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Abstract

Drug development is a risky and lengthy pro-
cess during which most compounds fail due to
insufficient efficacy in the clinic. For this reason,
there is an urgent need for scalable in silico ap-
proaches that can help identify promising drug
candidates using preclinical data. We introduce
EVA, the first foundation model for immunology
and inflammation (I&I), specifically tailored to
power such applications at the interface between
transcriptomics (handling both bulk and single-
cell data) and clinical modalities, pretrained on
a large corpus of single-cell and bulk RNA-seq
samples sourced from various clinical studies and
databases. Throughout a retrospective in silico
study conducted in ulcerative colitis, we illustrate
how EVA can be fine-tuned to predict the clinical
effect of new compounds in I&I patients, lever-
aging preclinical data from disease models and
observational cohort data. We model the biolog-
ical effect of the drug at the patient level as a
transcriptomic perturbation in the primary organ,
which can be extracted from EVA’s latent gene
representations. Using a secondary disease model,
this perturbation can be transformed into a pre-
dicted change in disease activity. In addition to
direct drug effect forecasting at the patient level,
the pipeline output can also be used to stratify pa-
tients according to their expected drug responses,
enabling the early identification of biomarkers of
response in investigational treatments. This first-
in-class study highlights how foundation mod-
els in computational biology can be harnessed to
address modeling challenges in drug discovery,
bridging the gap between molecular and clinical
data and paving the way for more effective and
personalized treatments.
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1. Introduction

Immunology and inflammation (I&I) diseases are chronic
conditions characterized by a dysregulated immune sys-
tem, including rheumatological, dermatological, respiratory,
and gastrointestinal affections, which affect 5-7% of the
population in industrialized countries (El-Gabalawy et al.,
2010; Xu et al., 2025). Developing new drugs for 1&I con-
ditions has a low success rate in clinical trials, with up to
95% failures (Hingorani et al., 2019). Drug effect modeling
approaches based upon gene regulatory networks and quan-
titative systems pharmacology have been proposed (Guney
et al., 2016; Hurez et al., 2025), however, the amount of
work and expertise necessary to craft them hinders their
deployment at scale, motivating data-driven approaches. A
promising research area in this direction is to model the ef-
fect of a drug in the primary organ of a disease as a transcrip-
tomics perturbation that can be learned from perturbation as-
says (Roohani et al., 2024; Lotfollahi et al., 2023). Although
these studies generally stay at the single-cell level, focusing
on cell state shifts, it can theoretically be extrapolated upon
data availability to bulk RNA-seq, more affordable and still
prevalent in the clinic, allowing for modeling the response
at the scale of an entire organ.

Foundation models have emerged over the last few years
as a transformative force in machine learning, harnessing
large data corpora and high computational power to learn
in self-supervision rich representations of data. They are
rapidly spreading to computational biology, already span-
ning most data modalities such as RNA-seq (Cui et al., 2024;
Theodoris et al., 2023), proteomics (Madani et al., 2023),
genomics (Brixi et al., 2025), and histology (Saillard et al.,
2024). Thanks to their pre-trained representations, these
models are envisioned to offer unprecedented opportuni-
ties in biological research and drug discovery by enabling
efficient and scalable deep learning approaches. Their ap-
plicability in computational biology still faces important
challenges, notably because the inherent multimodality of
biological data is to this day poorly handled by existing mod-
els, and they tend to struggle to generalize to unseen data
in real-life applications (Kedzierska et al., 2023; Ahlmann-
Eltze et al., 2024; Li et al., 2024). In particular, healthy
and tumor samples being generally overrepresented in the



Closing the gap between the biology and the clinic with a foundation model of immunology and inflammation

1- Pre-Training

‘ |2— Fine-tuning‘ |

3 - Downstream analysis

EVA foundation model
for Immunology & Inflammation

Experimental
data - input

Human Cell Atlas &
+50M human cells

[mmunAtlas

+15 diseases
+12 tissue types
+20k human samples

Refining EVA using
RNA-seq data from
drug-treated animal
models

Patient-level drug response prediction

1- Treatment-naive
patients and their

Clinical impacts

baseline RNA-seq profiles + Prediction of
clinical scores
'| 2- Drug effect modeling : z?rgfi?cotion 3
through RNA-seq prediction biomarkers

T « Prediction of
L clinical trial

3 - Drug responses (R/NR) outcomes and
at both cohort and success

individual patient levels

Figure 1. EVA is a pre-trained RNA-seq model of I1&I diseases that can be used as a building block for translational research applications
between biology and the clinic. Notably, it can be fine-tuned to predict drug efficacy using biological data from preclinical disease models

and observational cohort data of drug-naive patients.

pre-training corpora of generalist foundation models hinders
their applicability in the I&I.

