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ABSTRACT

Generative flow networks (GFlowNets) are a family of algorithms for training a
sequential sampler of discrete objects under an unnormalized target density and
have been successfully used for various probabilistic modeling tasks. Existing
training objectives for GFlowNets are either local to states or transitions, or prop-
agate a reward signal over an entire sampling trajectory. We argue that these
alternatives represent opposite ends of a gradient bias-variance tradeoff and pro-
pose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by
the TD(𝜆) algorithm in reinforcement learning, we introduce subtrajectory bal-
ance or SubTB(𝜆), a GFlowNet training objective that can learn from partial ac-
tion subsequences of varying lengths. We show that SubTB(𝜆) accelerates sam-
pler convergence in previously studied and new environments and enables train-
ing GFlowNets in environments with longer action sequences and sparser reward
landscapes than what was possible before. We also perform a comparative anal-
ysis of stochastic gradient dynamics, shedding light on the bias-variance tradeoff
in GFlowNet training and the advantages of subtrajectory balance.

1 INTRODUCTION

Generative flow networks (GFlowNets; Bengio et al., 2021a) are generative models that construct
objects lying in a target space X by taking sequences of actions sampled from a learned policy.
GFlowNets are trained so as to make the probability of sampling an object 𝑥 ∈ X proportional to a
given nonnegative reward 𝑅(𝑥). GFlowNets’ use of a parametric policy that can generalize to states
not seen during training makes them a competitive alternative to methods based on local exploration
in various probabilistic modeling tasks (Bengio et al., 2021a; Malkin et al., 2022; Zhang et al., 2022;
Jain et al., 2022; Deleu et al., 2022).

GFlowNets solve the variational inference problem of approximating a target distribution over X
with the distribution induced by the sampling policy, and they are trained by algorithms reminiscent
of reinforcement learning (although GFlowNets model the diversity present in the reward distribu-
tion, rather than maximizing reward by seeking its mode). In most past works (Bengio et al., 2021a;
Malkin et al., 2022; Zhang et al., 2022; Jain et al., 2022), GFlowNets are trained by exploratory
sampling from the policy and receive their training signal from the reward of the sampled object.
The flow matching (FM) and detailed balance (DB) learning objectives for GFlowNets proposed in
Bengio et al. (2021a;b) resemble temporal difference learning (Sutton & Barto, 2018).

A third objective, trajectory balance (TB), was proposed in Malkin et al. (2022) to address the
problem of slow temporal credit assignment with the FM and DB objectives. The TB objective
propagates learning signals over entire episodes, while the temporal difference-like objectives (FM
and DB) make updates local to states or actions. It has been hypothesized by Malkin et al. (2022) that
the improved credit assignment with TB comes at the cost of higher gradient variance, analogous
to the bias-variance tradeoff seen in temporal difference learning (TD(𝑛) or TD(𝜆)) with different
eligibility trace schemes (Sutton & Barto, 2018; Kearns & Singh, 2000; van Hasselt et al., 2018;
Bengio et al., 2020). This hypothesis is one of the starting points for the present paper.

In this paper, we propose a new learning objective for GFlowNets, called subtrajectory balance
(SubTB, or SubTB(𝜆) when its real-valued hyperparameter 𝜆 is specified). Building upon theoretical
results of Bengio et al. (2021b); Malkin et al. (2022), we show how the SubTB(𝜆) objective allows
the flexibility of learning from partial experiences of any length. Experiments on two synthetic and
four real-world domains support the following empirical claims:

1



(1) SubTB(𝜆) improves convergence of GFlowNets in previously studied environments: models
trained with SubTB(𝜆) approach the target distribution in fewer training iterations and are less
sensitive to hyperparameter choices.

(2) SubTB(𝜆) enables training of GFlowNets in environments where past approaches perform
poorly due to sparsity of the reward function or length of action sequences.

(3) The benefits of SubTB(𝜆) are explained by lower variance of the stochastic gradient, with the
parameter 𝜆 allowing interpolation between the high-bias, low-variance DB objective and the
low-bias, high-variance TB objective.

2 METHOD

2.1 PRELIMINARIES

In this section, we summarize the necessary preliminaries on GFlowNets. We follow the notation of
Malkin et al. (2022), to which the reader is directed for a more thorough exposition written with a
view towards motivating the trajectory and subtrajectory balance objectives. A deeper introduction
is given in Bengio et al. (2021b).

Let 𝐺 = (S,A) be a directed acyclic graph. The vertices 𝑠 ∈ S are called states and the directed
edges (𝑢→𝑣) ∈ A are actions. If (𝑢→𝑣) is an edge, we say 𝑣 is a child of 𝑢 and 𝑢 is a parent of 𝑣.
There is a unique initial state 𝑠0 ∈ S with no parents. States with no children are called terminal,
and the set of terminal states is denoted by X.

A trajectory or an action sequence is a sequence of states 𝜏 = (𝑠𝑚→𝑠𝑚+1→ . . .→𝑠𝑛), where each
(𝑠𝑖→𝑠𝑖+1) is an action. The trajectory is complete if 𝑠𝑚 = 𝑠0 and 𝑠𝑛 is terminal. The set of complete
trajectories is denoted by T .

A (forward) policy is a collection of distributions 𝑃𝐹 (−|𝑠) over the children of every nonterminal
state 𝑠 ∈ S. A forward policy determines a distribution over T by

𝑃𝐹 (𝜏 = (𝑠0→ . . .→𝑠𝑛)) =
𝑛−1∏
𝑖=0

𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖). (1)

Any distribution over complete trajectories that arises from a forward policy satisfies a Markov prop-
erty: the marginal choice of action out of a state 𝑠 is independent of how 𝑠 was reached. Conversely,
any Markovian distribution over T arises from a forward policy (Bengio et al., 2021b).

