Key takeaway: Precomputing vision tokens moves expensive computation of-
fline, enabling powerful vision encoders without slowing inference. However, it
comes at large storage costs, motivating methods to compress the visual features.

https://huggingface.co/cross—encoder/ms—marco-MiniLM-L6-v2
3162 x 3 x 8 bits per patch vs. 384 x 16 bits per token.
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Figure 3: EDJE architecture overview and adapter. (a) Offline stage (left): images are encoded by
the vision encoder and projected by the adapter into a compact set of tokens compatible with the
language model. Online stage (right): the small language model consumes the compressed tokens
together with text. (b) Token-compression adapter: cross-attention utilizes k& universal query tokens
that act as feature extractors acting on the visual tokens. The MLP projects the extracted features to
the embedding space of the language model.

3.3 INTEGRATING THE VISION MODALITY

Once visual tokens are computed, the question becomes how best to integrate them with text.
Considering how the vision tokens are integrated into "cross-attention" models versus how they are
integrated into large vision-language-models, we make an interesting observation: while in "cross
attention" models vision tokens are considered in the cross attention layers, large VLMs instead
project vision tokens into the language embedding space and concatenate them with text tokens; this
allows the cross-modal interaction to be handled entirely by self-attention layers. In our setting, the
large language model can be replaced with a compact, efficient language model to meet throughput
targets. This yields an architecture with many benefits: (i) Fast: the language model can be as small
as MiniLM (Wang et al.,|2020) or any other efficient language model. (ii) Modular: any ViT-based
vision encoder can be paired with any pre-trained language model via a lightweight adapter as a
bridge between modalities. (iii) Expressive: modern vision encoders produce highly expressive
tokens that capture both semantics and local spatial structure (Tschannen et al.}|[2025). (iv) Data
efficient: only the adapter has to be trained from scratch. In the VLM literature it has been observed
that the language model and vision encoder require minimal tuning (Liu et al., [2023} 2024} |/Abdin
et al.,[2024). A high-level view of EDJE is given in Figure[3_?1}

Key takeaway: Replacing the LLM in a typical VLM with a small, efficient
language model yields a joint-encoder architecture well suited for discriminative
modeling: fast, expressive, modular and data efficient.

3.4 VISION-LANGUAGE ADAPTER LAYER

The adapter projects cached vision tokens into the language embedding space. It has been demon-
strated in the VLM literature that even very simple adapters — linear layers (Liu et al.| [2023)) or
multi-layer perceptrons (MLPs) (Liu et al.| 2024) are surprisingly effective despite their parameter
count. However, local adapters map each vision token to one language token, limiting flexibility:
vision encoders with larger context improve expressiveness but proportionally inflate storage.

To address this, we propose an attention-based token compression layer that compresses vision token
sequences into a compact set of tokens. Specifically, we introduce a set of m learnable universal
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query tokens Q = [qu, - . ., @] that attend over the n vision encoder tokens X = [z1, ..., x,]:
K=XWg, V=XWy (1
H = MultiHead Attention(@, K, V) 2)

The output H = yzl, ..y by is composed of m tokens that share their dimensionality with the vision
encoder, h; € R%#s It is useful to regard the query tokens as a universal feature extractors, that
softly select visual features most relevant for semantic matching. These states are than passed through
a standard residual block and projected into the language model embedding space R%w=ue through a
simple linear projection:

O = H + MLP (LayerNorm(H)) 3)
Y = OWprOj Wproj c RdvisionXdlanguage (4)

This mechanism provides a more flexible way of integrating visual information. Note that it gen-
eralizes attention pooling strategies used in embedding models (Zhai et al., |2023)) and has some
connection to the Q-Former layer (Li et al., [2023). The token compression layer is depicted in

Figure [3b]
We refer to EDJE with a simple MLP adapter layer as the "local" variant vs. when equipped with a
token-compression adapter which we refer to as the "token-compressed" variant.

Key takeaway: The proposed token compression layer substantially decreases
storage costs, seamlessly enabling vision encoders with longer context, higher
input resolution and capacity.

4 EFFECTIVE DISCRIMINATIVE TRAINING

To obtain a joint encoder with strong discriminative performance, a natural choice is to optimize it
for image—text matching. This involves determining the correspondence fy (¢, v) of a given image v
to a textual description ¢, where each positive pair must be contrasted against non-matching samples.
Directly training the encoder in this way poses several challenges:

Negative pairs. While obtaining positive pairs from paired image—caption datasets is straightfor-
ward, selecting negative pairs is considerably more challenging. Random negatives are typically too
easy, failing to distinguish fine-grained matches from loosely related examples. Conversely, mining
negatives with another model introduces an inevitable dependence on that model’s quality. To address
this, we adopt an in-batch hard-negative mining strategy utilizing an embedding model (matching to
the vision encoder). For each mini-batch B, we compute pairwise similarities between all texts and
images using the embedding model, obtaining weak similarity matrix S;;. For every anchor pair, we
then select the top-k most similar (non-anchor) images and texts according to S;; as negatives. This
approach effectively exposes the joint encoder to the most confusable candidates without requiring
full pairwise late interaction. Although this procedure may introduce occasional false negatives, in
practice the abundance of informative negatives improves discriminative performance.

