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ABSTRACT

Most analysis of transformer expressivity treats the depth (number of layers) of
a model as a fixed constant, and analyzes the kinds of problems such models can
solve across inputs of unbounded length. In practice, however, the context length
of a trained transformer model is bounded. Thus, a more pragmatic question
is: What kinds of computation can a transformer perform on inputs of bounded
length? We formalize this by studying highly uniform transformers where the
depth can grow minimally with context length. In this regime, we show that trans-
formers with depth O(logC) can, in fact, compute solutions to two important
problems for inputs bounded by some max context length C, namely simulating
finite automata, which relates to the ability to track state, and graph connectiv-
ity, which underlies multi-step reasoning. Notably, both of these problems have
previously been proven to be asymptotically beyond the reach of fixed depth trans-
formers under standard complexity conjectures, yet empirically transformer mod-
els can successfully track state and perform multi-hop reasoning on short contexts.
Our novel analysis thus explains how transformer models may rely on depth to
feasibly solve problems up to bounded context that they cannot solve over long
contexts. It makes actionable suggestions for practitioners as to how to minimally
scale the depth of a transformer to support reasoning over long contexts, and also
argues for dynamically unrolling depth as a more effective way of adding compute
compared to increasing model dimension or adding a short chain of thought.

1 INTRODUCTION

A line of recent work has analyzed the computational power of transformers, finding that, with
fixed depth, they cannot express many simple problems outside the complexity class TC0, including
recognizing regular languages and resolving connectivity of nodes in a graph (Merrill & Sabharwal,
2023a; Chiang et al., 2023). These problems conceivably underlie many natural forms of reasoning,
such as state tracking (Liu et al., 2023; Merrill et al., 2024) or resolving logical inferences across
long chains (Wei et al., 2022). Thus, these results suggest inherent limitations on the types of
reasoning transformer classifiers can perform. Yet, while these results establish that transformers
cannot solve these problems for arbitrarily long inputs, they come with an important caveat: that
transformers may still be able to solve such problems over inputs up to some bounded length, even
if they cannot solve them exactly for inputs of arbitrary lengths. This is, in fact, aligned with a
common experience that, in practice, transformer-based language models are indeed able to track
state and perform multi-step reasoning successfully on small context sizes. This is analogous to how
regular expressions cannot express all context-free languages, but one can write regular expressions
that capture fragments of a context free language.

This perspective, coupled with the fact that treating depth as fixed is crucial to prior analyses placing
transformers in TC0, motivates three related questions about depth as an important resource for a
transformer, in relation to the context length over which it can express reasoning problems:

1. Bounded Context: Can fixed depth transformers express hard problems up to a long, but
bounded, context length? If so, what is that bound?

2. Dynamic Depth: Can minimally scaling the depth of a transformer allow it to solve such
problems for arbitrarily long inputs?
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3. Architecture Design: When targeting reasoning problems like state tracking, should one
add additional layers or invest test-time compute in larger model dimension, chain of
thought, etc.?

We address these questions by analyzing the expressive power of “universal” transformers (also
called “looped” transformers) whose depth is scaled dynamically with context length by repeating
middle layers (Dehghani et al., 2019; Yang et al., 2024).1 We capture the regime where depth grows
minimally with context length by allowing the middle layers to be repeated O(log n) times. Using
a universal transformer architecture allows the model to be specified using a fixed set of parameters
despite dynamic depth, making the architecture highly “uniform”. In this regime, we prove that
such log-depth transformers can recognize regular languages and solve graph connectivity, two im-
portant reasoning problems shown to be beyond fixed-depth transformers in prior work (Merrill &
Sabharwal, 2023a). This result has three interesting interpretations, answering the questions above:

First, transformers with a fixed depth d can recognize regular languages and solve graph connectivity
problems on inputs up to size 2O(d). For instance, following from Theorem 1, with depth 80 (such
as in LLaMA 3.1 70B), transformers can simulate finite automata on context length up to 100. Even
with a depth of only 32 (such as in LLaMA 3.1 7B, OLMo 7B), they can solve graph connectivity
up to a context length of 100. With depth 126 (as in LLaMA 3.1 405B), transformers can solve these
problems to practically unbounded contexts.

Second, by dynamically increasing their depth to O(log n), we can construct transformers that can
solve regular language recognition and graph connectivity for arbitrary context length.2

Third, scaling depth logarithmically as a computational resource more efficiently expands the
expressive power of transformers compared to scaling width (i.e., model dimension) or adding
O(log n) chain-of-thought style intermediate steps (Wei et al., 2022; Nye et al., 2021). Specifi-
cally, we show that even transformers with poly(n) width cannot solve the above two problems, and
neither can transformers with O(log n) chain-of-thought steps.

We hope the first and third observations here will serve as actionable guidance for practitioners to
choose effective model depths for reasoning over long contexts, and potentially motivate exploring
the use of dynamic depth as way to efficiently introduce test-time compute for transformers.

2 PRELIMINARIES: UNIVERSAL TRANSFORMERS

We consider (s, r, t)-universal transformers which are defined to have s fixed initial layers at the
start, a sequence of r layers that is repeated some number of times based on the input length, and a
sequence of t fixed final/terminal layers. Thus, an (s, r, t)-universal transformer unrolled d(n) times
for input length n has a total of s + rd(n) + t layers. A standard d-layer transformer is (d, 0, 0)-
universal (equivalently, (0, 0, d)-universal), while a standard universal transformer (Dehghani et al.,
2019; Yang et al., 2024) is (0, 1, 0)-universal.
Definition 1. A decoder-only (s, r, t)-universal transformer with h heads, d layers, model dimension
m (divisible by h), and feedforward width w is specified by:

1. An embedding projection matrix E that maps Q|Σ| to Qm, as well as a positional encoding
function π, which we assume separates 1 from other indices (Merrill & Sabharwal, 2024);3

2. A list of s “initial” transformer layers (defined in Section 2.1);
3. A list of r “repeated” transformer layers;
4. A list of t “final” transformer layers;
5. An unembedding projection matrix U that maps vectors in Qm to Q|Σ|.

We next define how the transformer maps a sequencew1 · · ·wn ∈ Σn to an output value y ∈ Σ; to do
so, we will always specify that the transformer is unrolled to a specific depth function d(n), which

1We use the term “universal” throughout because it is more standard, though “looped” is more accurate as
these transformers cannot express all Turing machines with bounded precision.

2Following conventions in computer science, we use logn to mean log2 n.
3We use rationals Q instead of R so that the model has a finite description. All our simulations go through

as long as at least c logn bits are used to represent rationals, similar in spirit to log-precision floats used in
earlier analysis (Merrill & Sabharwal, 2023a;b).
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we will consider to be d(n) = ⌈log n⌉. The computation is inductively defined by the residual
stream hi: a cumulative sum of all layer outputs at each token i. In the base case, the residual
stream hi is initialized to h0

i = E(y) + π(i). We then iteratively compute s + rd(n) + t more
lowers, deciding which layer to use at each step as follows:

Lℓ =


s-layer ℓ if 1 < ℓ ≤ s
r-layer (ℓ− s) mod r if s < ℓ ≤ s+ rd(n)

t-layer ℓ− s− rd(n) otherwise.

