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ABSTRACT

In this paper, we uniquely study the adversarial robustness of deep neural networks
(NN) for classification tasks against that of optimal classifiers. We look at the
smallest magnitude of possible additive perturbations that can change a classifier’s
output. We provide a matrix-theoretic explanation of the adversarial fragility of
deep neural networks for classification. In particular, our theoretical results show
that a neural network’s adversarial robustness can degrade as the input dimension
d increases. Analytically, we show that neural networks’ adversarial robustness
can be only 1/

√
d of the best possible adversarial robustness of optimal classifiers.

Our theories match remarkably well with numerical experiments of practically
trained NN, including NN for ImageNet images. The matrix-theoretic explana-
tion is consistent with an earlier information-theoretic feature-compression-based
explanation for the adversarial fragility of neural networks.

1 INTRODUCTION

Deep learning or NN based classifiers are known to offer high classification accuracy in many clas-
sification tasks. Neural networks are known to have great power in fitting even unstructured data
Zhang et al. (2017). However, it is also observed that deep learning based classifiers almost uni-
versally suffer from adversarial fragility and show poor robustness under adversarial perturbations
Szegedy et al. (2014); Goodfellow et al. (2014). Specifically, when a small amount of adversarial
noise is added to the signal input of a deep learning classifier, its output can dramatically change
from an accurate label to an inaccurate label, even though the input signal is barely changed accord-
ing to human perceptions.

The reason for this fragility has remained a mystery, though this question has been extensively re-
searched see e.g. Akhtar & Mian (2018); Yuan et al. (2017); Huang et al. (2018); Wu et al. (2024);
Wang et al. (2023) for surveys. This previous work has not yet resulted in a consensus on a theoreti-
cal explanation for adversarial fragility; instead, we currently have multiple competing explanations
such as (a) smoothness, quasi-linearity of the decision boundary or size of gradients Goodfellow
et al. (2014); Li & Spratling (2023); Kanai et al. (2023); Eustratiadis et al. (2022) Simon-Gabriel
et al. (2019), (b) lack of smoothness of the decision boundary in the form of high curvature Fawzi
et al. (2016); Reza et al. (2023); Singla et al. (2021), (c) closeness of the classification boundary to
the data manifold Tanay & Griffin (2016); Zeng et al. (2023); Xu et al. (2022), and (d) the existence
of highly predictive, “non-robust” features Ilyas et al. (2019). However, there are recent works, for
example, Li et al. (2023), which show that non-robust features from data are not enough to fully
explain the adversarial fragility of NN based classifiers. While many defenses have been proposed
based on these explanations Allen-Zhu & Li (2022), they “all end up broken without exception”,
e.g. see Zhang et al. (2024); Bryniarski et al. (2022); Li et al. (2023). Closest to this work is an
earlier information-theoretic feature-compression hypothesis Xie et al. (2019).

So despite these efforts, there is still no clear consensus on theoretical understanding of the fun-
damental reason for the adversarial fragility of neural network based classifiers Li et al. (2023).
It might be tempting to explain the adversarial fragility of neural network based classifiers purely
as the gap between the average-case performance (the performance of the classifier under random
average-case noise) and the worst-case performance (the performance of the classifier under well-
crafted worst-case perturbation), for example through the linearity of the model Goodfellow et al.
(2014). However, we argue that this average-case-versus-worst-case gap cannot explain the dramatic
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fragility of NN based classifiers. Firstly, it is common that there is a gap between average-case and
worst-case performance: it exists for almost every classifier (even including theoretically optimal
classifiers), and is not particularly tied to NN based classifiers. Secondly, we can show that there ex-
ist classifiers which have very good average-case performances, and their worst-case performances
are provably orders of dimension better than the worst-case performances of NN based classifiers.
So there are deeper reasons for the NN adversarial fragility than just attributing it to the worst-case-
versus-average-case degradation.

In this paper, we study the adversarial robustness of NN classifiers from a different perspective than
the current literature. We focus on comparing the worst-case performances of NN based classi-
fiers and the worst-case performances of optimal classifiers. We look at the smallest magnitude of
possible additive perturbations that change the output of the classification algorithm. We provide
a matrix-theoretic explanation of the adversarial fragility of deep neural networks. In particular,
our theoretical results show that neural network’s adversarial robustness can degrade as the input
dimension d increases, compared to the worst-case performance of optimal classifiers. Analytically,
we show that NN’ adversarial robustness can be only 1√

d
of the best possible adversarial robustness.

To the best of our knowledge, this is the first theoretical result comparing the worst-case per-
formance of NN based classifiers against the worst-case performance of optimal classifiers, and
showing the O(

√
d) gap between them. In particular, through concrete classification examples and

matrix-theoretic derivations, we show that the adversarial fragility of NN based classifiers comes
from the fact that very often neural network only uses a subset (or compressed features as math-
ematically defined in Section 5) of all the features to perform the classification tasks. Thus in
adversarial attacks, one just needs to add perturbations to change the small subsets of features used
by the neural networks. This conclusion from matrix-theoretic analysis is consistent with the earlier
information-theoretic feature-compression-based hypothesis that neural network based classifier’s
fragility comes from its utilizing compressed features for final classification decisions Xie et al.
(2019). Different from Xie et al. (2019) which gave a higher-level explanation based on the fea-
ture compression hypothesis and high-dimensional geometric analysis, this paper gives the analysis
of adversarial fragility building on concrete NN architectures and classification examples. Our re-
sults are derived for linear networks (Section 2) and non-linear networks (Section 4), for two-layer
and general multiple-layer neural networks with different assumptions on network weights, and for
different classification tasks involving exponential numbers (in d) of data points (Section 3). As
a byproduct, we developed a characterization of the distribution of the QR decomposition of the
products of random Gaussian matrices in Lemma 7.

Due to unstructured data in datasets such as MNIST and ImageNet, this paper is to start with more
structured data and classifier models which enable concrete theoretical analysis before extending
results to general models and data (Section 5).

Related works In Vardi et al. (2022), the authors showed that a trained two-layer ReLU neural net-
work can be fragile under adversarial attacks, compared to another robust NN classifier. Compared
with Vardi et al. (2022), we make new technical contributions in that: 1) conceptually, we propose
the ”feature compression” explanation for the adversarial fragility; 2) our results work for a much
larger number of datapoints (can grow exponentially in input dimension d), while Vardi et al. (2022)
relies on the inner products between data points xi and xj being small and thus can only handle a
small number of data points; 3) our paper compares NN classifiers against the optimal classifier in
terms of tolerable perturbation size and give the O(

√
d) perturbation gap against the optimal classi-

fier; while Vardi et al. (2022) compares between NN classifiers; 4) In fact, our paper (Theorem 5)
handles much more challenging datapoints than Vardi et al. (2022), because we allow different dat-
apoints to have inner products of magnitude d (or angle 180 degrees), while Vardi et al. (2022) does
not apply to this. 5) Our results apply beyond binary classification and to a large number of labels
(Theorem 1, Theorem 6 and discussion in Section 5. 6) Our technical derivations/mechanisms are
different from Vardi et al. (2022): we rely on random matrix theory, while Vardi et al. (2022) builds
on KKT conditions for a stationary point of gradient flow. Compared with Daniely & Shacham
(2020) and Bartlett et al. (2021), besides all the differences mentioned above, our predicted NN’s
tolerable perturbation is of scale Õ(1) = Õ(∥x∥/d)), where x ∈ Rd is a vector, for our example in
Theorem 6, and this bound is actually tighter (better) than the Õ(∥x∥/

√
d) = O(

√
d) predicted by

these two references. The experiments match well with our theory. More recently, Frei et al. (2023)
extended the adversarial fragility results of Vardi et al. (2022) to input data modeled by Gaussian
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mixture models; Melamed et al. (2023) proved the adversarial fragility of two-layer NN trained us-
ing data from low-dimensional manifold. However, the results from Frei et al. (2023) essentially
still require the centers of the Gaussian mixture models to be nearly orthogonal, and Melamed et al.
(2023) requires data to be from low-dimensional manifold. By comparison, data points used in our
theorems do not fit these conditions. Compared with Ilyas et al. (2019), our results show that it is
not the “non-robust features” or “robust features” in training data that lead to the fragility or robust-
ness, but instead it is the “feature compression” property of the NN classifier itself. For example,
Li et al. (2023) showed that even using “robust features” (sometimes they are even hard to extract),
the trained neural networks are still highly fragile under stronger adversarial attacks, implying that
adversarial fragility does not purely come from data. Moreover, in contrast to the belief in Ilyas
et al. (2019), we argue that those “non-robust features” are not necessarily non-robust: they may
just be a compressed part of robust features. Thus the “non-robust features” may also be needed
for building an adversarially robust classifiers. For example, this paper’s Theorem 5 shows that the
utilized “non-robust” compressed feature (the orthogonal residue of a vector after projecting it onto
a subspace) is just part of the robust feature: this compressed feature should not be cleaned out from
data in building robust models. Compared with Simon-Gabriel et al. (2019), we attribute fragility
more to the angle of gradient rather than to its size.

