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ABSTRACT

Neural operators serve as universal approximators for general continuous oper-
ators. In this paper, we derive the approximation rate of solution operators for
the nonlinear parabolic partial differential equations (PDEs), contributing to the
quantitative approximation theorem for solution operators of nonlinear PDEs. Our
results show that neural operators can efficiently approximate these solution oper-
ators without the exponential growth in model complexity, thus strengthening the
theoretical foundation of neural operators. A key insight in our proof is to transfer
PDEs into the corresponding integral equations via Duahamel’s principle, and to
leverage the similarity between neural operators and Picard’s iteration—a classi-
cal algorithm for solving PDEs. This approach is potentially generalizable beyond
parabolic PDEs to a class of PDEs which can be solved by Picard’s iteration.

1 INTRODUCTION

Neural operators have gained significant attention in deep learning as an extension of traditional
neural networks. While conventional neural networks are designed to learn mappings between
finite-dimensional spaces, neural operators extend this capability by learning mappings between
infinite-dimensional function spaces. A key application of neural operators is in constructing sur-
rogate models of solvers for partial differential equations (PDEs) by learning their solution opera-
tors. Traditional PDE solvers often require substantial computational resources and time, especially
when addressing problems with high dimensionality, nonlinearity, or complex boundary shape. In
contrast, once trained, neural operators serve as surrogate models, providing significantly faster in-
ference compared to traditional numerical solvers. Neural operators are recognized as universal
approximators for general continuous operators. However, the theoretical understanding of their
approximation capabilities, particularly as solvers for PDEs, is not yet fully developed.

This paper focuses on whether neural operators are suitable for approximating solution operators
of PDEs, and which neural operator architectures might be effective for this purpose. The idea of
this paper is to define neural operators by aligning them with Picard’s iteration, a classical method
for solving PDEs. Specifically, by associating each forward pass of the neural operator’s layers
with a Picard’s iteration step, we hypothesize that increasing the number of layers would naturally
lead to an approximate solution of the PDE. We constructively prove a quantitative approximation
theorem for solution operators of PDEs based on this idea. This theorem shows that, by appropriately
selecting the basis functions within the neural operator, it is possible to avoid the exponential growth
in model complexity (also called “the curse of parametric complexity”) that often arises in general
operator approximation, thereby providing a theoretical justification for the effectiveness of neural
operators as PDE solvers.

1.1 RELATED WORKS

Neural operators were introduced by Kovachki et al. (2023) as one of the operator learning methods,
such as DeepONet (Chen & Chen, 1995; Lu et al., 2019) and PCA-Net (Bhattacharya et al., 2021).
Various architectures have been proposed, including Graph Neural Operators (Li et al., 2020b),
Fourier Neural Operators (Li et al., 2020a), Wavelet Neural Operators (Tripura & Chakraborty,
2023; Gupta et al., 2021), Spherical Fourier Neural Operators (Bonev et al., 2023), and Laplace
Neural Operators (Chen et al., 2023a). These architectures have demonstrated empirical success
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as the surrogate models of simulators across a wide range of PDEs, as benchmarked in Takamoto
et al. (2022). In the case of parabolic PDEs, which are the focus of this paper, neural operators have
also shown promising results, for example, the Burgers, Darcy, Navier-Stokes equations (Kovachki
et al., 2023), the KPP-Fisher equation (Takamoto et al., 2022), the Allen-Cahn equation (Tripura &
Chakraborty, 2023; Navaneeth et al., 2024), and the Nagumo equation (Navaneeth et al., 2024).

Universal approximation theorems of operator learning for general operators were established for
neural operators (Kovachki et al., 2021; 2023; Lanthaler et al., 2023; Kratsios et al., 2024), Deep-
Onet (Lu et al., 2019; Lanthaler et al., 2022), and PCA-net (Lanthaler, 2023). This indicates that
these learning methods possess the capabilities to approximate a wide range of operators. However,
operator learning for general operators suffers from “the curse of parametric complexity”, where
the number of learnable parameters exponentially grows as the desired approximation accuracy in-
creases (Lanthaler & Stuart, 2023).

A common approach to mitigating the curse of parametric complexity is to restrict general operators
to the solution operators of PDEs. Recently, several quantitative approximation theorems have been
established for the solution operators of specific PDEs without experiencing exponential growth in
model complexity. For instance, Kovachki et al. (2021); Lanthaler (2023) developed quantitative
approximation theorems for the Darcy and Navier-Stokes equations using Fourier neural operators
and PCA-Net, respectively. Additionally, Lanthaler & Stuart (2023) addressed the Hamilton-Jacobi
equations with Hamilton-Jacobi neural operators. Further studies, such as Chen et al. (2023b);
Lanthaler et al. (2022); Marcati & Schwab (2023), investigated quantitative approximation theorems
using DeepONet for a range of PDEs, including elliptic, parabolic, and hyperbolic equations, while
Deng et al. (2022) focused on advection-diffusion equations.

In line with these researches, the present paper also concentrates on restricting the learning opera-
tor to the solution operators of specific PDEs, namely parabolic PDEs. However, unlike previous
studies, this work leverages the similarity with the Picard’s iteration in the framework of relatively
general neural operator. This approach is potentially generalizable beyond parabolic PDEs to a
range of other equations, including the Navier-Stokes equation, nonlinear dispersive equations, and
nonlinear hyperbolic equations, which are solvable by Picard’s iteration. See Kovachki et al. (2024)
for other directions on the quantitative approximation of operator learning.

1.2 OUR RESULTS AND CONTRIBUTIONS

In this paper, we present a quantitative approximation theorem for the solution operator of nonlinear
parabolic PDEs using neural operators. Notably, in Theorem 1, we show that for any given accuracy,
the depth and the number of neurons of the neural operators do not grow exponentially.

The proof relies on Banach’s fixed point theorem. Under appropriate conditions, the solution to
nonlinear PDEs can be expressed as the fixed point of a contraction mapping, which can be im-
plemented through Picard’s iteration. This contraction mapping corresponds to an integral operator
whose kernel is the Green function associated with the linear equation. By expanding the Green
function in a certain basis and truncating the expansion, we approximate the contraction mapping
using a layer of neural operator. In this framework, the forward propagation through the layers is
interpreted as steps in Picard’s iteration. Our approach does not heavily rely on the universality of
neural networks. More specifically, we utilize their universality only to approximate the nonlin-
earity, which is represented as a one-dimensional nonlinear function, and hence, the approximation
rates obtained in Theorem 1 correspond to the one-dimensional approximation rates of universality.
As a result, our approach demonstrates that exponential growth in model complexity of our neural
operators can be avoided.

1.3 NOTATION

We introduce the notation often used in this paper.

• For r ∈ [1,∞], we write the Hölder conjugate of r as r′: 1/r + 1/r′ = 1 if r ∈ (1,∞);
r′ = ∞ if r = 1; r′ = 1 if r = ∞.
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• Let X be a set. For an operator A : X → X and k ∈ N, we denote by A[k] the k times
compositions of A (or the k times products of A): A[0] means the identity operator on X
and A[k] := A ◦ · · · ◦A︸ ︷︷ ︸

k times

.

• Let X and Y be normed spaces with norm ∥ · ∥X and ∥ · ∥Y , respectively. For a linear
operator A : X → Y , we denote by ∥A∥X→Y the operator norm of A: ∥A∥X→Y :=
sup∥f∥X=1 ∥Af∥Y .

• Let X be a normed space with norm ∥ · ∥X . We denote by BX(R) the closed ball in X
with center 0 and radius R > 0: BX(R) := {f ∈ X : ∥f∥X ≤ R}.

• For q ∈ [1,∞], the Lebesgue space Lq(D) is defined by the set of all measurable functions
f = f(x) on D such that ∥f∥Lq := (

∫
D
|f(x)|q dx)

1
q < ∞ if q ̸= ∞ and ∥f∥L∞ :=

ess supx∈D |f(x)| <∞ if q = ∞. For r, s ∈ [1,∞], the space Lr(0, T ;Ls(D)) is defined
by the set of all measurable functions f = f(t, x) on (0, T )×D such that

∥f∥Lr(0,T ;Ls) :=

{∫ T

0

(∫
D

|f(t, x)|s dx
) r

s

dt

} 1
r

<∞

(with the usual modifications for r = ∞ or s = ∞).

• For r, s ∈ [1,∞], the notation ⟨·, ·⟩ means the dual pair of Ls
′
(D) and Ls(D) or

Lr
′
(0, T ;Ls

′
(D)) and Lr(0, T ;Ls(D)):

⟨u, v⟩ :=
∫
D

u(x)v(x) dx or ⟨u, v⟩ :=
∫ T

0

∫
D

u(t, x)v(t, x) dxdt,

respectively.

2 LOCAL WELL-POSEDNESS FOR NONLINEAR PARABOLIC EQUATIONS

To begin with, we describe the problem setting of PDEs addressed in this paper. LetD be a bounded
domain in Rd with d ∈ N. We consider the Cauchy problem for the following nonlinear parabolic
PDEs: {

∂tu+ Lu = F (u) in (0, T )×D,

u(0) = u0 in D,
(P)

where T > 0, ∂t := ∂/∂t denotes the time derivative, L is a certain operator (e.g. L = −∆ :=

−
∑d
j=1 ∂

2/∂x2j is the Laplacian), F : R → R is a nonlinearity, u : (0, T ) ×D → R is a solution
to (P) (unknown function), and u0 : D → R is an initial data (prescribed function). It is important
to note that boundary conditions are contained in the operator L. In this sense, the problem (P) can
be viewed as an abstract initial boundary value problem on D. See Appendix A for examples of L.

As it is a standard practice, we study the problem (P) via the integral formulation

u(t) = SL(t)u0 +

∫ t

0

SL(t− τ)F (u(τ)) dτ, (P’)

where {SL(t)}t≥0 is the semigroup generated by L (i.e. the solution operators of the linear equation
∂tu + Lu = 0). The second term in the right hand side of (P’) is commonly referred to as the
Duhamel’s integral. Under suitable conditions on L and F , the problems (P) and (P’) are equiva-
lent if the function u is sufficiently smooth. For example, in the case where L = −∆, it follows
from the smoothing effect of SL(t) that the solution to (P’) is a classical solution to (P) (see the
argument in the proof of Brezis & Cazenave (1996, Theorem 1)). Even in the case where L is a
more general operator satisfying Assumption 1, a similar argument can be also done by replacing
the differentiation in x with the operator L (together with use of the techniques in the proofs of
Iwabuchi et al. (2021, Lemmas 3.5 and 3.10) for instance). The aim of this section is to state the
results on local well-posedness (LWP) for (P’). Here, the LWP means the existence of local in time
solution, the uniqueness of the solution, and the continuous dependence on initial data. Its proof is
based on the fixed point argument (or also called the contraction mapping argument). These results
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are fundamental to study our neural operator in Sections 3 and 4. In particular, Propositions 1 and 2
below serve as guidelines for setting function spaces as the domain and range of neural operators in
Definition 1 (Section 3) and for determining the norm to measure the error in Theorem 1 (Section 4).