We then compute hℓ
1, . . . ,h

ℓ
n = Lℓ(hℓ−1

1 , . . . ,hℓ−1
n ). Finally, the output of the transformer is

a token determined by first computing the logits hℓ−1
n U and selecting token with maximum score.

We can identify special tokens in Σ with “accept” and “reject” and define a transformer to recognize
a language L if, for every w ∈ Σ∗, it outputs “accept” if w ∈ L and “reject” otherwise.

2.1 TRANSFORMER SUBLAYERS

To make Definition 1 well-defined, we will next describe the structure of the self-attention and
feedforward sublayers that make up the structure of each transformer layer. Our definition of the
transformer will have two minor differences from practice:

1. Averaging-hard attention (a.k.a., saturated attention): attention weight is split uniformly
across the tokens with maximum attention scores.

2. Masked pre-norm: We assume standard pre-norm (Xiong et al., 2020) but add a learned
mask vector that can select specific dimensions of the residual stream for each layer’s input.

Each sublayer will take as input a sequence of normalized residual stream values:

zi = layer norm(mhi),

where layer-norm can be standard layer-norm (Ba et al., 2016) or RMS norm (Zhang & Sennrich,
2019). The sublayer then maps z1, . . . , zn to a sequence of updates to the residual stream δ1, . . . , δn,
and the residual stream is updated as h′

i = hi + δi.
Definition 2 (Self-attention sublayer). The self-attention sublayer is parameterized by a mask m ∈
Qm, output projection matrix W ∈ Qm×m, and, for 1 ≤ k ≤ h, query, key, and value matrices
Qk ∈ Qm×(m/h),Kk ∈ Qm×(m/h),Vk ∈ Qm×(m/h).

Given its input zi, the self-attention sublayer computes queries qi = ziQ
k, keys ki = ziK

k, and
values vi = ziV

k. Next, these values are used to compute the attention head outputs:

ai,k = lim
α→∞

c∑
j=1

exp(αqi,kkj,k)

Zi,k
· vj,k, where Zi,k =

c∑
j=1

exp (αqi,kkj,k)

where c = i for causal attention and c = n for unmasked attention. Attention is made saturated to
focus on the argmax positions (through the α limit). Finally, the attention heads are aggregated to
create an output to the residual stream:

δi = concat(ai,1, . . . ,ai,h) ·W.

Definition 3 (Feedforward sublayer). The feedforward sublayer at layer ℓ is parameterized by a
mask m ∈ Qm and projections W ∈ Qm×w and U ∈ Qw×m.

A feedforward layer computes a local update to the residual stream according to

δi = ReLU(ziW)U.

2.2 MEMORY MANAGEMENT IN UNIVERSAL TRANSFORMERS

A technical challenge when working with universal transformers that add values to the residual
stream is that if one is not careful, outputs from the previous iteration of a layer may interfere with
its computation at a later iteration. This necessitates “memory management” of individual cells in
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which the transformer stores values. In particular, any intermediate values stored by a layer must be
“reset” to 0 and any desired output values must be correctly updated after use in subsequent layers.

Appendix A discusses in detail how values in {−1, 0, 1} can be stored directly in the residual stream,
while a general scalar z can be stored either as ψ(z) = ⟨z, 1,−z,−1⟩ in its unnormalized form or as
the unit vector ϕ(z) = ψ(z)/

√
z2 + 1 in its normalized form. Importantly, whichever way a general

z is stored, when it is read using masked pre-norm, we obtain ϕ(z). Thus, if ψ(z) is stored as an
intermediate output, resetting the corresponding residual stream cells in the next layer will often
require recomputing ψ(z) again in the next layer and adding−ψ(z) to those cells to reset their value
to 0. We will use a similar mechanism to reset or update a scalar added to a single cell of the residual
stream, such as in the proof of Lemma 5. Further details are deferred to Appendix A.

3 FIXED DEPTH TRANSFORMERS CAN DIVIDE SMALL INTEGERS

A useful primitive for coordinating information routing in a log-depth transformer will be dividing
integers and computing remainders. We therefore start by proving that transformers can perform
integer division for small numbers, which will be a useful tool for our main results. Specifically, we
show that given a non-negative integer ai no larger than the current position i, one can compute and
store the (normalized) quotient and remainder when ai is divided by an integer m. This effectively
means transformers can perform arithmetic modulo m for small integers.

We note that there are some high-level similarities between our division construction and a modular
counting construction from Strobl et al. (2024), though the tools (and simplifying assumptions)
used by each are different. Specifically, their approach relies on nonstandard position embeddings
whereas ours makes heavy use of masked pre-norm.

Lemma 1. Let ai, bi, ci,m ∈ Z≥0 be such that ai = bim+ ci where ai ≤ i and ci < m. Suppose
ψ(i), ψ(m), and ϕ(ai) (or ψ(ai)) are present in the residual stream of a transformer at each token i.
Then, there exists a 7-layer transformer with causally masked attention and masked pre-norm that,
on any input sequence, adds ϕ(bi) and ϕ(ci) to the residual stream at each token i.

Proof. The overall idea is as follows. In the first layer, each position i outputs an indicator of
whether it’s a multiple of m. It also adds ϕ(j) to the residual stream such that j is the quotient i/m
if i is a multiple of m. In the second layer, each position i attends to the nearest position j ≤ i
that is a multiple of m and retrieves the (normalized) quotient stored there, which is j/m = ⌊i/m⌋.
It adds this (normalized) quotient in its own residual stream. We then use Lemma 4 to construct a
third layer that adds ϕ(i − 1) and ϕ(i − 2) to the residual stream. A fourth layer checks in parallel
whether the quotient stored at i matches the quotients stored at i− 1 and i− 2, respectively. In the
fifth layer, position i counts the number of positions storing the same quotient as i, excluding the
first such position. Finally, in the sixth layer, position i attends to position ai to compute and add to
the residual stream ϕ(⌊ai/m⌋) (which is ϕ(bi)) and ϕ(ai −m⌊ai/m⌋) (which is ϕ(ci)). We next
describe a detailed implementation of the construction, followed by an argument of its correctness.