Vision-language alignment. While image—text matching is the central task of interest, it only
provides a limited signal for aligning vision—-language features and learning a meaningful global
representation. Large vision—language models like LLaVA (Liu et al.l 2023} [2024)) achieve this
alignment through a pre-training phase in which the model is encouraged to reproduce the caption
matching a certain image. Inspired by the pre-training phase of such models and to exploit the
bidirectionality of our joint encoder, we employ masked language modeling with aggressive text-only
masking. To strengthen the dependence of the [CLS] token on textual inputs, we introduce a
projection layer on top of the [CLS] representation and encourage it to recover the text embedding
of the underlying embedding model when provided with text-only inputs.

Thus, our pre-training strategy jointly optimizes three heads on top of a shared backbone:
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1. Image-text matching: binary classification over matched image—caption pairs vs. mined
in-batch hard negatives.

2. Masked language modeling: we mask 50% of caption tokens and predict the masked
tokens given visual tokens and unmasked text.

3. Text-embedding recovery: we opt for recovering the embeddings of the text encoder g
paired with the vision encoder using a cosine objective Liex () = 1 — COS(f@(t), g(t))

Local-to-compressed distillation. To further enhance the performance of the token-compressed
models we perform logit-level knowledge distillation using the local-adapter model variant as a
teacher. Specifically, we encourage the token-compressed model (student) to imitate the image-text
matching logits of the full-adapter joint encoder (teacher). For each positive, negative-image and
negative-text pair we consider the binary cross-entropy between student and teacher predictions:

Laistit = — [yt -log(9s) + (1 — y) - log(1 — Z)s)]

with y; = a(stmcher(t, v)) and g, = a(sstudem (t, v)) where o is the sigmoidal function and s(t, v)
denotes the similarity logit that corresponds to ¢ and v.

5 EXPERIMENTS

To goal of this section is to extensively investigate the empirical benefits of integrating EDJE into
large scale retrieval pipelines. Specifically, we aim to address the following questions:

(Q1) Can EDIJE, as a minimal-scale joint encoder, beat highly-optimized embedding models?
(Q2) How EDJE compares with existing joint encoders in terms of performance and efficiency?

(Q3) What is the significance of each component constituting EDJE?

5.1 EXPERIMENTAL SETUP

We train EDJE using a two-phase protocol consisting of pre-training and fine-tuning phases as
described in Section[d] During both phases we freeze the vision encoder and train only the adapter of
interest and the language model to process both modalities. We experiment with a variety of vision
encoder families at multiple scales and input resolutions, including CLIP (Radford et al., [2021)),
DFN (Fang et al.| 2023a), MetaCLIP (Xu et al., [2024)) and SigL.IP2 (Tschannen et al., [2025). Except
for SigLIP2, we use the penultimate-layer hidden states as the vision-encoder output. The language
model is fixed to be MiniLM-L12-uncased (Wang et al., [2020) in all experiments. To ensure fair
comparison, we use the smaller dataset mixture of BLIP for training; the pre-training data is composed
of CC12M (Changpinyo et al.} [2021), CC3M (Sharma et al., 2018), SBU (Ordonez et al., [2011]),
Visual Genome (Krishna et al.,[2016), and COCO (Lin et al.|[2014), totaling 14M image—caption pairs
while fine-tuning only utilizes COCO. Full training hyperparameters are provided in Appendix [A]

For evaluation, we follow a two-stage retrieval pipeline: for each query, we first retrieve the top-k
candidates using embedding-based retrieval with a CLIP-like model. These candidates are then
re-ranked by EDJE, which jointly processes image token embeddings and captions. Unless otherwise
stated, we fix the pool-size to k& = 10. We report both text-to-image (T2I) and image-to-text (12T)
performance under Recall@{1, 5, 10}, consistent with prior foundation model benchmarks (Li et al.,
2021520225 2023; [Wang et al., [2022). Since most embedding-based models report other or non-
retrieval metrics, we reproduce them using the OpenCLIP framework (Ilharco et al.| [2021)), verifying
agreement with their reported numbers before presenting the aforementioned metrics. We evaluate on
Flickr30k (Plummer et al., [2015) for zero-shot retrieval and on COCO (Lin et al., [2014) for fine-tuned
retrieval. Following standard practice, we adopt the Karpathy split for COCO and the standard test
split of 1,000 images for Flickr30k, each paired with five captions. We additionally evaluate EDJE
under a more challenging retrieval setup in which all training images and captions are inserted into the
candidate pool, following LightningDOT (Sun et al.| 2021)). This makes the task considerably more
challenging and resemble real-world scenarios. We provide the full details and results in Appendix [F]
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Table 1: Zero-shot retrieval results on Flickr30K. We report Recall@1/5/10 for text-to-image and
image-to-text tasks across four backbones (CLIP, DFN, MetaCLIP and SigLIP 2) using various ViT
scales and resolutions. Rows marked red represent EDJE with the corresponding ViT backbone.

Text-To-Image Image-To-Text
R@l R@5 R@10 R@1 R@5 R@I10

62.1 85.6 91.8 81.3 96.1 98.3
76.8 90.7 91.7 91.1 98.2 98.4

Model ViT variant Res.

