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Abstract

How related are the representations learned by neural language models, translation
models, and language tagging tasks? We answer this question by adapting an
encoder-decoder transfer learning method from computer vision to investigate
the structure among 100 different feature spaces extracted from hidden represen-
tations of various networks trained on language tasks. This method reveals a
low-dimensional structure where language models and translation models smoothly
interpolate between word embeddings, syntactic and semantic tasks, and future
word embeddings. We call this low-dimensional structure a language represen-
tation embedding because it encodes the relationships between representations
needed to process language for a variety of NLP (natural language processing) tasks.
We find that this representation embedding can predict how well each individual
feature space maps to human brain responses to natural language stimuli recorded
using fMRI. Additionally, we find that the principal dimension of this structure can
be used to create a metric which highlights the brain’s natural language processing
hierarchy. This suggests that the embedding captures some part of the brain’s
natural language representation structure.

1 Introduction
There are a multitude of common techniques for analytically representing the information contained in
natural language. At the word level, language is often represented by word embeddings, which capture
some aspects of word meaning using word co-occurrence statistics [8, 25]. Language representations
that highlight specific linguistic properties, such as parts-of-speech [29] or sentence chunks [1], or
that utilize well-known NLP models such as the intermediate layers of pretrained language models
[6, 10, 21, 27], are also frequently studied [12, 31]. In fields such as linguistics, natural language
processing, and cognitive neuroscience, qualitative adjectives are often used to describe these language
representations – e.g. “low-level” or “high-level” and “syntactic” or “semantic”. The use of these
words belies an unstated hypothesis about the nature of the space of language representations –
namely that this space is fundamentally low-dimensional, and therefore that the information from
the representations in this space can be efficiently described using a few categorical descriptors. In
this work, we attempt to directly map the low-dimensional space of language representations by
generating “representation embeddings” using a method inspired by the work of Zamir et al. [44].
This method uses the transfer properties between representations to map their relationships.

The work described here has two main contributions. First, we used the representation embeddings to
demonstrate the existence of low-dimensional structure within the space of language representations.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



We then used this structure to explore the relationships between – and gain deeper insight about –
frequently used language representations. How do the intermediate layers of prominent language
models relate to one another? How do the abstractions used by these layers evolve from low-level
word embeddings of a context to a representation of the predicted next word for that context? Do
different language models follow similar representation patterns? What are the differences between
how unidirectional and bidirectional language models represent information? These are examples
of the types of questions we can explore utilizing our representation embedding space. Second,
we showed that this low-dimensional structure is reflected in brain responses predicted by these
representation embeddings. In particular, we show that mapping the principal dimension of the
representation embeddings onto the brain recovers, broadly, known language processing hierarchies.
We also show that the representation embeddings can be used to predict which representations map
well to each area in the brain.

2 Related Work
Our work closely follows the methods developed by Zamir et al. [44]. Those authors generated a
taxonomy of vision tasks and analyzed their relationships in that space. This was achieved by applying
transfer learning across vision tasks, and showed that this can reduce data labeling requirements.
We used some of their methods, such as transfer modeling and normalization using an analytic
hierarchy process (AHP) [28], for our analysis on language tasks. Following the same lines but for
NLP, the work from Vu et al. [37] explores transferability across NLP tasks. Those authors focus on
the application of transfer learning to show that the amount of labeled data, source and target tasks,
and domain similarity are all relevant factors for the quality of transferability. Kornblith et al. [20]
investigated and compared techniques for measuring the similarity of neural network representations,
such as canonical correlation analysis (CCA) and centered kernel alignment (CKA).