Leveraging the abundance of bulk and RNA-seq transcrip-
tomics data and the shared pathophysiological mechanisms
of 1&I conditions, we introduce EVA, a foundation model
tailored to power translational applications in I&I. We first
show that EVA is particularly well suited for such use cases,
harnessing its relevant pretraining data that includes bulk
RNA-seq from I1&I patients. We fine-tune EVA and other
generalist foundation models in a few-shot setting on a per-
turbation prediction task in response to anti-TNF, using
preclinical mouse data, and show that EVA convincingly
outperforms the other models on the task. We then integrate
EVA into a drug effect prediction pipeline that predicts the
effect of anti-TNF in ulcerative colitis patients. We finally
highlight how the pipeline results can be exploited to en-
able biomarker discovery. Overall, this study illustrates how
transcriptomic foundation models can today be combined
with domain-specific modeling logic to effectively bridge
the gap between biological and clinical data.

2. Materials and methods
2.1. Pre-training of EVA

EVA is a 50M parameters encoder model based on the trans-
former architecture (Vaswani et al., 2017), pre-trained in
a two-step MLM procedure to enhance its applicability in
real-world 1&I scenarios. It was first pre-trained over 50
million human single-cells of diverse tissues and types gath-
ered from the Human Cell Atlas and CELLXGENE (Regev
et al., 2017; Abdulla et al., 2023), followed by a second pre-
training phase using an in-house 1&I atlas of bulk RNA-seq
called ImmunAtlas (20k total samples), that consists of pub-
lic and private bulk RNA-seq data from subjects suffering
from I&I diseases. ImmunAtlas spans tens of thousands of
patient samples, including 12 different physiological tissues
and 15 1&I diseases.

2.2. Data sourcing and processing

We fine-tuned EVA and the other benchmark models using
colon RNA-seq data from mouse IBD models, public data
(Punit et al., 2015), which came from a study investigating
the role of TNFR2 in the pathogenesis of colitis. It in-
cludes 3 TNFR2-sufficient (control) and 3 TNFR2-deficient
(treated) mice, all on a C57BL/6 background. Whole colon
samples were collected from these mice and subjected to
RNA-seq analysis, resulting in a dataset from which we built
separate control/TNFR2- pairs, comprising 96,270 gene ex-
pression tokens for training and 27,220 for validation. We
chose this dataset for several reasons:

* This in vivo dataset mimics to a certain degree the types
of data generated in pre-clinical studies (though it is
important to mention that the TNF suppression effect
was obtained through a genetic knock-out of TNFR2,
rather than drug administration).

* It contains bulk RNA-seq data, which is still a highly
relevant data modality, abundant in the clinic.

* Importantly, it does not come from cell lines or can-
cer models, unlike most public gene perturbation
datasets generated in Perturb-seq (Dixit et al., 2016)
and Drug-seq (Ye et al., 2018) experiments, which is
of paramount importance for our use cases in 1&I.

The virtual cohort data on which we simulated the treatment
effect was composed of patients (n = 29) collected from
the PROTECT (Haberman et al., 2019) pediatric cohort
among patients with high disease activity scores (MAYO>
7), similar to those typically included in clinical trials. The
remaining patients were utilized in addition to in-house
observational cohort data to train the model mapping RNA-
seq state to disease activity score.
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Figure 2. Overview of the EVA stochastic perturbation framework,
which decodes gene embeddings ®(z) as a Gaussian probability

distribution A/ (jz, 5%) that can be sampled from during inference.
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2.3. Perturbation decoder architecture

EVA was fine-tuned on the drug effect prediction task using
a stochastic encoder-decoder perturbation architecture (Fig.
2), combining the foundation model encoder block with
a VAE-like decoder module that predicts the parameters
of a multivariate Gaussian probability distribution. Given
the inherently stochastic nature of gene perturbations, we
opted for a non-deterministic approach connected to VAEs
(Kingma et al., 2013) (joint use of transformers and VAEs
has notably been described in (Fang et al., 2021)). Given
an initial gene expression vector 2 € R? (resp. Az € R%)
where x; describes the expression (resp. Awx; the target
change in expression) level of the gene ¢, the perturbation
encoder block ® embeds z into a latent space of dimension
c as a matrix ®(x) € R4*¢, where ®(z); is the contextual-
ized embedding of gene ¢. We then trained two independent
decoders ¥, and ¥, to predict the parameters of a multivari-
ate Gaussian distribution with diagonal covariance, which
can be used as an estimator of the gene-wise perturbation