A forward policy can thus be used to sample terminal states 𝑥 ∈ X by starting at 𝑠0 and iteratively
sampling actions from 𝑃𝐹 , or, equivalently, taking the terminating state of a complete trajectory
𝜏 ∼ 𝑃𝐹 (𝜏). The marginal likelihood of sampling 𝑥 ∈ X is the sum of likelihoods of all complete
trajectories that terminate at 𝑥.

Suppose that a nontrivial (not identically 0) nonnegative reward function 𝑅 : X → R≥0 is given.
The learning problem solved by GFlowNets is to estimate a policy 𝑃𝐹 such that the likelihood of
sampling 𝑥 ∈ X is proportional to 𝑅(𝑥). That is, there should exist a constant 𝑍 such that

𝑅(𝑥) = 𝑍
∑︁

𝜏=(𝑠0→...→𝑠𝑛=𝑥 )
𝑃𝐹 (𝜏) ∀𝑥 ∈ X. (2)

If (2) is satisfied, then 𝑍 =
∑

𝑥∈X 𝑅(𝑥).
2.2 GFLOWNET TRAINING OBJECTIVES

Because the sum in (2) may be intractable to compute, it is in general not possible to directly convert
this constraint into a training objective. To solve this problem, GFlowNet training objectives intro-
duce auxiliary variables in the parametrization in various ways, but all have the property that (2) is
satisfied at the global optimum. The key properties of these objectives are summarized in Table 1.

Flow matching (FM; Bengio et al., 2021a). Motivating the ‘flow network’ terminology, Bengio
et al. (2021a) proved that (2) is satisfied if 𝑃𝐹 arises from an edge flow function satisfying certain
constraints. Namely, an assignment 𝐹 : A → R≥0 of a nonnegative number (flow) to each action
defines a policy via

𝑃𝐹 (𝑡 |𝑠) =
𝐹 (𝑠→𝑡)∑

𝑡 ′:(𝑠→𝑡 ′ ) ∈A 𝐹 (𝑠→𝑡′) . (3)

A sufficient condition for the terminating distribution of 𝑃𝐹 to be proportional to the reward 𝑅(𝑥) is
that a family of flow-matching (flow in = flow out) conditions is satisfied at all interior states and a
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Table 1: Summary of GFlowNet training objectives.
Objective Parametrization Locality

Flow matching edge flow 𝐹 (𝑠→𝑡; 𝜃) state 𝑠
Detailed balance state flow 𝐹 (𝑠; 𝜃), policies 𝑃𝐹 (−|−; 𝜃), 𝑃𝐵 (−|−; 𝜃) action 𝑠→𝑡
Trajectory balance initial state flow 𝑍𝜃 , policies 𝑃𝐹 (−|−; 𝜃), 𝑃𝐵 (−|−; 𝜃) complete trajectory 𝜏

Subtrajectory balance state flow 𝐹 (𝑠; 𝜃), policies 𝑃𝐹 (−|−; 𝜃), 𝑃𝐵 (−|−; 𝜃) (partial) trajectory 𝜏

family of reward-matching conditions is satisfied at terminal states:∑︁
𝑠:(𝑠→𝑡 ) ∈A

𝐹 (𝑠→𝑡) =
∑︁

𝑢:(𝑡→𝑢) ∈A
𝐹 (𝑡→𝑢) ∀𝑡 ∈ S \ (X ∪ {𝑠0}),∑︁

𝑠:(𝑠→𝑥 ) ∈A
𝐹 (𝑠→𝑥) = 𝑅(𝑥) ∀𝑥 ∈ X. (4)

The flow 𝐹 (𝑠→𝑡) is then proportional to the marginal likelihood that a complete trajectory sampled
from 𝑃𝐹 includes the action 𝑠→𝑡.

In Bengio et al. (2021a), a GFlowNet is described by a parametric estimate of the edge flow function,
𝐹 (𝑢→𝑣; 𝜃) (a neural net with parameters 𝜃). These conditions can be converted into objectives that
are minimized when (4) is satisfied. For example, the flow-matching objective at a nonterminal state
𝑠 is defined by

LFM (𝑠) =
(
log

∑
𝑠:(𝑠→𝑡 ) ∈A 𝐹 (𝑠→𝑡; 𝜃) + 𝜖∑
𝑢:(𝑡→𝑢) ∈A 𝐹 (𝑡→𝑢; 𝜃) + 𝜖

)2

, (5)

where 𝜖 is a smoothing constant that can safely be set to 0 if the flows are constrained to be strictly
positive, and a similar objective (or a constraint by construction) is defined to force the flow 𝐹 (𝑠→𝑥)
into terminal states 𝑥 to match 𝑅(𝑥). If these objectives are globally minimized for all states 𝑠, then
the policy 𝑃𝐹 (−|−; 𝜃) defined by 𝐹 (−; 𝜃) via (3) satisfies (2), with 𝑍 =

∑
𝑡:(𝑠0→𝑡 ) ∈A 𝐹 (𝑠→𝑡; 𝜃) =∑

𝑥∈X 𝑅(𝑥). The question of how to sample states 𝑠 for training is discussed below.

