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ABSTRACT

Out-of-distribution (OOD) detection has made significant progress in recent years
because the distribution mismatch between the training and testing can severely
deteriorate the reliability of a machine learning system. Nevertheless, the lack of
precise interpretation of the in-distribution limits the application of OOD detec-
tion methods to real-world system pipielines. To tackle this issue, we decompose
the definition of the in-distribution into texture and semantics, motivated by real-
world scenarios. In addition, we design new benchmarks to measure the robust-
ness that OOD detection methods should have. To achieve a good balance between
the OOD detection performance and robustness, our method takes a divide-and-
conquer approach. That is, the model first tackles each component of the texture
and semantics separately, and then combines them later. Such design philosophy
is empirically proven by a series of benchmarks including not only ours but also
the conventional counterpart.
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Figure 1: How to define the in-distribution? (a) Traditional out-of-distribution detection studies
have managed the in-distribution in an entangled view. However, this assumption could be naı̈ve
considering the complex nature of the real environment. (b) We decompose the definition of the in-
distribution to the texture and semantic aspects. This provides the flexibility to handle complicated
scenarios by determining which definition of the in-distribution is suitable for a given scenario.

1 INTRODUCTION

The out-of-distribution (OOD) detection is the task that recognizes whether the given data comes
from the distribution of training samples (also known as in-distribution) or not. Any machine
learning-based system could receive input samples that have a completely disparate distribution
from the training environments (e.g., dataset). Since the distribution shift can severely degrade the
model performance (Amodei et al., 2016), it is a potential threat for a reliable real-world AI system.

However, an ambiguous definition of the “in-distribution” limits the feasibility of the OOD detection
method in real-world applications, considering the various OOD scenarios. For example, subtle cor-
ruption is a clear signal of the OOD in the machine vision field while a change in semantic informa-
tion might not be. On the other hand, an autonomous driving system may assume the in-distribution
from the semantic-oriented perspective; e.g., an unseen traffic sign is the OOD. Interestingly, the
interpretations of the in-distribution described in the above scenarios are not correlated; rather, they
are contradicted. Unfortunately, most of the conventional OOD detection methods (Zhang et al.,
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2021; Tack et al., 2020; Ren et al., 2019) assume the in-distribution as a single-mode; thus are not
able to handle other aspects of the OOD (Figure 1a).

To tackle this issue, we revisit the definition of the in-distribution by decomposing it into two dif-
ferent factors: texture and semantics (Figure 1b). For the texture OOD case, we define the OOD as
the textural difference between the in- and out-of-distribution datasets. On the contrary, the semantic
OOD focuses on the class labels that do not exist in the in-distribution environment. Note that the
two aspects have a trade-off relationship, thus detecting both OOD problems with a single model is
challenging with the (conventional) entangled OOD point of view.

Similar to ours, Geirhos et al. (2018) investigated the texture-shape cue conflict in the network,
and a series of following studies (Hermann et al., 2019; Li et al., 2020; Ahmed & Courville, 2020)
explored the way to find a balance between these perspectives. However, aforementioned works
utilize texture-shape to analyze the bias inherited in deep networks. In this work, instead, we focus on
analyzing the texture and semantic nature underlying the in-distribution to build a more practically
applicable OOD detection method.

However, to the best of our knowledge, none of the studies on the OOD detection benchmark have
thoroughly investigated the definition of the in-distribution. This can be problematic when the OOD
detection method judges the image corrupted by minor distortion as OOD, even when the envi-
ronment is tolerant to the small changes in texture. Because of such a complicated scenario, it is
important to evaluate the OOD detection method in a comprehensive way that goes beyond the sim-
ple benchmarks. In this work, we propose a new approach to measuring the performance of the
method according to the decomposed definition of the in-distribution. One notable observation in
our benchmark is that most of the previous OOD detection methods are highly biased to the texture
information and ignore the semantic clues in many cases.

To mitigate this issue, our method tackles the texture and semantic information separately and ag-
gregates these at the final module (Figure 2). To effectively extract the texture information, we use
the 2D Fourier transform motivated by the recent frequency domain-driven deep method (Xu et al.,
2020). For the semantic feature, we design an extraction module upon the Deep-SVDD (Ruff et al.,
2018) with our novel angular distance-based initialization strategy. We then combine two features
using the normalizing flow-based method (Dinh et al., 2016), followed by our factor control mech-
anism. This control module provides the flexibility to handle various OOD scenarios by choosing
which decomposed feature is more important in the given surrounding OOD circumstance.