In this paper we impose the following assumptions on L and F .
Assumption 1. For any 1 ≤ q1 ≤ q2 ≤ ∞, there exists a constant CL > 0 such that

∥SL(t)∥Lq1→Lq2 ≤ CLt
−ν( 1

q1
− 1

q2
), t ∈ (0, 1], (1)

for some ν > 0.
Assumption 2. F ∈ C1(R;R) satisfies F (0) = 0 and

|F (z1)− F (z2)| ≤ CF max
i=1,2

|zi|p−1|z1 − z2|, (2)

for any z1, z2 ∈ R and for some p > 1 and CF > 0.
Remark 1. The range (0, 1] of t in (1) can be generalized to (0, TL], but it is assumed here to be
(0, 1] for simplicity. This generalization is not essential, as the existence time T of the solution is
sufficiently small in the fixed point argument later. Long time solutions are achieved by repeatedly
using the solution operator of (P’) constructed in the fixed point argument (see also Subsection 4.2).
Remark 2. Typical examples of L are the Laplacian with the Dirichlet, Neumann, or Robin bound-
ary condition, the Schrödinger operator, the elliptic operator, and the higher-order Laplacian.
See Appendix A for the details. On the other hand, typical examples of the nonlinearity F are
F (u) = ±|u|p−1u,±|u|p (which can be regarded as the main term of the Taylor expansion of a
more general nonlinearity F if F is smooth in some extent). See Appendix G for further remarks on
Assumptions 1 and 2.

Under the above assumptions, the problem (P’) is local well-posed, where, as a solution space, we
use the space Lr(0, T ;Ls(D)) with the parameters r, s satisfying

r, s ∈ [p,∞] and
ν

s
+

1

r
<

1

p− 1
. (3)

More precisely, we have the following result on LWP.
Proposition 1. Assume that r, s satisfy (3). Then, for any u0 ∈ L∞(D), there exist a time
T = T (u0) ∈ (0, 1] and a unique solution u ∈ Lr(0, T ;Ls(D)) to (P’). Moreover, for any
u0, v0 ∈ L∞(D), the solutions u and v to (P’) with u(0) = u0 and v(0) = v0 satisfy the con-
tinuous dependence on initial data: There exists a constant C > 0 such that

∥u− v∥Lr(0,T ′;Ls) ≤ C∥u0 − v0∥L∞ ,

where T ′ < min{T (u0), T (v0)}.

The proof is based on the fixed point argument. Given an initial data u0 ∈ L∞(D) and T,M > 0,
we define the map Φ = Φu0 by

Φ[u](t) := SL(t)u0 +

∫ t

0

SL(t− τ)F (u(τ)) dτ (4)

for t ∈ [0, T ] and the complete metric space X := BLr(0,T ;Ls(D))(M) equipped with the metric

d(u, v) := ∥u− v∥Lr(0,T ;Ls).

Let R,M > 0 be arbitrarily fixed, and let T > 0 (which is taken sufficiently small later). Then,
under Assumptions 1 and 2, it can be proved that for any u0 ∈ BL∞(R), the map Φ : X → X is
δ-contractive with a contraction rate δ ∈ (0, 1), i.e.

d(Φ[u],Φ[v]) ≤ δd(u, v) for any u, v ∈ X,

where T is taken small enough to depend on R, M and δ (not to depend on u0 itself). Therefore,
Banach’s fixed point theorem allows us to prove that there exists uniquely a function u ∈ X such
that u = Φ[u] (a fixed point). This function u is precisely the solution of (P’) with the initial data
u(0) = u0. Thus, Proposition 1 is shown. See Appendix B for more details of the proof.

This proof by the fixed point argument guarantees the following result (see e.g. Zeidler (1986)).
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Proposition 2. Assume that r, s satisfy (3). Then, for any R,M > 0 and for any δ ∈ (0, 1), there
exists a time T ∈ (0, 1], depending on R,M and δ, such that the following statements hold:

(i) There exists a unique solution operator Γ+ : BL∞(R) → BLr(0,T ;Ls)(M) such that

Γ+(u0) = u

for any u0 ∈ BL∞(R), where u is the solution to (P’) with u(0) = u0 given in Proposition 1.

(ii) Given u0 ∈ BL∞(R), define Picard’s iteration by
u(1) := SL(t)u0,

u(ℓ+1) := Φ[u(ℓ)] = u(1) +

∫ t

0

SL(t− τ)F (u(ℓ)(τ)) dτ, ℓ = 1, 2, · · · ,
(5)

that is,
u(ℓ) := Φ[ℓ][0] = Φ ◦ · · · ◦ Φ︸ ︷︷ ︸

ℓ times

[0], ℓ = 1, 2, · · · ,

where Φ : X → X is a δ-contraction mapping defined by (4). Then u(ℓ) → u in
Lr(0, T ;Ls(D)) as ℓ→ ∞ and

d(u(ℓ), u) ≤ δℓ

1− δ
d(u(1), 0), ℓ = 1, 2, · · · .

3 NEURAL OPERATOR FOR NONLINEAR PARABOLIC EQUATIONS

In this section, we aim to construct neural operators Γ that serve as accurate approximation models
of the solution operators Γ+ for nonlinear parabolic PDEs (P). We start by explaining our idea in
rough form. Our idea is inspired by the fixed point argument and Picard’s iteration. By Section 2, for
any u0 ∈ BL∞(R), the solution u to (P’) on [0, T ]×D can be obtained through the Picard’s iteration
(5) under appropriate settings. If the semigroup SL(t) has an integral kernel G = G(t, x, y), which
is the Green function G of the linear equation ∂tu+ Lu = 0, then we can write

SL(t)u0(x) =

∫
D

G(t, x, y)u0(y) dy,∫ t

0

SL(t− τ)F (u(ℓ)(τ, x)) dτ =

∫ t

0

∫
D

G(t− τ, x, y)F (u(ℓ)(τ, y)) dydτ.

Suppose that G has an expansion

G(t− τ, x, y) =
∑

m,n∈Λ

cm,nψm(τ, y)φn(t, x) = lim
N→∞

∑
m,n∈ΛN

cm,nψm(τ, y)φn(t, x),

for 0 ≤ τ, t ≤ T and x, y ∈ D. We always assume that G(t, x, y) = 0 for t ≤ 0. Here, Λ is
an index set that is either finite or countably infinite, and ΛN is a subset of Λ with its cardinality
|ΛN | = N ∈ N and the monotonicity ΛN ⊂ ΛN ′ for any N ≤ N ′. We write the partial sum as

GN (t− τ, x, y) :=
∑

m,n∈ΛN

cm,nψm(τ, y)φn(t, x)

for 0 ≤ τ, t ≤ T and x, y ∈ D. We always assume that GN (t, x, y) = 0 for t ≤ 0 as well. We
define ΦN by

ΦN [u](t, x) :=

∫
D

GN (t, x, y)u0(y) dy +

∫ t

0

∫
D

GN (t− τ, x, y)F (u(τ, y)) dydτ

=
∑

m,n∈ΛN

cm,n⟨ψm(0, ·), u0⟩φn(t, x) +
∑

m,n∈ΛN

cm,n⟨ψm, F (u)⟩φn(t, x)

=
∑

m,n∈ΛN

cm,n (⟨ψm(0, ·), u0⟩+ ⟨ψm, F (u)⟩)φn(t, x),

5
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and moreover, we define an approximate Picard’s iteration by
û(1) :=

∫
D

GN (t, x, y)u0(y) dy =
∑

m,n∈ΛN

cm,n⟨ψm(0, ·), u0⟩φn(t, x),

û(ℓ+1) := ΦN [û(ℓ)], ℓ = 1, 2, · · · .
Then, for sufficiently large N , we expect:

1. ΦN ≈ Φ and ΦN is also contractive on XN := BLr(0,TN ;Ls)(M) for some TN > 0.

2. There exists a fixed point û ∈ XN of ΦN such that û(ℓ) → û as ℓ→ ∞.
3. û ≈ u on [0,min{T, TN}]×D for any u0 ∈ BL∞(R).

4. Define Γ : BL∞(R) → XN by Γ(u0) := û(L) for L ∈ N. Then Γ ≈ Γ+ as N,L→ ∞.

The above Γ is the prototype of our neural operator, where N corresponds to the rank and L to the
layer depth. In other words, in our neural operator, the Picard’s iteration step corresponds to the
forward propagation in the layer direction of the neural operator, which converges to the fixed point
(i.e. the solution to (P’)) as the layers get deeper for sufficiently large rank N .

The above is only a rough idea. The precise definition of our neural operator is the following:
Definition 1 (Neural operator). Let T > 0 and r, s ∈ [1,∞]. Let φ := {φn}n and ψ := {ψm}m
be families of functions in Lr(0, T ;Ls(D)) and Lr

′
(0, T ;Ls

′
(D)), respectively. We define a neural

operator Γ : L∞(D) → Lr(0, T ;Ls(D)) by

Γ : L∞(D) → Lr(0, T ;Ls(D)) : u0 7→ û(L+1).

Here, the output function û(L+1) is given by the following steps:

1. (Input layer) û(1) = (û
(1)
1 , û

(1)
2 , . . . , û

(1)
d1

) is given by

û(1)(t, x) := (K
(0)
N u0)(t, x) + b

(0)
N (t, x).

Here, K(0)
N : L∞(D) → Lr(0, T ;Ls(D))d1 and b(0)N ∈ Lr(0, T ;Ls(D))d1 are defined by

(K
(0)
N u0)(t, x) :=

∑
m,n∈ΛN

C(0)
n,m⟨ψm(0, ·), u0⟩φn(t, x) with C(0)

n,m ∈ Rd1×1,

b
(0)
N (t, x) :=

∑
n∈ΛN

b
(0)
N φn(t, x) with b(0)N ∈ Rd1 .

2. (Hidden layers) For 2 ≤ ℓ ≤ L, û(ℓ) = (û
(ℓ)
1 , û

(ℓ)
2 , . . . , û

(ℓ)
dℓ

) are iteratively given by

û(ℓ+1)(t, x) = σ
(
W (ℓ)û(ℓ)(t, x) + (K

(ℓ)
N û(ℓ))(t, x) + b(ℓ)

)
, 1 ≤ ℓ ≤ L− 1.

3. (Output layer) û(L+1) is given by

û(L+1)(t, x) =W (L)û(L)(t, x) + (K
(L)
N û(L))(t, x) + b(L).

Here, σ : R → R is a nonlinear activation operating element-wise, and W (ℓ) ∈ Rdℓ+1×dℓ+1

is a weight matrix of the ℓ-th hidden layer, and b(ℓ) ∈ Rdℓ is a bias vector, and K
(ℓ)
N :

Lr(0, T ;Ls(D))dℓ → Lr(0, T ;Ls(D))dℓ+1 is defined by

(K
(ℓ)
N u)(t, x) :=

∑
m,n∈ΛN

C(ℓ)
n,m⟨ψm, u⟩φn(t, x) with C(ℓ)

n,m ∈ Rdℓ+1×dℓ ,

where we use the notation

⟨ψm, u⟩ := (⟨ψm, u1⟩, . . . , ⟨ψm, udℓ⟩) ∈ Rdℓ ,

for u = (u1, . . . , udℓ) ∈ Lr(0, T ;Ls(D))dℓ . Note that dL+1 = 1.

We denote by NOL,H,σ
N,φ,ψ the class of neural operators defined as above, with the depth L, the number

of neurons H =
∑L
ℓ=1 dℓ, the rank N , the activation function σ, and the families of functions φ,ψ.
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The operatorsK(l)
N play a crucial role in capturing the non-local nature of PDEs. They are defined by

truncating the basis expansion, a definition for neural operators inspired by Lanthaler et al. (2023).
In this context, K(l)

N are finite-rank operators with rank N . The model complexity is determined not
only by the depth L and the number H of neurons, but also by the rank N . The families φ and ψ
are hyperparameters, which are chosen so that their expansions can approximate the Green function.
Examples are the Fourier basis, wavelet basis, orthogonal polynomial, spherical harmonics, and
eigenfunctions of L. When we select φ and ψ as the Fourier basis and wavelet basis, the resulting
network architectures correspond to the Fourier neural operator (FNO) in Li et al. (2020a) and the
wavelet neural operator (WNO) in Tripura & Chakraborty (2023), respectively. See also Appendix C
for FNOs and WNOs in some simple cases.