Construction. The first layer uses an attention head with queries, keys, and values computed as
follows. The query at position i is qi = ϕ(i,m) = ϕ(i/m) computed via Lemma 2 leveraging the
assumption that ψ(i) and ψ(m) are present in the residual stream. The key and value at position j
are kj = vj = ϕ(j). Let h1i = ϕ(j) denote the head’s output. The layer adds h1i to the residual
stream and also adds ei = I(h1i = ϕ(i/m)) using Lemma 5 (scalar equality check) on the first
coordinate of h1i and ϕ(i/m). As we will argue below, this layer has the intended behavior: ei = 1
if and only if i is a multiple of m and, if ei = 1, then the value it stores in the residual stream via h1i
is precisely the (normalized) quotient i/m.4

The second layer uses a head that attends with query qi = ⟨1, 1⟩, key kj = ⟨ej , [ϕ(j)]0⟩, and value
vj = h1j ; note that both ej and h1j can be read from the residual stream using masked pre-norm. This
head attends to all positions j ≤ i that are multiples of m (where ej = 1), with [ϕ(j)]0, the first
component of ϕ(j), serving as a tie-breaking term for breaking ties in favor of the nearest multiple
of m. Let h2i = h1j denote the head’s output. The layer adds h2i to the residual stream at position

4As described in Lemma 5, a component will be added to the second layer to reset intermediate memory
cells used in the first layer to 0 (this will happen analogously in later layers, but we will omit mentioning it).
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i. As we will argue below, h2i = ϕ(j/m) where j/m is precisely the quotient stored in the residual
stream at the multiple j of m that is closest to (and no larger than) i, which by definition is ⌊i/m⌋.
The layer thus adds ϕ(⌊i/m⌋) to the residual stream at position i.

The third layer uses Lemma 4 to add ϕ(i− 1) and ϕ(i− 2) to the residual stream at i.

In parallel for k ∈ {1, 2}, the fourth layer attends with query qi = ϕ(i − k), key kj = ϕ(j), and
value vj = ϕ(⌊j/m⌋) to retrieve the quotient stored at position i − k. It uses Lemma 5 (on the
first coordinate) to store in the residual stream a boolean bki = I(ϕ(⌊i/m⌋) = ϕ(⌊(i − k)/m⌋)),
indicating whether the quotient stored at i matches the quotient stored at i− k.

In the fifth layer, position i attends with query qi = ⟨ϕ(⌊i/m⌋), 1⟩, key kj = ⟨ϕ(⌊j/m⌋), b1j ⟩, and
value vj = 1 − b2j ; note that bki can be retrieved from the residual stream. This head thus attends
to every position with the same quotient as the current token besides the initial such position, with
value 1 at the second such token and 0 elsewhere. Assuming m does not divide i, this head will
attend to precisely i−m⌊i/m⌋ positions and return fi = 1/(i−m⌊i/m⌋) as the head output. The
layer adds the vector ψ(1, fi) defined as ⟨1, fi,−1,−fi⟩ to the residual stream at position i. This,
when read in the next layer using masked pre-norm, will yield ϕ(1, fi) = ϕ(1/fi). On the other
hand, if m does divide i (which can be checked with a separate, parallel head), we write ψ(0) to the
residual stream, which, when read by the next layer, will yield ϕ(0).

The sixth layer attends with query qi = ϕ(ai), key kj = ϕ(j), and value vj = ⟨h2j , ϕ(1/fj)⟩.
Recall that ϕ(1/fj) can be read from the residual stream as discussed above. Further, the layer can
recompute fj (or 0 in case m divides i) and write −ψ(1, fj) (or −ψ(0), respectively) to the same
coordinates, thereby resetting those cells to 0. Since ai ≤ i, the query matches exactly one position
j = ai, and the head retrieves ⟨h2ai

, 1/ϕ(1/fai
)⟩. This, by construction, is ⟨ϕ(⌊ai/m⌋), ϕ(i −

m⌊ai/m⌋)⟩, which equals ⟨ϕ(bi), ϕ(ci)⟩. The layer can thus store ϕ(bi) and ϕ(ci) to the residual
stream at position i, as desired.

The seventh and final layer cleans up any remaining intermediate values stored in the residual stream,
setting them back to 0 as per Lemma 5. This is possible because all values v are of the form ϕ(x) or
boolean, so adding −ϕ(v) will reset the cell to 0.

Correctness. We now argue that each layer, as constructed above, conforms to its intended behavior.

In the first layer, suppose first that i is a multiple of m. In this case, there exists a position j∗ ≤ i
such that i = mj∗, which means the query qi = ϕ(i/m) = ϕ(j∗) exactly matches the key kj∗ . The
head will thus return vj∗ = ϕ(j∗) = ϕ(i/m), representing precisely the quotient i/m. Further, the
equality check will pass, making ei = 1. The layer thus behaves as intended when i is a multiple of
m. On the other hand, when i is not a multiple of m, no such j∗ exists. The head will instead attend
to some j for which i ̸= mj and therefore ϕ(i/m) ̸= ϕ(j), making the subsequent equality check
fail and setting ei = 0, as intended.

In the second layer, qi · kj = ej − [ϕ(j)]0 where [ϕ(j)]0 = j/
√
2j2 + 2 is the first coordinate of

ϕ(j). Note that [ϕ(j)]0 ∈ [0, 1) for positions j ≤ i and that it is monotonically increasing in j. It
follows that the dot product is maximized at the largest j ≤ i such that ej = 1, i.e., at the largest
j ≤ i that is a multiple of m. This j has the property that ⌊i/m⌋ = j/m. Thus, the head at this layer
attends solely to this j and retrieves the value ϕ(j/m) = ϕ(⌊i/m⌋) as intended.

The correctness of the third and fourth layer is easy to verify.

In the fifth layer, qi ·kj ≤ 2 and the dot product achieves this upper limit exactly when two conditions
hold: b1j = 1 and ⌊i/m⌋ = ⌊j/m⌋. Thus, as desired, the head at i attends to all positions j ≤ i

that have the same quotient as i and also have b1j = 1. Write i as i = b′m + c′ for some c′ < m.
It follows that the query-key dot product is maximized precisely at the c′ positions b′m + 1, b′m +
2, . . . , b′m+ c′. Of these positions, only b′m+ 1 has the property that the quotient there is not the
same as the quotient two position earlier, as captured by the value vj = 1 − b2j . Thus, the value vj
is 1 among these positions only at j = b′m + 1, and 0 elsewhere. The head thus attends uniformly
at c′ positions and retrieves 1/c′. By construction, c′ = i − b′m = i − ⌊i/m⌋m, showing that this
layer also behaves as intended.