ViT-B/16 2242

CLIP ViT-L/14 9942 65.2 87 92.1 85.1 97.1 98.9
80.6 91.4 92.2 92.8 98.5 98.9
ViTL/14 3362 67.7 88.8 93.3 86.7 98.2 99
81.9 92.8 93.3 93.8 98.6 99.9
DFN VITL/14 9942 75.1 92.7 96 90 98.6 99.4

77.5 94 96.1 91.1 98.4 99.4

76.3 93.6 96.3 90.6 98.5 99.5
79.2 94.5 96.3 91.9 99.0 99.5

82.1 95.5 97.9 93.8 99.3 99.9
84.3 96.6 97.9 94.3 99.9 99.9

82.3 96 98 94.8 99.6 99.9
87.8 97.3 98 96.5 99.8 99.9

MetaCLIP ViT-L/14 2242

ViT-B/16 3842
SigLIP 2

ViT-L/16 3842

5.2 MAIN RESULTS

We first examine whether EDJE, when considered as a lightweight joint encoder with minimal
capacity, can substantially improve retrieval performance over embedding-based pipelines. To this
end, we deploy the local variant as a top-k re-ranker: for each embedding model tested, EDJE reuses
its vision backbone and pairs it with MiniLM as the shared language encoder. We evaluate zero-shot
retrieval performance on Flickr30k with standard text-to-image and image-to-text retrieval tasks. The
results are summarized in Table [Tl

EDIJE boosts retrieval performance across all tested embedding models, emphasizing the potential of
integrating re-rankers to existing retrieval pipelines. Specifically, we observe massive gains for the
original CLIP (Radford et al.,2021) model, with Recall@1 improvements of up to 15% for image
retrieval and 10% for text retrieval. Noticeable gains are also obtained for the SigLLIP2 backbone,
despite it being a highly optimized state-of-the-art embedding model. The improvements for DFN
and MetaCLIP are less noticeable; however, DFN relies on a filtering network fine-tuned on Flickr.

We next assess EDJE when considered as a practical alternative to prior joint encoders (Li et al.| 2021}
20225 [2023), fixing the visual backbone to SigLIP 2 with a resolution of 3842 to match their setup. To
ensure fairness, we evaluate both local and token-compressed variants under a cached-vision regime.
Namely, we assume that the visual features are precomputed, so that only the online joint-encoding
part is considered allowing us to compare against previous methods. Under this setup we compare
methods along several axes: retrieval accuracy (Recall@1 on Flickr, zero-shot, and COCO, fine-tuned,
for both image-to-text and text-to-image), per-image storage (kilobytes), joint-encoder parameter
count, online inference time (milliseconds for a batch of 64 on an A6000 GPU), and the amount of
training data used. The results are summarized in Table[2]

EDJE achieves a favorable accuracy—efficiency profile relative to existing joint encoders. The local
variant matches prior work on Flickr (zero-shot) and remains competitive on COCO (fine-tuned),
while using a much smaller joint-encoder (tens of millions of parameters rather than hundreds) and
substantially lower online latency. Crucially, these gains come with affordable storage costs: even
in its uncompressed form it may be suitable for some use-cases, and the token-compressed variant
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Table 2: Comparison to prior art. We compare EDJE in its Local and token-compressed (Com-
pressed) variants (highlighted in red) against ALBEF, BLIP, and BLIP-2 [Li et al.| (2021} 2022}
2023) in both base and large configurations. The table reports retrieval performance: text-to-image
and image-to-text R@1 on Flickr (zero-shot) and COCO (fine-tuned). We also report the amount
of training data used. Finally, we include per-image storage, joint-encoder parameter count, and
inference time for a batch of 64 samples.

Training Flickr-ZS COCO-FT  Storage  Joint encoding Inference

Method data T2I 12T T2I 12T per image parameters time (ms)
ALBEF ViT-B/16 12M 82.8 941 60.7 776 1,769 kB 147M 45.92
BLIP ViT:B/16 12M 849 948 63.1 80.6 1,769kB 139M 83.27
BLIP ViTL/16 129M 86.7 96.7 65.1 824 2359kB 139M 101.61
BLIP-2 ViTL/16 400M 88.6 969 663 835 2359kB 167TM 98.64
Local ViT-B/16 12M 843 943 609 76.1 442kB 33M 2.86
Local ViT-L/16 12M 87.8 96.5 649 81 442kB 33M 4.14
Compressed-128 ViTL/16 12M 87.1 963 64.6 81 98kB 33M 2.04
Compressed-64 ViTL/16 12M 869 964 64.6 809 49kB 33M 1.91

has minimal storage costs while preserving most of the retrieval accuracy. Interestingly, we find out
that quantizing the compressed tokens before storing them, then de-quantizing upon inference yields
minimal performance degradation and can further improve storage-performance tradeoff. We refer
the reader to Appendix [H|for more details.

5.3 ABLATION STUDIES

We conduct a series of ablation experiments to assess the robustness of EDJE, isolating the contribu-
tions of different design choices.

We begin by analyzing how varying the number of compressed tokens affects retrieval performance.
Specifically, we evaluate Flickr30k zero-shot image retrieval using {32, 64, 128,256} target tokens
in the token-compression adapter (Figure d). As expected, increasing the number of tokens yields
better performance, with a clear gap between the heavily compressed 32-token variant and the
uncompressed "local" variant (576 tokens). Notably, 64 tokens strike an attractive balance between
efficiency and retrieval quality. We additionally compare against simpler token-reduction strategies,
providing alternative baselines to the proposed adapter; see Appendix [G]for details.