The main contributions of this work are as follows:

• We decompose the “unclear” definition of the in-distribution into texture & semantics. To
the best of our knowledge, this is the first attempt to clarify the OOD itself in this field.

• Motivated by real-world problems, we create new OOD detection benchmark scenarios to
evaluate the models based on the decomposed in-distribution factors.

• We propose a novel OOD detection method that is effective on both texture & semantics as
well as the conventional benchmark setups. In addition, our method does not require any
auxiliary datasets or class labels unlike the previous models.

2 RELATED WORK

In this section, we briefly overview the notable studies on the OOD detection field. We categorize
the deep learning-based OOD detection methods into three groups based on the characteristics of
the information that they used.

Class labels of the in-distribution. Early studies on deep OOD methods rely on class supervision.
ODIN, Generailized ODIN (Liang et al., 2017; Hsu et al., 2020) use the uncertainty measure derived
by the Softmax output. It determines the given sample as the OOD when the output probability of
all classes is less than the predefined threshold. Sastry & Oore (2020); Lee et al. (2018) utilize the
extracted feature map (e.g., gram matrix) from the pre-trained networks to calculate the OOD score.

Auxiliary distribution. Outlier exposure (OE) (Hendrycks et al., 2018) exploits additional datasets
that are disjointed from the test dataset to guide the network to better representations for OOD
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Figure 2: Model overview. Our framework first extracts the texture and semantic information with
the corresponding modules, and then combines them via the normalizing flow-based method. (a)
Texture feature T (x) is distilled by the Fourier spectrum-based component. (b) We use a multi-
SVDD method with a novel angular initialization to extract the semantic information S(x). (c) Out-
put features are merged by the explicit probability inference method, RealNVP. Here, we introduce
the user control parameter λ to determine which feature is more suitable for a given OOD scenario.

detection. Papadopoulos et al. (2021) further improves the performance of OE by regularizing the
network with the total variation distance of the Softmax output.

Data augmentation. Recently, contrastive learning-based methods have shown remarkable success
on the tasks related to visual representation (He et al., 2020; Chen et al., 2020). Motivated by this,
several studies employ data augmentation methods such as image transformation or additional noise
on the OOD detection task (Hendrycks et al., 2019; Tack et al., 2020).

Unlike the prior studies that exploit additional information other than the in-distribution, we only
utilize the given (in-distribution) training dataset. In addition, we separate and clarify the assumption
of the OOD as texture and semantics to improve the practicability in the real world.

3 METHOD

In this section, we present an overview of our proposed method (Section 3.1), and the feature extrac-
tion modules of the model (Section 3.3 and 3.2). Finally, we introduce the normalizing flow-based
conditional probabilistic modeling component (Section 3.4). Conventional OOD detection has an as-
sumption that in-distribution data are sampled from the distribution of the training dataset,x ∼ pdata.
We decompose the image with two factors and calculate the anomaly score based on each factor’s
likelihood. The texture information T(x) extracted rigorous Fourier analysis process from input x.
The semantic information S(x) extracts the content label features such as shape. Our framework
calculates the likelihood of these two factors and then combines these likelihoods. Since we use the
Normalizing flow model that trains the exact likelihood, the extracted information is adjusted using
a lambda that the user can control.

3.1 MODEL OVERVIEW

We aim to train our method with the decomposed in-distribution likelihood, p(T (x)|x) and
p(S(x)|x) (Figure 2). With the given input image x, we extract the features for each variable with
different approaches. In detail, we distil the information from the texture and semantic information
with T (x) and S(x), respectively.