Finally, that the sixth and seventh layers operate as desired is easy to see from the construction.
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4 LOG DEPTH ENABLES RECOGNIZING REGULAR LANGUAGES

One natural problem that constant-depth transformers cannot express is recognizing regular lan-
guages, which is closely related to state tracking (Liu et al., 2023; Merrill et al., 2024). Liu et al.
(2023, Theorem 1) show how a log-depth transformer can recognize regular languages using a bi-
nary tree construction similar to associative scan (Hillis & Steele Jr, 1986). However, their result
requires simplifying assumptions, removing residual connections from the transformer and assum-
ing specific positional encodings. As discussed in Section 2.2, dealing with residual connections is
particularly tricky in universal transformers, requiring proper memory management of cells in the
residual stream so that outputs from the previous iteration of a layer interfere with a later iteration.
Our result therefore refines that of Liu et al. (2023) to hold with a more general universal transformer
model that uses residual connections and does not rely on specific positional encodings:
Theorem 1. Let L be a regular language over Σ and $ ̸∈ Σ. Then there exists a (0, 7, 9)-universal
transformer with causal masking that, on any string w$, recognizes whether w ∈ L when unrolled
to ⌈log2|w|⌉ depth.

Proof. Regular language recognition can be framed as multiplying a sequence of elements in the
automaton’s transition monoid (Myhill, 1957; Thérien, 1981). It thus suffices to show how elements
in a finite monoid can be multiplied with log depth. We show how a log-depth universal transformer
can implement the standard binary tree construction (Barrington & Thérien, 1988; Liu et al., 2023;
Merrill et al., 2024) where each level multiplies two items, meaning the overall depth is O(log|w|).
We will represent a tree over the input tokens within the transformer. Each level of the tree will
take 5 transformer layers. We define a notion of active tokens: at level 0, all tokens are active, and,
at level ℓ, tokens at t · 2ℓ − 1 for any t will remain active, and all other tokens will be marked as
inactive. As an invariant, active token i = t · 2ℓ − 1 in level ℓ will store a unit-norm vector δℓi that
represents the cumulative product of tokens from i− 2ℓ + 1 to i.

We now proceed by induction over ℓ, defining the behavior of non-$ tokens at layers that make
up level ℓ. The current group element δℓi stored at active token i is, by inductive assumption, the
cumulative product from i − 2ℓ + 1 to i. Let αℓ

i denote that token i is active. By Lemma 4 we use
a layer to store i − 1 at token i. The next layer attends with query ϕ(i − 1), key ϕ(j), and value δℓj
to retrieve δℓi−1, the group element stored at the previous token. Finally, another layer attends with
query 1⃗, key ⟨ϕ(j)1, αℓ

i⟩, and value δℓj−1 to retrieve the group element δℓj∗ stored at the previous
active token, which represents the cumulative product from i − 2 · 2ℓ + 1 to i − 2ℓ. Next, we will
use two layers to update δℓi ← δℓ+1

i and δℓj ← 0⃗, which is achieved as follows. First, we assert there
exists a single feedforward layer that uses a table lookup to compute δℓj∗ , δ

ℓ
i 7→ d such that

d

∥d∥
= δℓj∗ · δℓi = δℓ+1

i .

Next, we invoke Lemma 3 to construct a layer that adds d to an empty cell of the residual stream
and then another layer that deletes it. This second layer can now read both δℓi , δ

ℓ
j∗ and δℓ+1

i (from d)
as input, and we modify it to add δℓ+1

i − δℓi to δℓi , changing its value to δℓ+1
i . Similarly, we modify

it to add −δℓj∗ to δℓj∗ to set it to 0. A feedforward network then subtracts δℓi from the residual stream
and adds δℓi · δℓj . This requires at most 4 layers.

To determine activeness in layer ℓ+1, each token i attends to its left to compute ci/i, where ci is the
prefix count of active tokens, inclusive of the current token. We then compute ϕ(ci/i, 1/i) = ϕ(ci)
and store ci it temporarily in the residual stream. At this point, we use Lemma 1 to construct 7
layers that compute ci mod 2 with no storage overhead. The current token is marked as active in
layer ℓ+ 1 iff ci = 0 mod 2, which is equivalent to checking whether i = t · 2ℓ − 1 for some t. In
addition to updating the new activeness αℓ+1

i , we also persist store the previous activeness αℓ
i in a

separate cell of the residual stream and clear ci. This requires at most 8 layers.

Finally, we describe how to aggregate the cumulative product at the $ token, which happens in
parallel to the behavior at other tokens. Let δℓ$ be a monoid element stored at $ that is initialized
to the identity and will be updated at each layer. Using the previously stored value i − 1, we can
use a layer to compute and store αℓ

i−1 and αℓ+1
i−1 at each i. A head then attends with query 1⃗, key

6
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⟨ϕ(j)1, 10 · αℓ
i−1⟩, and value ⟨(1 − αℓ+1

j−1) · δ
ℓ+1
j−1⟩. This retrieves a value from the previous active

token j at level ℓ that is δℓj if j will become inactive at ℓ + 1 and 0⃗ otherwise. Iff δℓj is retrieved,
a feedforward network subtracts δℓ$ from the residual stream and adds δℓj · δℓ$. This guarantees that
whenever a tree is deactivated, its cumulative product is incorporated into δℓ$. Thus, after ℓ =

⌈log2|w|⌉ + 1 levels, δℓ$ will be the transition monoid element for w. We can use one additional
layer to check whether this monoid element maps the initial state to an accepting state using a finite
lookup table. Overall, this can be expressed with 8 layers repeated ⌈log2|w|⌉ times and 9 final layers
(to implement the additional step beyond ⌈log n⌉).

Theorem 1 thus reveals that running a transformer to log n depth on inputs of length n unlocks new
power compared to a fixed-depth transformer.
Remark. The idea of this theorem can be generalized beyond regular languages: if a c layer trans-
former can perform some binary associative operation ⊕, then one can construct an O(c log n) layer
transformer that computes the iterated version of the operator on n values, x1⊕ x2⊕ . . .⊕ xn. One
natural iterated problem is iterated matrix multiplication. If the matrices come from a fixed set
(e.g., they are fixed size k × k matrices over booleans), then our result for regular languages shows
that this task can be performed. However, if the matrices are not from a fixed set (e.g., they contain
general integer or rational values, or the matrix itself is of size n×n), then it is unclear whether log-
depth transformers can solve the iterated multiplication problem; in fact, for n× n integer matrices,
it is unknown whether they can even compute binary multiplication.

5 LOG DEPTH ENABLES GRAPH CONNECTIVITY

In the graph connectivity problem, the input is a graph G, along with a source vertex s and a
target vertex t. The task is to determine whether G has a path from s to t. This is a core problem
at the heart of many computational questions in areas as diverse as network security, routing and
navigation, chip design, and—perhaps most commonly for language models—multi-step reasoning.
This problem is known to be complete for the class of logspace Turing machines (Reingold, 2008;
Immerman, 1998), which means that, under common complexity theory beliefs, it cannot be solved
accurately by fixed-depth transformer encoders, which can only solve problems in the smaller class
TC0. In fact, it is believed to not be solvable even with log-depth AND/OR circuits (NC1). However,
logspace Turing machines can be simulated by log-depth threshold circuits (TC1) (Barrington &
Maciel, 2000), which opens up a natural question: Can log-depth transformers, which are in TC1,
solve graph connectivity? We show in this section that the answer is yes.
Theorem 2. There exists an (17, 2, 1)-universal transformer T with both causal and unmasked
heads that, when unrolled ⌈log2 n⌉ times, solves the connectivity problem on (directed or undirected)
graphs over n vertices: given as input the n×n adjacency matrix of a graph G, n3 padding tokens,
and s, t ∈ {1, . . . n} in unary notation, T determines whether G has a path from vertex s to vertex
t.