Our analysis of the relationship of between the language representation space and the brain leans
heavily on the concept of “encoding models”. Recently, encoding models have been widely applied
as predictive models of brain responses to natural language [17, 40]. Jain and Huth [18] applied
encoding models to representations of an LSTM language model that incorporates context into neural
representations. These representations are explored for different timescales of language processing
in Jain et al. [19]. Toneva and Wehbe [33] explored the encoding model performance of different
language model layers to improve neural network performance. Caucheteux and King [5] observed
differences in the convergence of hidden state representations from ANNs trained on various visual
and language processing tasks to brain-like representations. Schrimpf et al. [30] systematically
examined the performance of encoding models across a variety of representations and neural response
datasets and observed consistent high performance of Transformer-based model hidden states at
predicting neural responses to language. Wang et al. [39] constructed encoding models on a set
of 21 vision tasks from Zamir et al. [44] with the objective of localizing tasks to specific brain
regions. Those authors built a task graph of brain regions showing similar representation for highly
transferable tasks.

3 Methods Overview
Our method aims to use the transfer properties between different language representations to generate
quantitative descriptions of their relationships. These descriptions can then be used as an embedding
space without labelling any individual representation with predefined notions of what that repre-
sentation is or how it relates to other representations. This is analogous to how word embeddings
use co-occurrence statistics to generate quantitative descriptions of each word without labelling any
individual word with our predefined notions of what that word means. By using transfer properties to
generate the embedding for each representation, we implicitly assume that language representations
with similar transfer properties are themselves similar.

We define a representation t as a function over a language input that extracts a vector of meaningful
features for each word. Some representations can be computed independently for each word, such as
word embeddings [1, 10, 25], while others depend on both a word and its context, such as part of
speech labels [1], or the hidden state in some intermediate layer of a language model [5, 6, 27, 30].
We define a stimulus s as a string of words drawn from some natural language source, and S the set
of all stimuli from that source. To generate a representation embedding over a set of representations
T that are derivable from the same stimuli S we will construct time-dependent mappings between
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representations. For a representation t ∈ T , and for all times j in our stimulus s ∈ S , the vector t(sj)
is defined. Next, for each pair of representations t1, t2 ∈ T we will attempt to map t1(sj) to t2(sj).
This provides a transfer mapping ft1→t2(·) that can be learned for each pair of representations,

ft1→t2(t1(sj)) ≈ t2(sj) ∀j.
However, learning these transfer mappings directly would make comparison across representations
difficult, as many of the representations have different dimensionalities. Instead, we adapted the
encoder-decoder framework proposed in Zamir et al. [44], which ensures that every transfer mapping
has the same input dimensionality. This method proceeds in three parts (Figure 1):

First, we train a linear encoder for each representation that compresses the information in the input
down into a latent space. The latent space should only contain information necessary to predict the
given representation’s features from our input. This is accomplished by training an encoder-decoder
from the input to the given representation via a latent space, then discarding the decoder.

Second, we train a new decoder for each pair of representations that uses the previously generated
latent space for one representation to predict the other representation.

Third, we evaluate the performance of each decoder targeting a given representation relative to every
other decoder targeting that same representation. This provides a measure of how much of the
information in one representation is present in every other representation. Just as words that have
similar co-occurrence statistics—when measured against a large enough group of other words—are
thought to have similar meanings, we argue that pairs of representations that have similar transfer
properties—when measured against a large enough group of other representations—have similar
information content.

e.g. GPT-2 S
layer 7

e.g. PoS
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Figure 1: The encoder-decoder strategy used in our method, adapted from Zamir et al. [44]. S is the
natural language stimuli. We chose to represent stimuli in the universal input feature space U(S) as
GloVe word embeddings. Encoders Eti were trained using a bottlenecked linear encoder-decoder
network, which outputs to ti(S) (blue arrows). The decoding half of this network was then discarded,
and the encoding half used to generate a latent space Lti for each representation ti. Then, a decoder
Dti→tj is trained from each latent space i to each representation j (orange arrows). The performance
of decoders that map to the same final representation are then compared to one another.