Detailed balance (DB; Bengio et al., 2021b; Malkin et al., 2022). In the DB parametrization, a
forward policy model 𝑃𝐹 (−|−; 𝜃) is learned directly, jointly with two additional objects: a backward
policy model 𝑃𝐵 (−|−; 𝜃), which can predict a distribution over the parents of any noninitial state,
and a state flow function 𝐹 (𝑠; 𝜃) (typically parametrized in the log domain). The detailed balance
conditions state that

𝐹 (𝑠; 𝜃)𝑃𝐹 (𝑡 |𝑠; 𝜃) = 𝐹 (𝑡; 𝜃)𝑃𝐵 (𝑠 |𝑡; 𝜃) (6)
for all actions (𝑠→𝑡) and 𝐹 (𝑥; 𝜃) = 𝑅(𝑥) for 𝑥 terminal. Satisfaction of these conditions for all
actions (𝑠→𝑡) and 𝑥 ∈ X implies that 𝑃𝐹 samples proportionally to the reward (i.e., satisfies (2), with
𝑍 = 𝐹 (𝑠0)). The DB condition (6) can be converted into a squared log-ratio objective LDB (𝑠→𝑡) in
the same way that (4) yields (5), and LDB (𝑠→𝑡) can be optimized over sampled actions (𝑠→𝑡).
Trajectory balance (TB; Malkin et al., 2022). The parametrization required for the TB objective
includes forward and backward policy models 𝑃𝐹 (−|−; 𝜃) and 𝑃𝐵 (−|−; 𝜃), as well as an estimate
𝑍𝜃 of the constant of proportionality in (2). Satisfaction of the following condition for all complete
trajectories 𝜏 = (𝑠0→ . . .→𝑠𝑛) implies that (2) is satisfied:

𝑍𝜃𝑃𝐹 (𝜏; 𝜃) = 𝑅(𝑠𝑛)𝑃𝐵 (𝜏 |𝑠𝑛; 𝜃), (7)
where we have used the conventions

𝑃𝐹 (𝜏; 𝜃) =
𝑛−1∏
𝑖=0

𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖; 𝜃), 𝑃𝐵 (𝜏 |𝑠𝑛; 𝜃) =
𝑛−1∏
𝑖=0

𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1; 𝜃).

The condition (7) can again be made into a squared log-ratio objective LTB (𝜏) and optimized for
complete trajectories 𝜏 taken from some training policy. In Malkin et al. (2022), the TB objective
was empirically demonstrated to have better convergence properties than FM and DB on various
problem domains.

Training policy and exploration. Global minimization of the FM, DB, and TB objectives for all
values of their respective arguments (states, actions, or complete trajectories) implies satisfaction of
(2). Therefore, given a sufficiently expressive model and convergence of the optimization procedure,
a GFlowNet policy that samples 𝑥 with likelihood proportional to 𝑅(𝑥) can be trained by minimizing
any of these losses over a distribution with full support, enabling offline training of GFlowNets. As
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in other RL algorithms, the distribution over sampled states, actions, or episodes can be fixed and
off-policy, or can vary over the course of training and use available information about terminal
states in interesting ways (Zhang et al., 2022; Deleu et al., 2022). The simplest approach, which
is also taken in this paper, is on-policy learning or a very similar off-policy variant that flattens the
current policy to ensure exploration. Complete trajectories 𝜏 = (𝑠0→ . . .→𝑠𝑛) are sampled from
the forward policy 𝑃𝐹 (−|−; 𝜃) (tempered or mixed with a uniform policy with a small weight so
as to ensure full support and exploration). One then takes gradient descent steps on LTB (𝜏), on
LDB (𝑠𝑖→𝑠𝑖+1) over all actions in 𝜏, or on LFM (𝑠𝑖) for all intermediate states in 𝜏.

The GFlowNets in this paper are trained on-policy, or off-policy with a training policy that is a
mixture of 𝑃𝐹 with a uniform policy: 𝜏 = (𝑠0→𝑠1→ . . .→𝑠𝑛) is sampled with 𝑠𝑖+1 ∼ (1 −
𝜖)𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖; 𝜃) + 𝜖 1

#{𝑡:(𝑠→𝑡 ) ∈A} . Here 𝜖 is the random exploration weight.

2.3 SUBTRAJECTORY BALANCE: LEARNING FROM PARTIAL EPISODES

Recall the GFlowNet parametrization used in the DB objective above, with a state flow estimator
𝐹 (−|−; 𝜃) and a pair of policies 𝑃𝐹 (−|−; 𝜃), 𝑃𝐵 (−|−; 𝜃). It is shown in §A.2 of Malkin et al. (2022)
that the detailed balance conditions (6) are satisfied for all actions if and only if the following subtra-
jectory balance constraint holds for all (not necessarily complete) trajectories 𝜏 = (𝑠𝑚→ . . .→𝑠𝑛):

𝐹 (𝑠𝑚; 𝜃)
𝑛−1∏
𝑖=𝑚

𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖; 𝜃) = 𝐹 (𝑠𝑛; 𝜃)
𝑛−1∏
𝑖=𝑚

𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1; 𝜃), (8)

where we again enforce that 𝐹 (𝑥; 𝜃) = 𝑅(𝑥) if 𝑥 is terminal. Observe that the DB condition (6) is a
special case of (8) when the trajectory consists of one action, and the TB condition (7) is precisely
the case when 𝜏 is complete, with the identification 𝑍𝜃 = 𝐹 (𝑠0; 𝜃).
The above constraint yields the subtrajectory balance objective

LSubTB (𝜏) =
(
log

𝐹 (𝑠𝑚; 𝜃)∏𝑛−1
𝑖=𝑚 𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖; 𝜃)

𝐹 (𝑠𝑛; 𝜃)∏𝑛−1
𝑖=𝑚 𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1; 𝜃)

)2

. (9)

If this objective is made equal to 0 for all partial trajectories 𝜏, where 𝑅(𝑠𝑛) is substituted for
𝐹 (𝑠𝑛; 𝜃) if 𝑠𝑛 is terminal, then the policy 𝑃𝐹 satisfies the desired condition (2). (Proof: When
LSubTB (𝜏) = 0, (8) is satisfied, implying satisfaction of both (7) and (6). Either of these conditions
is a sufficient condition for (2), as shown by Bengio et al. (2021b); Malkin et al. (2022).)