Proof. We will prove this for directed graphs, as an undirected edge between two vertices can be
equivalently represented as two directed edges between those vertices. Let G be a directed graph
over n vertices. Let A ∈ {0, 1}n×n be G’s adjacency matrix: for i, j ∈ {1, . . . , n}, Ai,j is 1 if G
has an edge from i to j, and 0 otherwise.

The idea is to use the first n2 tokens of the transformer to construct binary predicates Bℓ(i, j) for
ℓ ∈ {0, 1, . . . , ⌈log n⌉} capturing whether G has a path of length at most 2ℓ from i to j. To this
end, the transformer will use the n3 padding tokens to also construct intermediate ternary predicates
Cℓ(i, k, j) for ℓ ∈ {1, . . . , ⌈log n⌉} capturing whether G has paths of length at most 2ℓ−1 from i to
k and from k to j. These two series of predicates are computed from each other iteratively:

B0(i, j) ⇐⇒ A(i, j) ∨ i = j (1)
Cℓ+1(i, k, j) ⇐⇒ Bℓ(i, k) ∧Bℓ(k, j) (2)
Bℓ+1(i, j) ⇐⇒ ∃k s.t. Cℓ+1(i, k, j) (3)

We first argue that B⌈logn⌉(i, j) = 1 if and only if G has a path from i to j. Clearly, there is such
a path if and only if there is a “simple path” of length at most n from i to j. To this end, we argue
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by induction over ℓ that Bℓ(i, j) = 1 if an only if G has a path of length at most 2ℓ from i to j. For
the base case of ℓ = 0, by construction, B0(i, j) = 1 if and only if either i = j (which we treat as a
path of length 0) or Ai,j = 1 (i.e., there is a direct edge from i to j). Thus, Bℓ(i, j) = 1 if and only
if there is a path of length at most 20 = 1 from i to j. Now suppose the claim holds for Bℓ(i, j). By
construction, Cℓ+1(i, k, j) = 1 if and only if Bℓ(i, k) = Bℓ(k, j) = 1, which by induction means
there are paths of length at most 2ℓ from i to k and from k to j, which in turn implies that there is
a path of length at most 2 · 2ℓ = 2ℓ+1 from i to j (through k). Furthermore, note conversely that if
there is a path of length at most 2ℓ+1 from i to j, then there must exist a “mid-point” k in this path
such that there are paths of length at most 2ℓ from i to k and from k to j, i.e., Cℓ+1(i, k, j) = 1 for
some k. This is precisely what the definition of Bℓ+1(i, j) captures: it is 1 if and only if there exists
a k such that Cℓ+1(i, k, j) = 1, which, as argued above, holds if and only if there is a path of length
at most 2ℓ+1 from i to j. This completes the inductive step.

We next describe how the transformer operationalizes the computation of predicatesBℓ and Cℓ. The
input to the transformer is the adjacency matrixA represented using n2 tokens from {0, 1}, followed
by n3 padding tokens □, and finally the source and target nodes s, t ∈ {1, . . . , n} represented in
unary notation using special tokens a and b:

A1,1 . . . A1,n A2,1 . . . A2,n . . . . . . An,1 . . . An,n □ . . . . . . . . .□︸ ︷︷ ︸
n3

a . . . . . . a︸ ︷︷ ︸
s

b . . . . . . b︸ ︷︷ ︸
t

Let N = n2+n3+ s+ t, the length of the input to the transformer. The first n2 token positions will
be used to compute predicates Bℓ, while the next n3 token positions will be used for predicates Cℓ.

Initial Layers. The transformer starts off by using layer 1 to store 1/N, n, n2, s, and t in the
residual stream at every position, as follows. The layer uses one head with uniform attention and
with value 1 only at the first token (recall that the position embedding is assumed to separate 1 from
other positions). This head computes 1/N and the layer adds ψ(1/N) to the residual stream. Note
that the input tokens in the first set of n2 positions, namely 0 and 1, are distinct from tokens in the rest
of the input. The layer, at every position, uses a second head with uniform attention, and with value
1 at tokens in {0, 1} and value 0 at all other tokens. This head computes n2/N . The layer now adds
ψ(n2/N, 1/N), where ψ(a, b) is defined as the (unnormalized) vector ⟨a, b,−a,−b⟩. When these
coordinates are later read from the residual stream via masked pre-norm, they will get normalized
and one would obtain ϕ(n2/N, 1/N) = ϕ(n2). Thus, future layers will have access to ϕ(n2)
through the residual stream. The layer similarly uses three additional heads to compute n3/N , s/N ,
and t/N . From the latter two values, it computes ψ(s/N, 1/N) and ψ(t/N, 1/N) and adds them to
the residual stream; as discussed above, these can be read in future layers as ϕ(s/N, 1/N) = ϕ(s)
and ϕ(t/N, 1/N) = ϕ(t). Finally, the layer computes ψ(n3/N, n2/N) and adds it to the residual
stream. Again, this will be available to future layers as ϕ(n3/N, n2/N) = ϕ(n).

The transformer uses the next 15 layers to compute and store in the residual stream the semantic
“coordinates” of each of the first n2+n3 token position as follows. For each of the first n2 positions
p = in + j with 1 ≤ p ≤ n2, it uses Lemma 1 (7 layers) with ai set to p and m set n in order to
add ϕ(i) and ϕ(j) to the residual stream at position p. In parallel, for each of the next n3 positions
p = n2 + (in2 + kn+ j) with n2 + 1 ≤ p ≤ n2 + n3, it uses Lemma 1 with ai set to p and m set
n in order to add ϕ((i + 1)n + k) and ϕ(j) to the residual stream. It then uses the lemma again (7
more layers), this time with ai set to (i+ 1)n+ k and m again set to n, to add ϕ(i+ 1) and ϕ(k) to
the residual stream. Lastly, it uses Lemma 4 applied to ϕ(i+ 1) to add ϕ(i) to the residual stream.

Layer 17 of the transformer computes the predicateB0(i, j) at the first n2 token positions as follows.
At position p = in+ j, it uses Lemma 5 to compute I(ϕ(A(i, j) = ϕ(1)) and I(ϕ(i) = ϕ(j)); note
that ϕ(A(i, j)), ϕ(i), and ϕ(j) are available in the residual stream at position p. It then uses a
feedforward layer to output 1 if both of these are 1, and output 0 otherwise. This is precisely the
intended value of B0(i, j). The sublayer then adds B0(i, j) to the residual stream. The layer also
adds to the residual stream the value 1, which will be used to initialize the boolean that controls
layer alternation in the repeated layers as discussed next.