Notations We denote the ℓ2 norm of an vector x ∈ Rn by ∥x∥ or ∥x∥2 =
√∑n

i=1 |xi|2. Let
a NN based classifier G(·) : Rd → Rk be implemented through a l-layer NN which has l − 1
hidden layers and has l+ 1 columns of neurons (including the neurons at the input layer and output
layer). We denote the number of neurons at the inputs of layers 1, 2, ..., and l as n1, n2, ...., and
nl respectively. At the output of the output layer, the number of neurons is nl+1 = k, where k is
the number of classes. We define the bias terms in each layer as δ1 ∈ Rn2 , δ2 ∈ Rn3 , · · · , δl−1 ∈
Rnl , δl ∈ Rnl+1 , and the weight matrices Hi for the i-th layer are of dimension Rni+1×ni . The
element-wise activation functions in each layer are denoted by σ(·), and some commonly used
activation functions include ReLU and leaky ReLU. So, the output y when the input is x is given by
y = G(x) = σ(Hlσ(Hl−1 · · ·σ(H1x+ δ1) · · ·+ δl−1) + δl).

2 FEATURE COMPRESSION CAUSES SIGNIFICANT DEGRADATION IN
ADVERSARIAL ROBUSTNESS

We first give a theoretical analysis of linear NN based classifiers’ adversarial robustness and show
that its worst-case performance can be worse than the worst-case performance of optimal classifiers
in the order of input dimension d, in Theorems 1, 3 and 4. We then generalize our results to analyze
the worst-case performance of non-linear NN based classifiers for classification tasks with more
complicatedly-distributed data in Theorem 5 and Section 5.

For now, to demonstrate the concept of feature compression, we consider d training data points
(xi, i), where i = 1, 2, · · · , d, each xi is a d-dimensional vector with each of its elements following
the standard Gaussian distribution N (0, 1), and each i is a distinct label. We will later extend the
number of training data points from d to be exponential in input dimension d.

Consider a two-layer (to be extended to multiple layers in later theorems) neural network whose
hidden layer’s output is z = σ(H1x + δ1), where H1 ∈ Rm×d, z ∈ Rm×1, and m is the number
of hidden layer neurons. For each class i, suppose that the output in the output layer neuron of the
neural network is given by fi(x) = wT

i σ(H1x+ δ1), where wi ∈ Rm×1. By the softmax function,
the probability for class i is given by oi =

efi∑k
i=1 efi

, where k is the number of classes. In our results,
“with high probability” means that the probability increases to ‘1’ as the dimension d increases.
Theorem 1 For each class i, suppose that the neural network satisfies

fj(xi) =

{
1, if j = i,

0, if j ̸= i.
(1)

Then we have:

• with high probability, for every ϵ > 0, the smallest distance between any two data points is

min
i ̸=j, i=1,2,...,d, j=1,2,...,d

∥xi − xj∥2 ≥ (1− ϵ)
√
2d.
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For each class i, one would need to add a perturbation e of size ∥e∥2 ≥ (1−ϵ)
√
2d

2 to change
the classification decision if the minimum-distance classifier is used.

• For each i, with high probability, one can add a perturbation e of size ∥e∥2 ≤ C such that
the classification result of the neural network is changed, namely fj(xi + e) > fi(xi + e)
for a certain j ̸= i, where C is a constant independent of d and m.

Remarks 1: We consider condition (1) because an accurate classifier requires output fj(xi) achieve
it maximum at the i-th output neuron, namely when j = i. Moreover, this assumption facilitates
analysis and the corresponding assumptions and predictions match the numerical results of practi-
cally trained NN as in the numerical result section. The ‘1’ can be changed to any positive number.

Remarks 2: From this theorem and later theorems, we can see the optimal classifier can tolerate
average-case perturbations of magnitude O(d), and worst-case perturbations of magnitude O(

√
d);

while the NN classifier can tolerate average-case perturbations of magnitude O(
√
d), but can only

tolerate worst-case perturbations of magnitude O(1). Both have average-case versus worst-case
degradations, so the adversarial fragility does not come from those.

Proof. To prove the first claim, we need the following lemma (proof provided in the appendix).
Lemma 2 Suppose that Z1, Z2, ... and Zd are i.i.d. random variables following the standard
Gaussian distribution N (0, 1). Let α be a constant smaller than 1. Then the probability that∑d

i=1 Z
2
i ≤ αd is at most

(
α(e1−α)

) d
2 . Moreover, as α → 0, the natural logarithm of this proba-

bility divided by d goes to negative infinity.
For each pair of xi and xj , xi−xj will be a d-dimensional vector with elements as independent zero-
mean Gaussian random variables with variance 2. So by Lemma 2, we know with high probability
that the distance between xi and xj will be at least (1− ϵ)

√
2d. By taking the union bound over

(
d
2

)
pairs of vectors, we have proved the first claim.

We let X = [x1,x2, ...,xd] be a Rd×d matrix with its columns as xi’s. Without loss of generality,
we assume that the ground-truth signal is xd corresponding to label d.

We consider the QR decomposition of X as X = Q2R, where Q2 ∈ Rd×d satisfies QT
2 Q2 =

Id×d and R ∈ Rd×d is an upper-triangular matrix. We further consider the QR decomposi-
tion of H1 = Q1RH , here Q1 ∈ Rm×d satisfies QT

1 Q1 = Id×d, and RH
d×d is an upper-

triangular matrix. Because of condition (1), the weight matrix H2 between the hidden layer
and the output layer is H2 = R−1QT

2 R
−1
H QT

1 = R−1. Take the last column of R, namely
R:,d = [R1,d, R2,d, . . . Rd−1,d, Rd,d]

T . When the NN input is xd = Q2R:,d, the output is

y = H2H1xd = R−1R:,d = [0, 0, · · · , 0, 1]T .
We let the adversarial perturbation be e = Q2b, where b = (0, 0, ..., 0, Rd−1,d−1 −
Rd−1,d,−Rd,d)

T . Then the NN input is xd+e and we will have a successful target attack such that
fd(xd + e) = 0 and fd−1(xd + e) = 1.

In fact, when the input is xd+e, the output at the d output neurons is ỹ = R−1 (R:,d + b). We then
notice that the inverse of R is an upper triangular matrix given by

∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗

. . .

0 0 0 . . . 0 1
Rd−1,d−1

− Rd−1,d

Rd−1,d−1·Rd,d

0 0 0 . . . 0 0 1
Rd,d

 ,

where we only explicitly express the last two rows.

So (fd−1(xd + e), fd(xd + e))T is equal to[
1

Rd−1,d−1
− Rd−1,d

Rd−1,d−1·Rd,d

0 1
Rd,d

][
(Rd−1,d−1 −Rd−1,d) +Rd−1,d

(−Rd,d) +Rd,d

]
=

[
Rd−1,d−1

Rd−1,d−1
+ 0

Rd−1,d−1·Rd,d

0

]
=

[
1
0

]
.

(2)
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The magnitude of this perturbation is

∥e∥2 = ∥Q2b∥2 =
√

(Rd−1,d−1 −Rd−1,d)2 + (−Rd,d)2 ≤ |Rd−1,d−1|+ |Rd−1,d|+ |Rd,d|. (3)

By random matrix theory Hassibi & Vikalo (2005); Xu et al. (2004), Rd,d is the absolute value of a
random variable following the standard Gaussian distribution N (0, 1). Moreover, Rd−1,d−1 is the
square root of a random variable following the chi-squared distribution of degree 2; and Rd−1,d is a
standard normal random variable. Thus, there exists a constant C such that, with high probability,
under an error e with ∥e∥2 ≤ C, the predicted label will be changed. □

Remarks: Note that xd =
∑d

i=1(Q2):,iRi,d, where (Q2):,i is the i-th column of Q2. Namely it is
composed of d features corresponding to the d columns of the Q2 matrix. An optimal classifier will
use all these d columns for decisions and is able to tolerate adversarial perturbation of magnitude
O(

√
d). However, to attack the NN classifier, we only need to perturb the compressed feature

direction (Q2):,d used in making decisions. This is the fundamental reason why this NN classifier
shows a O(

√
d) degradation in adversarial robustness compared with optimal classifiers. The proof

also shows that adversarial fragility is there even when x is not Gaussian distributed, as long as the
ratio between Rd,d and the ℓ2 norm of R:,d is small.