3.1 Generating Representation Encoders

We define1 U(S) as the universal input feature space for our stimuli S . In practice, this space should
represent the input with high fidelity, so could be selected as a one-hot encoding of each input token,
or word embeddings for each input token. We use GloVe word embeddings for U(S). Now let T be
a set of representations over S. For each representation t ∈ T , we generate an encoder Et(·) such
that the encoder extracts only information in U(S) that is needed to predict t(S). We do this by using
a bottlenecked linear neural network that maps every u ∈ U(S) to an intermediate low-dimensional
latent space Lt = Et(U(S)) and then maps it to the given representation space,

t(s) ≈ f(Et(u)) ∀s ∈ S ∧ u = U(s),

where f(·) is mapping from Lt to t(S). We used a small latent space of 20 dimensions to encourage
the encoder to extract only the information in U(S) that is relevant to compute t(S). Experimentation
showed that variations in the latent space size do not meaningfully change encoder performance.

1We assume that elements j in a string sj are properly treated, such that we can exclude the positional indexes
for all s. Thus, we define U(S) = {U(s)|s ∈ S} as the result of applying a function U(·) to all elements s ∈ S .
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Once we have learned these mappings, we assign Et to be our representation encoder for each
representation t ∈ T . Regardless of the dimensionality of the representation, each latent space has a
fixed dimensionality, which enables a fair comparison between representations.

3.2 Generating Representation Decoders

The encoders for each representation generate a latent space Lt that extracts the information in
U(S) relevant to computing t(S), while compressing away irrelevant information. For every pair
of representations (t1, t2) ∈ T , we next generate a decoder Dt1→t2 such that Dt1→t2(Lt1) =
Dt1→t2(Et1(U(S))) approximates t2(S). This yields a total of n2 decoders, where n = |T | is the
total number of representations. All networks were trained with batches of size 1024 and standard
stochastic gradient descent with a learning rate of 10−4 for the initial encoders and 2× 10−5 for the
decoders. Hyperparameters were chosen via coordinate descent.

3.3 Generating the Representation Embedding Matrix

Finally, we compare the performance of the n decoders for each representation in order to generate
the representation embedding space. To ensure that comparisons are made on equal footing, we
only compare decoders with the same output representation (e.g. Dt1→t2 is compared with Dt3→t2 ,
Dt4→t2 , etc.). This is critical, because evaluating representations with varying dimensionalities would
unfairly bias the results. This and related challenges were explored in detail in Zamir et al. [44].

We used the decoders to generate a pairwise tournament matrix Wt for each representation t by
“fighting” all pairs of decoders that output to representation t using a held-out test set Stest of
sentences. Element (i, j) in Wt contains the ratio of samples in the test set for which Dti→t has

lower MSE than Dtj→t, i.e., Wt(i,j) =
Es∈Stest [Dti→t(s)<Dtj→t(s)]
Es∈Stest [Dti→t(s)>Dtj→t(s)]

. For example, if the decoder

DA→C has lower mean squared error than decoder DB→C for 75% of the data in Stest, we assign
the ratio of 0.75/0.25 = 3 to entry (A,B) in the tournament matrix WC for representation C.

We then use this set of pairwise comparisons to approximate a total order over the quality of all
encoders for each decoded representation. This was done using the Analytic Hierarchy Process
(AHP) [28], a technique commonly used in operations research to convert many pairwise comparisons
into an estimated total order. AHP establishes that the elements of the principal eigenvector of Wt

constitutes a good candidate for a total order over the encoders for t. This eigenvector is proportional
to the time that an infinite length random walk on the weighted bidirected graph induced by Wt

will spend at any given representation. Thus, if the encoder for one representation is better than the
others, the weight on that representation will be higher as compared to the weights of other encoders.
This eigenvector is then normalized to sum to 1. This procedure yields a length n vector for each
of the n representations. We set a value of 0.1 into each vector at the position corresponding to the
target representation, and then stack the resulting length n vectors together into the representation
embedding matrix, R.