Repeating Layers. The next set of layers alternates between computing the Cℓ and the Bℓ pred-
icates for ℓ ∈ {1, . . . , ⌈log n⌉}. To implement this, each position i at layer updates in the residual
stream the value of a single boolean r computed as follows. r is initially set to 1 at layer 8. Each
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repeating layer retrieves r from the residual stream and adds 1−r to the same coordinate in the resid-
ual stream. The net effect is that the value of r alternates between 1 and 0 at the repeating layers.
The transformer uses this to alternate between the computation of the Cℓ and the Bℓ predicates.

For ℓ ∈ {1, . . . , ⌈log n⌉}, layer (2ℓ− 1) + 8 of the transformer computes the predicateCℓ(i, k, j) at
the set of n3 (padding) positions p = n2+in2+kn+j, as follows. It uses two heads, one with query
⟨ϕ(i), ϕ(k)⟩ and the other with query ⟨ϕ(k), ϕ(j)⟩. The keys in the first n2 positions q = i′n + j′

are set to ⟨ϕ(i′), ϕ(j′)⟩, and the values are set to Bℓ−1(i
′, j′). The two heads thus attend solely to

positions with coordinates (i, k) and (k, j), respectively, and retrieve boolean values Bℓ−1(i, k) and
Bℓ−1(k, j), respectively, stored there in the previous layer. The layer then uses Lemma 5 to compute
I(Bℓ−1(i, k) = 1) and I(Bℓ−1(k, j) = 1), and uses a feedforward layer to output 1 if both of these
checks pass, and output 0 otherwise. This is precisely the intended value of Cℓ(i, k, j). If ℓ > 1, the
layer replaces the value Cℓ−1(i, k, j) stored previously in the residual stream with the new boolean
value Cℓ(i, k, j) by adding Cℓ(i, k, j)−Cℓ−1(i, k, j) to the same coordinates of the residual stream.
If ℓ = 1, it simply adds Cℓ(i, k, j) to the residual stream.

For ℓ ∈ {1, . . . , ⌈log n⌉}, layer 2ℓ+ 8 computes the predicate Bℓ(i, j) at the first n2 position p =

in+ j, as follows. It uses a head with query ⟨ϕ(i), ϕ(j)⟩. The keys in the second set of n3 positions
q = n2 + i′n2 + k′n + j′ are set to ⟨ϕ(i′), ϕ(j′)⟩ (recall that ϕ(i′) and ϕ(j′) are available in
the residual stream at q) and the corresponding values are set to the boolean Cℓ(i

′, k′, j′), stored
previously in the residual stream. The head thus attends uniformly to the n padding positions that
have coordinates (i, k′, j) for various choices of k′. It computes the average of their values, which
equals h = 1

n

∑n
k′=1 Cℓ(i, k

′, j) as well as 1/(2n) using an additional head. We observe that h ≥
1/n if there exists a k′ such that Cℓ(i, k

′, j) = 1, and h = 0 otherwise. These conditions correspond
precisely to Bℓ(i, j) being 1 and 0, respectively. We compute h− 1/(2n) and store it in the residual
stream. Similar to the proof of Lemma 5, the feedforward layer reads σ = sgn(h − 1/(2n)),
computes z = (1 + ReLU(σ))/2, and writes z to the residual stream. The value z is precisely the
desired Bℓ(i, j) as σ is 1 when h ≥ 1/n and 0 when h = 0. As in Lemma 5, the intermediate value
h− 1/(2n) written to the residual stream can be recomputed and reset in the next layer. As before,
the transformer replaces the valueBℓ−1(i, j) stored previously in the residual stream with the newly
computed value Bℓ(i, j) by adding ψ(Bℓ(i, j)−Bℓ−1(i, j)) to the stream at the same coordinates.

Final Layers. Finally, in layer 2⌈log n⌉+ 18, the final token uses a head that attends with query
⟨ϕ(s), ϕ(t)⟩ corresponding to the source and target nodes s and t mentioned in the input; recall that
ϕ(s) and ϕ(t) are available in the residual stream. The keys in the first n2 positions p = in + j
are, as before, set to ⟨ϕ(i), ϕ(j)⟩, and the values are set to B⌈logn⌉(i, j) retrieved from the residual
stream. The head thus attends solely to the position with coordinates (s, t), and retrieves and outputs
the value B⌈logn⌉(s, t). This value, as argued earlier, is 1 if and only if G has a path from s to t.

6 THE RELATIVE EFFICIENCY OF GROWING DEPTH, GROWING WIDTH, AND
CHAIN OF THOUGHT

We now consider how increasing the depth compares to other methods of extending the computa-
tional resources that a transformer can perform. One natural question is how increasing depth com-
pares to increasing width: it turns out that, whereas slightly increasing depth expands expressive
power beyond TC0, doing the same by increasing width would require width to grow superpolyno-
mially with sequence length, which is infeasible. Another natural comparison is between increasing
depth and adding chain-of-thought (CoT) steps, as both are ways to expand the test-time compute
avaiable to a pretrained model. Here, transformers with O(log n) layers are more powerful than
transformers with O(log n) chain-of-thought steps, demonstrating a weakness of chain of thought
compared to increasing transformer depth as a paradigm for test-time compute.

6.1 WIDE TRANSFORMERS WITH FIXED DEPTH REMAIN IN TC0

We have shown that growing the transformer’s depth minimally allows it to express key problems
that are likely outside TC0. Does growing the width of the model have the same effect? We show
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that this is not the case: gaining power outside TC0 from growing width would require growing the
width superpolynomially in n, as long as TC0 ̸= NC1 (proof in Appendix B).
Theorem 3. Consider a transformer with fixed depth whose width (model dimension) grows as a
polynomial of n and whose weights on input length n (to accomodate growing width) are computable
in L. Then this transformer can be simulated in L-uniform TC0.

6.2 TRANSFORMERS WITH LOG CHAIN-OF-THOUGHT STEPS REMAIN IN TC0

Merrill & Sabharwal (2024) analyze the power of transformers with O(log n) chain-of-thought
steps, showing it is at most L. However, we have shown that transformers with O(log n) depth
can solve directed graph connectivity, which is NL-complete: this suggests growing depth has some
power beyond growing chain of thought unless L = NL. In fact, this can be extended to show
transformers with O(log n) chain of thought cannot solve any problem outside TC0, demonstrating
advantage of dynamic depth vs. chain of thought for expanding the test-time compute of a model
(proof in Appendix B).
Theorem 4. Any language recognized by a transformer with O(log n) steps of chain of thought (cf.
Merrill & Sabharwal, 2024) is in TC0.