Extracting subtrajectories for training. Suppose that an episode (complete trajectory) 𝜏 =

(𝑠0→𝑠1→ . . .→𝑠𝑛) is sampled for training. There are
(𝑛+1

2
)
= 𝑂 (𝑛2) nontrivial subtrajectories:

𝜏𝑖: 𝑗 := (𝑠𝑖→𝑠𝑖+1→ . . .→𝑠 𝑗 ), 0 ≤ 𝑖 < 𝑗 ≤ 𝑛. (10)

Having sampled a complete trajectory 𝜏 for training, we make gradient steps on a convex combina-
tion of the subtrajectory balance losses LSubTB (𝜏𝑖: 𝑗 ): 𝜃 ← 𝜃 − ∇𝜃L, where

L =

∑
0≤𝑖< 𝑗≤𝑛 𝜆

𝑗−𝑖LSubTB (𝜏𝑖: 𝑗 )∑
0≤𝑖< 𝑗≤𝑛 𝜆 𝑗−𝑖 . (11)

Here 𝜆 > 0 is a hyperparameter controlling the weights assigned to subtrajectories of different
lengths, and when 𝜆 is set to 1, it leads to a uniform weighting scheme. Notice that the 𝜆→ 0+ limit
leads precisely to the average detailed balance loss LDB (𝑠𝑖→𝑠𝑖+1) over all transitions in 𝜏, while the
𝜆→ +∞ limit gives the trajectory balance objective LTB (𝜏).1

Other schemes for weighting subtrajectories are possible and should be explored in future work.

Computational considerations. It may appear that the optimization of (11) induces a computation
cost that is quadratic in the trajectory length. However, a closer inspection of the gradient of (11)
with respect to the state flows log 𝐹 (𝑠𝑖; 𝜃) and the forward and backward policy logits shows that
gradient computation requires only one forward and one backward pass through the neural networks
giving log 𝐹 (𝑠; 𝜃), log 𝑃𝐹 (−|𝑠𝑖; 𝜃), and log 𝑃𝐵 (−|𝑠𝑖; 𝜃). The quadratic computation cost is incurred
only in performing linear operations on these log-flows and policy logits, not in the evaluation of the
deep networks. Thus the SubTB loss has little computation overhead over DB or TB.

1When a batch of trajectories is used for training, the convex combination weights may either be normalized
over all subtrajectories of all trajectories in the batch, or normalized independently over the subtrajectories of
each trajectory. For consistency, we choose the first option for the experiments in this paper.
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Hypothesized benefits. We hypothesize that SubTB(𝜆) brings two benefits to GFlowNet training:

VARIANCE REDUCTION. The TB loss terms LTB (𝜏) for trajectories 𝜏 that take a given sequence
of actions until a state 𝑠, then diverge, share the terms log 𝑍 and the policy logits for all transitions
preceding 𝑠 inside the square. However, the ‘tail’ of the TB loss, involving the forward and back-
ward policy logits for transitions that appear after 𝑠 in 𝜏, can be seen as a stochastic least-squares
regression target. That is, if 𝑠 = 𝑠𝑚 in a trajectory 𝜏 = (𝑠0→𝑠1→ . . .→𝑠𝑛), then

log

(
𝑍 ·

𝑚−1∏
𝑖=0

𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖)
𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1)

)
(12)

is regressed to

log

(
𝑅(𝑠𝑛) ·

𝑛−1∏
𝑖=𝑚

𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1)
𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖)

)
. (13)

Similarly, for trajectories that share the transitions following 𝑠 but may differ in their initial actions,
(12) is a stochastic regression target for (13).

The subtrajectory balance loss terms LSubTB (𝜏𝑚: 𝑗 ) for partial trajectories beginning at 𝑠 regress the
log-state flow log 𝐹 (𝑠) to (parts of) expressions like (13), while loss terms LSubTB (𝜏𝑖:𝑚) regress
(parts of) expressions like (12) to the log-state flow log 𝐹 (𝑠). The learned log 𝐹 (𝑠) is thus a learned
estimate of a stochastic piece of the TB loss for trajectories that contain 𝑠. Replacing a stochastic
term in the TB loss by a learned estimate of its expectation is guaranteed to introduce bias into the
gradient (with respect to the gradient of the TB loss), but is expected to reduce variance. This is akin
to the variance-reducing effect of actor-critic methods in RL.

This hypothesis is studied empirically in our experiments and in particular §4.1.1, where we provide
evidence that SubTB(𝜆) is a practically useful interpolation between TB (high variance) and DB
(low variance, high bias relative to the true TB gradient) losses.

FASTER LEARNING DUE TO GENERALIZATION OF STATE FLOWS. Another benefit of subtrajec-
tory balance for convergence speed may come from the ability of estimated state flow functions
log 𝐹 (𝑠; 𝜃) to be modeled with high precision and generalize between states 𝑠 faster than the often
high-dimensional policy logits log 𝑃𝐹 (−|𝑠; 𝜃), log 𝑃𝐵 (−|𝑠; 𝜃). Such generalization is important in
problems where the state graph becomes ‘wide’ far from the initial state, making the learning signal
sparse at states that are near termination. Indeed, in all of our experiment domains except the hy-
pergrids in §4.1 – and for the largest hypergrids – the number of terminal states is many orders of
magnitude larger than the total number of states seen in training.