Az ~ N[®, (), diag(®, (x))].
with @, def ¥, o®and ¢, & exp o ¥, o ®. The training
minimizes the composite loss

Ly & MSE(Az, ®,(2)) + ANLL[Az | ®,(2), D, (2)],

where ) is a non-negative stochasticity coefficient, and

def 1
MSE(z,9) = <(z = )" (z — y)
d
1 (2 — pi)?
NLL 2 N7 | og(o?) +
[z | p, 0] 2d; og(a}) + -

We fine-tuned the gene perturbator models using A = 0.5 in
two successive steps, first with an initial high learning rate
and & pre-training parameters frozen, then over all model
parameters with a learning rate 100 times smaller.

2.4. Perturbation benchmarking

To evaluate the ability of EVA to predict transcriptome-wide
gene expression changes in response to perturbations, we
designed a benchmark using a case-control dataset from

an inflammatory bowel disease (IBD) mouse model. For
the encoder block, we fine-tuned EVA and several other
state-of-the-art RNA-seq foundation models, namely scGPT
(Cui et al., 2024), Geneformer (Theodoris et al., 2023), and
AIDO.Cell 3M and 100M (Ho et al., 2024). We also fitted a
multivariate Gaussian model (MVG) with diagonal covari-
ance to the same training data to serve as a naive baseline
perturbation model. All models were fine-tuned until con-
vergence following the two-step procedure aforementioned
using the same training dataset, and evaluated on the valida-
tion set using the average Spearman’s correlation between
expected and predicted perturbations as the performance
metric over 10 independent trainings.

3. Results

3.1. EVA learns in few-shot anti-TNF perturbation in
I&I disease models

MODEL DE (L=163) ALL (L=13,610)
EVA 0.714+ 0.01 0.67+ 0.01
AIDO 100M 0.66+ 0.02 0.48+ 0.01
GENEFORMER  0.57+ 0.02 N/A!
AIDO 3M 0.554+0.01 0.224+0.01
SCGPT 0.504+ 0.02 0.40+ 0.01
MVG (BL) 0.45+ 0.02 0.484+0.01

Table 1. Spearman correlation measured between predicted and
ground truth perturbation profiles (validation set), averaged over
10 independent fine-tuning runs (mean-std). DE = differentially
expressed genes. All = all genes. !Geneformer implementation
does not support a context size above 4,096 gene tokens.

A significant challenge in drug effect modeling is to predict
transcriptome changes in response to a perturbation, such as
gene knock-out or drug administration. Indeed, successfully
modeling the transcriptomics shift in response to a drug in
the primary organ affected by a disease can be harnessed
to forecast the compound’s therapeutic impact at the pheno-
typic level. Generalist foundation models often struggle to
outperform basic baselines, and preclinical settings present
additional challenges such as data scarcity and the difficulty
of translating findings from model organisms to humans.

We compared EVA to other state-of-the-art foundation mod-
els to infer transcriptome-wide changes resulting from TNF
receptor 2 (TNFR2) depletion in mice using a small dataset
from an IBD mouse model. We used a stochastic encoder-
decoder architecture (see methods), and defined a basic
multivariate Gaussian model (MVG) as a naive baseline
(Tab. 1). EVA outperforms all other models in this task,
achieving a 0.71 Spearman correlation for differentially ex-
pressed genes and maintaining a 0.67 correlation across
all available genes. Despite having been fine-tuned on the
same dataset, other models struggle to capture subtle gene
expression changes, especially in the whole transcriptome
experiment, falling at the same level or below the baseline
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Figure 3. (a) Overview of the drug effect prediction pipeline. (b) Spearman correlation (corrected for baseline MAYO) between predicted
response and 4 anti-TNF response signatures from the literature. (c) Predicted efficacy outcomes under anti-TNF at the cohort level,
100 trajectories predicted per subject, drug response measured in terms of change in MAYO score. (d, e) Differentially expressed genes
between predicted responders and non-responders. (f) Top 25 down- and upregulated genes during the anti-TNF simulation.

in this case. This highlights EVA’s effectiveness in few-
shot learning scenarios and its ability to work at the whole
transcriptome level with &I bulk data, still abundant in the
clinic.