7 EMPIRICAL VALIDATION OF PREDICTED DEPTH AND WIDTH SCALING

Theorems 1 and 3 Our theory makes empirically testable predictions about the relationship between
a model’s depth (and width) and the effective context length for key reasoning problems outside
TC0. Specifically, as predicted by Theorem 1, is it the case that recognizing regular languages over
strings of length n requires depth ∝ log n? On the other hand, as predicted by Theorem 3, must the
width scale ∝ exp(Θ(n)) in order to recognize strings of length n? Finally, if these relationships
hold, can we empirically quantify the constant factors?

We ran an extensive set of experiments to address these questions, training models of different depths
and widths on the A5 state tracking task (Merrill et al., 2024), which is a canonical testbed for hard
regular language recognition (Theorem 1). The input to the task is a sequence of elements inA5 (the
group of even permutations over 5 elements), and the label at each token is the cumulative product
of previous permutations up to and including that token (which is itself an element of A5).

We train several (non-universal) transformers with the same architecture used by Merrill et al. (2024)
on 100 million sequences of the A5 task of varying lengths up to 1024 (this took 1000 GPU hours).
In order to understand the impact of depth and width in a controlled way, we train two series of
transformers: the first with width fixed to 512 and depth varying in {6, 9.12, 15, 18, 21, 24}, and the
second with depth fixed to 6 and width varying in {128, 256, 512, 1024}. After each model is trained,
we measure accuracy at each token index from 1 to 1024 and define n∗ as the maximum token index
at which the model achieved at least 95% validation accuracy. As we trained several seeds with the
same depth and width, we aggregate these results across all models with the same depth and width
by taking the best-performing (max n∗) model. We can then plot n∗, which represents the effective
context length up to which a model can solve the A5 problem, as a function of either depth or width,
holding the other variable fixed. We then evaluate if the predicted theoretical relationships between
depth, width, and context length hold via an r2 statistic.

The results are shown in Figure 1. When varying depth (Figure 1a), there is a very strong positive
correlation (r2 = 0.93) between effective context length depth (x-axis) and log n∗ (y-axis, log scale).
When varying width (Figure 1b), there is an even stronger positive correlation (r2 = 0.98) between
log width (x-axis, log scale) and n∗ (y-axis). These results provide strong empirical support for
our theoretical predictions that, to recognize regular languages over strings of length n, increasing
depth logarithmically in n will suffice (Theorem 1), but depth must increase exponentially in n
(Theorem 3). Figure 1 also give us a strongly predictive functional form to quantify the impact of
scaling depth or width on the effective context length for regular language recognition. The empirical
slope for the depth relationship is is 4.8 layers per log tokens, which is more compact then the slope
of 7 in Theorem 1. As our construction was not fully tight, future work could refine it towards the
slope found in practice. Overall, these empirical results show that, in practice, the impact of depth
and width on effective context length for regular language recognition is as predicted by our theory.
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Figure 1: Strong linear fits imply theory/experiment match for modeling the impact of depth and
width on effective context length for the A5 state tracking task, a canonical hard regular language
recognition problem. As predicted by Theorem 1 and Theorem 3, to recognize strings of length n,
depth only needs to increase minimally∝ log nwhile width must increase drastically∝ exp(Θ(n)).

8 LIMITATIONS OF LOG DEPTH

We have shown that increasing transformer depth logarithmically with the input sequence length
allows transformers to solve some problems they cannot solve with constant depth, under standard
conjectures. Is logarithmic depth sufficient for transformers to solve any inherently sequential prob-
lem, or are there some problems that cannot be made solvable in this way?

It turns out there are many problems that likely are not made expressible by log depth. We know that
log-depth transformers can be simulated in TC1. Thus, unless NC = P, log-depth (or even poly-
log depth, i.e., logk n) transformers cannot express P-complete problems including solving linear
equalities, in-context context-free language recognition (given both a grammar G and string x as
input, does G generate x?), circuit evaluation, and determining the satisfiability of Horn clauses. In
future work, it would be interesting to empirically test whether solving these problems over contexts
of length n requires Θ(n) or poly(n) depth in practice.

Beyond P-complete problems, it is conceivable that other natural reasoning problems could be in-
expressible by log-depth transformers. Interesting candidates include context-free recognition (gen-
eralizing regular languages; Theorem 1), which is in NC2 (Ruzzo, 1981). An even simpler problem
where we do not have a log-depth transformer construction (but which is in NC1) is boolean formula
evaluation. In future work, it would be interesting to further study the depth required for these prob-
lems and identify separations between transformers with Θ(log n) and Θ(log2 n) depth, which we
believe may correspond roughly to a boundary for what is efficient to train in practice. Further theo-
retical analysis and depth scaling experiments on tasks like context-free recognition could improve
our understanding of where the exact upper frontier for log-depth transformers lies.

9 CONCLUSION

We have shown that recognizing regular languages and graph connectivity, two key problems inex-
pressible by fixed-depth transformers, become expressible if the depth of the transformer can grow
very slightly (logarithmically) with the context length. Equivalently, this means that transformers
with fixed depth d can solve these problems up to context length at least 2O(d). Thus, while these
problems are not solvable in general by fixed-depth transformers, our results reveal that one only
has to minimally scale depth to make them expressible up to some bounded context length. Fur-
ther, we showed that scaling depth to solve these problems is more efficient than scaling width
(which requires superpolynomial increase) or scaling chain-of-thought steps (which requires more
than logarithmic increase). In future work, it would thus be interesting to explore whether universal
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transformers can realize this theoretical efficiency in practice to provide more efficient long-context
reasoning than chain of thought prompting.
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David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of nc1. J.
ACM, 35(4):941–952, oct 1988. ISSN 0004-5411. doi: 10.1145/48014.63138. URL https:
//doi.org/10.1145/48014.63138.

David Mix Barrington and Alexis Maciel. Lecture 5: The landscape of complexity classes, 2000.
Lecture notes.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. In ICML, 2023.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

W Daniel Hillis and Guy L Steele Jr. Data parallel algorithms. Communications of the ACM, 29
(12):1170–1183, 1986.

Neil Immerman. Descriptive complexity. Springer Science & Business Media, 1998.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In ICLR, 2023.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. TACL, 11, 2023a.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In
NeurIPS, 2023b.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In ICLR, 2024.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
threshold circuits. TACL, 10:843–856, 2022.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
In ICML, 2024.

John Myhill. Finite automata and the representation of events. WADD Technical Report, 57:112–
137, 1957.

Maxwell Nye, Anders Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Augustus
Odena. Show your work: Scratchpads for intermediate computation with language models. arXiv,
abs/2112.00114, 2021.

Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), September 2008. ISSN 0004-
5411. doi: 10.1145/1391289.1391291. URL https://doi.org/10.1145/1391289.
1391291.