3 RELATED WORK

Eligibility traces. SubTB(𝜆) draws inspiration from the TD(𝜆) algorithm in RL (Sutton, 1988;
Sutton & Barto, 2018), which forms an estimate of the expected return via a convex combination
of 𝑛-step returns, each weighed by (1 − 𝜆)𝜆𝑛−1. The parameter 𝜆 ∈ [0, 1] enables a bias-variance
tradeoff (Kearns & Singh, 2000). Intuitively, larger 𝜆 leads to lower bias and higher variance, since
the estimate of the expected return approaches the single-point Monte Carlo estimate as 𝜆 → 1.
We take inspiration from this idea to mix together different (possibly all) subtrajectories, akin to
how 𝑛-step returns are mixed together. We hypothesize that the right mixing may reduce variance,
compared to TB, with the additional benefits of inducing consistency between the flows of interme-
diate states, and thus of helping propagate credit faster and enable faster convergence. In addition,
GFlowNet training objectives are reminiscent of residual gradient RL methods (Baird, 1995; Zhang
et al., 2020) since the “endpoint” (e.g. 𝐹 (𝑠𝑛) in (9)) is also considered in the gradient.

MaxEnt RL. RL has a rich literature on energy-based, or maximum entropy, methods (Ziebart,
2010; Mnih et al., 2016; Haarnoja et al., 2017; Nachum et al., 2017; Schulman et al., 2017; Haarnoja
et al., 2018), which are close or equivalent to the GFlowNet framework in certain settings (in par-
ticular when the MDP has a tree structure (Bengio et al., 2021a)). Also related are methods that
maximize entropy not on the policy, but rather on the state visitation distribution (Hazan et al.,
2019; Islam et al., 2019; Zhang et al., 2021) or some proxy of it (Eysenbach et al., 2018), which
achieve a similar objective to GFlowNet models by flattening the state visitation distribution. If
the state graph of the environment is a directed tree, the loss LSubTB on individual subtrajectories
is equivalent to that of path consistency learning (Nachum et al., 2017). However, attempts to use
path consistency learning in settings without intermediate rewards have only computed the loss on
subtrajectories that have length 1 or include a terminal state (Guo et al., 2021).
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Figure 3: 𝐿1 distance between empirical and target distributions over the course of training on
the hypergrid environment. SubTB(𝜆 = 0.9) consistently gives faster convergence than TB, the
strongest objective from past work, on all grid sizes. The difference is especially visible for the
harder variant of the reward function (last row). The 𝑥-axis is the cumulative number of training
trajectories (episodes).

4 EXPERIMENTS

4.1 HYPERGRID: ROBUSTNESS TO SPARSE REWARDS

Figure 1: 16 × 16 hyper-
grid reward function.

We study the synthetic hypergrid environment introduced in Bengio et al.
(2021a). The set of interior states is a 𝑑-dimensional hypergrid of size
𝐻 × 𝐻 × · · · × 𝐻 with a multimodal reward function concentrated near
each of the 2𝑑 corners of the hypergrid (see Bengio et al. (2021a); Malkin
et al. (2022) and Fig. 1). The initial state is (0, 0, . . . , 0), and each action
is a step that increments one of the 𝑑 coordinates by 1 without leaving
the grid. A special termination action is also allowed from each state.
This environment is designed to challenge a learning agent to infer and
discover new modes from those that have been already been visited.

We study various sizes of 2-dimensional and 4-dimensional hypergrids,
using the hardest variant of the reward function from past work (the minimal reward, away from
the corners of the grid, is set to 10−3). We train GFlowNets to sample from the target reward
functions and plot the evolution of the 𝐿1 distance between the target distribution and the empirical
distribution of the last 2 · 105 states seen in training.2 In all cases, we tune the learning rates for the
TB and SubTB(𝜆 = 0.9) objectives. (See §A for details.)
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SubTB(0.9)

Figure 2: Distribution of 2 ×
105 samples from GFlowNets
trained on the harder variant
of the 32 × 32 grid with TB
and SubTB(𝜆) objectives.

The results (mean and standard deviation over three random runs)
are shown in the first two rows of Fig. 3. Models trained with
SubTB(𝜆) converge faster, and with less variance between random
seeds, to the true distribution than with TB for all hypergrid sizes.

We also study an even sparser variant of the environment, in which
the background reward is set to 10−4. In this case, SubTB(𝜆) con-
tinues to perform strongly (last row of Fig. 3), while models trained
with TB do not even discover all modes of the target distribution for
grids larger than 8 × 8 (Fig. 2).

Additional results are given in §A.1. In particular, SubTB(𝜆) con-
tinues to perform strongly when only subtrajectories of less than a certain length are used for training,
which can be beneficial in realistic settings where only partial episodes are given. We also show the
effect of 𝜆 on the convergence rate (Fig. A.2) and of more exploratory training policies (Fig. A.3).

2Such an evaluation is possible in this synthetic environment because the exact target distribution function
can be tractably computed. Note that the metric shown in Fig. 3 differs from what is called ‘𝐿1 distance’ in
past work, as we do not divide by the total number of states.
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Figure 4: Mean cosine similarity between small-batch (2𝑘) and large-batch (1024) gradients at se-
lected training iterations. Left: Small-batch vs. large-batch gradients of DB, SubTB(𝜆), and TB
objectives. Right: Small-batch DB, SubTB(𝜆), and TB gradients vs. large-batch TB gradient.

4.1.1 A CLOSER LOOK AT GRADIENT VARIANCE
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Figure 5: Mean cosine simi-
larity between small-batch (64)
and large-batch (1024) gradients
on the 8 × 8 grid environment.
Above: Self-similarity of the
DB, SubTB(𝜆), and TB gradi-
ents, showing DB < SubTB(𝜆)
< TB in gradient variance. Be-
low: Similarity of small-batch
DB, SubTB(𝜆), and TB gradi-
ents to the large-batch TB gradi-
ent, showing that the small-batch
SubTB(𝜆) gradient is a good es-
timator of large-batch TB.