4 Results

4.1 Language Representation Embeddings

We applied our method to a set of 100 language representations taken from precomputed word
embeddings or pretrained neural networks for NLP tasks operating on English language inputs.2
We extracted representations from numerous different tasks, which included three word embedding
spaces (GloVe, BERT-E, FLAIR) [25, 10, 1], three unidirectional language models (GPT-2 Small,
GPT-2 Medium, Transformer-XL) [27, 6, 41], two masked bidirectional language models (BERT,
ALBERT) [10, 21], four common interpretable language tagging tasks (named entity recognition, part-
of-speech identification, sentence chunking, frame semantic parsing) [1], and two machine translation
models (English→Mandarin, English→ German) [32]. We also included the GloVe embedding for
the next word in the sequence, which constitutes a low-dimensional representation of the ideal output
of a language model. For multilayered networks (language and translation models), we extracted all
intermediate layers as separate representations. Full descriptions of all representations, as well as
details on how each feature space is extracted, can be found in Appendix A.

2Data and code for this paper are available at https://github.com/HuthLab/rep_structure.
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Figure 2: Language Representation Embeddings with Low Dimensionality: (Left): The representation
embedding matrix R shows how well a given linguistic feature space (encoder, columns) transfers
to another feature space (decoder, rows). For better visualization, rows and columns corresponding
to different layers from the same network have been scaled down in this plot. A full-scale matrix is
in the supplementary material. (Right): Applying multi-dimensional scaling to the representation
embedding matrix reveals low-dimensional structure in the linguistic feature spaces. It is dominated
by a left-to-right progression from the input word embedding, to syntactic and semantic tagging tasks
near the middle layers of language models, to the next word embedding. Multidimensional scaling
was weighted such that each full model had equal weight, ensuring that language models were not
more influential on account of having more layers. The dominant main diagonal was set to 0.1 to
preserve the effects of off-diagonal values. The scree plot in the lower left shows that these first two
dimensions explain substantially more variance (22% and 10%) than other dimensions, demonstrating
that the structure in this space is low-dimensional.

Applying our method to these representations, we generated a representation embedding space
(Figure 2). Generating this space took roughly one week of compute time on a cluster of 53 GPUs (a
combination of Titan X, Titan V, and Quadro RTXs) and 64 CPU servers of different characteristics
(Intel3 Broadwell, Skylake, and Cascade Lake). The representations were trained on a text corpus of
stories from The Moth Radio Hour [36] which totalled approximately 54,000 words. The held-out
test set for the tournament matrix included a story of 1,839 words. Each row shows the relative
performance of each of the 99 other representations in decoding a given representation. Each column
shows how well a given encoded representation can decode to the other representations. Note that
there is a distinct asymmetry: if a given representation (e.g. part-of-speech tagging) is never the
best encoder for any other representation, then its column will contain very low values. However,
other representations may decode to this one quite well, so the corresponding part-of-speech row can
contain higher values.

4.1.1 Multidimensional Scaling Analysis

To better visualize the relationships between the representations, we performed multidimensional
scaling (MDS) [34] on the rows of the representation embedding matrix. We then plotted the
representations according to their locations on the first two MDS dimensions (Figure 2, right). This
showed that the layers of each of the unidirectional language models form similar trajectories through
the space, beginning near the word embeddings (green) and ending relatively close to the next-word
embedding (black). This trajectory is monotonic on the first MDS dimension, but values on the
second MDS dimension rise and then fall, with the highest values assigned to the middle layers
(e.g. layer 5 of 12 in GPT-2 small). Language tagging tasks that require semantic information,

3Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.
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such as framing and named entity recognition (blue), are close in space to the middle layers of the
unidirectional language models. Language tagging tasks that required syntactic information, such as
part-of-speech identification and sentence chunking (red), are similarly clustered.

We also observe several other interesting relationships. Like language models, the machine translation
representations also begin near the word embeddings. However, translation to Mandarin (Eng→Zh)
appears to align more closely to the unidirectional language models than translation from English
to German. This may be because English and Mandarin are less closely related to one another, and
could thus require deeper syntactic and semantic processing for successful translation.