Next, we examine the sensitivity of EDJE to the size of the re-ranked pool k. Larger pools increase
the likelihood of including relevant candidates but also introduce more distractors. It is therefore
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number of tokens. Flickr image retrieval Figure 5: Retrieval performance vs. re-
for varying token counts, illustrating the ranking pool size. Robustness of local
compression—performance tradeoff. and 64-token variants under different pool

sizes on Flickr.



Under review as a conference paper at ICLR 2026

important to test the robustness of the re-ranker to different pool sizes and evaluate its tolerance to
noise. We measure zero-shot retrieval under Recall@{1, 5, 10} across varying pool sizes for both
the local and 64-token variants (Figure[5). Results remain stable: while individual metrics fluctuate
slightly, overall retrieval performance is consistent.

Finally, we ablate the pre-training objectives introduced in Section [d For the local variant, we
compare: (i) optimizing image—text matching (ITM) alone, (ii) ITM combined with masked language
modeling (MLM), and (iii) the full objective that further adds text-embedding recovery. Each
auxiliary loss contributes positively, with the full objective delivering the strongest results. We further
evaluate the impact of local-to-compressed knowledge distillation, which provides further gains for
compressed variants by transferring discriminative capacity from the local model. We also investigate
cross-model negative selection to understand how EDJE behaves under different vision-encoder
geometries. We refer the reader to Appendix [B]and Appendix [E| for more details.

5.4 INTERPRETABLE SEMANTICS OF COMPRESSED VISION TOKENS

To better understand the information preserved by the compressed visual tokens produced by EDJE,
we aim to analyze their semantic structure regardless of any caption that may be equipped with the
original image. We achieve this by inspecting the projection of each visual token into the language-
model embedding space and assigning its nearest textual token from the LM vocabulary. Collecting
these nearest neighbors (one per compressed tokens) reveals which language tokens the model most
frequently associates with visual tokens, as depicted in Figure 6]

e executives teenag ar changel
sunlight un n‘ L1

scrambling
quarries

Figure 6: Semantic structure of the 64-token compressed representation. Left: example image from
the Flickr-30k test set. Right: nearest-neighbor textual tokens assigned to compressed vision tokens;
word size reflects frequency in the token distribution.

The compressed tokens map to meaningful object and scene descriptors such as boulders, caves,
glare, or trio, indicating that the adapter preserves important semantic information. In contrast, we
find that interestingly many of the uncompressed 576-token representation map to a meaningless
special tokens (unused80), suggesting that a large portion of native ViT tokens carry redundant
content for retrieval. We refer the reader to Appendix [D]for further explanations and experiments.

6 DISCUSSION

We studied how to make joint vision—language re-rankers practical at scale. We recognize visual
feature extraction as the key bottleneck in existing joint encoders. We tackle this problem by
introducing EDJE. The approach of EDJE is to precompute the vision tokens and compress them
with a lightweight adapter in an offline manner, in addition to a compact joint encoder that can deliver
high-throughput inference while retaining high performance.

Limitations and future work. We think of this paper as a proof of concept that may inspire
follow-up work; for instance, we did not cover multilingual-multimodal retrieval, which has drawn
attention recently (Thapliyal et al.| 2022) or other modalities such as audio or video. More broadly,
we believe joint encoders are largely underexplored; putting effort into improving them can benefit a
variety of applications including zero-shot classification and filtering large paired datasets.
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A TRAINING HYPERPARAMETERS

Table |A| summarizes the main hyperparameters used throughout pre-training and fine-tuning. We fix
the language model to MiniLM-L12-H384-uncased and freeze the vision encoder in all runs. Unless
otherwise stated, all experiments use in-batch negative mining with three negatives per sample, and a
re-ranking pool size of k = 10. These settings were chosen to balance training efficiency and retrieval
quality and remained consistent across all backbones.

Setting Value

Language model MiniLM-L12-H384-uncased
Adapter hidden dim 8192

Re-ranking pool size k 10

Negatives per sample 3

Negative mining In-batch, softmax-weighted top-k
Hard negatives None

Distillation

Masking target

MLM masking probability
Mask excludes
Truncation policy

Text max length

Batch size (evaluation)
Optimizer

Weight decay

Pre-train LR

Fine-tune LR

Warmup steps
Warmup LR

Min LR

LR decay rate

Input resolution

Sigmoid-BCE on pos/neg logits
Caption tokens only

0.5

Special tokens, image tokens
only_first

le-6
0.9
384

Table 3: Key hyperparameters, masking strategy, and negative sampling settings used in our experi-

ments.
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B ABLATION STUDY: TRAINING OBJECTIVES

We provide additional ablations on the training objectives. Table ] shows the incremental effect of
adding masked language modeling (MLM) and text—image contrastive learning (ITC) on top of the
ITM baseline. Each component contributes positively to retrieval accuracy on Flickr30k with the
SigLIP2-Large 3842 backbone, with ITM+MLM-+ITC yielding the strongest results.

Table [5] focuses on token compression and highlights the effect of applying distillation. Here,
knowledge distillation provides additional improvements when compressing visual tokens. This
section analyzes the interpretability properties of the compressed visual tokens produced by EDJE.
Although the token compression module discards a large portion of the original vision encoder
sequence, we find that the resulting compact representation retains coherent semantic structure. We
study two aspects: (1) the emergence of high-level concepts within individual compressed tokens,
and (2) the alignment between compressed visual tokens and text features used during retrieval.