We take a closer look at gradient bias and variance to understand
the benefits of training GFlowNets with SubTB(𝜆). The method-
ology of these experiments is inspired by Ilyas et al. (2020).

We train GFlowNets on the 8 × 8 grid environment using
SubTB(𝜆 = 0.8) and monitor various gradient metrics during
training. To remove the effect of parameter sharing between
policies at different states and to isolate the effect of the objec-
tive, we use a tabular representation of the GFlowNet, i.e., all
flows and policy logits are optimized as independent parameters.

Gradient variance. To measure gradient variance, we use the
following procedure for each training objective (DB, TB, or
SubTB(𝜆)). A large batch of 210 = 1024 trajectories is sam-
pled, and the gradient 𝑔 (0)

𝑗
of the objective with respect to the

policy logits at all states is computed for each trajectory 𝜏𝑗 in
the batch. Then, for each 𝑘 ∈ {0, 1, . . . , 9}, the gradients 𝑔

(0)
𝑖

are combined into 210−𝑘 sub-batches, each of size 2𝑘 . The sub-
batch gradient 𝑔 (𝑘 )

𝑖
for the 𝑖-th sub-batch is set to the average

of trajectory gradients 𝑔
(0)
𝑗

contained within the sub-batch and
computed for 𝑖 ∈ {1, 2, . . . , 210−𝑘}. We then report the average
cosine similarity between the sub-batch and full-batch gradients:

1
210−𝑘

210−𝑘∑︁
𝑖=1

𝑔
(𝑘 )
𝑖
· 𝑔 (10)

1


𝑔 (𝑘 )𝑖




 


𝑔 (10)
1




 .
If this quantity is positive, then gradient steps of infinitesimally
small norm along the stochastic sub-batch gradient decrease the
full-batch objective in expectation. Fig. 4 (left) shows the dependence of this metric on 𝑘 at various
iterations. A steeper curve, such as those of DB and SubTB(𝜆), indicates lower gradient variance.

Fig. 5 (top) shows the metric at 𝑘 = 6 (corresponding to the batch size of 64 used for training) over
the course of training. We see that the DB gradient has the highest self-consistency at all iterations,
TB has the lowest, and SubTB(𝜆 = 0.8) is in between.

Gradient bias. We next compare the small-batch stochastic gradients with large-batch stochastic
gradients, using different objectives for the small and full batches. Specifically, we compare the
small-batch DB, SubTB(𝜆), and TB gradients with the full-batch TB gradient. (The full-batch TB
gradient can be seen as a ‘canonical’ gradient against which bias can be measured, as its expectation
equals the gradient of the KL divergence between the distribution over trajectories defined by 𝑃𝐹

and that defined by the reward 𝑅 and 𝑃𝐵; see §A.3 of Malkin et al. (2022).)

Fig. 5 (bottom) shows the cosine similarity at the batch size used for training. Notably, at interme-
diate iterations, the similarity of SubTB(𝜆) with TB is higher than that of TB with TB: despite its
bias, the small-batch SubTB(𝜆) gradient estimates the full-batch TB gradient better than the
small-batch TB gradient does. Fig. 4 (right) shows the dependence of the similarity on 𝑘 at se-
lected iterations and suggests that this effect may be even larger for smaller batch sizes. Moreover, at
𝑘 = 10, the similarity of SubTB(𝜆) vs. TB always lies between DB vs. TB and TB vs. TB, indicating
that SubTB(𝜆) interpolates between TB’s unbiased and DB’s biased estimates of the TB gradient.

The effect of learned state flows. For additional experiments, see §A.2.

7



4 8 10 16
reward exponent 

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

lo
gp

(x
) t

o 
lo

gR
(x

) c
or

re
la

tio
n

FM
DB
TB
SubTB(1)

10 4 10 3

learning rate 
0

(DB)
0.5 1 2 4

(TB)SubTB parameter 

Figure 6: Correlation between marginal sampling log-likelihood and log-reward on the molecule
task. For each hyperparameter setting on the 𝑥-axis, we plot the best result over choices of the other
hyperparameter(s) – 𝛼 in the left plot, 𝛽 in the centre plot, and both 𝛼 and 𝛽 in the right plot – with
a solid line. The mean result over values of other hyperparameter(s) is plotted with a dashed line.

4.2 SMALL MOLECULE SYNTHESIS

We use SubTB(𝜆) to train models on the molecule generation task of Bengio et al. (2021a). The
task is to generate binders of the sEH (soluble epoxide hydrolase) protein, based on a docking
prediction (Trott & Olson, 2010). To be precise, molecules are generated by sequentially joining
‘blocks’ from a fixed library to the partial molecular graph (Jin et al., 2020; Kumar et al., 2012),
resulting in a state space of estimated size 1012. The reward function 𝑅 is given by a pretrained
proxy model made available by Bengio et al. (2021a). To adjust the greediness of the agent, an
inverse temperature hyperparameter 𝛽 is used, i.e., the reward used for training is 𝑅(𝑥) = 𝑅(𝑥)𝛽 ,
where 𝑅(𝑥) is the proxy’s prediction.

We train models with the DB, TB, and SubTB(𝜆) objectives, with four values each of 𝜆, 𝛽, and
learning rate, averaging the results over 3 random runs for each setting. We measure how well
the trained models match the target distribution by the correlation of log 𝑅(𝑥) and log 𝑝𝜃 (𝑥), the
log-probability assigned to 𝑥 by the GFlowNet, computed on a held-out set of terminal states 𝑥.3

The results are shown in Fig. 6. SubTB(𝜆), in particular with 𝜆 = 1, performs better than both DB
and TB when the optimal hyperparameters 𝛼, 𝛽 are used (solid lines) and is far more robust to the
choice of hyperparameters (dashed lines). Additional details can be found in §B.