We also observe that the bidirectional language model representations begin farther away from the
input word embedding, closer to the middle of the unidirectional language models. However, they
also end up at a similar point, closer to the next-word embedding. This may be a result of the
procedure to extract a feature space from the intermediate layers of the bidirectional language models,
which differed meaningfully from extracting the intermediate layers of the unidirectional language
models. Since these networks are trained on a masked language modeling task, we extracted the
hidden representation for the token immediately preceding the mask token.

To study the dimensionality of the space of language representations, we examined the variance
explained by low-dimensional approximations of the embedding matrix. The scree plot in Figure 2
shows the result of applying exploratory factor analysis (EFA) [43] to the representation embedding
matrix. We see that the first few dimensions explain much more variance in the matrix than the other
dimensions. The first dimension alone constitutes 22% of the total variance. This demonstrates that
the representation embedding matrix—and thus, we infer, the space of language representations—has
low-dimensional structure.

4.2 Representation Embeddings Predict fMRI Encoding Model Performance

Next, we hypothesized that these language representation embeddings are a useful representation
of how natural language is processed in the human brain. Since it is the only system truly capable
of producing and understanding complex language, the human brain is an excellent litmus test to
determine whether this low-dimensional embedding captures the underlying structure of linguistic
information. To test this hypothesis, we used the representation embeddings generated above to
predict how well each representation is able to predict fMRI data collected from the human brain as
the subject is listening to natural language stories.

4.2.1 fMRI Data

We used functional magnetic resonance imaging (fMRI) data collected from 5 human subjects as
they listened to English language podcast stories over Sensimetrics S14 headphones. Subjects were
not asked to make any responses, but simply to listen attentively to the stories. For encoding model
training, each subject listened to at approximately 5 hours of unique stories across 5 scanning sessions,
yielding a total of 9,189 datapoints for each voxel across the whole brain. For model testing, the
subjects listened to the same test story once in each session (i.e. 5 times). These responses were
then averaged across repetitions. Training and test stimuli are listed in Appendix B.1. Functional
signal-to-noise ratios in each voxel were computed using the mean-explainable variance method from
Nishimoto et al. [24] on the repeated test data. Only voxels within 8 mm of the mid-cortical surface
were analyzed, yielding roughly 90,000 voxels per subject.

MRI data were collected on a 3T Siemens Skyra scanner at the University of Texas at Austin
Biomedical Imaging Center using a 64-channel Siemens volume coil. Functional scans were collected
using a gradient echo EPI sequence with repetition time (TR) = 2.00 s, echo time (TE) = 30.8 ms,
flip angle = 71°, multi-band factor (simultaneous multi-slice) = 2, voxel size = 2.6mm x 2.6mm x
2.6mm (slice thickness = 2.6mm), matrix size = 84x84, and field of view = 220 mm. Anatomical data
were collected using a T1-weighted multi-echo MP-RAGE sequence with voxel size = 1mm x 1mm x
1mm following the Freesurfer [15] morphometry protocol.

Experiments were approved by the University of Texas at Austin IRB. All subjects gave written
informed consent. Subjects were compensated for their time at a rate of $25 per hour, or $262 for the
entire experiment. Compensation for the 5 subjects totaled $1260.
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Figure 3: Embedding Brain Voxels in the first MDS dimension: Projection of the encoding perfor-
mance vectors for each voxel in one subject (lower center flatmap and all 3D views) and averaged
over all subjects within anatomical regions (upper center flatmap) over the 100 representations
onto the first MDS dimension of the representation embeddings, which explains about 20% of the
variance in the representation embeddings. Voxels with high values in this embedding (red) are better
explained by representations that are more positive on the main MDS dimension (e.g. later language
model layers), and voxels with low values (blue) are better explained by representations that are more
negative (e.g. word embeddings). This dimension is notable as it is the main dimension along which
language representations evolve from “earlier” representations such as word embeddings, to “later”
representations such as intermediate layers in deep language models. Anatomical ROIs were defined
automatically in each subject using Freesurfer with the Destrieux 2009 atlas [9]. Similar maps for the
other subjects and a plot showing the numerical projection of regions in the MDS space are shown in
Appendix D.1.