4 QUANTITATIVE APPROXIMATION THEOREM

In this section we prove a quantitative approximation theorem for our neural operator Γ (Defini-
tion 1). For this purpose, we assume that L and F satisfy Assumptions 1 and 2, respectively, and the
parameters r, s satisfy the condition (3). In addition, we assume the following:

Assumption 3. Let Λ be an index set that is either finite or countably infinite and ΛN a subset of
Λ with its cardinality |ΛN | = N ∈ N and the monotonicity ΛN ⊂ ΛN ′ for any N ≤ N ′. For
the Green function G of the linear equation ∂tu + Lu = 0, there exist the families of functions
φ := {φn}n∈Λ and ψ := {ψm}m∈Λ in Lr(0, T ;Ls(D)) and Lr

′
(0, T ;Ls

′
(D)), respectively, such

that G has the following expansions:

G(t− τ, x, y) =
∑

m,n∈Λ

cn,mψm(τ, y)φn(t, x), 0 < τ, t < T, x, y ∈ D, (6)

G(t, x, y) =
∑

m,n∈Λ

cn,mψm(0, y)φn(t, x), 0 < t < T, x, y ∈ D (7)

in the sense that

EG(N) :=
∥∥∥∥G(t− τ, x, y)−GN (t− τ, x, y)∥Lr′

τ (0,T ;Ls′
y )

∥∥∥
Lr

t (0,T ;Ls
x)

→ 0,

E′
G(N) :=

∥∥∥∥G(t, x, y)−GN (t, x, y)∥Ls′
y

∥∥∥
Lr

t (0,T ;Ls
x)

→ 0

as N → ∞, respectively, where

GN (t− τ, x, y) :=
∑

m,n∈ΛN

cn,mψm(τ, y)φn(t, x), 0 ≤ τ, t < T, x, y ∈ D. (8)

4.1 MAIN RESULT

Our main result is the following quantitative approximation theorem.

Theorem 1. Suppose that L and F satisfy Assumptions 1 and 2, respectively, and the parameters
r, s satisfy the condition (3). Then for any R > 0, there exists a time T > 0 such that the following
statement holds under Assumption 3: For any ϵ ∈ (0, 1), there exist a depth L, the number of
neurons H , a rank N , and Γ ∈ NOL,H,ReLU

N,φ,ψ such that

sup
u0∈BL∞ (R)

∥Γ+(u0)− Γ(u0)∥Lr(0,T ;Ls) ≤ ϵ.

Moreover, L = L(Γ) and H = H(Γ) satisfy

L(Γ) ≤ CL(log(ϵ
−1))2 and H(Γ) ≤ CHϵ

−1(log(ϵ−1))2

for some positive constants CL and CH depending on ν,M,F,D, p, r, s, R, and L, and N = N(Γ)
satisfies

EG(N(Γ)) ≤ CGϵ and E′
G(N(Γ)) ≤ CGϵ

for some positive constant CG depending on ν,M,F,D, p, r, s, R, and L.
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Let us give a remark on model complexity of our neural operator Γ in Theorem 1. The model com-
plexity depends on the depth L(Γ), the number of neurons H(Γ), and the rank N . We observe that
L(Γ) increases only squared logarithmically at most as ϵ → 0 and H(Γ) increases on the order
ϵ−1 at most as ϵ → 0. This is reasonable since each forward pass of the neural operator’s layers
corresponds to a step in Picard’s iteration, and the convergence rate of Picard’s iteration decays expo-
nentially (see Proposition 2 (ii)). As to the rank N , Theorem 1 does not mention anything regarding
the rates of the errors EG(N) and E′

G(N), but these error rates are also necessary for quantitatively
estimating the model complexity of Γ. These error rates strongly depend on the choice of φ and ψ,
and the research results are enormous (see e.g. Cohen (2003); DeVore & Popov (1988); DeVore et al.
(1993); Dũng (2011)). For example, in the case of Fourier bases on d-dimensional torus Td, it can
be shown by Parseval’s identity that the approximation rate in L2-norm is O(N−σ+d/2) (σ > d/2)
if the target function belongs to the L2 type Sobolev space Hσ(Td) (see Dyachenko (1995) for
Lp-framework). As another example, for many wavelet bases, the approximation rate O(N−σ/d)
is known based on Jackson-type estimates (see Cohen (2003, Theorem 4.3.2)). Furthermore, there
are cases where the rates differ between linear approximation and nonlinear approximation (wavelet
approximation); in particular, when the target function is discountinuous (see Cohen (2003, Remark
4.2.5)). Therefore, if the Green function G has a certain regularity, we may obtain a quantitative
estimate for the rank N such as the polynomial rate of EG(N) and E′

G(N), and as a result, it is
shown that the model complexity of Γ does not grow exponentially. This prevents the exponential
growth in model complexity, which often arises in general operator approximation.

Next, we remark that the constants CL, CH and CG in Theorem 1 depend on D, in particular on
the dimension d. According to the proof of Theorem 1 (especially, Lemma 4 in Appendix D), the
dependencies on D are CL ≈ 1, CH ≈ |D|1/s and CG ≲ 1 for sufficiently small ϵ > 0. For
simplicity, letting D = [0, R]d, we see that the growth of CH with respect to d is CH ≈ Rd/s.

Sketch of proof. (See Appendix D for the exact proof). The proof is based on the following scheme:

u0
SL−−−→ u(1)

Φ−−−−→ u(2)
Φ−−−−→ · · · Φ−−−−→ u(J)(· · · J→∞−−−−→ u) (Picard’s iteration)

u0
SL,N−−−→ û(1)

ΦN,net−−−−→ û(2)
ΦN,net−−−−→ · · · ΦN,net−−−−→ û(J) (Neural operator iteration)

where SL, SL,N , Φ, and ΦN,net are defined as

SL[u0](t, x) :=

∫
D

G(t, x, y)u0(y) dy, SL,N [u0](t, x) :=

∫
D

GN (t, x, y)u0(y) dy,

Φ[u](t, x) := SL[u0](t, x) +

∫ t

0

∫
D

G(t, x, y)F (u(τ, y)) dydτ,

ΦN,net[u](t, x) := SL,N [u0](t, x) +

∫ t

0

∫
D

GN (t, x, y)Fnet(u(τ, y)) dydτ.

First, by the truncation of Picard’s iteration, the solution u = Γ+(u0) to (P’) is approximated by

u ≈ u(J) = Φ[J−1] ◦ SL[u0],

for sufficiently large J . Next, by approximating the Green function G and the nonlinearity F with
a truncated expansion GN and a neural network Fnet, respectively, the contraction mapping Φ is
approximated by ΦN,net for sufficiently large N (Lemmas 2 and 3), leading to

u(J) ≈ û(J) = Φ
[J−1]
N,net ◦ SL,N [u0],

(Lemma 4). Finally, we represent û(J) as a neural operator Γ (Lemma 5).

The key idea is to mimic the Picard’s iteration. The convergence rate of Picard’s iteration is given
in Proposition 2 (ii), which reads J ≈ log(ϵ−1). By applying the one dimensional case of Gühring
et al. (2020, Theorem 4.1), we approximate F ≈ Fnet with the rates L(Fnet) ≲ (log(ϵ−1)) and
H(Fnet) ≲ ϵ−1(log(ϵ−1)). Note that the curse of dimensionality that occurs in conventional neural
network approximations does not appear here. Consequently, the rates of the depth L(Γ) and the
number of neurons H(Γ) are evaluated as

L(Γ) ≲ L(Fnet) · J ≈ log
(
ϵ−1

)
· log(ϵ−1) = (log(ϵ−1))2,

H(Γ) ≲ H(Fnet) · J ≲ ϵ−1
(
log(ϵ−1)

)
·
(
log(ϵ−1)

)
≲ ϵ−1

(
log(ϵ−1)

)2
,

8
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where the first inequality is given by the exact construction of the neural operator Γ discussed in the
proof of Lemma 5 as

Γ(u0) = W̃ ′ ◦

(W̃ + K̃N ) ◦ F̃net ◦ · · · ◦ (W̃ + K̃N ) ◦ F̃net︸ ︷︷ ︸
J−1

 ◦ (K̃(0)
N + b̃

(0)
N )(u0), (9)

where W̃ ′ and W̃ are some weight matrices, K̃N and K̃(0)
N are some non-local operators, b̃(0)N is

some bias function, and F̃net is some neural network so that L(F̃net) = L(Fnet). Note that the
operation (W̃ + K̃N ) ◦ F̃net corresponds to the one operation ΦN,net, and it can be a L(Fnet) + 1

layer neural operator. In this construction, when denoting by (W̃ + K̃N ) ◦ F̃net = (W (L(Fnet)+1)+
K(L(Fnet)+1) + b(L(Fnet)+1)) ◦ σ ◦ · · · ◦ σ ◦ (W (1) + K(1) + b(1)), the local operators W (ℓ) and
biases b(ℓ) for ℓ = 1, . . . , L(Fnet) correspond to those in the neural network F̃net, while the non-
local operators K(ℓ) ≡ 0 for ℓ = 1, . . . , L(Fnet). At the L(Fnet) + 1-th layer, W (L(Fnet)+1) = W̃

and b(L(Fnet)+1) ≡ 0, and the non-local operator K(L+1) = K̃N .

Remark 3. It is important to note that the hidden layers of the neural operator Γ constructed in (9)
are structured to repeatedly apply the same operator, (W̃ + K̃N )◦ F̃net, which significantly reduces
memory consumption. Our constructed neural operator is closely related to the deep equilibrium
models (Bai et al., 2019), which utilize weight-tied architectures to find fixed points. More recently,
inspired by deep equilibrium models, weight-tied neural operators have been experimentally in-
vestigated in the context of solving steady-state PDEs (Marwah et al., 2023). Based on the above
findings, our results also give weight-tied neural operators for (unsteady-state) parabolic PDEs and
theoretically guarantee their approximation ability.
Remark 4. One of the next issues in approximation theory is to verify in what sense the obtained
approximate solution is a good approximation. In particular, it is important to discuss that an
approximator Γ obtained in Theorem 1 preserves desired properties in parabolic PDEs, such as the
maximum principle and the comparison principle. In the special case of the nonlinearity, we can
show that approximator Γ preserves the positivity. For more details, see Appendix F.

4.2 APPROXIMATION OF LONG TIME SOLUTIONS

The problem of approximating global in time solutions using neural operators is a more challenging
and significant task. It is known that global solutions can be extended by repeatedly applying the
solution operator Γ+ when the L∞-norm of the solution remains uniformly bounded. Based on this
idea, this section discusses the approximation of long time solutions using neural operators.

Extension of a short time solution to a long time solution. By Proposition 2 (i), for any initial
data u0 ∈ BL∞(R), there exists a short time solution u = Γ+(u0) to (P’) on [0, T ] ×D. Then, if
u(T ) at t = T belongs to BL∞(R), the same solution operator Γ+ can be applied to u(T ) as an
initial data, and hence, the solution can be extended to that on [0, 2T ] × D. Thus, as long as the
supremum value of the solution is less than or equal to R, the solution can be extended with respect
to t by applying Γ+ as many times as possible. We denote by umax the extended maximal solution
with respect to t and by κmax = κmax(u0) ∈ N ∪ {∞} the maximal number of extensions by Γ+.
Then we can write umax as

umax(t) = Γ+[κ]
(u0)(t)

for (κ− 1)T < t ≤ κT and κ = 1, . . . , κmax.