4.3 SEQUENCE GENERATION

We consider three sequence generation tasks in which sequences are generated left to right, with
each action appending one symbol from a vocabulary to a partial sequence: a synthetic task with
varying sequence lengths and vocabulary sizes (§4.3.1), a practical biological sequence design task
(§4.3.2), and a new protein design task with longer sequences (4.3.3). For all three tasks, we consider
the baselines Soft Actor-Critic (Haarnoja et al., 2018; Christodoulou, 2019), A2C with Entropy
regularization (Williams & Peng, 1991; Mnih et al., 2016) and MARS-like MCMC (Xie et al., 2021)
and compare them with three GFlowNet training objectives: TB, FM, and SubTB(𝜆).

In §F, we also study a non-autoregressive sequence generation problem (inverse protein folding).

4.3.1 BIT SEQUENCES

We consider the synthetic sequence generation setting from Malkin et al. (2022), where the goal is
to generate sequences of bits of fixed length 𝑛 = 120. The reward is specified by a set of modes
𝑀 ⊂ X = {0, 1}𝑛 that is unknown to the learning agent. The reward of a generated sequence 𝑥 is
defined in terms of Hamming distance 𝑑 from the modes: 𝑅(𝑥) = exp(−min𝑦∈𝑀 𝑑 (𝑥, 𝑦)).
The vocabulary size can be varied: for any integer 𝑘 dividing 120, we take a vocabulary consisting of
words of length 𝑘 (so that the vocabulary size is 2𝑘 and the full sequence is generated in 𝑛

𝑘
actions).

By varying the value of 𝑘 and keeping 𝑛 and 𝑀 constant, we study the behavior of learning agents
with varying action space sizes and trajectory lengths without changing the underlying modeling
problem. Most experiment settings are taken from Malkin et al. (2022); see §C.

3Comparing the exact sampling and target distributions, like in §4.1, is not possible here, since we cannot
enumerate all terminal states. However, the marginal likelihood that a trained GFlowNet generates a given 𝑥 is
tractable to compute by dynamic programming. For a model that samples perfectly from the target distribution,
log(𝑅(𝑥)) and log 𝑝𝜃 (𝑥) would differ by a constant log 𝑍 independent of 𝑥 and thus be perfectly correlated.
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Figure 7: Left: For the number of bits 𝑘 ∈ {1, 2, 4, 6, 8, 10} in each vocabulary token, we plot the
Spearman correlation between the sampling probability and reward on a test set for each method.
Training with SubTB(𝜆) leads to policies that have the highest correlation with the reward across all
lengths and vocabulary sizes. Right: For 𝑘 = 1, the number of modes discovered by each method
over the course of training is plotted. SubTB(𝜆) discovers more modes faster.

Models are evaluated by computing the Spearman correlation, on a test set of sequences 𝑥, between
the probability of generating 𝑥 and the reward 𝑅(𝑥). We also track the number of modes discovered
during the training process for all the methods, see Fig. 7. We find that models trained with the
SubTB(𝜆) objective have a higher Spearman correlation at the end of training and discover modes
faster compared to the other GFlowNet objectives and non-GFlowNet baselines.

4.3.2 ANTIMICROBIAL PEPTIDE GENERATION Table 2: Results on the AMP generation task
(mean and standard error over 3 runs).
Algorithm Top-100 Reward Top-100 Diversity

GFN-LSubTB(𝜆) 0.96 ± 0.02 42.23 ± 3.4
GFN-LTB 0.90 ± 0.03 31.42 ± 2.9
GFN-LFM/LDB 0.78 ± 0.05 12.61 ± 1.32
SAC 0.80 ± 0.01 8.36 ± 1.44
AAC-ER 0.79 ± 0.02 7.32 ± 0.76
MCMC 0.75 ± 0.02 12.56 ± 1.45

Next, we consider the task of generating peptides
with antimicrobial properties (AMPs). These se-
quences have maximum length 60 and use a vocab-
ulary of 20 amino acids (and an end-of-sequence to-
ken), resulting in a state space of size 2160. The re-
ward function is a pretrained proxy neural network
that estimates the antimicrobial activity. (See Jain
et al. (2022) for details on this task.)

We train GFlowNets with the SubTB(𝜆), TB, and FM losses and compare them with baselines. To
evaluate the trained models, we sample 2048 sequences from the policy, then compute the mean re-
ward and mean pairwise edit distance of the top-100 reward sequences. The metrics and model archi-
tecture are taken from Malkin et al. (2022); see §D. The results are presented in Table 2. SubTB(𝜆)
provides significant improvements over all the baselines (including TB, FM, and DB GFlowNets) in
both reward and diversity.

4.3.3 FLUORESCENT PROTEIN GENERATION Table 3: Results on the GFP generation task
(mean and standard error over 3 runs).
Algorithm Top-100 Reward Top-100 Diversity

GFN-LSubTB(𝜆) 1.18 ± 0.10 204.44 ± 0.45
GFN-LTB 0.76 ± 0.19 204.31 ± 0.44
GFN-LFM/LDB 0.30 ± 0.08 190.21 ± 6.78
SAC 0.23 ± 0.03 120.32 ± 15.57
AAC-ER 0.22 ± 0.02 113.65 ± 21.31
MCMC 0.28 ± 0.01 169.17 ± 12.44

We consider the task of generating protein sequences
with fluorescence properties (Trabucco et al., 2022)
to evaluate SubTB(𝜆) in settings with longer trajec-
tories. In this task, sequences have a fixed length of
237, and the size of the state space is 20237. The
proxy reward function 𝑅(𝑥) is trained on a dataset
of proteins with their fluorescence scores from Sark-
isyan et al. (2016). The metrics and models are the same as in §4.3.2; see §E for details.