The extracted features are combined by the controllable normalizing flow method. Since our normal-
izing flow-based model explicitly calculates the negative log-likelihood, we model each extracted
information as log pθ(T (x)|x) and log pφ(S(x)|x), where θ and φ are trainable parameters of the
networks. In addition, we introduce the control parameter λ ∈ [0, 1] to model the final probability
as λ · log p(x|T (x)) + (1− λ) · log p(x|S(x)). With this control mechanism, a user can determine
the appropriate model “mode” by referring to the prior knowledge. For example, in the case where
the texture information overwhelms the semantic one for detecting OOD, we can overweight λ for
better performance. By default, we use the λ value of 0.5 (no prior knowledge).
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Figure 3: Comparison on the initialization strategy in multi-SVDD. (a) The model with K-means
initialization is effective for the anomaly detection but not for the OOD detection scenario. This is
because the definition of the anomaly is the samples that do not belong to the cluster regions (dark
shade), while the definition of the OOD is the samples that does not lie in the in-distribution manifold
(light shade). (b) Our proposed angular distance-based initialization guides the initial center vectors
to be positioned following a (virtual) circular line. As a result, it prevents the OOD samples from
not belonging to the in-distribution by creating tight cluster layouts without a hole.

3.2 EXTRACTING THE SEMANTIC INFORMATION

Multi-SVDD. Beyond the one-class anomaly detection that considers the normal data as a single
class (e.g., DeepSVDD (Ruff et al., 2018)), recent studies have viewed the normal data as the union
of the multiple hidden semantic information (Ghafoori & Leckie, 2020; Park et al., 2021). Inspired
by this idea, we use the multi-SVDD method to extract the semantic information in an unsupervised
manner for the OOD detection task.

Multi-SVDD embeds the samples to the multiple center vectors as close as possible. Suppose the
set of center vectors C = {c1, ..., cK} is initialized via K-means and the radius of each center is
r = [r1, ..., rK ]. In multi-SVDD, the objective function is defined as follows.

min
W,r

K∑
k=1

r2k +
1

νn

n∑
i=1

max {0, ‖φ(xi;W)− cj‖2 − r2j}+
η

2

∑
‖W‖2. (1)

Here, φ(xi;W) is the deep network with a set of weight parameters W and cj is assigned to
φ(xi;W). As the set r is decreased, the samples are condensed into the center vectors. By using
the distance between the center vectors and the samples, we get an anomaly score.

Angular distance initialization. The SVDD method is originally introduced for the anomaly de-
tection task. Because of the disparity between the OOD and the anomaly detection scenarios, direct
application of the SVDD-based model to OOD detection causes unexpected performance degrada-
tion. In anomaly detection, even though the abnormal samples lie in the in-distribution manifold, it
is possible to detect them as abnormal unless they are close to the center vectors cj . For example,
as shown in Figure 3a, the OOD samples (red) that are located inside of the in-distribution manifold
(light blue shade) can be detected as abnormal since they are outside of the tight cluster boundary
(dark blue shade). Because of such characteristics, a mixture of Gaussian probability density is a
reasonable density space for the anomaly detection model.

Unlike the anomaly detection task, the definition of the OOD detection task is to find the samples
that are not the “in-distribution”. In Figure 3a, all the OOD samples placed in the in-distribution
manifold (light dark shade) are recognized as the in-distribution. To tackle this issue, we propose an
angular distance-based center vector initialization strategy:

ck = γ
v

‖v‖
, v ∈ Rh ∼ N (0, 1) (2)

where h is the dimension of the embedding space and γ is the hyper-parameter for the radius of
the sphere. After φ(xi;W) is trained based on angular initialization, semantic features are extracted
through this model; S(xi) = φ(xi;W). By setting the γ value as large enough, we ensure that all
sample data are within a radius of the sphere as illustrated in Figure 3b. While Equation 1 drives
the training samples to be embedded around the center vectors on the sphere, the OOD samples
remain near the origin. This embedding space may be weak to recognize the semantic label of a
given sample, but it is sufficient to identify whether the sample is OOD or not.
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3.3 EXTRACTING THE TEXTURE INFORMATION

To effectively extract the texture property of the in-distribution, we interpret the image in the fre-
quency space. With a given input image x ∈ R3×h×w, we first convert it into the frequency domain
using Discrete Fourier Transform (DFT) F as shown below.

F(fx, fy) =
1

hw

h−1∑
p=0

w−1∑
q=0

I(p, q) · e−i2π(fxp/h + fyq/w), (3)

Here, I(p, q) denotes the pixel value of the image at the (p, q)-coordinate andF(fx, fy) is the output
of the DFT at the Cartesian coordinate (fx, fy) in the frequency space. In order to construct a scale
and rotation invariant frequency information in 2D image, we modify the coordinate system from
Cartesian (fx, fy) to polar (fr, θ), following Dzanic et al. (2019).