Approximation of the long time solution umax by our neural operator. Similarly, for our neural
operator Γ given in Theorem 1, the output function of Γ can be extended with respect to time t by
applying Γ as many times as possible. We denote by ûmax the extended maximal output function of
Γ with respect to t and by κ̂max = κ̂max(u0) ∈ N ∪ {∞} the maximal number of extensions by Γ.
Then we can also write ûmax as

ûmax(t) := Γ[κ](u0)(t)

for (κ − 1)T < t ≤ κT and κ = 1, . . . , κ̂max. Then the error between umax and ûmax can be
controlled by the error ϵ in Theorem 1 and another error ϵ̃ given by

ϵ̃ :=

κ∗−1∑
κ=1

∥Γ+[κ]
(u0)(κT )− Γ[κ](u0)(κT )∥L∞ .

9
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More precisely, we have the following result on the error between umax and ûmax.
Corollary 1. Let ϵ ∈ (0, 1) and R > 0. Suppose the same assumptions as in Theorem 1 and
κ∗ := min{κmax, κ̂max} is a finite number. Then there exists a constant C > 0 such that

∥umax − ûmax∥Lr(0,κ∗T ;Ls) ≤ C(ϵ+ ϵ̃)

for any u0 ∈ BL∞(R), where T and Γ are the same as in Theorem 1.

The proof is given in Appendix E.

5 DISCUSSION AND FUTURE WORK

Applicability and limitation. In this paper we focus on parabolic PDEs with power-type (or some-
what general) nonlinear terms as a first step of study of neural operators based on Picard’s iteration.
However, we believe that our approach is not restricted to parabolic PDEs and can be adapted to
a broader class of nonlinear PDEs, because the Banach’s fixed point theory is widely applicable
to many nonlinear PDEs (see Appendix G for the details). On the other hand, for PDEs that in-
volve nonlinearity in the principal part such as p-Laplacian equations ∂tu − ∆pu = F (u) with
∆p := div(|∇u|p−2∇u) and p ̸= 2, it may not be possible to represent them in the form of integral
equations. Such equations might not be effectively handled by our approach.

Further development of Theorem 1. In this paper we discuss the LWP for (P) and the approx-
imation error in Theorem 1 in the framework of the Lebesgue spaces. However, we expect that
these results can be generalized to those in the framework of Sobolev spaces. In fact, LWP can be
established in the Sobolev space framework as shown in Ribaud (1998). Further, it is also possible
to discuss the approximation error in the same framework, since the basis expansion of the Green
function and the approximation of nonlinearity by neural networks are studied in Sobolev spaces.

Next, in the results of this paper, only bounded domains D are considered due to technical reasons
in the proofs. However, the question of whether Theorem 1 can be extended to general domains, in-
cluding unbounded ones, is an interesting problem (at least mathematically) and remains a direction
for future work.

Moreover, in this paper we discuss the problem in the setting of an abstract operator L and general
bases φ,ψ. However, it is also important to develop a more detailed analysis by restricting the setting
to more specific operators and basis functions. For example, by focusing on specific operators and
basis functions, one can construct approximation theorems that include concrete rates for rank N ,
and it is crucial to investigate how these rates vary depending on the choice of operators and basis
functions. This issue remains one of the directions for future work.

Implementation. This paper does not address the implementation of neural operators, so we briefly
comment it here. Our proof based on Picard’s iteration is constructive, and this constructive ap-
proach may offer valuable insights for future experimental studies, particularly when incorporating
constraints specific to the architecture of PDE tasks (for instance, weight-tied architecture discussed
in Remark 3). Note that, due to the form of integral equation (P’), our neural operators need to
include the integral with respect to time, which may be computationally expensive. However, the
previous work Kovachki et al. (2023, Section 7.3) employed the Fourier transforms with respect to
time for computing FNOs, whose techniques might be useful for computing our neural operators.
We leave the details of experimental studies of our theory in the future works.

Neural operators with desirable properties. In numerical analysis, it is crucial that the solutions
of discrete equations retain the properties of the original continuous solutions. Similarly, neural op-
erators must also preserve these properties, especially when used as surrogate models of simulators
in practical applications. While we have shown positivity preserving in a specific case of nonlinear-
ity (Remark 4), future work may extend this result to more general nonlinear settings. Additionally,
other important properties, such as the comparison principle and the smoothing effect, which are
essential in parabolic equations, will be the focus of future studies.
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APPENDIX

A EXAMPLES OF L (ASSUMPTION 1)

This appendix provides some typical examples of L satisfying Assumption 1.

A.1 DIRICHLET LAPLACIAN

Let D be a bounded domain in Rd with d ∈ N. Let L = −∆Dir denote the Dirichlet Laplacian
on L2(D). Then the semigroup {S−∆Dir

(t)}t≥0 corresponds to the solution operator of the initial
boundary value problem of the linear heat equation

∂tu−∆u = 0 in (0, T )×D,

u(0) = u0 in D,
u = 0 on (0, T )× ∂D,

where ∂D denotes the boundary of D. The integral kernel GDir(t, x, y) of S−∆Dir(t) has the Gaus-
sian upper bound

0 ≤ GDir(t, x, y) ≤ (4πt)−
d
2 exp

(
−|x− y|2

4t

)
=: G(t, x− y),

for any t > 0 and almost everywhere x, y ∈ D (see e.g. Iwabuchi et al. (2018, Proposition 3.1)).
Then, by combining this bound with the Young inequality, we have

∥S−∆Dir
(t)f∥Lq2 (D) ≤

∥∥∥∥∫
Rd

G(t, x− y)|f̃(y)| dy
∥∥∥∥
Lq2 (Rd)

≤ Ct−
d
2 (

1
q1

− 1
q2

)∥f̃∥Lq1 (Rd) = Ct−
d
2 (

1
q1

− 1
q2

)∥f∥Lq1 (D)

for any f ∈ Lq1(D), where 1 ≤ q1 ≤ q2 ≤ ∞ and f̃ is the zero extension of f to Rd. Therefore,
we see that L = −∆Dir satisfies Assumption 1 with ν = d/2.

A.2 NEUMANN OR ROBIN LAPLACIAN

Let D be a bounded Lipschitz domain in Rd with d ≥ 1. We consider the Robin Laplace −∆γ on
L2(D) associated with a quadratic form

qγ(f, g) =

∫
Ω

∇f · ∇g dx+

∫
∂Ω

γfg dS,

for any f, g ∈ H1(D), where γ is a function ∂Ω → R. Note that γ means a Robin boundary
condition, and particularly, the case of γ = 0 means the zero Neumann boundary condition. Hence,
−∆0 is the Neumann Laplacian −∆Neu on L2(D). Assume that γ ∈ L∞(∂D) and γ ≥ 0. We
denote by Gγ(t, x, y) and GNeu(t, x, y) the integral kernels of semigroups generated by −∆γ and
−∆Neu, respectively. Then Gγ(t, x, y) and GNeu(t, x, y) have the Gaussian upper bounds:

GDir(t, x, y) ≤ Gγ(t, x, y) ≤ GNeu(t, x, y) ≤ Ct−
d
2 exp

(
−|x− y|2

C ′t

)
,

for any 0 < t ≤ 1 and almost everywhere x, y ∈ D and for some C,C ′ > 0. The first and second
inequalities follow from domination of semigroups (see e.g. Ouhabaz (2005, Theorem 2.24)), and
the proof of the last inequality can be found in Choulli et al. (2015). These bounds yield that −∆Neu

and −∆γ satisfy Assumption 1 with ν = d/2 in the same way as Appendix A.1.

A.3 SCHRÖDINGER OPERATOR WITH A SINGULAR POTENTIAL

Let D be a bounded domain in Rd with d ≥ 1. We consider the Schrödinger operator L = −∆+ V
with the zero Dirichlet boundary condition on ∂D, where V = V (x) is a real-valued measurable
function on D such that

V = V+ − V−, V± ≥ 0, V+ ∈ L1
loc(D) and V− ∈ Kd(D).
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We say that V− belongs to the Kato class Kd(D) if

lim
r→0

sup
x∈D

∫
D∩{|x−y|<r}

V−(y)

|x− y|d−2
dy = 0 for d ≥ 3,

lim
r→0

sup
x∈D

∫
D∩{|x−y|<r}

log(|x− y|−1)V−(y) dy = 0 for d = 2,

sup
x∈D

∫
D∩{|x−y|<1}

V−(y) dy <∞ for d = 1

,

(see Simon (1982, Section A.2)). It is readily seen that the positive part V+ is almost unrestricted,
and the negative part V− allows for the singularity such as V−(x) = 1/|x|α with 0 ≤ α < 2 if d ≥ 2
and 0 ≤ α < 1 if d = 1. Then it is known that the integral kernel GV of semigroup generated by
the Schrödinger operator L = −∆+ V satisfies the Gaussian upper bound

|GV (t, x, y)| ≤ Ct−
d
2 exp

(
−|x− y|2

C ′t

)
, (10)

for any 0 < t ≤ 1 and almost everywhere x, y ∈ D and for some C,C ′ > 0 (see e.g. Iwabuchi et al.
(2018, Proposition 3.1)). Therefore, L = −∆+V satisfies Assumption 1 with ν = d/2 in the same
way as Appendix A.1.

A.4 UNIFORMLLY ELLIPTIC OPERATOR

We consider the following linear parabolic PDEs:{
∂tu+ Lu = 0 in (0, T )×D,

u(0) = u0 in D,
(11)

where

L :=

d∑
k,j=1

∂xk

(
akj∂xj

)
+

d∑
k=1

bk∂xk
+ c0,

with real-valued functions ak,j , bk, c0 on D and with domain D(L) that is a closed subspace of
H1(D). Note that the choice of domain D(L) corresponds to the choice of boundary condition.
For example, D(L) = H1

0 (D) and H1(D) mean the zero Dirichlet boundary condition and the
zero Neumann boundary condition, respectively. We assume that L satisfies the uniformly elliptic
condition:

• ak,j , bk, c0 ∈ L∞(D) for all 1 ≤ k, j ≤ d;

• There exists a constant C > 0 such that
d∑

k,j=1

ak,j(x)ξkξj ≥ C|ξ|2,

for any ξ ∈ Rd and almost everywhere x ∈ D.

In addition, we also assume the following on D(L):

• V is continuous embedded into L2∗(D), where 2∗ = 2d
d−2 if d ≥ 3, 2∗ is any number in

(2,∞) if d = 2, and 2∗ = ∞ if d = 1;

• If u ∈ D(L), then max{0, u},min{1, |u|} signu ∈ D(L);
• If u ∈ D(L), then eηu ∈ D(L) for any real-valued function η ∈ C∞(D) such that η and
|∇η| are bounded on D.

Then it is known that the integral kernel of semigroup generated by L satisfies the same Gaussian
upper bound as (10) for any 0 < t ≤ 1 and almost everywhere x, y ∈ D (see Ouhabaz (2005,
Theorem 6.10)). Therefore, the uniformly elliptic operator L satisfies Assumption 1 with ν = d/2.
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A.5 OTHER EXAMPLES

Various other operators, such as the Laplacian on the d-dimensional torus (periodic boundary con-
dition), the fractional Laplacian (−∆)α/2 (ν = d/α), the higher-order elliptic operator (ν = d/m
with the highest order m) and the Schrödinger operator with a Dirac delta potential (ν = 1/2 with
d = 1), are possible, but these will not be mentioned here. For more information, see e.g. the books
(Davies, 1989; Ouhabaz, 2005) and the papers (Bui et al., 2020; Davies, 1995; Ikeda et al., 2024;
Iwabuchi, 2017) and references therein.