Now we go beyond 2-layer neural networks, and consider x being generated from linear generative
Gaussian models. For these Gaussian matrices, we obtain a novel characterization of the distribution
of the QR decomposition of their products (see Lemma 7 and its proof in the appendix).

Theorem 3 Consider the setup in Theorem 1 but a multiple-layer linear neural network whose hid-
den layers’ output is z = Hl−1...H1x. where Hi ∈ Rni+1×ni , and n1 = d. For each class i, sup-
pose that the output at the output layer neuron is given by fi(x) = wT

i z, where wi ∈ Rnl+1×1. For
each class i, suppose that the neural network satisfies (1). We assume that xi = GtGt−1 · · ·G1vi,
where G1, G2, ..., Gt are independent d × d normalized generator matrices with each element of
each generator matrix being an independent zero-mean Gaussian variable with variance 1

d , and
vi’s are independent vectors with the elements being independent standard unit-variance Gaussian
random variables. Then

• with high probability, for every ϵ > 0, the smallest distance between any two data points is

min
i ̸=j, i=1,2,...,d, j=1,2,...,d

∥xi − xj∥2 ≥ (1− ϵ)
√
2d.

For each class i, one would need to add a perturbation e of size ∥e∥2 ≥ (1−ϵ)
√
2d

2 to change
the classification decision if the minimum-distance classification rule is used.

• For each class i, with high probability, one can add a perturbation e of size ∥e∥2 ≤ C
such that the classification result of the neural network is changed, namely fj(xi + e) >
fi(xi + e) for a certain j ̸= i, where C is a constant independent of d.

So far we have assumed that for each class i, condition (1) holds. This condition facilitates char-
acterizing the adversarial robustness of neural networks via random-matrix-theoretic analysis. We
now extend our results to general NN weights which do not necessarily satisfy (1). Moreover, the
number of classes is not restricted to d.
Theorem 4 Consider a multi-layer linear neural network for the classification problem in Theorem
1. Suppose that the input signal x corresponds to a ground-truth class i. Let us consider an attack
target class j ̸= i. Let the last layer’s weight vectors for class i and j be wi and wj respectively.
Namely the output layer’s outputs for class i and j are respectively:

fi(x) = wT
i Hl−1...H1x, and fj(x) = wT

j Hl−1...H1x,

where Hi ∈ Rni+1×ni , and n1 = d. We define two probing vectors (each of dimension d × 1) for
class i and class j as

probei = (wT
i Hl−1...H1)

T , and probej = (wT
j Hl−1...H1)

T .

Suppose we have the following QR decomposition:

[probei, probej ] = Q

[
r11 r12
0 r22

]
,

5
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where Q ∈ Rd×2. We let the projections of xi and xj onto the subspace spanned by the two columns
of Q be x̃i and x̃j respectively. We assume that

[x̃i, x̃j ] = Q

[
ai1 aj1
ai2 aj2

]
.

If for some input x+∆, fj(x+∆) > fi(x+∆), then we say that the perturbation ∆ changes the
label from class i to class j. To change the predicted label from class i to class j, we only need to
add perturbation ∆ to x on the subspace spanned by the two columns of Q, and the magnitude of ∆
satisfies

∥∆∥ ≤ |r11ai1 − (r12ai1 + r22ai2)|
∥probei − probej∥

≤
√
a2i1 + a2i2.

From Theorem 4, one just needs to change the components of x in the subspace spanned by the two
probing vectors. This explains the adversarial fragility from the feature compression perspective:
one only needs to attack the compressed features used for classification to fool the classifiers.

3 FEATURE COMPRESSION WITH EXPONENTIALLY MANY DATA POINTS

In the following, we consider a case (proof provided in the appendix) where the number of data
points (2d−1) within a class is much larger than the dimension of the input data vector, and the data
points of different classes are more complicatedly distributed than considered in previous theorems.

Theorem 5 Consider 2d data points (xi, yi), where i = 1, 2, · · · , 2d, xi ∈ Rd is the input data, and
yi is the label. For each i, we have xi = Azi, where zi is a d × 1 vector with each of its elements
being +1 or −1, and A is a d×d random matrix with each element following the standard Gaussian
distribution N (0, 1). The ground-truth label yi is +1 if zi(d) = +1 (namely zi’s last element is
+1), and is −1 if zi(d) = −1. We let C+1 denote the set of xi such that the corresponding zi(d)
(or label) is +1, and let C−1 denote the set of xi such that the corresponding zi(d) (or label) is −1.

Consider a multiple-layer linear neural network whose hidden layers’ output is o = Hl−1...H1x.
where Hi ∈ Rni+1×ni , n1 = d and x is the input. For each class C+1 or C−1, suppose that the two
output neurons are

f+1(x) = wT
+1o and f−1(x) = wT

−1o.

For input xi, suppose that the neural network satisfies

f+1(xi) =

{
+1, if zi(d) = +1,

−1, if zi(d) = −1.
and f−1(xi) =

{
+1, if zi(d) = −1,

−1, if zi(d) = +1.
(4)

Denote the last element of zi corresponding to the ground-truth input xi by ‘bit’. Then

• with high probability, there exists a constant α > 0 such that the smallest distance
between any two data points in the two different classes is at least α

√
d, namely

minxi∈C+1, xj∈C−1 ∥xi − xj∥2 ≥ α
√
d.

• Given a data x = xi, with high probability, one can add a perturbation e of size ∥e∥2 ≤ D
such that f−bit(xi + e) > fbit(xi + e), where D is a constant independent of d.

As we can see in the proof, because the NN makes classification decisions based on the compressed
features in the direction of the vector Q:,d, namely the last column of Q (Q is from QR decomposi-
tion of A), one can successfully attack along the direction Q:,d using a much smaller magnitude of
perturbation. Using the results of QR decomposition for products of Gaussian matrices in Lemma
7, the proofs of Theorem 3 and Theorem 4, we can extend Theorem 5 to multiple-layer NN models.

4 MULTIPLE-LAYER NON-LINEAR NEURAL NETWORKS

We extend results to general non-linear multiple-layer NN based classifiers, showing that one just
needs to attack the input along the direction of “compression”.

6
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Theorem 6 Consider a multi-layer neural network for classification and an arbitrary point x ∈ Rd.
From each class i, let the closest point in that class to x be denoted by x + xi. We take ϵ > 0 as a
small positive number. For each class i, We let the the NN based classifier’s output at its output layer
be fi(x), and we denote the gradient of fi(x) by ∇fi(x). We assume the first-order approximation
error of fi’s in the neighborhood of x is small relative to ϵ, of order o(ϵ).

We consider the points x + ϵx1 and x + ϵx2. Suppose that the input to the classifier is x + ϵx1.
Then we can add a perturbation e to x + ϵx1 such that (dot equality in the sense of first-order
approximation of ϵ, namely o(ϵ))

f1(x+ ϵx1 + e)
.
= f1(x+ ϵx2) and f2(x+ ϵx1 + e)

.
= f2(x+ ϵx2).

Moreover, the magnitude of e satisfies ∥e∥2 ≤ ϵ∥P∇f1(x),∇f2(x)(x1 −x2)∥2, where P∇f1(x),∇f2(x)

is the projection onto the subspace spanned by ∇f1(x) and ∇f2(x).

If we model ∇f1(x), ∇f2(x), and x2 − x1 all have independent standard Gaussian random vari-
ables as their elements, changing from x+ϵx1 to x+ϵx2 will be O(d) times more difficult (in terms
of the square of the magnitude of the needed perturbation) than just changing the classifier’s label
locally using adversarial perturbations.