4.2.2 fMRI Encoding Models

Encoding models predict a measured brain response B, e.g. blood-oxygen-level dependent (BOLD)
responses recorded with fMRI, based on the stimulus observed by the subject. Due to limitations on
dataset size, encoding models are typically structured as linearized regression, where each regression
predictor is some feature of the stimulus. Encoding models can provide insight into where and how
information is represented in the brain. For instance, an encoding model that has a feature for whether
a given auditory stimulus is a person’s name can be used to determine which regions of the brain are
activated by hearing names.

Here we constructed voxelwise encoding models using ridge regression for each of the 100 language
representations t analyzed above. Let g(ti) indicate a linearized ridge regression model that uses a
temporally transformed version of the representation ti as predictors. The temporal transformation
accounts for the lag in the hemodynamic response function [23, 17]. We use time delays of 2, 4, 6,
and 8 seconds of the representation to generate this temporal transformation. For each subject x,
voxel v, and representation ti, we fit a separate encoding model to predict the BOLD response B̂,
i.e. B̂(x,v,ti) = g(x,v,ti)(ti). An optimal ridge parameter α was estimated for each g(x,v,ti) by using
50-fold Monte Carlo cross-validation, with a held-out validation set of 20% of the datapoints from
the training dataset. We then measured encoding model performance ρ by computing the correlation
between the true and predicted BOLD responses for a separate test dataset consisting of one story.
That is, ρ(x,v,ti) measures the capacity of representation ti to explain the responses of voxel v in
subject x.
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4.2.3 Mapping the First Dimension of the Representation Embedding Space to the Brain

If a brain area was specialized for processing a specific type of information, then we would expect
representations that capture that information to be good predictors of that brain area. Each voxel
in the brain can thus be thought of as another language representation, and we can infer where that
representation would lie in the MDS space by projecting it onto those dimensions.

The main MDS dimension (left to right in Figure 2) is especially interesting as it seems to capture
an intuitive notion of a language representation hierarchy. Representations with low values along
the main dimension include word embeddings as well as the earliest layers of most of the language
models and machine translation models. Representations with high values along the main dimension
include the deeper layers of these models, as well as the majority of the interpretable syntactic
and semantic representations. We tested whether this MDS dimension could capture patterns of
hierarchical processing observed in cortex. First we defined p(x,v) = zscore([ρ(x,v,t1) . . . ρ(x,v,tn)])
as the 100-dimensional vector that denotes the encoding model performances for each subject x
and voxel v, z-scored over all representations T . We then projected each p(x,v) onto the first MDS
dimension by taking their dot product. This gave us a value that quantifies which part of the first
MDS dimension best predicts the activity of a given voxel.

Figure 3 shows shows the projection of each voxel for one subject (lower center) and averaged across
subjects in each anatomical ROI (upper center) onto the first MDS dimension. Blue voxels and
regions are better predicted by representations that are low on the first MDS dimension, whereas red
voxels and regions are better predicted by representations that are high on the first MDS dimension.

While the literature has not settled on a single hierarchical view of language processing in human
cortex, one point of general agreement among existing theories is that there is a set of “lower”
language areas, including Wernicke’s area/auditory cortex (AC), Broca’s area (BA), and the premotor
speech area sPMv [13, 16]. Across our five subjects, we see negative projections on the first PC
(corresponding to earlier LM layers) in AC, but both positive and negative projections in BA and
sPMv. This matches other results using narrative stories and encoding models [7] where it was found
that, of these three core language areas, AC is the best explained by lower-level features (phonemes
and sound spectrum).