F(fr, θ) = F(fx, fy) : fr =

√
f2x + f2y

1
4 (m

2 + n2)
, θ = atan2 (fy, fx). (4)

Since directly computing the polar coordinate is computationally expensive and tricky, we iteratively
calculate the rotation invariant frequency feature. To do that, we only utilize the first channel of the
image as x ∈ R1×h×w and assume that the image is square (i.e., h = w). Let T (x) ∈ R2/w be the
texture feature vector of the image x. Then, the i-th element of the feature Ti(x) is calculated as:

Ti(x) = Ri −Ri−1 : Rw =

w∑
fx=−w

w∑
fy=−w

F(fx, fy), R0 = F(0, 0) (5)

CIFAR-10 w/ corruption CIFAR-100
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Figure 4: Power spectrum density analysis.

Discussion. We compare the power spectrum den-
sity (PSD) of CIFAR-10 (Krizhevsky et al., 2009),
distorted CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2010) datasets (Figure 4). The PSD dis-
crepancy between the corrupted CIFAR-10 and the
vanilla one indicates that the image feature acquired
from the frequency domain is adequate to represent
the texture cue. In contrast, CIFAR-10 and CIFAR-
100 are not distinguishable in the frequency domain
since they have very similar image texture due to the
small resolution. These observations support our as-
sumption that the OOD detection model should de-
couple the texture and semantic information to prop-
erly handle the uncorrelated cues.

3.4 FEATURE COMPOSITION VIA NORMALIZING FLOW

Since we design our framework to directly sample the probability, any ad-hoc scoring functions
are not required. Instead, we use a normalizing flow-based method (Dinh et al., 2014; Rezende &
Mohamed, 2015; Dinh et al., 2016) that uses the probability of given samples as a loss function.
In the following, we will describe how to get the probability of samples from the prior probability
(Normal distribution) using normalizing flow.

Given sample x, a normal prior probability distribution pZ on a latent variable z ∈ Z, and a bijection
f : X → Z (with g = f−1), the change of variables defines a model distribution on X by

pX(x) = pZ
(
f(x)

) ∣∣∣∣det(∂f(x)∂xT

)∣∣∣∣ , (6)

where ∂f(x)
∂xT is the Jacobian of f at x. The bijection function f can be decomposed as f = f1 ◦ · · · ◦

fk.

We use a flow-based RealNVP with coupling layers (Dinh et al., 2016). To provide the input to
RealNVP, we apply PCA for the dimension reduction of each extracted features. Finally, given the
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Figure 5: Comparison of the benchmark scenarios. (a, b) Out-of-distribution detection scenario.
The training dataset is in-distribution (ID), while test datasets are out-of-distribution (OOD). Note
that texture and semantic OODs are entangled in the conventional benchmark. (c, d) Evaluation
on the robustness. Unlike (a, b), it provides the ID samples at test time. An oracle in this scenario
produces AUC as 50.0 (cannot distinguish as OOD at all) since the given samples are from ID.

in-distribution training datasetD, the objective of the RealNVP model with the trainable parameters
θ and φ is to minimize the following equations.

Ltexture(D) =
1

N

N∑
i=1

− log pθ(T (xi)|xi), Lsemantics(D) =
1

N

N∑
i=1

− log pφ(S(xi)|xi) (7)

By decomposing to the texture and semantic components based on probabilistic modeling, one nice
side-effect is that we can adjust the contribution of these components by referring to the given OOD
environment. Since we designed the feature components to be separate, we combine them with a
simple linear interpolation as follows.

λ · log pφ(S(x)|x) + (1− λ) · log pθ(T (x)|x), (8)

where λ ∈ [0, 1] is the control parameter (default is 0.5).

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our proposed method on various benchmark se-
tups. In Section 4.1, we report the performance on the conventional OOD detection task and discuss
the limitation of the previous OOD detection studies. We use the area under the curve (AUC) for the
receiver operating characteristic (ROC) curve to evaluate the OOD detection performance. Then, we
will discuss on how to evaluate the robustness that the OOD detection method should have and show
the robustness of the previous and ours models (Section 4.2).