Table 4: Ablation on training objectives. We evaluate the effect of adding MLM and ITC on top
of ITM. All configurations are evaluated on SiglLIP2 Large 384 backbone. Results are reported in
terms of R@1 on Flickr30k.

IT™ MLM ITC R@1

v X X 82.3
v v X 85.5
v v v 87.8

Table 5: Effect of distillation with token compression. We report R@1 on Flickr30k using SigL.IP2
Large 384 with 64 tokens compression.

Distillation R@1

X 83.8
v 86.9
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C USING EDJE IN PRACTICE

We provide a pseudo-code for using EDJE in practical retrieval pipelines, combining a clip-like
embedding model, a vector store and EDJE as an efficient re-ranking model. A pseudo-code for the
indexing stage is given in Algorithm[I] while the retrieval stage is summarized in Algorithm 2}

Algorithm 1 Indexing (offline)

Input: Images (images), vector store (st ore), CLIP-like vision encoder (vision_encoder),
finetuned EDJE token adapter (adapter)
1: image_loader = Dataloader (images)
2: for image_batch in image_loader do
3: /I Extract both the usual embeddings and patch features in one pass

4: features, embeddings = vision_encoder (image_batch)
5: /I Apply the token adapter on the encoders’ features
6: features = adapter (features)
7: /I Store embeddings on RAM and features on disk
8: store.insert (
9: embeddings=embeddings,
10: extra_data={"features": features}
11: )
12: end for
Algorithm 2 Retrieval

Input: Query text (query), vector store (store), CLIP-like text encoder (text_encoder),
finetuned EDJE re-ranker (re—ranker), re-ranking pool size (k)

Qutput: re-ranked retrieval results

: // Compute the usual query text-embedding

text_embedding = text_encoder (query)

/l Retrieve candidates from vector store

candidates = store.knn_query (text_embedding, k=k)

/I Compute re-ranking scores with EDJE

features = torch.cat ([candidate["features"] for candidate in

candidates], dim=0)

scores = re-ranker (query, features)

8: results = candidates[scores.argsort (descending=True) ] return
results

SARANE S oy

~

C.1 TOKEN-FETCH I/O CONSIDERATIONS

Beyond compute, a practical deployment of EDJE must also account for the cost of fetching
precomputed vision tokens from storage. In our experiments, each image is represented by 64
compressed tokens in BF16, corresponding to roughly 49 kB per image. For a re-ranking pool of 50k
candidates, this amounts to reading approximately 2.46 GB of data per query.

To estimate the expected I/O overhead, we benchmark two storage layouts on a PCle 4.0 NVMe
SSD: (i) a single contiguous NumPy array storing all image representations, and (ii) a more realistic
memory-mapped array accessed via random indices. In the contiguous case, loading the full 2.46 GB
block takes around 0.39 & 0.003 s over 10 runs (approximately 6.3 GB/s), which is in line with the
advertised bandwidth of the SSD. With random access over a 100k-image memory-mapped index
(50k random entries), the same amount of data is loaded in 0.59 £ 0.04 s.

These measurements indicate that, on modern local SSDs, the I/O cost of fetching compressed tokens
is on the same order as the compute cost of the joint encoder and still allows end-to-end processing of
tens of thousands of pairs per second. Note however that networked storage can exhibit substantially
lower throughput, so we do not recommend it for EDJE deployments.
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D VISUAL TOKENS INTERPRETABILITY

D.1 EMERGING VISION-TOKEN SEMANTICS

We next study the semantic content of the visual tokens produced by EDJE in a caption-independent
manner. The goal is to qualitatively understand what information the compressed visual tokens carry,
regardless of any ground-truth caption that may or may-not be provided.

Given an image, let {v;}!_; denote either the compressed visual tokens (e.g, 64 tokens from the
token-compression adapter) or the full ViT sequence (e,g 576 tokens, transformed locally). We first
project each v; into the language-model embedding space using the same projection as in the joint
encoder. For every visual token v;, we then retrieve its nearest language token w; from the LM
vocabulary (using cosine similarity). Collecting these nearest neighbors {w; }7_; over the Flickr30k
test set allows us to analyze which language-tokens the model most frequently associates with visual
tokens.

This analysis has two desirable properties: (i) it evaluates the semantics of visual tokens purely
through the geometry of the joint embedding space, without using the paired captions for that image,
and (ii) it yields interpretable text tokens that can be visualized as through frequency histograms. We
perform this analysis for two concrete example images for the compressed tokens, as illustrated in

Figure[7]
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Figure 7: Emerging token semantics for the 64-token compressed representation. Left (per row):
example images from Flickr test set. Right (per row): textual tokens word cloud, size indicates
frequency according to vision token nearest-neighbors histogram.
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The compressed tokens exhibit stable and highly interpretable semantics. Tokens frequently corre-
spond to concrete object categories (e.g., dog, collar, boulders, trio) and scene attributes (e.g., glare,
shadows). Despite the large reduction in sequence length, the model preserves a rich vocabulary of
visual cues. We than repeated the analysis using the "local" EDJE variant, as illustrated in Figure 8]
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Figure 8: Token semantics for the 576-local EDJE representation. Left (per row): example images
from Flickr test set. Right (per row): textual tokens word cloud, size indicates frequency according to
vision token nearest-neighbors histogram.