Outside of the core language areas, the literature is more divided on representational hierarchy. It is
broadly agreed upon that these other areas, including much of the temporal, parietal, and prefrontal
cortex, constitute the “semantic system” [4] in which language meaning is derived and represented.
Our data show that most of these regions have positive projections on the first PC, corresponding
to later LM layers. More fine-grained analyses have suggested that some areas, such as the angular
gyrus (AG) and precuneus (PrCu), contain the highest-level representations [19, 22]. This matches
our group-level results, which show that the AG and PrCu have the most positive projections on the
first PC of any brain areas.

4.2.4 Predicting Encoding Model Performance with Representation Embeddings

If the representation embeddings reflect how the brain represents linguistic information, then it should
be possible to match each representation embedding rk to its corresponding performance vector
ρ(x,•,tk), which describes how well that representation can predict responses in each cortical voxel.
We test this via a leave-two-out experiment, where we train a learner using 98 (rk, ρ(x,•,tk)) pairs
and then use this learner to predict which of the remaining two representation embeddings match
the remaining two performance vectors. If the correlation between the predicted performance vector
for representation A matches the ground truth performance vector for representation A better than
the ground truth performance vector for representation B (and similarly B matches B better than
it matches A), then we have succeeded in correctly discriminating a performance vector from its
corresponding representation embedding.

For each subject x and pair of language representations (ti, tj), we trained a linear regression ĥ(x,i,j)
to map a representation embedding rk to the corresponding encoding model performance built from
tk over all voxels.

ĥ(x,ti,tj)(rk) ≈ corr(g(x,•,k)(tk), B(x,•)) = ρ(x,•,tk),

rk is defined as the 196-element vector that concatenates the row and column that correspond to the
representation ti, leaving out the four elements corresponding to the held out pair: Rii, Rij, Rji, and
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Figure 4: Representation Embeddings Reflect Brain Responses: (Left): Discriminability score matrix
M, the average across each subject matrix Mx, which is computed as described in Section 4.2.4.
For each representation, we fit and tested encoding models that predict the fMRI response in each
cortical voxel, yielding a pattern of prediction performance across the brain. For each pair, we then
tested whether the brain patterns could be correctly matched to the representations on the basis
of the representation embeddings shown in Figure 2. Highly discriminable pairs appear red, non-
discriminable pairs white, and pairs that are less discriminable than expected by chance appear blue.
Most pairs of representations yield brain patterns that are easy to distinguish using the embeddings,
suggesting that these embeddings reflect the structure of representations in the human brain. However,
some pairs are similar enough in both embedding and brain that discrimination between them falls
to chance level, such as the word embeddings (green labels) and nearby layers of language models.
(Upper Right): The percentage of pairwise matches for each representation where the match is
correct more often than not (on 3 or more subjects). Almost all representations can be correctly
matched with their corresponding performance vector p, with the interpretable representations being
the most difficult to distinguish. (Lower Right): Mean voxelwise correlation for encoding models
built using each representation of the natural language story stimuli. As seen in other literature
[30], the intermediate layers of Transformer-based language models work best as encoding model
representations.

Rjj. The model ĥ(x,ti,tj) was then used to predict the held out encoding model performance across
all voxels, ρ(x, •, ti) and ρ(x, •, tj). For each subject, we then computed discriminability scores for
all pairs of representations to generate a matrix Mx. This quantifies how much better the predicted
encoding model performance for ti matched with the true encoding model performance for ti than
the true encoding model performance for tj (and vice versa):

Mx(i,j)
=(corr(ĥ(x,ti,tj)(ri), ρ(x,•,ti)) + (corr(ĥ(x,ti,tj)(rj), ρ(x,•,tj))))

−(corr(ĥ(x,ti,tj)(ri), ρ(x,•,tj)) + (corr(ĥ(x,ti,tj)(rj), ρ(x,•,ti))))

Figure 4 shows the discriminability scores for all representation pairs averaged across subjects, as
well as the average encoding model performance for each individual representation. The vast majority
of pairs have high discriminability scores (red), indicating that the representation embeddings broadly
capture the structure of the brain’s language representations.