Remarks: In order to make the classifier wrongly think the input is x + ϵx2 instead of the true
signal x + ϵx1 at the corresponding two output neurons, we only need to add a small perturbation
instead of adding a full perturbation ϵ(x2 −x1), due to compression of x2 −x1 along the directions
of gradients ∇f1(x) and ∇f2(x). Similary, we can use a small perturbation e to x + ϵx1 such
that f2(x + ϵx1 + e) − f1(x + ϵx1 + e) = f2(x + ϵx2) − f1(x + ϵx2), with small magnitude
∥e∥2 ≤ ϵ∥P∇(f1(x)−f2(x))(x1 − x2)∥2, where P∇(f1(x)−f2(x)) is the projection onto the subspace
spanned by ∇f1(x)−∇f2(x).

From Theorem 6’s proof in the appendix, in order for the NN to have good adversarial robustness
locally around x, the direction of x2−x1 should be in the span of the gradients ∇f1(x) and ∇f2(x).
However, the subspace spanned by ∇f1(x) and ∇f2(x) may only contain “compressed ” parts of
ϵ(x2 − x1), leading to adversarial fragility.

5 COMPRESSION RATIO LEADS TO THE ADVERSARIAL FRAGILITY: A SIMPLE
ALGEBRAIC EXPLANATION

In this section, we consider general non-linear NN based classifiers for general classification tasks,
and extend results from the local analysis around input x in last section to “global” analysis.

Let us consider a classifier with multiple classes. Let us focus on a data point x2 belonging to Class
2, and assume that the closest data point (in ℓ2 norm) belonging to a different class is x1. Assume
x1 belongs to Class 1. Let us consider the direct path from the input x2 to x1, and the function
g(x) = f2(x) − f1(x), where f2(·) and f1(·) are, respectively, the corresponding neuron outputs
for Class 2 and Class 1. By following this path, g(x) goes from g(x2) to g(x1), and the change
experienced by g(x) is thus D = g(x1) − g(x2). The length of this path is ∥x1 − x2∥ and we
parameterize this path by the length parameter 0 ≤ γ ≤ ∥x1 − x2∥, going from x2 to x1.

Following this path, we can write D in another way:

D =

∫ ∥x1−x2∥

0

∥∇g (xγ,x1,x2) ∥ × cos(θγ) dγ, (5)

where xγ,x1,x2
= γ

∥x1−x2∥x1 + (1 − γ
∥x1−x2∥ )x2 is a point along the path, ∇ means the gradient

of the function, and θγ is the angle between the gradient of g(x) (at the point xγ,x1,x2 ) and the
direction x1 − x2.

Suppose that the adversarial attack uses an infinitely small step size. The adversarial attack starts
with the point x = x2 and in each step (iteration), goes in the negative direction of the gradient
of g(x). We assume that at the end of the attack, the change in g(x) is also D. Let the length of
the path the adversarial attack follows be z and we parameterize the path by the length parameter
0 ≤ γ ≤ z, where γ means the length of the path followed by the adversarial attack so far. Then
from the perspective of the adversarial attackers, D can also be written in another way:

D =

∫ z

0

−∥∇g(xγ)∥ dγ, (6)
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where xγ is the point at which the path length the attacker has traveled so far is γ.

Notice that both (5) and (6) lead to change D in g(x). However, because (5) has this compression
term “cos(θγ)” (often small in absolute value, sometimes even negative), the direct path’s length
∥x1 − x2∥ needs to be much bigger than the path length z followed by the adversarial attack (as-
suming that the magnitudes of the gradients of g(x) are roughly the same at locations of interest).

We further notice that ∥x2 − x1∥ is the minimum perturbation needed for changing the optimal
classifier’s result from Class 2 to Class 1. But as explained, ∥x2−x1∥ needs to be much bigger than
adversarial attacker’s perturbation magnitude z. This feature compression factor “cos(θγ)” explains
the experimentally observed phenomenon that the adversarial attack on the NN classifier can have
an attack of a much smaller magnitude than that required by the optimal classifier. We can also see
that this adversarial fragility comes from the NN classifier’s ∇g(x)’s compression (namely cos(θγ))
of the “good” feature x1 − x2. The key in this analysis is that we analyze the adversarial attack
performance with respect to the NN classifier’s feature compression along the direction looked at by
the optimal classifier, not comparing the worst-case adversarial perturbation against the average-
case random perturbation. From this analysis, we can see feature compression is also a necessary
condition for adversarial fragility to happen, if the magnitudes of the NN classifier’s gradients do not
experience dramatic changes within regions of interest. Please see the appendix for an illustration
of this feature compression explanation.
6 NUMERICAL RESULTS

We present numerical results verifying theoretical predictions on adversarial fragility. In particular,
we focus on the setting described in Theorem 5 (linear networks) and general non-linear networks.

Linear networks: Consider the model of data in Theorem 5. Let X be a d× 2d matrix where each
column of X represents an input data vector of dimension d. Next, we train a linear neural network
with one hidden layer for classification. The input layer of the neural network has dimension d, the
hidden layer has 3000 neurons, and the output layer is of dimension 2. We denote the 3000 × d
weight matrix between the input layer and the hidden layer as H1, and the weight matrix between
the hidden layer and the output layer as a 2×3000 matrix H2. We use the identity activation function
and we use the Adam package in PyTorch for training. The loss function we use in the training
process is the Cross-Entropy loss function. The number of epochs is 20.

For d = 12, each “run” starts by generating a random matrix A, and the data matrix X accordingly.
In generating the data matrix X , we multiply each of A’s columns by 5 except for the last column
(Note that this modification will not change the theoretical predictions in Theorem 5. This is be-
cause the modification will not change the last column of matrix R in the QR decomposition of A).
Then we train a neural network as described above. We repeat training until 10 valid runs (training
accuracy is 1) are collected. Then, in Table 1, we report the results of the 10 valid “experiments”.

Let W1 and W2 be the first and second row of W = H2H1, respectively. Note that W1 and W2

are the two probing vectors mentioned in Theorem 4. For each valid “experiment”, we consider two
different angles, θ1 and θ2. θ1 is the angle between W1−W2 and the last column of A. The physical
meaning of cos(θ1) is how much of the feature (the last column of A) is projected (or compressed)
onto W1 − W2 in the neural network to make classification decisions. By similar derivation as in
Theorem 4, | cos(θ1)| quantifies how much perturbation we can add to the input signal such that
the output of the classifier is changed to the opposite label. For example, when | cos(θ1)| is 0.1970
in Experiment 1 of Table 1, we only need a perturbation 0.1970 of the ℓ2 magnitude of the last
column of A (perturbation is added to the input of the neural network) to change the output of this
neural network to the opposite label. On the other hand, the optimal decoder (the minimum distance
decoder or classifier) would need the input to be changed by at least the ℓ2 magnitude of the last
column of A so that the output of the optimal decoder is changed to the opposite label. The second
angle θ2 is the angle between the first row (namely W1) of W = H2H1 and the last row of the inverse
of A. As modeled in Theorem 5, W1 should be aligned or oppositely aligned with the last row of
the inverse of A, and thus | cos(θ2)| should be close to 1. We also consider the quantity “fraction”
ϕ, which is the ratio of the absolute value of Rd,d over the ℓ2 magnitude of the last column of A.
Theorem 5 theoretically predicts that | cos(θ1)| (or the actual feature compression ratio) should be
close to “fraction” (the theoretical feature compression ratio).

From Table 1 (except for Experiment 7), one can see that using Theorem 5, the actual compres-
sion of the feature vector (the last column of the matrix A) onto the probing vectors (W1 − W2)
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Table 1: Cosine of angles of trained models with training accuracy equal to 1, d = 12.
Experiment No. 1 2 3 4 5 6 7 8 9 10

cos(θ1) −0.1970 −0.1907 −0.6017 −0.2119 −0.2449 −0.5054 −0.7794 −0.5868 −0.1655 −0.4739
cos(θ2) −0.9992 −0.9992 −0.9984 −0.9994 −0.9955 −0.9988 −0.0795 −0.9972 −0.9993 −0.9942

ϕ 0.1812 0.1870 0.5888 0.2048 0.2032 0.4985 0.0738 0.5895 0.1480 0.4497

Table 2: Averages of cosines of angles, for | cos(θ2)| > 0.9, d = 12

Avg. of | cos(θ1)| Avg. of |ϕ| Avg. of
∣∣∣| cos(θ1)| − |ϕ|

∣∣∣
0.3645 0.3280 0.0367

and “fraction” ϕ (the theoretical compression ratio) accurately predict the adversarial fragility. For
example, let us look at Experiment 9. The quantity of ϕ is 0.1480, and thus Theorem 5 predicts
that the adversarial robustness (namely smallest magnitude of perturbation to change the model’s
classification result) of the theoretically-assumed neural network model is only 0.1480 of the best
possible adversarial robustness offered by the optimal classifier. In fact, by the actual computa-
tionally trained neural network experiment, 0.1480 is indeed very close to | cos(θ1)|=0.1665, which
is the size of actual perturbation (relative to the ℓ2 magnitude of the last column of A) needed to
change the practically-trained classifier’s decision to the opposite label. We can see that when the
theoretically predicted compression ratio ϕ is small, the actual adversarial robustness quantified by
| cos(θ1)| is also very small, experimentally validating Theorem 5’s purely theoretical predictions.
We also notice that | cos(θ2)| is very close to 1, matching the prediction of Theorem 5.