B PROOF OF PROPOSITION 1

Let D be a bounded domain in Rd with d ∈ N. We consider the Cauchy problem of nonlinear
parabolic PDEs {

∂tu+ Lu = F (u) in (0, T )×D,

u(0) = u0 in D.
(P)

This problem can be formally rewritten as the integral form

u(t) = SL(t)u0 +

∫ t

0

SL(t− τ)F (u(τ)) dτ. (P’)

Throughout this appendix, we always assume that L andF satisfy Assumptions 1 and 2, respectively.
We study local well-posedness (LWP) for the integral equation (P’). The LWP for (P’) means the
existence of local in time solution, uniqueness of the solution, and continuous dependence on initial
data for (P’), and it has long been extensively studied (cf. Brezis & Cazenave (1996); Weissler
(1979; 1980)). In this appendix, we provide the LWP results that can be used as the basis of our
study of neural operator and its approximation theorem. We use the space Lr(0, T ;Ls(D)) as a
solution space. For convenience, we set

α = α(ν, p, s) := −ν(p− 1)

s
, β = β(p, r) :=

r − p+ 1

r
. (12)

We have the following result.

Proposition 3. Let d ∈ N and p ∈ (1,∞) and ν > 0. Assume that r, s satisfy

r, s ∈ [p,∞] and
ν

s
+

1

r
<

1

p− 1
. (13)

Let M > 0, 0 < T ≤ 1 and u0 ∈ L∞(D) be such that

ρ+ δM ≤M, (14)

where ρ and δ are defined by

ρ = ρ(T, ∥u0∥L∞) := CL|D| 1sT 1
r ∥u0∥L∞ ,

δ = δ(T,M) := 2(αβ−1 + 1)−βCLCFT
α+βMp−1,

respectively. Define the map Φ = Φu0
by

Φ[u](t) := SL(t)u0 +

∫ t

0

SL(t− τ)F (u(τ)) dτ,

for t ∈ [0, T ] and the complete metric space X = X(T,M) by

X := BLr(0,T ;Ls)(M) = {u ∈ Lr(0, T ;Ls(D)) : ∥u∥Lr(0,T ;Ls) ≤M},

equipped with the metric
d(u, v) := ∥u− v∥Lr(0,T ;Ls).

Then Φ is a contraction mapping from X to itself. Consequently, there exists a unique function
u ∈ X such that Φ[u] = u.
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Proof. The proof is based on the standard fixed point argument. Let us take the parameters r, s
satisfying

r, s ∈ [1,∞],
s

p
≥ 1,

r

p
≥ 1, 0 < β ≤ 1 and α+ β > 0. (15)

Take M > 0, 0 < T ≤ 1 and u0 ∈ L∞(D) such that

ρ+ δM ≤M and δ < 1. (16)

Let u ∈ X . Then

∥Φ[u]∥Lr(0,T ;Ls) ≤ ∥SL(t)u0∥Lr(0,T ;Ls) + CF

∥∥∥∥∫ t

0

SL(t− τ)(|u(τ)|p−1u(τ)) dτ

∥∥∥∥
Lr(0,T ;Ls)

=: I + II.

As for the first term, it follows from Hölder’s inequality and (1) that

I ≤ |D| 1sT 1
r ∥SL(t)u0∥L∞(0,T ;L∞) ≤ CL|D| 1sT 1

r ∥u0∥L∞ = ρ.

As for the second term, it follows from (1) that

II ≤ CLCF

∥∥∥∥∫ t

0

(t− τ)−ν(
p
s−

1
s )∥|u(τ)|p−1u(τ)∥

L
s
p
dτ

∥∥∥∥
Lr((0,T ))

≤ CLCF

∥∥∥∥∫ t

0

(t− τ)α∥u(τ)∥pLs dτ

∥∥∥∥
Lr((0,T ))

≤ CLCF ∥f ∗ g∥Lr(R),

where s ≥ 1 and s/p ≥ 1 are required and the functions f, g are defined by

f(t) = fT (t) :=

{
tα for 0 < t ≤ T,

0 otherwise,

and

g(t) = gT (t) :=

{
∥u(t)∥pLs for 0 < t ≤ T,

0 otherwise.

By Young’s inequality, we have

∥f ∗ g∥Lr(R) ≤ ∥f∥
L

1
β (R)

∥g∥
L

r
p (R)

=
(
αβ−1 + 1

)−β
Tα+β∥u∥pLr(0,T ;Ls)

≤
(
αβ−1 + 1

)−β
Tα+βMp,

where we require r/p ≥ 1, 0 < β ≤ 1 and α+ β > 0 and we calculate

∥f∥
L

1
β (R)

=
(
αβ−1 + 1

)−β
Tα+β .

Summarizing the estimates obtained above, and then using (14), we have

∥Φ[u]∥Lr(0,T ;Ls) ≤ ρ+ CLCF
(
αβ−1 + 1

)−β
Tα+βMp = ρ+ δM ≤M,

which implies that Φ is a mapping from X to itself.

Next, we estimate the metric d(Φ[u1],Φ[u2]). Let u1, u2 ∈ X . By using (2), (1) and Hölder’s
inequality, we have

d(Φ[u1],Φ[u2]) ≤ CLCF

∥∥∥∥∫ t

0

(t− τ)α∥max
i=1,2

|ui(τ)|p−1|u1(τ)− u2(τ)|∥
L

s
p
dτ

∥∥∥∥
Lr((0,T ))

≤ 2CLCF max
i=1,2

∥∥∥∥∫ t

0

(t− τ)α∥ui(τ)∥p−1
Ls ∥u1(τ)− u2(τ)∥Ls dτ

∥∥∥∥
Lr((0,T ))

≤ 2CLCF max
i=1,2

∥f ∗ hi∥Lr(R),
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where f is the same function as above and hi is defined by

hi(t) = hi,T (t) :=

{
∥ui(τ)∥p−1

Ls ∥u1(τ)− u2(τ)∥Ls for 0 < t ≤ T,

0 otherwise.

By Young’s inequality and Hölder’s inequality, we have

d(Φ[u1],Φ[u2]) ≤ 2CLCF max
i=1,2

∥f ∗ hi∥Lr(R)

≤ 2CLCF max
i=1,2

∥f∥
L

1
β (R)

∥hi∥
L

r
p (R)

≤ 2CLCF
(
αβ−1 + 1

)−β
Tα+β max

i=1,2
∥ui∥p−1

Lr(0,T ;Ls)∥u1 − u2∥Lr(0,T ;Ls)

≤ 2CLCF
(
αβ−1 + 1

)−β
Tα+βMp−1d(u1, u2) = δd(u1, u2).

From the second inequality δ < 1 in (16), we show that Φ is a contraction mapping from X into it-
self. Therefore, Banach’s fixed point theorem allows us to prove that there exists uniquely a function
u ∈ X such that u = Φ[u]. Finally, noting the condition (15) is equivalent to (13) and the condition
(16) is also equivalent to (14), we conclude Proposition 3.

Since min{1/r, α+β} is always positive under the condition (13), for anyM > 0 and u0 ∈ L∞(D),
we can take T > 0 sufficiently small so that (14) holds. As a result, we have the following LWP
result.
Corollary 2 (Proposition 1). Assume that r, s satisfy (13). Then, for any u0 ∈ L∞(D), there exist
a time T = T (u0) > 0 and a unique solution u ∈ Lr(0, T ;Ls(D)) to (P’). Moreover, for any
u0, v0 ∈ L∞(D), the solutions u, v to (P’) with u(0) = u0 and v(0) = v0 satisfy the inequality

∥u− v∥Lr(0,T ′;Ls) ≤ C∥u0 − v0∥L∞ ,

where T ′ = min{T (u0), T (v0)}.

Proof. The former immediately follows from Proposition 3. The latter is also shown in a similar
way to the proof of Proposition 3. In fact, let u, v ∈ X be solutions to (P’) with initial data u0 and
v0, respectively. Then

∥u− v∥Lr(0,T ;Ls) ≤ CL|D| 1sT 1
r ∥u0 − v0∥L∞ + δ∥u− v∥Lr(0,T ;Ls).

If T is sufficiently small so that δ < 1, then we obtain

∥u− v∥Lr(0,T ;Ls) ≤
CL|D| 1sT 1

r

1− δ
∥u0 − v0∥L∞ .

The proof is finished.

C APPLICATIONS TO FNOS AND WNOS

In this appendix, we apply Theorem 1 to FNOs and WNOs for some operator L. Let us recall
that, to ensure our quantitative approximation theorem (Theorem 1), the families φ := {φn}n
and ψ := {ψm}m of functions need to approximate the Green function G of the linear equation
∂tu+ Lu = 0 (i.e. the integral kernel G of semigroup generated by L) such that

G(t− τ, x, y) =
∑

m,n∈Λ

cm,nψm(τ, y)φn(t, x), (17)

GN (t− τ, x, y) =
∑

m,n∈ΛN

cm,nψm(τ, y)φn(t, x)

for 0 ≤ τ < t < T and x, y ∈ D, where Λ is an index set that is either finite or countably infinite
and ΛN is a subset of Λ with its cardinality |ΛN | = N ∈ N. The convergence (17) means the sense
that

EG(N) :=
∥∥∥∥G(t− τ, x, y)−GN (t− τ, x, y)∥Lr′

τ (0,T ;Ls′
y )

∥∥∥
Lr

t (0,T ;Ls
x)

→ 0 (18)
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and
E′
G(N) :=

∥∥∥∥G(t, x, y)−GN (t, x, y)∥Ls′
y

∥∥∥
Lr

t (0,T ;Ls
x)

→ 0 (19)

asN → ∞ for some r, s ∈ [1,∞] satisfying the condition (3). The following conditions are required
for the arguments in this appendix:∥∥∥∥G(t− τ, x, y)∥Lr′

τ (0,T ;Ls′
y )

∥∥∥
Lr

t (0,T ;Ls
x)
<∞, (20)∥∥∥∥G(t, x, y)∥Ls′

y

∥∥∥
Lr

t (0,T ;Ls
x)
<∞. (21)

Remark 5. Let us give some remarks on (20) and (21).

(a) It is seen that (20) and (21) always hold with r = s = ∞ under Assumption 1 (see Lemma 1 in
Appendix D).

(b) For example, the operators L appeared in Appendix A.1–A.4 satisfy the Gaussian upper bound
(10), and hence, the corresponding Green functions satisfy (20) and (21) if

d

s
+

2

r
< 2 and

d

s
<

2

r
. (22)

C.1 FOURIER NEURAL OPERATORS

Before stating FNOs, we provide a remark on partial sums of multiple Fourier series. From the
perspective of convergence issues, the rectangular partial sum is preferable to the spherical partial
sum. In fact, for f ∈ L1(Td), the Fourier coefficient of f is defined by

cn = f̂(n) :=

∫
Td

f(x)e−2πinx dx, n = (n1, n2, · · · , nd) ∈ Zd,

where Td = Rd/Zd is the d-dimensional torus, x = (x1, x2, . . . , xd) and nx := n1x1+ · · ·+ndxd.
We define the rectangular partial sum of multiple Fourier series of f by

SN (f)(x) :=
∑

|n1|,··· ,|nd|≤N

cne
2πinx, N ∈ N.

Then we have the following:
Theorem 2 ((Sjölin, 1971; Fefferman, 1971)). Let q > 1. Then

lim
N→∞

SN (f)(x) = f(x) a.e. x and lim
N→∞

SN (f) = f in Lq(Td),

for any f ∈ Lq(Td).

This theorem can be easily extended to periodic functions f on a general d-dimensional rectangle
with usual modifications. In contrast, the spherical partial sum of multiple Fourier series of f ∈
Lq(Td) converges to f in Lq only if q = 2, and for its pointwise convergence, it remains an open
problem even when q = 2.