In this case, however, a large fraction of tokens map to a special vocabulary item, unused80, or
to scattered low-frequency words, resulting in much less concentrated distributions. This suggests
that many of the original ViT tokens have low semantic content in the joint space and are largely
redundant for downstream retrieval.
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D.2 IMAGE-CAPTION TOKEN ALIGNMENT

We complement the caption-independent analysis above with a quantitative study of how well the
compressed visual tokens align with caption tokens. The goal is to measure to what extent cross-
modal alignment is preserved when reducing the number of visual tokens from the full ViT sequence
to the compressed EDJE representation.

For each image-caption pair, we first preprocess the caption by lowercasing all words and removing
punctuation and standard English stopwords (e.g., "A child playing in the ocean." — "child playing
ocean").

Let {t;}7"; denote the remaining textual tokens and {v; }}_; the set of visual tokens for the corre-
sponding image, where {v; } is either the full (locally transformed) ViT sequence (e.g., n = 576) or
the compressed set produced by EDJE (e.g., n = 64).

We embed both text tokens and visual tokens into the joint embedding space using the same projections
as in the joint encoder, and compute a CoIBERT-like alignment score (Khattab and Zaharial 2020},
Faysse et al.l [2025)). For each textual token ¢;, we compute its maximum cosine similarity to any
visual token,

3; = max cos(f(t;).g(v));

where f(-) and g(-) are the corresponding text and vision projections. We then define the alignment
score for the image—caption pair as the average of these maxima,

1 m
S:E;ST

Intuitively, S measures how well each caption word can “find” at least one strongly related visual
token in the image. Note that we didn’t directly optimize S as a scoring criterion.

We compute the distribution of alignment scores .S over all Flickr30k test pairs for both the full
576-token representation and the 64-token compressed representation as depicted in Figure [0}

Alignment scores: full vs token-compressed
type
175 3 Full
I Token-Compressed

150

125

Count
=
o
o

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Alignment score

Figure 9: Distribution of alignment scores for full token sequences and their token compressed
counterparts. The histogram shows that compression preserves the overall alignment structure while
slightly shifting the distribution toward lower but still tightly concentrated scores. This supports the
claim that the compressed representations retain most of the semantic signal needed for retrieval.

The token-compressed representation achieves an average alignment score of 0.2516 4= 0.0491, while
the full-sequence representation achieves 0.2404 4 0.0405. The corresponding histograms overlap
and exhibit very similar shapes, with the compressed representation showing a slightly higher mean.
A two-sided paired t-test on the per-pair scores indicates that this difference is statistically significant
(p = 3.0 x 107 93), with a small-to-moderate effect size (d = 0.39). Overall, these results show that
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EDJE ’s 64-token representation preserves, and slightly improves, image-caption alignment relative
to the full 576-token ViT sequence, despite using 9 x fewer visual tokens.
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E CROSS MODEL NEGATIVE MINING

In the main experiments, hard negatives for EDJE are mined using the same embedding model family
as the underlying retriever (e.g., Sigl.IP2 for a SigLIP2-based EDJE). To assess the impact of this
design choice, we additionally study cross-model negative mining, where the miner and the backbone
come from different embedding models.

Concretely, we consider two settings: (i) using SigL.IP2 as a negative miner for a CLIP-based EDJE,
and (ii) using CLIP as a negative miner for a SiglL.IP2-based EDJE. In both cases, the joint encoder
and token-compression components remain fixed; only the model used to select hard negatives during
fine-tuning is changed.

Table 6: Using SigL.IP2 as a negative miner for a CLIP based EDJE. Mining with SigL.IP2 does not
substantially affect CLIP performance.

Model Flickr Zero-Shot COCO Finetuned
Text-to-Image Image-to-Text Text-to-Image Image-to-Text

CLIP ViT L/14@336 81.9 93.8 54.6 70.7

+SigLIP2 L miner 81.8 93.5 54.6 70.8

Table 7: Using CLIP as a negative miner for a SiglL.IP2 based EDJE. Mining with CLIP significantly
degrades SigL.IP2 performance.

Model Flickr Zero-Shot COCO Finetuned
Text-to-Image Image-to-Text Text-to-Image Image-to-Text

SigLIP2 ViT L/16@384 87.8 96.5 64.9 81.0

+CLIP L miner 81.5 93.0 58.9 74.48

The results in Tables [6]and [7]reveal an interesting pattern. When SigLIP2 is used as a negative miner
for a CLIP-based EDJE, performance changes only marginally: Flickr30k zero-shot R@1 remains
essentially unchanged, and COCO fine-tuned scores are within a similar range. This suggests that in
this setting, overall performance is largely limited by the vision backbone rather than by the precise
geometry of the negative miner. In contrast, when CLIP is used as a miner for a SigL.IP2-based
EDJE, performance drops substantially on both Flickr30k and COCO, for both text-to-image and
image-to-text retrieval. This degradation emphasizes the importance of selecting sufficiently hard
negatives. Overall, these experiments support the practical guideline that hard-negative mining
should be performed with a model that is at least as strong as, and well aligned with, the underlying
vision-encoder used in EDJE.
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F FULL DATASET RETRIEVAL EVALUATION

To provide a more comprehensive evaluation, we adopt the full-dataset retrieval protocol used in
LightningDOT (Sun et al.| 2021)), where retrieval is performed against all images and captions in
the dataset, including the train/validation splits. This setting is considerably more challenging and
better reflects real-world retrieval scenarios. We follow LightningDOT’s setup for both Flickr Full
and COCO Full, and scale the re-ranking pool size to 100 in all experiments.