We further conduct 50 experiments and see that there are 20 experiments with training accuracy 1.
Among all these 20 experiments with training accuracy 1, we noticed that there are 18 cases with
the absolute value of cos(θ2) over 0.9. Furthermore, for these 18 experiments, we report 3 statistical
values in Table 2. From Table 2, the average value of | cos(θ1)| is 0.3645. It means that on average,
we need 0.3645 of the ℓ2 magnitude of the last column of A to be added to the input signal such
that the output of the classifier is changed to the opposite label. Moreover, we can conclude from
Table 2 that on average, |ϕ| is 0.3280. It represents that the theoretically-predicted compression
ratio needed to change the classifier output is on average 0.3280. We also observe that the average
value of || cos(θ1)|− |ϕ|| is 0.0367, meaning the actual result is close to our theoretical analysis. For
higher dimension inputs up to d = 7, 8, 9, 10, 12, 14, 15, 16, 17, the averaged measurements of the
“fraction” ϕ (the theoretical predicted robustness) and the compressed feature cos(θ1) (the empirical
robustness of trained neural network) are displayed in Figure 1. They match really well.
Feature compression on deep non-linear networks trained on MNIST and ImageNet etc.:
Please see the supplemental materials. The results there also verify the feature compression cos(θ)
leads to adversarial fragility, where our theory matches very well with practically trained NN.

7 CONCLUSION
We provide a matrix-theoretic explanation of the NN adversarial fragility by firstly comparing worst-
case peformance against optimal classifiers. Analytically we show that NN’ adversarial robustness
sometimes can be only 1/

√
d of the best possible adversarial robustness. Limitations of this paper

include the need to extend detailed theoretical analysis and numerical experiments to more general
data distributions, NN architectures and trainings (such as training in Frei et al. (2023)).

Figure 1: Theoretical predictions ϕ (from QR decomposition) match empirical NN’s | cos(θ1)|
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A APPENDIX

A.1 PROOF OF LEMMA 2

Proof. Using the Chernoff Bound, we get that

P (

d∑
i=1

Z2
i ≤ dα) ≤ inf

t<0

E[Πie
tZ2

i ]

etdα
.

However, we know that

E(etZ
2
i ) =

∫ ∞

−∞
P (x)etx

2

dx =
1√
2π

∫ ∞

−∞
e(t−

1
2 )x

2

dx.

Evaluating the integral, we get

E(etZ
2
i ) =

1√
2π

(
2
√
π√

2− 4t

)
=

√
2√

2− 4t
.

This gives us

f(t) =
ΠiE(etZ

2
i )

etdα
=

( √
2

etα
√
2− 4t

)d

.

Since d ≥ 1 and the base is positive, minimizing f(t) is equivalent to maximizing etα
√
2− 4t. Tak-

ing the derivative of this with respect to t, we get etα
(
α
√
2− 4t− 2√

2−4t

)
. Taking the derivative

as 0, we get t = α−1
2α . Plugging this back into f(t), we get

P (X ≤ dα) ≤
(
α(e1−α)

) d
2 = eg(α)d.

We now notice that the exponent g(α) = 1
2 log(αe

1−α) goes towards negative infinity as α → 0,
because log(α) goes to negative infinity as α → 0.

□

A.2 LEMMA 7 AND ITS PROOF

Lemma 7 Let H = Hl−1 · · ·H2H1, where each Hi (1 ≤ i ≤ l − 1) is an ni+1 × ni matrix
composed of i.i.d. standard zero-mean unit-variance Gaussian random variables, and Hi’s are
jointly independent. Here without loss of generality, we assume that for every i, ni+1 ≥ ni.

We let R1, R2, ...., and Rl−1 be l − 1 independent upper triangular matrices of dimension n1 × n1

with random elements in the upper-triangular sections. In particular, for each Ri, 1 ≤ i ≤ l− 1, its
off-diagonal elements in the strictly upper triangular section are i.i.d. standard Gaussian random
variables following distribution N (0, 1); its diagonal element in the j-th row is the square root of a
random variable following the chi-squared distribution of degree ni+1 − j + 1, where 1 ≤ j ≤ n1.

Suppose that we perform QR decomposition on H , namely H = QR, where R is of dimension
n1 × n1. Then R follows the same probability distribution as Rl−1Rl−2 · · ·R2R1, namely the
product of R1, R2, ..., and Rl−1.

12
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Proof. We prove this by induction over the layer index i. When i = 1, we can perform the QR
decomposition of H1 = Q1R1, where R1 is an upper triangular matrix of dimension n1 × n1, Q1

is a matrix of dimension n2 × n1 with orthonormal columns. From random matrix theories Hassibi
& Vikalo (2005); Xu et al. (2004), we know that R1’s off-diagonal elements in the strictly upper
triangular section are i.i.d. standard Gaussian random variables following distribution N (0, 1).; its
diagonal element in the j-th row is the square root of a random variable following the chi-squared
distribution of degree n2 − j + 1.

Let us now consider H2 of dimension n3 × n2. Then

H2H1 = H2Q1R1.

Note that H2Q1 is a matrix of dimension n3 × n1, and the elements of H2Q1 are again i.i.d. ran-
dom variables following the standard Gaussian distribution N (0, 1). To see that, we first notice that
because the rows of H2 are independent Gaussian random variables, the rows of H2Q1 will be mu-
tually independent. Moreover, within each row of H2Q1, the elements are also independent N (0, 1)
random variables because the elements are the inner products between a vector of n2 independent
N (0, 1) elements and the orthonormal columns of Q1. With Q1 having orthogonal columns, these
inner products are thus independent because they are jointly Gaussian with 0 correlation.

Then we can replace H2Q1 with matrix H ′
2 of dimension n3 × n1, with elements of H ′

2 being i.i.d.
N (0, 1) random variables. We proceed to perform QR decomposition of H ′

2 = Q2R2, where R2 is
of dimension n1 × n1. Again, from random matrix theories, we know that R2’s off-diagonal ele-
ments in the strictly upper triangular section are i.i.d. standard Gaussian random variables following
distribution N (0, 1).; its diagonal element in the j-th row is the square root of a random variable
following the chi-squared distribution of degree n3 − j + 1.

Because
H2H1 = Q2R2R1,

and the products of upper triangular matrices are still upper triangular matrices, Q2(R2R1) is the
QR decomposition of H2H1.

We assume that Hi+1Hi...H1 has a QR decomposition Qi+1Ri+1 · · ·R1. Then by the same argu-
ment as going from H1 to H2H1, we have

Hi+2Hi+1Hi...H1 = Qi+2(Ri+2Qi+1Ri+1 · · ·R1)

working as the QR decomposition of Hi+2Hi+1Hi...H1, where Qi+2 is an ni+3 × n1 matrix with
orthonormal columns.

By induction over i, we complete the proof. □

A.3 PROOF OF THEOREM 3

Proof. From the proof of the first part of Theorem 1, we know that for any ϵ > 0, with high
probability, ∥vi − vj∥ > (1 − ϵ)

√
2d for every pair (i, j) where i ̸= j. Now consider a particular

pair (i, j) and fix vi and vj . We further notice

∥xi − xj∥ = ∥Gt · · ·G1(vi − vj)∥.