4.1 CONVENTIONAL OUT-OF-DISTRIBUTION DETECTION

Setups. We evaluate out-of-distribution detection methods on the widely used OOD detection bench-
mark. Here, we use SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-
100 (Krizhevsky et al., 2010) as the in-distribution dataset. To simulate the OOD samples, LSUN (Yu
et al., 2015) and Tiny-ImageNet (Torralba et al., 2008) datasets are additionally used.

Baselines. We compare our approach to the methods belonging to three different OOD detection
groups. 1) Methods that use class labels of the training samples. Feature based methods such as
Maha (Lee et al., 2018) and Gram (Sastry & Oore, 2020) fall into this category. 2) Methods that
utilize additional distribution (dataset) such as OE (Hendrycks et al., 2018) and OEC (Papadopou-
los et al., 2021). 3) Self-supervised based methods. Rotation-based (Rot) (Hendrycks et al., 2019),
SSL (Mohseni et al., 2020), and CSI (Tack et al., 2020) are in this group.

Results. As shown in Table 1, our proposed method surpasses the competitors on the conventional
OOD detection task without using any extra information such as class labels, other datasets, or image
transformation techniques that the other methods required. In detail, ours with λ = 1.0 (semantic
mode) achieves the best performance in all the cases with the exception of two scenarios.

Discussion. As we have discussed, it is often risky to assume that the input samples of the real-
world system have a single and entangled characteristic. We argue that it is more natural to consider
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ID→ OOD Using Labels Other Dist. Self-supervised Ours λ =
Maha Gram OE OEC Rot SSL CSI 0.0 0.5 1.0

SV
H

N
C10 99.3 97.3 99.3 99.8 - 99.8 - 93.9 99.9 100.
C100 - - 99.0 99.9 - 99.8 - 91.1 99.8 99.9
TinyImgNet 99.3 97.3 - - - - - 99.5 100. 100.
LSUN* 99.9 99.8 99.9 99.9 - 99.9 - 99.9 100. 100.

C
10

SVHN 99.1 99.5 98.2 99.2 97.8 99.2 99.8 86.1 99.9 99.9
C100 88.2 79.0 92.9 93.8 82.3 93.8 89.2 55.7 93.6 93.5
TinyImgNet 99.5 99.7 - - - - - 65.4 99.9 99.9
LSUN* 99.3 99.9 96.4 98.9 92.8 98.9 97.5 99.9 99.8 81.9

C
10

0

SVHN 98.4 97.3 82.8 95.8 - 95.8 - 80.0 99.9 100.
C10 77.5 67.9 77.5 77.7 - 77.7 - 49.4 83.1 84.2
TinyImgNet 97.4 99.0 - - - - - 91.7 100. 100.
LSUN* 98.2 99.3 79.5 88.8 - 88.8 - 99.9 100. 100.

Table 1: Conventional OOD detection benchmark. We evaluate the detection performance by
AUC (in- vs. out-distribution detection based on confidence/score) in percent (higher is better).
C10 and C100 stand for the CIFAR-10 and CIFAR-100. * indicates the high-resolution dataset.

that the data samples can have multiple attributes such as texture and semantic information (Figure
5a and 5b). For example, when the given environment requires to detect the textural discrepancy
as OOD, then the detection method should concentrate on the textural side alone, not the semantic
counterpart, and vice versa for the semantics driven OOD case.

Unfortunately, conventional OOD detection benchmarks are not developed to measure the disentan-
gled view of the in-distribution. Here, we dissect the traditional benchmark to quantify the effect
of each property we decompose. We first categorized the datasets into the high- and low-resolution
groups by the image resolution: C10, C100, SVHN, and TinyImageNet belong to the low-resolution
(LR) group while LSUN is high-resolution (HR). Table 1 shows that previous studies achieve high
performance on the LR→HR scenarios and label-based methods produce outstanding results. How-
ever, in Section 4.2.1, we will show that the superior performance of these methods is because they
abuse the texture information (e.g., detect as OOD by highly referring to the image resolution).

On the other hand, we argue that the semantic property is the key component to identity the OOD of
the LR→ LR scenarios. For example, C10↔ C100 solely requires semantic information to detect
OOD since these datasets use very similar images (in terms of the texture and image resolution).
This is the reason why ours with λ = 0.0 (texture mode) is not able to detect OOD at all (55.7 and
49.4 AUC). Note that other competitors also show the inferior performance, especially C10↔ C100
case, which demonstrate that these methods have weakness in handling semantic information.