Table 8: Flickr Full retrieval results under the LightningDOT setup. Retrieval is performed against
all dataset’s images/captions as retrieved instances. EDJE is evaluated in a zero-shot setting and
substantially outperforms LightningDOT in both text-to-image and image-to-text retrieval.

Model Text-to-Image Image-to-Text
R@5 R@I10 R@20 R@5 R@10 R@20

LightningDOT  60.1 69.5 78.3 75.1 83.9 90.5
EDJE 7832 8454 8958 924 959 97.7

Table 9: COCO Full retrieval results under the LightningDOT setup. Retrieval is performed against
all dataset’s images/captions as retrieved instances. EDJE significantly outperforms LightningDOT
across all recall levels and directions.

Model Text-to-Image Image-to-Text
R@5 R@]10 R@20 R@5 R@10 R@20

LightningDOT  37.3 46.8 56.4 48.0 59.0 68.9
EDJE 52.23 60.55 68.08 69.86 7696 82.64

As shown in Tables [§|and[9] EDJE substantially improves full-dataset retrieval performance over
LightningDOT on both Flickr Full and COCO Full. On Flickr Full (zero-shot), EDJE yields large
gains in both directions and at all recall levels (e.g., text-to-image R@5 improves from 60.1 to
78.32, and image-to-text R@5 from 75.1 to 92.40). On COCO Full (fine-tuned), EDJE again
surpasses LightningDOT by a wide margin (e.g., text-to-image R@5 from 37.3 to 52.23, image-to-
text R@5 from 48.0 to 69.86). These results confirm that EDJE remains effective in more realistic
large-candidate retrieval scenarios.
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G TOKEN COMPRESSION BASELINES

In this section we compare the proposed token-compression adapter in EDJE to several alternative
ways of reducing the number of visual tokens produced by the SigL.IP2 ViT-L encoder. All methods
start from the same 576-token ViT sequence (384 x384 resolution) and compress it to 64 tokens per
image. We evaluate on Flickr30k (zero-shot) and COCO (fine-tuned).

We consider the following token-compression strategies:

1. Striding. A simple subsampling baseline that keeps every 9th token from the 576-token ViT
sequence, yielding 64 tokens in total (576/9 = 64).

2. Token clustering. We run k-means++ over the 576 visual tokens for each image to obtain
64 clusters, and use the cluster centroids as compressed tokens.

3. Attention pruning. We compute the attention scores of each token in the last ViT layer and
keep the 64 most attended tokens (where attendance is averaged across heads).

For fairness, each configuration is pretrained and fine-tuned end-to-end with the same protocol as our
token-compression model. Particularly, we distill from the uncompressed (576-token) teacher as in
the main EDJE experiments.

Table 10: Comparison of token-compression strategies applied to the Sigl.IP2 ViT-L image encoder.
We report Recall@1 on Flickr30k (zero-shot) and COCO (fine-tuned). SigLIP2 (Baseline) denotes
the original embedding-only model. All other methods compress the 576 ViT tokens to 64 tokens per
image and use the same joint encoder architecture.

Model Flickr Zero-Shot COCO Finetuned
Text-to-Image Image-to-Text Text-to-Image Image-to-Text
SigL.IP2 (Baseline) 82.3 94.8 - -
Striding 83.24 94.1 60.09 77.2
Clustering 85.66 96.1 63.31 79.76
Attention Pruning 82.4 93.7 58.6 76.4
EDIJE 86.9 96.4 64.6 80.9

We observe that EDJE’s token-compression adapter consistently outperforms striding, clustering,
and attention pruning across both datasets and directions (text-to-image and image-to-text). This
emphasizes the superiority of the learned query-based adapter over generic pooling or pruning
schemes.

24



Under review as a conference paper at ICLR 2026

H QUANTIZING THE VISION TOKENS

In all main experiments, the precomputed vision tokens are stored in BF16 (or FP16) format. Because
EDIJE is designed for large-scale retrieval with potentially billions of stored image representations, it
is interesting to examine how far the storage footprint can be reduced via quantizing the numerical
precision of the vision tokens.

We perform post-training quantization only on the precomputed vision tokens, while keeping the
joint encoder itself in BF16. For each quantization type, the cached tokens are quantized on disk and
de-quantized immediately before being fed to the joint encoder at inference time, with no additional
finetuning.

We consider two representation families: (i) the full 576-token ViT sequence, and (ii) the 64-token
compressed representation. For each family we evaluate three numeric formats: (a) BF16 (no
quantization), (b) FP8-E4M3, and (c) FP4-E2M1. We measure Flickr30k zero-shot image retrieval
performance (R@ 1) and compute the average storage per image in kilobytes, taking into account
the number of tokens, hidden dimension, and numeric precision. This allows experimentation with a
wide range of formats including FP4 and 1-bit signed vectors.