Because the elements of G1(vi − vj) are independent Gaussian random variables with variance
∥(vi−vj)∥2, due to Chernoff bound similarly appearing in the proof of Lemma 2, ∥G1(vi−vj)∥ ≥
(1− ϵ)∥(vi −vj)∥ with probability at least 1− e−βd, where β > 0 is a constant. By induction over
t, we also have ∥Gt · · ·G1(vi − vj)∥ ≥ (1 − ϵ)∥(vi − vj)∥ with probability at least 1 − e−β1d,
where β1 > 0 is a constant. By the union bound over all pairs of (i, j) where i ̸= j, we conclude
that with high probability,

min
i ̸=j, i=1,2,...,d, j=1,2,...,d

∥xi − xj∥2 ≥ (1− ϵ)
√
2d.

For proving the second part, we use Lemma 7. Firstly, we take H ′ = Hl−1 · · ·H1, and let this
correspond to H1 similarly in the proof of Theorem 1. We also let Hl correspond to H2 in the proof

13
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of 1. Then the arguments in the proof of (1) apply. We obtain that, in order to change the prediction
label, we only need a perturbation of magnitude at most |Rd−1,d−1| + |Rd−1,d| + |Rd,d|, where R
is the upper triangular matrix resulting from the QR decomposition of Gt−1...G1. Moreover, by
Lemma 7,

|Rd−1,d−1|+ |Rd−1,d|+ |Rd,d| ≤ ∥Rt−1∥1B ...∥R1∥1B ,
where ∥Ri∥1B is the sum of the absolute values of elements in the bottom 2 × 2 submatrix of Ri,
and R− i’s are the upper triangular matrices coming from the QR decomposition of Gi, 1 ≤ i ≤ t.
Because with high probability, ∥Rt−1∥1B , ..., ∥R1∥1B will all be bounded by a constant D at the
same time, we can find a perturbation of size bounded by a constant Dt such that it changes the
output decision of the neural network classifier. □

A.4 PROOF OF THEOREM 4

Proof. Suppose x = xi is the ground-truth signal. We use pi and pj as shorts for probei and
probej . So

⟨pi,xi⟩ = r11ai1, ⟨pj ,xi⟩ = r12ai1 + r22ai2.

We want to add ∆ to x such that ⟨pi,xi+∆⟩ < ⟨pj ,xi+∆⟩. Namely, ⟨pi−pj ,∆⟩ < −⟨pi,xi⟩+
⟨pj ,xi⟩. This is equivalent to

⟨pj − pi,∆⟩ > ⟨pi,xi⟩ − ⟨pj ,xi⟩ = r11ai1 − (r12ai1 + r22ai2).

We also know that
⟨pj − pi,∆⟩ = (r12 − r11)∆1 + r22∆2

So, by the Cauchy-Schwarz inequality, we can pick a ∆ such that

⟨pj − pi,∆⟩ = ∥∆∥2
√

(r12 − r11)2 + r222.

So there exists an arbitrarily small constant ϵ > 0 and perturbation vector ∆ such that

∥∆∥ ≤

∣∣∣∣∣r11ai1 − (r12ai1 + r22ai2)√
(r12 − r11)2 + r222

∣∣∣∣∣+ ϵ, (7)

and ⟨pi,xi +∆⟩ < ⟨pj ,xi +∆⟩, (8)

leading to a misclassified label because fj(x+∆) > fi(x+∆). □

A.5 PROOF OF THEOREM 5

Proof. The proof of the first claim follows the same idea as in the proof of the first claim of Theorem
1. The only major difference is that we have 2d−1 × 2d−1 = 22(d−1) pairs of vectors to consider for
the union bound. For each pair of vectors xi and xj , xi −xj still have i.i.d. Gaussian elements with
the variance of each element being at least 4. By Lemma 2 and the union bound, taking constant α
sufficiently small, the exponential decrease (in d) of the probability that ∥xi − xj∥ is smaller than
α
√
d will overwhelm the exponential growth (in d) of 22(d−1), proving the first claim.

Without loss of generality, we assume that the ground-truth signal is xi corresponding to label +1.
Then we consider the QR decomposition of A,

A = QR,

where Q ∈ Rd×d satisfies QT × Q = Id×d, and Rd×d is an upper-triangular matrix. Because the
output neural is f+1(x) = +1 whenever the last element of x is +1 and the other elements of x are
free to take values +1 or -1, wT

+1Hl−1 · · ·H1 must be equal to the last row of A−1 = R−1QT .

We notice that the inverse of R is an upper triangular matrix given by

∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗

. . .

0 0 0 . . . 0 1
Rd−1,d−1

− Rd−1,d

Rd−1,d−1·Rd,d

0 0 0 . . . 0 0 1
Rd,d

 ,
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where we only explicitly express the last two rows.

Then the weights satisfy

wT
+1Hl−1 · · ·H1 =

1

Rd,d
QT

:,d,

and
wT

−1Hl−1 · · ·H1 = − 1

Rd,d
QT

:,d,

where Q:,d is last column of matrix Q. We design perturbation

e = Q× ebasis,

where ebasis = (0, 0, ..., 0, 0,−2Rd,d)
T . We claim that under such a perturbation e, the input will

be xi + e and we have

f+1(xi + e) = −1, and f−1(xi + e) = 1,

thus changing the classification result to the wrong label.

We know that xi = Azi = QRzi, so xi + e = Q(Rzi + ebasis). The last element of Rzi is just
(zi)d ×Rd,d, namely the +1 label multiplied by Rd,d. Then f+1(xi + e) is equal to

wT
+1Hl−1 · · ·H1(xi + e) =

1

Rd,d
(Rd,d − 2Rd,d) = −1,

and f−1(xi + e) is equal to

wT
−1Hl−1 · · ·H1(xi + e) = − 1

Rd,d
(Rd,d − 2Rd,d) = +1,

thus flipping the prediction and achiecing successful adversarial attack.

The magnitude of this perturbation is

∥e∥2 = ∥Q2ebasis∥2 = 2Rd,d. (9)

By random matrix theory Hassibi & Vikalo (2005); Xu et al. (2004)for the QR decomposition of
the Gaussian matrix A, we know that Rd,d is the absolute value of a random variable following
the standard Gaussian distribution N (0, 1). Thus, there exists a constant D such that, with high
probability, under an error e with ∥e∥2 ≤ D, the predicted label of the neural network will be
changed. □

A.6 PROOF OF THEOREM 6

Proof. Suppose that we add a perturbation q to the input x + ϵx1, namely the input becomes
x+ ϵx1 + q. Then

f1(x+ ϵx1 + q) ≈ f1(x+ ϵx1) +∇f1(x)
Tq

f2(x+ ϵx1 + q) ≈ f2(x+ ϵx1) +∇f2(x)
Tq

We want to pick a q such that

f1(x+ ϵx1 + q) ≈ f1(x+ ϵx2)

f2(x+ ϵx1 + q) ≈ f2(x+ ϵx2).

Apparently, we can take q = ϵ(x2−x1) to make this happen. However, we claim we can potentially
take a perturbation of a much smaller size to achieve this goal. We note that

f1(x+ ϵx1 + q) ≈ f1(x) + ϵ∇f1(x)
Tx1 +∇f1(x)

Tq,

f2(x+ ϵx1 + q) ≈ f2(x) + ϵ∇f2(x)
Tx1 +∇f2(x)

Tq.

We want
f1(x) + ϵ∇f1(x)

Tx1 +∇f1(x)
Tq = f1(x) + ϵ∇f1(x)

Tx2,
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Figure 2: Illustration plot of the feature compression concept.

f2(x) + ϵ∇f2(x)
Tx1 +∇f2(x)

Tq = f2(x) + ϵ∇f2(x)
Tx2.

Namely, we want

ϵ∇f1(x)
Tx1 +∇f1(x)

Tq = ϵ∇f1(x)
Tx2,

ϵ∇f2(x)
Tx1 +∇f2(x)

Tq = ϵ∇f2(x)
Tx2.

So

∇f1(x)
Tq = ϵ∇f1(x)

T (x2 − x1),

∇f2(x)
Tq = ϵ∇f2(x)

T (x2 − x1).

Then we can just let q be the projection of ϵ(x2 − x1) onto the subspace spanned by ∇f1(x) and
∇f2(x).