However, a few pairs have negative scores (blue), indicating below-chance discrimination perfor-
mance. This could happen by chance, or it could happen if the task affinities are very different from
the brain representations. We believe the negative scores for GloVe NWE are caused by the latter.
This representation is highly dissimilar from the others, hence its far-removed location in the MDS
space. However, the temporal imprecision of the BOLD responses recorded by fMRI (on the order of
1 second, or 2-5 words) renders the GloVe NWE and normal GloVe embeddings nearly identical for
predicting brain data. This disconnect is likely the cause of the negative scores.
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We also computed how often the discriminability score was higher than 0 in the majority of subjects
(at least 3 out of 5). We see (Figure 4, upper right) that encoding model performances are well
predicted by the representation embeddings, with representation embeddings getting matched to their
corresponding encoding model performances over 90% of the time for all representations, and 100%
of the time for the majority of representations.

5 Future Work, Limitations, and Conclusions
By measuring transferability between different language representations, we were able to visualize
the relationships between 100 representations extracted from common NLP tasks. This uncovered
a low-dimensional structure that illustrates how different tasks are related to one another, and how
representations evolve over depth in different language models. Finally, we show evidence that these
representation embeddings capture the structure of language representations in the human brain.

There are further possible iterations of this method that may shed additional light on the structure
of language representations in the brain. Since this method relies on using the transfer properties
between representations to generate embeddings, it is necessary that the chosen set of representations
spans the rich space of language representations. If some part of the space of language representations
has not been sampled, then the representation embeddings may fail to capture some aspects of
the structure of that space. We tried to ameliorate this concern by sampling a large number of
representations (100). However, it is likely that these chosen representations still do not capture the
full diversity of the space. In future work, an even larger number of representations could be used to
better map this space.

In a similar vein, we selected GloVe embeddings as the “universal” input representation for our
encoder-decoder setup. GloVe embeddings are likely not “universal” in the same way that a one-hot
encoding of the story might be, but practical concerns made this approximation necessary. Use of
other universal spaces could also be enlightening, such as directly using fMRI data to map to a latent
representation space—i.e. replace U(S) in Figure 1 with fMRI BOLD responses B recorded from
the same natural language experiment. Of course, the possibilities are not restricted to language
representations, as previous work had focused on vision instead [39, 44].

We also used linear as opposed to nonlinear networks for our encoder-decoders. This limits the
expressiveness of the transfer networks, and thus may under-estimate the relatedness between tasks.
However, using only linear networks also increases interpretability by ensuring that only simply-
related representations can transfer to one another, as also noted by others [2, 26]. Future work may
explore the use of regularized nonlinear models for the encoder-decoder networks.

This method does require extracting representations from a neural network trained to accomplish
some task. For many tasks used in linguistics, neuroscience, and cognitive psychology, there is
no existing pre-trained network. However, training artificial neural networks on a task that is used
to measure cognition in humans and animals is an emerging method that can shed light on how
these tasks are accomplished [11, 35, 42], and provide standardized benchmarks for comparing
between different computational cognitive models. Furthermore, we can use our proposed method
to understand what representations are needed to accomplish different tasks, and to visualize the
relationships between those representations. For example, the debate on whether lexico-semantic
and syntactic representations are actually separable [14] centers on evidence from different tasks
that claim to measure syntactic representations versus semantic ones. The claims about the tasks
themselves are difficult to test, but methods like those presented in this work can directly quantify
how much information is shared between representations needed to accomplish those tasks, either
in artificial neural networks or in neuroimaging data. Our proposed method may even provide new
evidence in other domains where overlap has been observed between neural representations elicited
by ostensibly different cognitive tasks [3, 38].

In sum, we believe that our work can provide a template for investigating relationships between
linguistic and cognitive representations in many different domains.
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