4.2 EVALUATING THE ROBUSTNESS OF THE OUT-OF-DISTRIBUTION DETECTION METHOD

In this section, we evaluate the robustness of the OOD detection method. The following experiments
are motivated by the real-world demands that the OOD detection framework focused on the semantic
discrepancy should be tolerant to the minor changes in the image space (such as the texture shown
in Figure 5c), and vice versa (Figure 5d). However, how can we evaluate the robustness of the OOD
detection method in texture and semantic perspectives?

To quantify the robustness of the OOD method, we introduce the AUC score-based measurement.
The evaluation protocol is as follow: 1) We first train the OOD detection method with the in-
distribution training dataset. 2) We provide the in-distribution samples as test dataset. Here, con-
trary to the conventional benchmark, AUC = 50% is the best performance. This is because 50%
AUC indicates that the detection method cannot distinguish the test samples as OOD (determines as
in-distribution). In Section 4.2.1, we evaluate the robustness on the texture discrepancy by provid-
ing the textually different (but marginally) in-distribution dataset at test time (Figure 5c). Then, in
Section 4.2.2, we benchmark the robustness on the semantic discrepancy (Figure 5d).

7



Under review as a conference paper at ICLR 2022

Frost HazeShot noise Motion blur

(a) CIFAR-10 w/ corruptions

MNIST F-MNISTK-MNIST

(b) MNIST variants

Figure 6: Example of the datasets used in our proposed benchmark. (a) Corrupted CIFAR-10
dataset to evaluate the robustness on the texture discrepant in-distribution case (Section 4.2.1). (b)
MNIST variants datasets for the semantic discrepancy scenario (Section 4.2.2).

Level 1 2 3 4 5

ODIN 67.4 71.9 78.6 79.4 80.5
Maha 79.3 89.8 95.9 96.2 98.2
Gram 99.7 99.9 99.9 99.9 99.9

CSI 65.1 73.3 81.1 81.8 86.9

0.0 58.1 68.8 79.7 80.3 86.5
λ = 0.5 58.1 62.2 72.7 77.9 82.9

1.0 56.8 54.9 57.8 63.9 70.8

(a) Frost

Level 1 2 3 4 5

ODIN 76.0 74.5 75.3 71.0 68.0
Maha 99.0 99.1 99.8 99.8 99.9
Gram 99.0 99.9 99.9 99.9 99.9

CSI 54.6 59.8 66.1 74.1 89.2

0.0 50.1 59.9 68.1 89.0 99.9
λ = 0.5 50.1 56.6 67.4 74.9 72.2

1.0 49.9 57.7 59.9 64.4 69.9

(b) Haze

Level 1 2 3 4 5

ODIN 63.1 66.0 72.4 79.9 82.0
Maha 84.9 88.8 95.9 96.9 97.9
Gram 99.8 99.9 99.9 99.9 99.9

CSI 67.7 77.5 85.1 85.1 90.1

0.0 67.3 81.3 88.6 88.9 93.1
λ = 0.5 64.9 66.0 83.3 88.6 93.0

1.0 51.1 52.1 61.4 61.6 64.7

(c) Motion blur

Level 1 2 3 4 5

ODIN 69.9 75.5 76.4 81.2 87.2
Maha 95.8 98.6 99.7 99.8 99.9
Gram 99.5 99.8 99.9 99.9 99.9

CSI 77.5 85.5 94.5 96.2 98.1

0.0 68.1 70.2 79.3 89.9 92.3
λ = 0.5 59.7 63.3 68.4 79.3 85.7

1.0 56.8 59.2 63.6 70.0 78.3

(d) Shot noise

Table 2: Robustness on the texture discrepancy produced by the mild corruptions. We use
CIFAR-10 as the in-distribution dataset, and corrupt this using mild distortions. In this benchmark,
an OOD detection method should not determine the corrupted images as OOD (i.e., 50.0% AUC is
the best score). This scenario is motivated by the real-world applications that context information
is the key factor in OOD but the mild corruptions are acceptable.

4.2.1 ROBUSTNESS ON TEXTURE DISCREPANCY OF THE IN-DISTRIBUTION

Setups. Here, we experiment on two benchmark scenarios: 1) distortion and 2) image resolution.
Both cases assume that the definition of the OOD is in the disparity of semantic information. That
is, a mild change presented in the image space should not be considered as a signal of the OOD.