If ∇f1(x), ∇f2(x), and x2 − x1 all have independent standard Gaussian random variables as their
elements, then the square of the magnitude (in ℓ2 norm ) of that projection of x2 − x1 will follow a
chi-squared distribution of degree 2. At the same time, the square of the magnitude of x2 − x1 will
follow the chi-squared distribution with degree d. Moreover, as d → ∞, the square of the magnitude
of x2 − x1 is Θ(d) with high probability. Thus changing from x + ϵx1 to x + ϵx2 will be O(d)
times more difficult than changing the classifier’s label using an adversarial attack. □

A.7 ILLUSTRATION OF THE FEATURE COMPRESSION CONCEPT

We illustrate the concept of feature compression in Figure 2. Here the ground-truth signal x2 belongs
to Class 2. The direction between x2 and its closest point x1 in Class 1 is the feature the optimal
classifier should look at (namely the direction for the “weakest” separation between Class 1 and
x2). However, the NN classifier instead looks at the direction (namely compressed feature direction)
having angle θ with the optimal direction x1−x2. So in order to change label from Class 2 to Class
1, the attacker can just attack along the “compressed feature” direction. For the NN classifier’s
neuron output function, it will take a much smaller distance to change the function value to the same
value as at x1, enabling a successful attack with small magnitude. However, if the direction looked
at the NN classifier is the same as the direction for the “weakest” separation between Class 1 and
x2, we will not have adversarial fragility. Our way of researching this phenomenon is novel because
we compare compressed feature direction against the direction looked at by the optimal classifier,
instead of comparing the performance of compressed-feature-direction attack against NN’s average-
case performance under random-direction noises.

A.8 NUMERICAL RESULTS ON NONLINEAR NEURAL NETWORK, MNIST, AND IMAGENET

Nonlinear networks: We trained 1-hidden-layer (and deeper) non-linear neural networks with
ReLU activations to test Theorem 6. To generate vectors x, x1 and x2, we define two vectors

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

z+1 and z−1 of dimension d. The first d − 1 elements of z+1 are the same as those of z−1,
and take random values +1 or −1. The last element of z+1 is +1 and the last element of z−1

is −1. Then we define vectors b1 = Az+1, and b2 = Az−1. For 10 values of α ∈ [0, 1], set
x = αb1+(1−α)b2 for every scalar α. In Theorem 6, take x1 = b1−x = (1−α)b1− (1−α)b2

and x2 = b2 − x = αb2 − αb1 for every scalar α. With d = 12, we calculated the projection
of x1 − x2 onto the subspace spanned by ∇f1(x) − ∇f2(x) as P∇f1(x)−∇f2(x)(x1 − x2). We
define the following ratio ρ = ∥P∇f1(x)−∇f2(x)(x1 − x2)∥2/∥x1 − x2∥2. By Theorem 6 and the
discussions that follow it, we know ρ is “compression rate” locally: the rate of the compression of
the critical feature x2 − x1 (the feature the optimal classifier should look at) onto the gradient (the
feature actually looked at by the classifier). ρ is also the ratio of tolerable worst-case perturbation of
the trained neural network classifier to that of the optimal classifier (locally). The smaller ρ is, the
less adversarially robust the trained neural network is, compared with the optimal minimum-distance
classifier.

For every α, we calculate the sample mean and medians of ρ over 50 accurate 1-hidden-layer non-
linear neuron networks in Table 3. For example, when α = 0.444, ρ has a mean of 0.3272, meaning
the trained classifier is only 0.3272 (0.32722 ≈ 0.10 when considering the energy of perturbation)
as adversarially robust as the optimal minimum-distance classifier. The ratios are similarly small if
we train neural network classifiers with more layers.

α 0 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889 1
Avg. 0.3278 0.3275 0.3273 0.3270 0.3272 0.3275 0.3274 0.3281 0.3280 0.3276

Medium 0.3270 0.3261 0.3258 0.3255 0.3303 0.3307 0.3293 0.3322 0.3315 0.3324

Table 3: Averages and mediums of ρ

Perturbation analysis on non-linear networks: In the perturbation analysis, input data b and the
non-linear model architecture follow the settings of Theorem 6 with d = 17. We examine cos(θt),
the magnitude m of the last column of A, and the least perturbation magnitude δ. δ represents the
minimum magnitude of perturbation (numerically found via gradient-based adversarial attack) on
the input b required to cause the trained neural network to flip the classifier’s output on b. Let
badv = b + δ be the perturbed input. θt is the angle between ∇(f1(badv) − f2(badv)) and the
last column of A. Over 10 sampled input b1 and 10 sampled input b2, the averaged key values
cos(θt), δ, and magnitude m is displayed in Table 4. The numerical result in 4 confirms our pre-
diction that | cos(θt)| ≈ δ/m, which means that the compression ratio | cos(θt)| is the amount of
adversarial perturbation (δ/m ratio) needed to add to the input signal such that the output of the
classifier is changed to the opposite label. This confirms that feature compression (| cos(θt)| ) leads
to adversarial fragility.

Adversarial attack analysis on non-linear networks trained on MNIST dataset: We trained a
6-layer convolutional neural network for classification on the MNIST dataset. The convolutional
model has 2 convolutional layers, 2 dropout layers, and 2 fully connected layers. The first convo-
lution layer takes an input with 1 channel, has kernel size 3 × 3, and stride of 1, and produces an
output with 32 features. The second convolutional layer takes input with 32 features, has kernel size
3× 3 and stride of 1, and outputs 64 features. The first dropout layer drops 25% of the outputs and
the second dropout layer drops 50% of the outputs. The first fully-connected layer flattens output
from the convolutional layers with 9216 features and outputs 128 features. The final classifier has 10
output classes. The loss function used in the training is Negative Log Likelihood loss, and Adadelta
is the optimizer. The number of epochs is 2.

To describe that feature compression leads to adversarial fragility, we focus on two classes of inputs
I1, representing inputs labeled as 1, and I7, representing inputs labeled as 7. We create artificial
inputs A1 out of I7 by blocking out enough pixels on the upper left stroke of “7”, so that the artificial
input A1 is classified as label 1 by the neural network. By generating an artificial image “1” this
way, we can directly compare the artificial image “1” and the original input image “7”, and calculate

input ↓ key values → cos(θt) δ magnitude (m) δ/m
b1 −0.15324514 0.8023384809494019 5.1928935050964355 0.15450701
b2 −0.14983976 0.7597464323043823 5.1928935050964355 0.14630501

Table 4: Adversarial attack analysis for input d = 17
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half of their distance in ℓ2 norm arguably as the smallest perturbation needed to change the “7”
image such that human eyes (as a substitute for the optimal classifier) can perceive it as “1” image.
Otherwise, because of writing styles or different locations where we write “1” and “7” on the images,
it may not be reasonable to take the ℓ2 norm of their difference as a metric of how far away these
two images are from each other.

Figure 3 is one example of the input image I7 (left of 3) and its corresponding artificial image A1

(right of 3) : We examine θt, the magnitude L = ∥A1 − I7∥2, and the least numerical perturbation

Figure 3: Clean image “7” and artificial image “1”

magnitude Q. L is the magnitude of the difference between the artificial image A1 and the clean
image I7. Q represents the minimum magnitude of perturbation (numerically found by fast gradient
sign method) on the clean input I7 required to cause the trained neural network to make the classifier
misclassify the perturbed image as “1”. Let the perturbed image be Iadv7 = I7+EQ, where ∥EQ∥ =
Q. Here θt is the angle between the image difference A1 − I7 and the gradient ∇(f7(I7)− f1(I7)).
Here f7(·) is the logit of class 7 and f1(·) is the logit of class 1. We take the gradient of f7(I7) −
f1(I7) and evaluate the gradient ∇(f7(I7)− f1(I7)) at the clean image I7.

The key values of cos(θt), L, Q, and M are displayed in Table 5. We let M denote the expected
signed “length” traveled by the adversarial attacker performing the gradient descent attack. We
compute these key values with 5 different clean inputs I7 and their corresponding artificial images
A1. The numerical result in 5 confirms our prediction that | cos(θt)| ≈ Q/(0.5L), which means the
compression ratio | cos(θt)| is the amount of adversarial perturbation (Q/(0.5L)) needed to add to
the input image such that the output of the classifier is changed to the opposite label. In experiments
3 and 4, the difference between | cos(θt)| and Q/(0.5L) might be due to that the fast gradient
method does not find the minimum-magnitude perturbation. This experiment on the MNIST dataset
also confirms that the feature compression (| cos(θt)|) leads to adversarial fragility.