Walter L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sci-
ences, 22(3):365–383, 1981. ISSN 0022-0000. doi: https://doi.org/10.1016/0022-0000(81)
90038-6. URL https://www.sciencedirect.com/science/article/pii/
0022000081900386.

Lena Strobl, Dana Angluin, David Chiang, Jonathan Rawski, and Ashish Sabharwal. Transformers
as transducers, 2024. URL https://arxiv.org/abs/2404.02040.

12

https://arxiv.org/abs/1607.06450
https://doi.org/10.1145/48014.63138
https://doi.org/10.1145/48014.63138
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/1391289.1391291
https://www.sciencedirect.com/science/article/pii/0022000081900386
https://www.sciencedirect.com/science/article/pii/0022000081900386
https://arxiv.org/abs/2404.02040


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025
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A BUILDING BLOCKS

A.1 RESIDUAL STREAM STORAGE INTERFACE

Our masked pre-norm transformer architecture always normalizes values when reading them from
the residual stream. This means that it’s not always the case that what’s added to the residual stream
by one layer is accessible as-is in future layers, which can be problematic if there is a need to “erase”
that value. We discuss how values are stored and, if needed, erased from the stream.

For any general scalar z, storing z in the residual stream results in sgn(z) being retrieved when
masked pre-norm is applied to this cell. This will be useful when we want to collapse multiple values
or perform equality or threshold checks. As a special case, when z ∈ {−1, 0, 1}, the retrieved value
after masked pre-norm is precisely z. Thus scalars in {−1, 0, 1} can be stored and retrieved without
any information loss.

When a general scalar z needs to be preserved, we store it as a 4-dimensional vector. Let
ψ(z) = ⟨z, 1,−z,−1⟩ be its unnormalized representation and the corresponding 0-centered unit
vector ϕ(z) = ψ(z)/

√
z2 + 1 be its normalized representation. We say that a scalar z is stored in

the residual stream if some set of four indices contain either ψ(z) or ϕ(z). Note that a masked
pre-norm applied to the positions containing ψ(z) or ϕ(z) yields ϕ(z). Thus, once a scalar z is
stored in the residual stream in either form, it remains available in subsequent layers as ϕ(z). We
will write “a transformer layer stores z” to mean it adds either ψ(z) or ϕ(z) to the residual stream,
depending on which one it has immediate access to.

Individual scalars stored in the residual stream can be trivially retrieved by masked pre-norm. In
addition, the hashes of pairs of stored scalars can be easily retrieved as well:
Lemma 2. Let ⟨x1, y1⟩, . . . , ⟨xk, yk⟩ be pairs of integers stored in the residual stream.
There exists a masked pre-norm that computes ⟨ϕ(x1, y1), . . . , ϕ(xk, yk)⟩ or, equivalently,
⟨ϕ(x1/y1), . . . , ϕ(xk/yk)⟩.

Proof. We apply a masked pre-norm to the positions where x1, . . . , xk and y1, . . . , yk are stored:
1√
2k
⟨ϕ(x1, y1), . . . , ϕ(xk, yk)⟩.

We can hardcode the scalar multiplier of the layer-norm output to remove the scalar factor (or equiv-
alently, bake it into the next linear transformation).

In the repeated layers of a universal transformer, we will want need overwrite the value stored in a
particular register of the residual stream with a new value. That is, given xℓ is stored at layer ℓ, we
will want to store some new value xℓ+1 instead. In most cases, this will involve computing some
intermediate values and then removing them from the residual stream. The following lemma turns
out to be useful for constructions of this form:
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Lemma 3. Assume there exists a single transformer layer that writes an update δi to the residual
stream hi using indices at which δi is 0. Then there are two transformer layers that write δi to the
residual stream and then remove it, so that the intermediate steam contains hi + δi and the final
stream is hi.

Proof. Since the input to the layer that computes δi is preserved, we can simply repeat it twice and
flip signs so that the second layer writes −δi. This guarantees that the residual stream after the first
layer is hi + δi and the residual stream after the second layer is hi + δi − δi = hi.

A.2 COMPUTING POSITION OFFSETS

It will be useful to show how a transformer can compute the position index of the previous token.
Lemma 4. Assume a transformer stores 1[i = 0] and 1[i < k] in the residual stream. Then, with 1
layer, it possible to add ϕ(i− k) in the residual stream at indices i ≥ k.

Proof. We construct two attention heads. The first is uniform with value 1[j = 0], and thus com-
putes 1/i. The second is uniform with value 1[j ≥ k], and thus computes (i− k)/i. We then use a
feedforward layer to compute ϕ((i− k)/i, 1/i) = ϕ(i− k) and store it in the residual stream.

The precondition that we can identify the initial token (cf. Merrill & Sabharwal, 2024) is easy to
meet with any natural representation of position, including 1/i or ϕ(i), as we can simply compare
the position representation against some constant.

We assume that the positional encodings used by the model allow detecting the initial token (Merrill
& Sabharwal, 2024). One way to enable this would simply be to add a beginning-of-sequence token,
although most position embeddings should also enable it directly.

A.3 EQUALITY CHECKS

We show how to perform an equality check between two scalars and store the output as a boolean.
Lemma 5. Given two scalars x, y computable by attention heads or stored in the residual stream,
we can use a single transformer layer to write 1[x = y] in the residual stream. Furthermore, a
second layer can be used to clear all intermediate values.

Proof. After computing x, y in a self-attention layer, we write x − y to a temporary cell in the
residual stream. The feedforward sublayer reads σ1 = sgn(x− y), computes z = 1−ReLU(σ1)−
ReLU(−σ1), and writes z to the residual stream.

The next transformer layer then recomputes y−x and adds it to the intermediate memory cell, which
sets it back to 0. Thus, the output is correct and intermediate memory is cleared.

B PROOFS

Proof of Theorem 3. By assumption, we can construct an L-uniform TC0 circuit family in which the
transformer weights for sequence length n are hardcoded as constants. Next, we can apply standard
arguments (Merrill et al., 2022; Merrill & Sabharwal, 2023a;b) to show that the self-attention and
feedforward sublayers can both be simulated by constant-depth threshold circuits, and the size re-
mains polynomial (though a larger polynomial). Thus, any function computable by a constant-depth,
polynomial-width transformer is in L-uniform TC0.

Proof of Theorem 4. The high-level idea is that a polynomial-size circuit can enumerate all possi-
ble O(log n)-length chains of thought. Then, in parallel for each chain of thought, we construct a
threshold circuit that simulates a transformer (Merrill & Sabharwal, 2023a) on the input concate-
nated with the chain of thought, outputting the transformer’s next token. We then select the chain of
thought in which all simulated outputs match the correct next token and output its final answer. The
overall circuit has constant depth, polynomial size, and can be shown to be L-uniform. Thus, any
function computable by a transformer with O(log n) chain of thought is in TC0.
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