Next, we mention the approximation theorem on FNOs. Here, we apply the Fourier expansion with
respect to both time t and space x to define FNOs. This type of FNO is used in the implementation
to approximate some PDEs (see e.g. Kovachki et al. (2023, Section 7.3)).

For simplicity, we consider only the case d = 1, r = s = 2 and L is one of Appendixes A.1–A.4
(which implies ν = d/2). Then the condition (22) is satisfied and Theorem 1 can be applied to
FNOs under the condition (3), i.e., 1 < p < 1 + 4

d+2 , if we can show that (18) and (19) hold for the
Fourier basis.

In fact, we consider the nonlinear parabolic PDEs (P), where D is a bounded interval in R. As G is
not a periodic function, a zero extension of G is considered here, so that the multiple Fourier series
can be applied. We take D̃ as a bounded interval which includes D and with its length L, and we
define the zero extension G̃ of G = G̃(t− τ, x, y) to [−T, 2T ]× [−T, 2T ]× D̃ × D̃ by

G̃(t− τ, x, y) =

{
G(t− τ, x, y) if 0 ≤ τ < t < T, x, y ∈ D

0 otherwise.
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Then, thanks to (20) and (21), G̃ has the multiple Fourier series

G̃(t− τ, x, y) = lim
N→∞

∑
m,n∈ΛN

cm,ne
2πin1t

3T e
2πim1τ

3T e
2πin2x

L e
2πim2

y

for almost everywhere in (t, τ, x, y) ∈ [−T, 2T ] × [−T, 2T ] × D̃ × D̃ and it also converges
in L2([−T, 2T ] × [−T, 2T ] × D̃ × D̃), where ΛN := {(m,n) = (m1,m2, n1, n2) ∈ Z4 :
|m1|, |m2|, |n1|, |n2| ≤ N1/4} and cn is the Fourier coefficient given by

cm,n :=

∫ 2T

−T

∫ 2T

−T

∫
D̃

∫
D̃

G̃(t− τ, x, y)e−
2πin1t

3T e−
2πin2τ

3T e−
2πin3x

L e−
2πin4y

L dtdτdxdy.

Hence, puttingφn(t, x) := e
2πin1t

3T e
2πin2x

L and ψm(τ, y) := e
2πim1τ

3T e
2πim2y

L , we have the expansion
(17) of G with (18) and (19). Therefore, by choosing these φ = {φn}n and ψ = {ψm}m in
Definition 1, we have the following result on the FNO as a corollary of Theorem 1.
Corollary 3. Let d = 1, r = s = 2, L be one of Appendixes A.1–A.4 (ν = 1/2), φ = {φn}n and
ψ = {ψm}m as above, and F satisfy Assumption 2 with 1 < p < 7/3. Then for any R > 0, there
exists a time T > 0 such that the following statement holds: For any ϵ ∈ (0, 1), there exist a depth
L, the number of neurons H , a rank N and an FNO Γ ∈ NOL,H,ReLU

N,φ,ψ such that

sup
u0∈BL∞ (R)

∥Γ+(u0)− Γ(u0)∥L2(0,T ;L2) ≤ ϵ.

Moreover, L = L(Γ) and H = H(Γ) satisfy

L(Γ) ≤ C(log(ϵ−1))2 and H(Γ) ≤ Cϵ−1(log(ϵ−1))2,

where C > 0 is a constant depending on ν,M,F,D, p, d, r, s, R and L.

C.2 HAAR WAVELET NEURAL OPERATORS

A wavelet is an oscillatory function with zero mean, used to analyze signals or functions locally at
different scales. There are various types of wavelets, such as Haar, Meyer, Morlet, and Shannon and
the systems constructed by these wavelets are unconditional bases for Lq(Rd) with 1 < q <∞ (see
e.g. Meyer (1992); Wojtaszczyk (1997)). Wavelets can also be defined on domains other than on
Rd (see e.g. Triebel (2008)). Several results on wavelets for mixed Lebesgue spaces are also known
(see e.g. Georgiadis et al. (2017); Pandey & Viswanathan (2024); Torres & Ward (2015)).

In this appendix, we use the fact that the multiparameter Haar system is an unconditional basis for
the mixed Lebesgue spaces Lq⃗((0, 1)d) with q⃗ = (q1, . . . , qd) ∈ (1,∞)d by Pandey & Viswanathan
(2024, Theorem 4.9).

The set of dyadic intervals in [0, 1] is defined by

D :=

{
Ij,k :=

[
k

2j−1
,
k + 1

2j−1

)
: 0 ≤ k < 2j−1, j ∈ N

}
.

For I ∈ D, we denote by Ileft and Iright the left and right halves of I , respectively, and we define
the Haar function hI by hI := χIleft − χIright . Here, χI is the characteristic function of an interval
I . The set of dyadic hyper-rectangles in [0, 1]d is defined by

Rd := {I := I1 × I2 × · · · × Id : I1, I2, · · · , Id ∈ D} .
For I ∈ Rd, we define

hI(x) := hI1(x1)hI2(x2) · · ·hId(xd)
for x = (x1, x2, . . . , xd) ∈ [0, 1]d. Then the multiparameter Haar system defined by {hI : I ∈
Rd} is an unconditional basis for the mixed Lebesgue spaces Lq⃗((0, 1)d) with q⃗ = (q1, . . . , qd) ∈
(1,∞)d (see Pandey & Viswanathan (2024, Theorem 4.8)).

Let G̃ be the zero extension of the Green function G to a function on [0, 1]2d+2 (= [0, 1]1+d+1+d)
with respect to t, x, τ, y. Then we can apply Pandey & Viswanathan (2024, Theorem 4.8) to G̃ and
then

G̃(t− τ, x, y) = lim
N→∞

∑
I∈R2d+2,N

cIhIt(t)hIx(x)hIτ (τ)hIy (y)
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in the sense of mixed Lebesgue norms of Lq⃗((0, 1)2d+2) with all q⃗ = (q1, . . . , qd) ∈ (1,∞)2d+2,
where R2d+2,N is a subset of R2d+2 with its cardinality |R2d+2,N | = N , cI are wavelet co-
efficients, and I = It × Ix × Iτ × Iy ∈ D × Dd × D × Dd. Hence, putting cm,n = cI ,
φn(t, x) = hIt

(t)hIx
(x) and ψm(τ, y) = hIτ

(τ)hIy
(y) with m = (k1, j1) ∈ (N ∪ {0})d+1 × Nd

and n = (k2, j2) ∈ (N∪ {0})d+1 ×Nd, we have the expansion (17) of G with (18) and (19), where
ΛN is an index set of (k1, j1, k2, j2) corresponding to R2d+2,N with its cardinality |ΛN | = N .
Therefore, by choosing these φ = {φn}n and ψ = {ψm}m in Definition 1, we have the following
result on the Haar WNO as a corollary of Theorem 1.
Corollary 4. Let d ∈ N. Suppose L is one of Appendixes A.1–A.4 (ν = d/2) and F satisfies
Assumption 2. Let r, s ∈ (1,∞) satisfy the conditions (3) and (22), and let φ = {φn}n and
ψ = {ψm}m be as above. Then, for any R > 0, there exists a time T > 0 such that the following
statement holds: For any ϵ ∈ (0, 1), there exist a depth L, the number of neurons H , a rank N and
a Haar WNO Γ ∈ NOL,H,ReLU

N,φ,ψ such that

sup
u0∈BL∞ (R)

∥Γ+(u0)− Γ(u0)∥Lr(0,T ;Ls) ≤ ϵ.

Moreover, L = L(Γ) and H = H(Γ) satisfy

L(Γ) ≤ C(log(ϵ−1))2 and H(Γ) ≤ Cϵ−1(log(ϵ−1))2,

where C > 0 is a constant depending on ν,M,F,D, p, d, r, s, R and L.

Note that the previous papers of WNOs such as Gupta et al. (2021); Tripura & Chakraborty (2023)
have not employed Haar wavelet in the context of learning solution operators for PDEs. Here, we
just chosen the Haar wavelet as a concrete example of basis expansion of the Green function, and
the discussions choosing other wavelets could be possible.

D PROOF OF THEOREM 1

Suppose that L and F satisfy Assumptions 1 and 2, respectively, and the parameters r, s satisfy the
condition (3). The conditions for the parameters R, T,M,M ′ that appear in the proof are specified
here. Let us take R,M,M ′ > 0 and T ∈ (0, 1] such that

CL|D| 1sT 1
rR+ (αβ−1 + 1)−βCLCFT

α+βMp ≤M,

2CLR+ 2CLT (1 + CFM
′p) ≤M ′,

T
1
r |D| 1sM ′ ≤M,

(23)

where α and β are the constants defined in (12). The first condition in (23) ensures the LWP
for (P’) (Propositions 1 and 2). See Proposition 3 and (14) in Appendix B for more details. The
second condition ensures that the approximate mappings ΦNk

and ΦNk,net in the proof map from
BL∞(0,T ;L∞)(M

′) into itself. The third condition ensures BL∞(0,T ;L∞)(M
′) ⊂ BLr(0,T ;Ls)(M).

We note to take the parameters in the following order: For any R,M > 0, we can take a sufficiently
large M ′ and a sufficiently small T so that (23) holds.

To begin with, we prepare the following lemma.
Lemma 1. Under Assumption 1, we have∥∥∥∥G(t− τ, x, y)∥L1

τ (0,T ;L1
y)

∥∥∥
L∞

t (0,T ;L∞
x )

≤ CLT,∥∥∥∥G(t, x, y)∥L1
y

∥∥∥
L∞

t (0,T ;L∞
x )

≤ CL,

for any T ∈ (0, 1].

Proof. From Assumption 1 and Iwabuchi et al. (2021, Lemma B.1), we see that

∥G(t− τ, x, y)∥L∞
x L1

y
= ∥SL(t− τ)∥L∞→L∞ ≤ CL,

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

which implies that ∥∥∥∥G(t− τ, x, y)∥L1
τ (0,T ;L1

y)

∥∥∥
L∞

t (0,T ;L∞
x )

≤ CLT.

Similarly, as

∥G(t, x, y)∥L∞
x L1

y
= ∥SL(t)∥L∞→L∞ ≤ CL,

we also have ∥∥∥∥G(t, x, y)∥L1
y(D)

∥∥∥
L∞

t (0,T ;L∞
x )

≤ CL.

The proof of Lemma 1 is finished.

We divide the proof of Theorem 1 into four steps.

Step 1. We define ΦN by

ΦN [u](t, x) :=

∫
D

GN (t, x, y)u0(y)dy +

∫ t

0

∫
D

GN (t− τ, x, y)F (u(τ, y))dτdy.

Since EG(N), E′
G(N) → 0 as N → ∞ with r′, s′ ≥ 1 and D ⊂ Rd is bounded, we see that∥∥∥∥G(t− τ, x, y)−GN (t− τ, x, y)∥L1

τ (0,T ;L1
y)

∥∥∥
Lr

t (0,T ;Ls
x)

→ 0,∥∥∥∥G(t, x, y)−GN (t, x, y)∥L1
y

∥∥∥
Lr

t (0,T ;Ls
x)

→ 0,

as N → ∞, and hence, there exists a subsequence {Nk}k∈N ⊂ N such that

∥GNk
(t− τ, x, y)∥L1

τ (0,T ;L1
y)

→ ∥G(t− τ, x, y)∥L1
τ (0,T ;L1

y)
,

∥GNk
(t, x, y)∥L1

y
→ ∥G(t, x, y)∥L1

y
,

for almost everywhere t ∈ (0, T ) and x ∈ D as k → ∞. Then, for any ϵ > 0, there exists kϵ ∈ N
such that for any k ≥ kϵ,∥∥∥∥GNk

(t− τ, x, y)∥L1
τ (0,T ;L1

y)

∥∥∥
L∞

t (0,T ;L∞
x )

≤ 2CLT,∥∥∥∥GNk
(t, x, y)∥L1

y

∥∥∥
L∞

t (0,T ;L∞
x )

≤ 2CL,

EG(Nk), E
′
G(Nk) ≤ ϵ,

where the first and second inequalities follow from Lemma 1 and the last one follows from Assump-
tion 3.
Lemma 2. For any u0 ∈ BL∞(R) and k ≥ kϵ, the following statements hold:

(i) ΦNk
is a map from BL∞(0,T ;L∞)(M

′) to itself.