For the distortion scenario, we corrupt the CIFAR-10 dataset with frost, shot noise, haze, and motion
blur distortions with diverse (but mild) corruption levels (Figure 6a). To make the resolution change
case, we first perform center-crop and resize it back to the original resolution (32×32). We carefully
adjust the cropping operation not to harm the semantic information.

Result. Table 2 shows the AUC score of the OOD detection. Since this experiment focuses on
detecting the test samples as the in-distribution, 50.0% AUC is the best score. We observe that the
deep feature-based methods (Maha and Gram) do not have robustness against the texture discrepancy
at all. They are not appropriate for real-world applications that do not treat a mild corruption as OOD.
On the contrary, our method with λ = 1.0 (semantics mode) achieves the best performance in all
the scenarios because this concentrates on the semantic information alone.
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Method Resolution 322 →
362 (↓) 402 (↓) 442 (↓) 482 (↓)

ODIN 55.7 62.7 67.5 74.2
Gram 66.5 74.8 82.4 92.9

CSI 81.5 86.1 89.9 93.5

0.0 59.9 67.7 75.8 82.8
λ = 0.5 50.2 55.8 71.2 72.8

1.0 50.1 55.0 60.9 66.0

Table 3: Robustness on the texture discrepancy.
We use 32×32 CIFAR-10 as the ID and vary the
resolution to make test datasets. Note that 50.0 is
the best score since the test datasets are from the
in-distribution but with different image resolutions.

Method MNIST→
K-MNIST (↓) F-MNIST (↑)

Maha 91.6 96.8
OE 97.6 99.8

SSL 99.9 100.
0.0 50.6 91.8

λ = 0.5 100. 100.
1.0 100. 100.

Table 4: Robustness on the semantic dis-
crepancy. In the K-MNIST scenario, 50.0
is the best since no textural difference ex-
ists between the ID and OOD, in contrast to
the F-MNIST (higher is better).

In the resolution change scenario (Table 3), our method with λ = 1.0 (semantics mode) outper-
forms the others in all the settings. All the methods except ours with semantics mode are extremely
sensitive to the image resolution change, although no other information is modified.

4.2.2 ROBUSTNESS ON SEMANTIC DISCREPANCY OF THE IN-DISTRIBUTION

Setups. To evaluate the robustness that may arise from the semantic discrepancy, we use MNIST,
K-MNIST, and F-MNIST datasets. K-MNIST comprises of Japanese characters while F-MNIST is
a collection of fashion objects. In this experiment, we set both MNIST and K-MNIST as the in-
distribution datasets since they are similar in terms of the texture aspect (only the character labels
are different, as shown in Figure 6b). On the other hand, MNIST↔ F-MNIST is the conventional
OOD scenario since they have both disparate semantics and textures.

Result. In Table 4, we compare our method with the OOD methods that use class labels or with a
self-supervision based approach. For MNIST→ K-MNIST scenario, our method with λ = 0.0 suc-
cessfully determines that K-MNIST is the in-distribution (e.g., AUC is 50.6). In contrast, our model
with other λ values (0.5 and 1.0) cannot, since these mostly depend on the semantic information to
detect the OOD. This behavior also appears in the other OOD detection methods because they use
entangled information. Not surprisingly, all the methods identify that given test samples are OOD in
the MNIST→ F-MNIST case, where the texture information is the crucial component. A series of
experiments prove that the texture and semantic cues should be viewed as disentangled factors.

5 CONCLUSION

In this work, we introduce a novel viewpoint of the in-distribution for the practically applicable
OOD detection in the real world. To do that, we separate the definition of the “single-mode” in-
distribution to the “texture” or “semantics” factors by following the requirements of the real-world
applications. To effectively handle both aspects, we take a divide-and-conquer strategy that extracts
the features using the appropriate method in each factor, then combines these with the normalizing
flow-based model. By doing so, our method outperforms previous models on not only our newly
proposed benchmark scenarios but also the conventional OOD detection cases.

We hope that our work provides useful guidance for future OOD detection work. In the future,
we aim to investigate more diverse factors beyond the textures and the semantics that complicated
datasets can have, such as multi-object scenes.
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