0.80 Retrieval Performance (Flickr30k) vs Representation Storage

0.88 Full - FPg E4M3  FUIl - BF16

TC64 - BF16
0.87
TC64 - FP8 E4M3 Full - FP4 E2M1

0.86 TC64 - FP4 E2M1

0.85

0.84

Flickr Image Retrieval R@1

0.83
SigLIP2 - Baseline

Representation storage (kB)
Figure 10: Retrieval performance (Flickr30k zero-shot image retrieval Recall@1) versus image
representation storage size (in kilo-bytes, log scaled). We compare the full 576-token ViT representa-
tion and the 64-token compressed representation under BF16, FP8-E4M3, and FP4-E2M1 formats.
EDIJE ’s compressed tokens retain strong performance even under aggressive quantization, while
substantially reducing storage.

Figure[I0] summarizes the trade-off between retrieval performance and representation storage. The
plot shows that the token-compression is remarkably robust to aggressive quantization: moving
from BF16 to FP8 and even FP4 leads to only minor changes in R@ 1, while substantially reducing
storage. Moreover, combining FP8 quantization with 64-token compression cuts the per-image
storage in half beyond the already compact 49 kB, with negligible loss in retrieval quality, pushing
the storage-performance tradeoff even further.
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I ON EXTENDING EDJE TO VIDEO RETRIEVAL

Although video retrieval lies outside the scope of this work, EDJE naturally admits several extensions
to the video domain. A video may be represented as a sequence of framesJ fi,--., fr|, each processed
independently by the vision encoder to produce X; = g4(f;) € R"*. Concatenatlng per-frame
features yields a high-dimensional tensor

X=[Xy,...,Xp] e RT>*nxd

corresponding to 7' x n visual tokens. The central challenge is therefore to compress hundreds
of frames efficiently while preserving temporal structure and producing a compact representation
suitable for re-ranking.

Below, we outline two concrete strategies for adapting EDJE to video-text retrieval.

1. EDJE’s adapter as a temporal compressor. A direct extension is to repurpose the EDJE
token-compression adapter to operate across time. Each frame is first mapped to a single
visual token using any image embedding model, yielding a temporal sequence of 1" tokens. A
temporal adapter can then be trained to compress these tokens into a small set of temporally
aggregated tokens. This design captures long-range semantics across many frames and
improves upon simple temporal pooling strategies such as averaging frame embeddings
(Rasheed et al.} 2022; Maaz et al}[2023). Temporal positional encodings can be incorporated
by adding a learned position vector to each frame token before passing it to the adapter.

2. Spatial compression followed by temporal compression. An improvement over the afore-
mentioned idea is to enhance single frame representations by replacing naive embeddings by
compressing frames via a pretrained version of EDJE’s token-compression adapter, applied
to each frame to better compress information spatially. Then, a similar token-compression
adapter is learned to temporally aggregate all of the compressed tokens from each frame in
an efficient manner (e,g 576 — 64 per frame).
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J IMPACT OF TEXT-ENCODER CHOICE ON RETRIEVAL

The joint encoder in EDJE uses an extremely lightweight MiniLM-L12-H384 text model for joint
encoding. A natural question is whether replacing MiniLM with a larger, more expressive language
encoder such as BERT-Base could further improve retrieval performance. Prior work in vision lan-
guage modeling suggests that stronger language encoders sometimes offer marginal gains in caption
understanding, but they also introduce greater computational cost and may provide diminishing
returns in retrieval settings where the visual features dominate (Devlin et al.,[2019}; [Radford et al ]

2021} [Jia et al.| 2021} [Li et al}, [2022).

To study this trade-off, we replace MiniLM with BERT-Base (uncased) while keeping all other
components fixed. In particular, we use the same Sigl.LIP2 Base visual encoder, the same token-
compression module, and the same training protocol used in our main experiments. The joint encoder
therefore differs only in the text backbone. We evaluate this configuration on Flickr30k using the
standard zero-shot retrieval protocol.

Table 11: Flickr30k zero-shot retrieval results when substituting MiniLM with BERT-Base as the
text encoder in the joint module. The visual encoder is SigL.IP2-Base in all configurations. EDJE
(MiniLM) denotes the baseline from the main paper.

Text Encoder Text-to-Image Image-to-Text
R@l R@5 R@I0 R@1 R@5 R@I10

MiniLM with Siglip Base 84.3  96.6 979 943 999 999
BERT-Base with Siglip Base 84.52 96.58  97.9 939 999 99.9

As shown in Table [T} substituting MiniLM with BERT-Base produces mixed but notable effects.
BERT-Base yields slight improvements in the text-to-image setting, particularly on R@1 and R@10
(e.g., R@1 increases from 84.3 to 84.52, and R@10 from 97.9 to 97.98). In contrast, MiniLM
remains marginally stronger for image-to-text retrieval (e.g., R@1 improves from 93.9 with BERT to
94.3 with MiniLM), while both models tie at higher recall levels.

Although these results do not indicate that larger language encoders provide substantial gains in our
setup, it is important to note that our model is trained on only 12M images, considered small-scale
relative to typical vision-language pretraining regimes. Nevertheless, MiniLLM, despite its compact
size, does not appear to bottleneck the token-compressed retrieval pipeline.

Overall, this experiment shows that BERT-Base can slightly improve specific aspects of retrieval, but
lightweight, well-distilled text encoders like MiniLM remain highly competitive and more efficient
for EDJE’s joint-encoder design.
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