(ii) There exists a constant C1 > 0 such that

∥Φ[u]− ΦNk
[u]∥Lr(0,T ;Ls) ≤ C1ϵ,

for u ∈ BL∞(0,T ;L∞)(M
′). Here, C1 = |D| 1sR+ CFM

p.

Proof. Let u0 ∈ BL∞(R) and k ≥ kϵ. We first prove (i). By Hölder’s inequality and the second
condition in (23), for any u ∈ BL∞(0,T ;L∞)(M

′), we estimate

∥ΦNk
[u]∥L∞

t (0,T ;L∞
x ) ≤

∥∥∥∥GNk
(t, x, y)∥L1

y

∥∥∥
L∞

t (0,T ;L∞
x )

∥u0∥L∞

+
∥∥∥∥GNk

(t− τ, x, y)∥L1
τ (0,T ;L1

y)

∥∥∥
L∞

t (0,T ;L∞
x )

∥F (u)∥L∞(0,T ;L∞)

≤ 2CLR+ 2CLTCFM
′p ≤M ′.
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Next, we prove (ii). By Hölder’s inequality and the third condition in (23), for any u ∈
BL∞(0,T ;L∞)(M

′), we have∣∣∣Φ[u](t, x)− ΦNk
[u](t, x)

∣∣∣ ≤ ∥G(t, x, y)−GNk
(t, x, y)∥Ls′

y
∥u0∥Ls

+ ∥G(t− τ, x, y)−GNk
(t− τ, x, y)∥Lr′

τ (0,T ;Ls′
y )∥F (u)∥Lr(0,T ;Ls),

which implies that

∥Φ[u]− ΦNk
[u]∥Lr(0,T ;Ls)

≤
∥∥∥∥G(t, x, y)−GN (t, x, y)∥Ls′

y

∥∥∥
Lr

t (0,T ;Ls
x)
∥u0∥Ls

+
∥∥∥∥G(t− τ, x, y)−GN (t− τ, x, y)∥Lr′

τ (0,T ;Ls′
y )

∥∥∥
Lr

t (0,T ;Ls
x)
∥F (u)∥Lr(0,T ;Ls)

≤ E′
G(Nk)∥u0∥Ls + EG(Nk)∥F (u)∥Lr(0,T ;Ls)

≤ ϵ|D| 1s ∥u0∥L∞ + ϵ∥F (u)∥Lr(0,T ;Ls)

≤
(
|D| 1sR+ CFM

p
)
ϵ

= C1ϵ,

where we note that BL∞(0,T ;L∞)(M
′) ⊂ BLr(0,T ;Ls)(M). Therefore, (ii) is proved. Thus, the

proof of Lemma 2 is finished.

Step 2. We define the map ΦNk,net by

ΦNk,net[u](t, x) :=

∫
D

GNk
(t, x, y)u0(y)dy +

∫ t

0

∫
D

GNk
(t− τ, x, y)Fnet(u(τ, y))dτdy, (24)

where Fnet : R → R is a ReLU neural network. Here, as F |(−M ′,M ′) ∈ W 1,∞(−M ′,M ′) from
Assumption 2, we can apply the approximation result by Gühring et al. (2020, Theorem 4.1) to see
that there exists a ReLU neural network Fnet : R → R such that

∥F − Fnet∥L∞(−M,M) ≤ ϵ, (25)

where the depth L = L(Fnet) and the number H = H(Fnet) of neurons are estimated as{
L(Fnet) ≤ C log2

(
ϵ−1

)
,

H(Fnet) ≤ Cϵ−1 log2
(
ϵ−1

)
,

(26)

where C = C(M ′, F ) > 0 is a constant depending on M ′, F .

Lemma 3. For any u0 ∈ BL∞(R) and k ≥ kϵ, the following statements hold:

(i) ΦNk,net is a map from BL∞(0,T ;L∞)(M
′) to itself.

(ii) There exists a constant C2 > 0 such that

∥ΦNk
[u]− ΦNk,net[u]∥Lr(0,T ;Ls) ≤ C2ϵ.

for u ∈ BL∞(0,T ;L∞)(M
′). Here, C2 = 2CL|D| 1sT 1+ 1

r .

Proof. The proof follows the same lines with Lemma 2. Let u0 ∈ BL∞(R) and k ≥ kϵ. By Hölder’s
inequality and Assumption 2, for any u ∈ BL∞(0,T ;L∞)(M

′), we estimate

∥ΦNk,net[u]∥L∞(0,T ;L∞) ≤
∥∥∥∥GNk

(t, x, y)∥L1
y

∥∥∥
L∞

t (0,T ;L∞
x )

∥u0∥L∞

+
∥∥∥∥GNk

(t− τ, x, y)∥L1
τ (0,T ;L1

y)

∥∥∥
L∞

t (0,T ;L∞
x )

∥Fnet(u)∥L∞(0,T ;L∞)

≤ 2CLR+ 2CLT (1 + CFM
′p) ≤M ′,

24
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where we used the inequality

∥Fnet(u)∥L∞(0,T ;L∞) ≤ ∥F (u)− Fnet(u)∥L∞(0,T ;L∞) + ∥F (u)∥L∞(0,T ;L∞)

≤ ϵ+ CFM
′p ≤ 1 + CFM

′p.

Hence, (i) is proved.

Next, we prove (ii). By Hölder’s inequality, for any u ∈ BL∞(0,T ;L∞)(M
′), we estimate∣∣∣ΦNk

[u](t, x)− ΦNk,net[u](t, x)
∣∣∣

≤ ∥GNk
(t− τ, x, y)∥L1

τ (0,T ;L1
y)
∥F (u)− Fnet(u)∥L∞(0,T ;L∞)

≤ 2CLT∥F (u)− Fnet(u)∥L∞(0,T ;L∞) ≤ 2CLTϵ.

Hence, we obtain

∥ΦNk
[u]− ΦNk,net[u]∥Lr(0,T ;Ls) ≤ 2CL|D| 1sT 1+ 1

r ϵ = C2ϵ.

Therefore, (ii) is proved. Thus, the proof of Lemma 3 is finished.

Step 3. We define Γ : BL∞(R) → BLr(0,T ;Ls)(M) by

Γ(u0) := Φ
[J]
Nk,net

[0] for u0 ∈ BL∞(R). (27)

Lemma 4. Let J = ⌈ log(1/ϵ)
log(1/δ)⌉ ∈ N. Then there exists a constant C3 > 0 such that for any

u0 ∈ BL∞(R)
∥Γ+(u0)− Γ(u0)∥Lr(0,T ;Ls) ≤ C3ϵ,

where C3 =M + C1+C2

1−δ .

Proof. By the triangle inequality, we have

∥Γ+(u0)− Γ(u0)∥Lr(0,T ;Ls) ≤ ∥Γ+(u0)− Φ[J][0]∥Lr(0,T ;Ls) + ∥Φ[J][0]− Γ(u0)∥Lr(0,T ;Ls).

As to the first term, since Φ : BLr(0,T ;Ls)(M) → BLr(0,T ;Ls)(M) is δ-contractive and u = Γ+(u0)
is the fixed point of Φ from Proposition 2, we have

∥Γ+(u0)− Φ[J][0]∥Lr(0,T ;Ls) = ∥Φ[J][u]− Φ[J][0]∥Lr(0,T ;Ls)

≤ δJ∥u− 0∥Lr(0,T ;Ls) ≤MδJ ≤Mϵ. (28)

As to the second term, we see that

∥Φ[J][0]− Γ(u0)∥Lr(0,T ;Ls) = ∥Φ[J][0]− Φ
[J]
Nk,net

[0]∥Lr(0,T ;Ls)

≤
J∑
j=1

∥∥∥(Φ[J−j+1] ◦ Φ[j−1]
Nk,net

)
[0]−

(
Φ[J−j] ◦ Φ[j]

Nk,net

)
[0]

∥∥∥
Lr(0,T ;Ls)

(29)

≤
J∑
j=1

δJ−j
∥∥∥(Φ ◦ Φ[j−1]

Nk,net

)
[0]− Φ

[j]
Nk,net

[0]
∥∥∥
Lr(0,T ;Ls)

(30)

=

J∑
j=1

δJ−j∥Φ[uj−1,N ]− ΦNk,net[uj−1,N ]∥Lr(0,T ;Ls), (31)

where uj,N := Φ
[j]
Nk,net

[0] and uj−1,N ∈ BL∞(0,T ;L∞)(M
′) ⊂ BLr(0,T ;Ls)(M) by the third condi-

tion in (23). By Lemma 2 and Lemma 3, we see that

∥Φ[uj,N ]− ΦNk,net[uj,N ]∥Lr(0,T ;Ls),

≤ ∥Φ[uj−1,N ]− ΦNk
[uj−1,N ]∥Lr(0,T ;Ls) + ∥ΦNk

[uj−1,N ]− ΦNk,net[uj−1,N ]∥Lr(0,T ;Ls)

≤ (C1 + C2)ϵ.
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Hence,

∥Φ[J][0]− Γ(u0)∥Lr(0,T ;Ls) ≤
J∑
j=1

δJ−j(C1 + C2)ϵ ≤
∞∑
j=0

δj(C1 + C2)ϵ =
C1 + C2

1− δ
ϵ. (32)

Therefore, by (28) and (32), we conclude that

∥Γ+(u0)− Γ(u0)∥Lr(0,T ;Ls) ≤ ∥Γ+(u0)− Φ[J][0]∥Lr(0,T ;Ls) + ∥Φ[J][0]− Γ(u0)∥Lr(0,T ;Ls)

≤
{
M +

C1 + C2

1− δ

}
ϵ = C3ϵ.

Thus, the proof of Lemma 4 is finished.

Final step. Finally, it is sufficient to represent the approximate operator Γ given in (27) as a neural
operator in the form of Definition 1 and to provide its quantitative estimates.
Lemma 5.

Γ ∈ NOL,H,ReLU
N,φ,ψ ,

where L = L(Γ), H = H(Γ) satisfies

L(Γ) ≤ C(log(ϵ−1))2 and H(Γ) ≤ Cϵ−1(log(ϵ−1))2,

where C > 0 is a constant depending on ν,M,F,D, p, d, r, s, R,L, and N = N(Γ) satisfies

EG(N) ≤ ϵ and E′
G(N) ≤ ϵ.

Proof. Let N ≥ Nk. Then we have

EG(N) ≤ EG(Nk) ≤ ϵ,

E′
G(N) ≤ E′

G(Nk) ≤ ϵ.