We let X = αA1 + (1 − α)I7, for α ∈ [0, 1]. M is defined below according to (5), and in this
experiment, M is:

M =

∑
α(∥∇(f7(X)− f1(X))∥ cos(θt)(L/(nα − 1))

∥∇(f7(I7)− f1(I7))∥
, where nα is the total number of scalars. We also compute the angle θt between the gradient
∇(f7(X)− f1(X)) at the consecutive images X , and A1 − I7 (the difference between the artificial
image and the clean input). For each experiment, we compute | cos(θt)| regarding each α and their
averages in Table 6. The last row of Table 6 is the average compression rate. These ratios are
generally small, representing the adversarial fragility of trained NN classifiers.

Adversarial attack analysis on non-linear networks trained on ImageNet dataset: We use the
Inception-Resnet-v2 Szegedy et al. (2017) for classification on the ImageNet dataset. To describe
that feature compression leads to adversarial fragility, we focus on two classes of input chosen from
ImageNet: English springer and Afghan hounds, whose sample pictures are shown in Figures 4
and 5. We name the English springer picture as xspr and the Afghan hound picture as xhnd. We
examine θt, the magnitude L = ∥xhnd − xspr∥2, the least numerical perturbation magnitude Q,
and the theoretical expected signed“length” M (± signed according to the angle between the path
direction of the attacker and the gradient, please see Section 5, (5) and the definition of M below)
traveled by the adversarial attacker when performing the gradient descent attack.
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Experiment No. 1 2 3 4 5
M −0.2255 −0.6393 −0.9546 −0.4523 −1.1198
Q 0.2034 0.7255 0.9724 1.0586 1.1309
L 1.5961 2.1024 3.4354 2.5806 2.7998

Q/(0.5L) 0.2548 0.6902 0.5661 0.8187 0.8076
M/(0.5L) −0.2826 −0.6082 −0.5557 −0.3499 −0.7998
cos(θt) −0.2170 −0.3186 −0.2790 −0.2734 −0.3302

Table 5: Adversarial attack analysis on MNIST. Ideally, theoretical |M/(0.5L)| should be close
to Q/(0.5L), which is the case for 1, 2, 3, 5, and approximately so for 4. The gap for image 4
may be due to approximation errors in the analysis or the suboptimality of the found adversarial
perturbation.

Experiment No.→ α ↓ 1 2 3 4
0.0 −0.1557 −0.4023 −0.3749 −0.2003
0.1 −0.1692 −0.4194 −0.3675 −0.2019
0.2 −0.2015 −0.4240 −0.3861 −0.2024
0.3 −0.1574 −0.4273 −0.4037 −0.2374
0.4 −0.1422 −0.3988 −0.3698 −0.2525
0.5 −0.0882 −0.3988 −0.3689 −0.2408
0.6 −0.0231 −0.3424 −0.3182 −0.2459
0.7 −0.0794 −0.2326 −0.1864 −0.1630
0.8 −0.0813 −0.0409 −0.0123 −0.1286
0.9 −0.0794 −0.0127 −0.0366 −0.0186
1.0 −0.1127 −0.0153 −0.0729 −0.0317

Avg. −0.1136 −0.2831 −0.2634 −0.1748

Table 6: MNIST: cos(θt) regarding each consecutive image

Figure 4: English springer Figure 5: Afghan hound
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Figure 6: Magnitudes of cos(θα), for α ∈ [0, 1] in experiment 1

L is the magnitude of the difference between xspr and xhnd. Q represents the minimum magnitude
of the perturbation (numerically found by the least-likely class attack Kurakin et al. (2017)) on xspr

required to cause the trained neural network to make the classifier misclassify the perturbed image
as Afghan hound. Let the perturbed image be xadv

spr = xspr + EQ where ∥EQ∥ = Q. Here θt is the
angle between the difference in image xhnd − xspr and the gradient ∇(fspr(xspr) − fhnd(xspr)).
Here fspr is the logit of class English springer and fhnd the logit of class Afghan hound. We take
the gradient of fspr(xspr) − fhnd(xspr) and evaluate the gradient ∇(fspr(xspr) − fhnd(xspr)) at
the image xspr.

We let xα = αxspr + (1 − α)xhnd, for α ∈ [0, 1]. We compute the angle θα between the gradient
∇(fspr(xα) − fhnd(xα)) at the consecutive images xα, and xhnd − xspr. For each experiment,
we compute cos(θα) regarding each α and their averages in Table 7. The last row of Table 7 is the
average compression rate. These ratios are generally small, representing the adversarial fragility of
trained NN classifiers on ImageNet. For each English springer image, we select the corresponding
closest Afghan hound image that has the smallest l2-norm difference from it. To describe the change
in magnitudes of cos(θα), we take the 100 different scalars α, α ∈ [0, 1], and plot | cos(θα)| in terms
of α, as shown in Figure 6.

We let M denote the expected signed “length” traveled by the adversarial attacker performing the
gradient descent attack. M is defined below according to (5), and in this experiment, M is:

M =

∑
α(∥∇(fspr(xα)− fhnd(xα))∥ cos(θα)(L/(nα − 1))

∥∇(fspr(xspr)− fhnd(xspr))∥
,

where nα is the total number of scalars. Note that the denominator ∥∇(fspr(xspr) − fhnd(xspr)∥
represents the gradient at the benign English springer image, and the numerator is the value of the
change D in (5). Since the adversarial perturbation is small in magnitude, the adversarial attacker
will travel a short distance from the benign image, there is no big change for the gradient of the
g(·) function in Section 5 and we can approximate the gradient on the path traveled by the attacker
as ∥∇(fspr(xspr) − fhnd(xspr)∥. Thus by (5) and (6), the definition of M above represents the
theoretical prediction for the needed magnitude of the adversarial perturbation, after we take the
absolute value of M .

The key values of L, Q and M are displayed in Table 8: We compute these key values with 4
different English springer images as NN inputs.

The numerical result in Table 8 confirms our prediction that |M/(0.5L)| ≈ Q/(0.5L), which means
that the theoretical predicted length traveled by the adversarial attacker is close to the magnitude
of the actual practically found adversarial perturbation Q/(0.5L) found by the adversarial attack
algorithm such that the output of the classifier is changed to the Afghan hound. In these experiments,
the difference between |M/(0.5L)| and Q/(0.5L) might be due to that the least-likely class attack
does not find the minimum-magnitude perturbation and approximations in our analysis (for example,
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Experiment No.→ α ↓ 1 2 3 4
0.0 0.0011 0.0022 −0.0022 −0.0008
0.1 0.0037 −0.0021 0.0015 0.0003
0.2 −0.0036 0.0076 −0.0029 −0.0056
0.3 −0.0020 0.0041 0.0005 −0.0059
0.4 −0.0091 −0.0035 0.0058 0.0026
0.5 −0.0057 −0.0060 −0.0199 −0.0098
0.6 −0.0094 −0.0042 −0.0011 −0.0051
0.7 −0.0009 −0.0055 −0.0039 −0.0035
0.8 0.0014 −0.0034 −0.0018 −0.0059
0.9 −0.0005 −0.0008 −0.0020 −0.0024
1.0 0.0012 −0.0004 0.0008 −0.0011

Avg. −0.0022 −0.0348 −0.0024 −0.0034

Table 7: ImageNet: cos(θα) regarding each consecutive image

assuming that the gradient around the benign image remains the same). This experiment on the
ImageNet also confirms that the feature compression leads to adversarial fragility.

Experiment No. 1 2 3 4
M/(0.5L) −0.0765 −0.03486 −0.03865 −0.0806

Q 5.8044 5.8278 5.8693 5.8207
L 198.2214 160.8016 193.3129 171.4597

Q/(0.5L) 0.0722 0.0828 0.0607 0.0679

Table 8: Adversarial attack analysis on ImageNet
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B I. TECHNICAL DETAILS FOR REPRODUCING NUMERICAL RESULTS

Computing infrastructure: For all numerical experiments, we used 32 NVIDIA GeForce RTX
2080 Ti GPUs. The memory limit is 32GB.

Code Implementation: We provide our code implementations of the three models tested for adver-
sarial fragility:

Linear-network:
https://drive.google.com/file/d/1zX3NTGYy-q7OW52cChiWD6V6VF9kqCKb/view?usp=share_link

Nonlinear neural network trained on MNIST:
https://drive.google.com/file/d/1S4-ZpMcV_H0DCFr37Y32AA17NcZwQKaK/view?usp=share_link

Nonlinear neural network (Inception-Resnet-v2), ImageNet:
https://drive.google.com/file/d/1xis0L-PObPcE-uI_0Kw3DDnx5g44yvOv/view?usp=share_link
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