3.2. EVA predicts coherent RCT primary outcomes

To demonstrate EVA’s applicability in drug candidate pri-
oritization for I1&I, we applied the fine-tuned perturbation
model to forecast the outcome of an anti-TNF clinical trial
in ulcerative colitis patients. Given the absence of publicly
available IBD mouse datasets treated with anti-TNF with
bulk RNA-seq data, we relied on the genetic ablation of
TNFR?2 as a proxy, while acknowledging that this approach
may not faithfully capture the complexity of the treatment.

Using UC observational cohort data from anti-TNF naive
patients, we trained a basic elastic net disease model f that
maps colon transcriptomics states to patient disease activity
score. We applied the perturbation model to 29 pediatric UC
patients, generating 100 random transcriptomics response

states {:c + &:( k)} for each patient, that can then be
0

k<1
mapped to a predicted (()iisease activity score through the
mapping f(z + &v(k)) (Fig. 3a). Counting the fraction of
trajectories falling under the response and remission thresh-
olds, we computed the expected response and remission
rates for each patient and compared those to existing anti-
TNF clinical trials. EVA predicted a median MAYO score
reduction of 2.1 points and a close to 44% response rate,
which aligns with documented trials (Sandborn et al., 2012;
2014), despite an underestimation of the remission rate (Fig.
3c) that may be due to a small amount of remissive patients
in the training data used to build the disease activity model.

We interpreted the predicted most varying genes, down-
regulated ones included inflammation-related and tissue
stress markers, while up-regulated ones contained markers
for cell differentiation and gut homeostasis. These predic-
tions align with expected biological responses to anti-TNF,
indicating that EVA was able to model the expected effect
of anti-TNF in the gut at the molecular level (Fig. 3f).

3.3. EVA enables reliable patient-level predictions and
early discovery of response biomarkers

While predicting treatment effects at the cohort level is valu-
able, patient-level forecasting holds even greater clinical rel-
evance, enabling precision medicine applications. To assess
EVA’s capability in this regard, we evaluated its predictions
against four transcriptomics signatures from the literature
(Yang et al., 2023; Sakaram et al., 2021; West et al., 2017;
Dahlén et al., 2015) associated with anti-TNF response in
ulcerative colitis (UC). EVA’s patient-level predictions cor-
related well with all four response signatures (Fig. 3b),
capturing meaningful variation across individuals—even
among those with similar baseline disease profiles, under-
scoring EVA’s ability to model subtle, biologically grounded
differences in treatment response, while being trained on a
few preclinical samples only.

Beyond predicting outcomes, EVA enables patient stratifi-
cation into high responders, non-responders, and uncertain
groups, offering potential for biomarker discovery and clini-
cal trial enrichment. In the pediatric UC cohort, differential
expression analysis revealed numerous distinct genes be-
tween predicted responders and non-responders (Fig. 3d,
e), which highlights the benefits of a human-knowledge ag-
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nostic foundation model approach. These results validate
EVA’s usefulness not only in forecasting patient-specific
responses but also in uncovering biologically meaningful
subgroups, supporting its application in precision medicine
for immune-mediated diseases.

4. Conclusion

We introduced EVA, a pioneering pre-trained foundation
model designed specifically for applications related to I&I
diseases. Our study underscored EVA’s remarkable ver-
satility, accuracy, and interpretability in predicting drug
outcomes in a stochastic fashion, while training solely on
readily available mouse model and observational cohort
data. EVA’s predictions in human patients aligned with
clinical trial results for anti-TNF drugs, despite training on
small datasets from disease models, offering a transforma-
tive approach to enhance trial design and resource allocation,
thereby accelerating drug development. EVA’s capabilities
extend to patient stratification based on predicted drug re-
sponses, leveraging RNA-seq representations to provide
critical insights for personalized medicine, and highlighting
its potential to identify at an early stage new molecular mark-
ers for treatment efficacy in investigational drugs, crucial
for clinical trial enrichment and targeted therapies.

EVA combines wide (bulk) and deep (single-cell) represen-
tations of the gene expression landscape to forecast clinical
outcomes, and future iterations will likely also integrate
additional biological modalities such as histology and pro-
teomics, and explore knowledge graph integration for a
more holistic disease understanding and improved predic-
tive performance. EVA marks a significant leap toward a
scalable and actionable modeling approach to leverage foun-
dation models research in drug discovery, with promising
implications for precision medicine and drug development.
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