We see that

ΦNk,net[u](t, x)

=

∫
D

GNk
(t, x, y)u0(y)dy +

∫ t

0

∫
D

GNk
(t− τ, x, y)Fnet(u(τ, y))dτdy

=
∑

n,m∈ΛNk

cn,m⟨ψm(0, ·), u0⟩φn(t, x) +
∑

n,m∈ΛNk

cn,m⟨ψm, Fnet(u)⟩φn(t, x)

=
∑

n,m∈ΛN

c̃n,m⟨ψm(0, ·), u0⟩φn(t, x) +
∑

n,m∈ΛN

c̃n,m⟨ψm, Fnet(u)⟩φn(t, x),

where

c̃n,m :=

{
cn,m if n,m ∈ ΛNk

,

0 otherwise.
We denote by

ũ1(t, x) :=
∑

n,m∈ΛN

c̃n,m⟨ψm(0, ·), u0⟩φn(t, x).

Then we see that
Γ(u0)(t, x) := Φ

[J]
Nk,net

[0](t, x) = vJ(t, x),

where v0 := 0 and

vj+1(t, x) := ũ1(t, x) +
∑

n,m∈ΛN

c̃n,m⟨ψm, Fnet(vj)⟩φn(t, x), j = 0, · · · , J − 1.

We define K̃(0)
N : L∞(D) → Lr(0, T ;Ls(D))2 by

(K̃
(0)
N u0)(t, x) :=

∑
n,m∈ΛN

C̃(0)
n,m⟨ψm(0, ·), u0⟩φn(t, x) =

(
ũ1(t, x)
ũ1(t, x)

)
,
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where C̃(0)
n,m =

(
c̃n,m
c̃n,m

)
∈ R2×1. We also define b̃(0)N ∈ Lr(0, T ;Ls(D))2 by

b̃
(0)
N (t, x) :=

 ∑
n,m∈ΛN

c̃(0)n,m⟨ψm, Fnet(0)⟩φn(t, x)

0

 =
∑
n∈ΛN

b̃
(0)
N,nφn(t, x),

where

b̃
(0)
N,n =

(
c̃(0)n,m⟨ψm, Fnet(0)⟩

0

)
∈ R2×1.

Then, we see that

(K̃
(0)
N u0)(t, x) + b̃

(0)
N (t, x) =

(
v1(t, x)
ũ1(t, x)

)
,

which corresponds to the input layer.

Next, we define

W̃ =

(
0 1
0 1

)
∈ R2×2

and

(K̃Nu)(t, x) :=
∑

n,m∈ΛN

C̃n,m⟨ψm, u⟩φn(t, x) =

 ∑
n,m∈ΛN

c̃n,m⟨ψm, u1⟩φn(t, x)

0


for u = (u1, u2) ∈ Lr(0, T ;Ls(D))2, where C̃n,m =

(
c̃n,m 0
0 0

)
∈ R2×2. We also define

F̃net : R2 → R2 by

F̃net(u) =

(
Fnet(u1)

u2

)
, u = (u1, u2) ∈ R2,

which is a ReLU neural network with (26) (Note that ReLU neural networks represent the identity
map). Then we write[

(W̃ + K̃N ) ◦ F̃net
(
vj
ũ1

)]
(t, x) = W̃

(
Fnet(vj)(t, x)
ũ1(t, x)

)
+ K̃N

(
Fnet(vj)
ũ1

)
(t, x)

=

ũ1(t, x) + ∑
n,m∈ΛN

c̃n,m⟨ψm, Fnet(vj)⟩φn(t, x)

ũ1(t, x)


=

(
vj+1(t, x)
ũ1(t, x)

)
for j = 1, . . . , J − 1.

which corresponds to the hidden layer.

Finally, denoting by
W̃ ′ := (1, 0) ∈ R1×2,

which corresponds to the last layer, we obtain

Γ(u0) = W̃ ′ ◦

(W̃ + K̃N ) ◦ F̃net ◦ · · · ◦ (W̃ + K̃N ) ◦ F̃net︸ ︷︷ ︸
J−1

 ◦ (K̃(0)
N + b̃

(0)
N )(u0)

By the above construction, we can check that Γ ∈ NOL,H,ReLU
N,φ,ψ . Moreover, the depth L(Γ) and the

number H(Γ) of neurons of the neural operator Γ can be estimated as

L(Γ) ≲ J · L(Fnet) ≲ log(ϵ−1) · log2(ϵ−1) ≲ (log(ϵ−1))2,

H(Γ) ≲ J ·H(Fnet) ≲ log(ϵ−1) · ϵ−1 log2(ϵ
−1) ≲ ϵ−1(log(ϵ−1))2.

Thus, the proof of Theorem 1 is complete.
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E PROOF OF COROLLARY 1

By the triangle inequality, we estimate

∥umax − ûmax∥Lr(0,κ∗T ;Ls) ≤
κ∗∑
κ=1

∥Γ+[κ]
(u0)− Γ[κ](u0)∥Lr((κ−1)T,κT ;Ls).

Therefore, as κ∗ is finite, it is enough to prove that

∥Γ+[κ]
(u0)− Γ[κ](u0)∥Lr((κ−1)T,κT ;Ls)

≤ Cϵ+ ∥Γ+[κ−1]
(u0)((κ− 1)T )− Γ[κ−1](u0)((κ− 1)T )∥L∞ .

(33)

for some C > 0 and for κ = 1, . . . , κ∗. For κ = 1, the estimate (33) is already obtained in Theorem
1. For κ = 2, . . . , κ∗, we have

∥Γ+[κ]
(u0)− Γ[κ](u0)∥Lr((κ−1)T,κT ;Ls)

≤ ∥Γ+(Γ+[κ−1]
(u0))− Γ+(Γ[κ−1](u0))∥Lr((κ−1)T,κT ;Ls)

+ ∥Γ+(Γ[κ−1](u0))− Γ(Γ[κ−1](u0))∥Lr((κ−1)T,κT ;Ls).

By Corollary 2 (or Proposition 1), the first term can be estimated as

∥Γ+(Γ+[κ−1]
(u0))− Γ+(Γ[κ−1](u0))∥Lr((κ−1)T,κT ;Ls)

≤ C∥Γ+[κ−1]
(u0)((κ− 1)T )− Γ[κ−1](u0)((κ− 1)T )∥L∞ .

By Theorem 1, the second term in RHS can be estimated by Cϵ since Γ[κ−1](u0) ∈ BL∞(R). Thus,
the estimates (33) are proved for all κ = 1, . . . , κ∗.

F PRESERVING THE POSITIVITY

We define the ReQU activation function by
ReQU(t) := max{0, t}2, t ∈ R.

Corollary 5. Suppose that L and F satisfy Assumptions 1, and 2, respectively, and the parameters
r, s satisfies the condition (3). Assume that F ∈ C1(R;R) is a polynomial and satisfies that

F (t) ⋚ 0 if t ⋚ 0. (34)
Moreover, assume that there exists N0 ∈ N such that the truncated expansion GN defined in As-
sumption 3 of the Green function G satisfies

GN (t, x, y) ≥ 0, 0 < t < T, x, y ∈ D,

for any N ≥ N0. Then, there exists Γ ∈ NOL,H,ReQU
N,φ,ψ that the statement in Theorem 1 holds such

that Γ preserve the positivity , i.e.,
Γ(u0) ⋚ 0 if u0 ∈ L∞(D) and u0 ⋚ 0.

Proof. We can show that there exist Γ ∈ NOL,H,ReQU
N,φ,ψ satisfying the statement of Lemma 4 where

GNk
≥ 0 and Fnet : R → R is ReQU neural network and exactly represents the polynomial F (see

e.g., Li & Yu (2019, Theorem 2.2)). Note that Γ(u0) = Φ
[J]
Nk,net

[0] where ΦNk,net is a map defined
in (24) and depends on u0. We will show that by induction

Φ
[J]
Nk,net

[0] ⋚ 0 if u0 ⋚ 0.

Let u0 ⋚ 0. First, we see that ΦNk,net[0] = Φ
[1]
Nk,net

[0] ⋚ 0. Assume that Φ[j]
Nk,net

[0] ⋚ 0
(1 ≤ j ≤ J − 1). Since F = Fnet satisfies (34), we see that

Φ
[j+1]
Nk,net

[0] = ΦNk,net

[
Φ

[j]
Nk,net

[0]
]

=

∫
D

GNk
(t, x, y)u0(y)dy︸ ︷︷ ︸

⋚0

+

∫ t

0

∫
D

GNk
(t− τ, x, y)Fnet(Φ

[j]
Nk,net

[0](τ, y))dτdy︸ ︷︷ ︸
⋚0

⋚ 0.

Thus, the required result is proved.
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G ADDITIONAL REMARKS

In this paper, we focused on parabolic PDEs with power-type (or somewhat general) nonlinear terms.
Below, we provide additional remarks on Assumptions 1 and 2, and some remarks on applicability
and limitation.

Regarding Assumption 1. Assumption 1 for L is a condition satisfied by the solution operators of
many linear parabolic PDEs. In particular, it generalizes the rate of time t using the parameter ν, and
it is known that many important operators L satisfy Assumption 1, as stated in Appendix A. On the
other hand, There exist examples such that Assumption 1 does not hold. For instance, Schrödinger
operators with inverse square potentials, i.e., L = −∆ + c

|x|2 (where c is a real number greater
than the negative of the best constant of Hardy’s inequality), are known to satisfy the inequality in
Assumption 1 when ν = d/2 and d ≥ 3, provided that 2d

d+2 ≤ q1 ≤ q2 ≤ 2d
d−2 (this range is optimal.

See Ioku et al. (2016) and Ioku & Ogawa (2019)). Thus, due to the constraints on the range of q1
and q2, certain operators may fail to satisfy Assumption 1. By extending the range of parameters
in Assumption 1 to qmin ≤ q1 ≤ q2 ≤ qmax, it is possible to generalize the assumption to include
such examples. In this case, qmin and qmax, in addition to ν, would influence the conditions for
well-posedness and approximation error estimates.

Regarding Assumption 2. There are various examples of nonlinear terms, such as F (u) = |∇u|p
or F (u) = u(e|u|

2 − 1), that do not satisfy Assumption 2. However, we believe that the arguments
in this paper can be extended to such nonlinear terms as well. For example, the heat equation with
F (u) = |∇u|p, known as the viscous Hamilton-Jacobi equation, has its well-posedness established
via a fixed-point argument (see Ben-Artzi et al. (2002)). Similarly, this is also true for F (u) =

u(e|u|
2−1) or more general exponential-type nonlinear terms (see Ibrahim et al. (2014)). The reason

why our paper focused on Assumption 2 is because the results on well-posedness vary significantly
depending on the nonlinear term and it is difficult to unify these results. Therefore, as a first step in
this work, we focused on power-type nonlinear terms. As mentioned in Remark 1, smooth nonlinear
terms can often be represented by their leading term in a power-type form through Taylor expansion,
highlighting the importance of power-type nonlinear terms from this perspective.

Regarding other equations. We expect that similar arguments can be applied to a broader class
of PDEs. For instance, initial(-boundary) value problems for various PDEs, such as the nonlin-
ear Schrödinger equations and nonlinear wave equations (see Cazenave (2003); Cazenave & Ha-
raux (1998)), nonlinear damped wave equations (see Ikeda et al. (2024)), the KPP-Fisher equation
(see Huy & Tuan (2024)), the Allen-Cahn equation (see Israel (2013)), the Cahn-Hillirad equation
(see Cholewa & Rodriguez-Bernal (2012)) and the Navier-Stokes equations (see Giga & Miyakawa
(1985)), can be expressed as integral equations. By appropriately choosing the initial data space and
the solution space, their well-posedness can be shown by using the fixed-point argument. On the
other hand, for PDEs that involve nonlinearity in the principal part such as p-Laplacian equations
∂tu − ∆pu = F (u) with ∆p := div(|∇u|p−2∇u) and p ̸= 2, it may not be possible to represent
them in the form of integral equations. Such equations might not be effectively handled by our
approach.
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