The GFlowNet objectives outperform all other methods in both metrics, finding more diverse and
higher-reward sequences (Table 3). SubTB(𝜆) significantly outperforms TB, while achieving a sim-
ilar diversity. We note that the advantage of SubTB(𝜆) is greater than that in the AMP task (Table 2)
and speculate that the benefits of SubTB(𝜆) become more prominent for longer action sequences.

5 DISCUSSION AND CONCLUSION

We have given evidence of a bias-variance tradeoff in GFlowNet training algorithms. The high-
variance stochastic regression objective of TB and the low-variance local consistency objective of
DB lie at opposite ends of this range. We showed that SubTB(𝜆) can harness the variance-reducing
effects of local objectives while retaining the fast credit assignment properties of trajectory-level
objectives. We see learnable strategies for selecting and weighting (sub)trajectories for training –
e.g., a dynamic choice of 𝜆 and an active-learning approach to sampling trajectories – as the most in-
teresting questions for future work. The ability of subtrajectory objectives to learn from incomplete
episodes also makes their application in RL environments an appealing research direction.
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REPRODUCIBILITY STATEMENT

We provide extensive experiment details, such as learning rates, batch sizes, number of training
steps, choices of 𝜆, description of attempted hyperparameters, and additional clarifying experiments
in the Appendices. Code for experiments on the hypergrid domain (§4.1) and on the molecule
domain (§4.2) is also provided with the submission.
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Figure A.1: Additional results for hypergrid experiments. Above: The evolution of the 𝐿1 between
empirical sampling and target distributions on the harder variants of 4-dimensional grids, in the same
format as Fig. 3. Below: The number of cumulative distinct terminal states visited as a function of
training time on the standard 2-dimensional grid. Models trained with SubTB(𝜆) discover more
states faster.

A EXPERIMENT DETAILS: HYPERGRID

The environment is identical to that in Malkin et al. (2022), with reward function parameters
(𝑅0, 𝑅1, 𝑅2) = (10−3, 0.5, 2) for the standard variant of the grid and (10−4, 1.0, 3.0) for the harder
variant. The models giving logits of 𝑃𝐹 (−|𝑠) and 𝑃𝐵 (−|𝑠), as well as log 𝐹 (𝑠), are MLPs of the
same architecture as in Bengio et al. (2021a), taking a one-hot representation of the coordinates
of 𝑠 as input and sharing all layers except the last. The initial state flow log 𝑍 = log 𝐹 (𝑠0) is an
independent parameter whose learning rate is set to 10× the learning rate of other parameters.

All models are trained with the Adam optimizer and a batch size of 16 for a total of 106

trajectories (62500 batches). The optimal learning rate for each experiment is chosen from
{0.0005, 0.00075, 0.001, 0.003, 0.005, 0.0075, 0.01}, and 𝜆 = 0.9 is chosen as the optimal value
from the set {0.8, 0.9, 0.99}.
Gradient bias and variance experiments are conducted in the harder variant of the 8 × 8 grid. The
tabular GFlowNet is trained using Adam with a learning rate 0.007 and the SubTB(𝜆 = 0.8) objec-
tive.

A.1 ADDITIONAL EXPERIMENTS

Fig. A.1 shows additional results on more difficult grid environments.

We perform another experiment in which only short (up to length 4) subtrajectories are used for
training with the SubTB(𝜆) objective (i.e., the sum in (11) is truncated to exclude pairs (𝑖, 𝑗) with
𝑗 − 𝑖 > 4). The results, shown in Fig. A.4, show that SubTB(𝜆) continues to perform strongly in this
restricted setting.

13



103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 0.01

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 0.1

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 0.2

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 0.3

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 0.7

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 0.8

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 0.9

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 1.3

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 3.0

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 5.0

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 10.0

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 15.0

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 20.0

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 30.0

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 50.0

103 105
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
8 × 8, = 100.0

DB
SubTB( )
TB

 interpolation (hard grid)

Figure A.2: Empirical 𝐿1 curves on the 8 × 8 grid for varying values of 𝜆.

Fig. A.2 shows the effect of the SubTB parameter 𝜆 on the training curves, showing a gradual
interpolation between DB and TB and fastest convergence at values slightly less than 1.

Fig. A.3 contains visualizations of the exploration behavior of different training algorithms. It shows
that TB can perform better with off-policy training and can benefit from a higher temperature of the
policy logits, but still does not learn as fast as SubTB(𝜆), nor does it find all the modes in the
maximum number of training iterations.

A.2 MORE ON BIAS AND VARIANCE: THE EFFECT OF LEARNED STATE FLOWS

To better understand the variance-reducing properties of SubTB(𝜆), we perform the gradient bias
experiments with a modified computation of gradients that removes the factor of learning the state
flows.

Recall from §2.1 that a forward policy 𝑃𝐹 uniquely determines a distribution over trajectories. If
the initial state flow 𝑍 and forward policy 𝑃𝐹 are fixed, there is a unique state flow function 𝐹𝐹

and backward policy 𝑃𝐵 that satisfy the detailed balance conditions (6). This ‘true forward’ flow
function, written 𝐹𝐹 (𝑠) = 𝑍

∑
𝜏:𝑠∈𝜏 𝑃𝐹 (𝜏), is determined by an initial state flow fixed to the true
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Figure A.3: Training GFlowNets on the harder variants of 2-dimensional grids using a tempered
training policy (left), and a training policy that takes a uniformly random action with probability 𝜖
at each sampling step (right).

103 104 105 106
0.0

0.5

1.0

1.5

2.0

L1

32 × 32
(hard)

103 104 105 106

40 × 40
(hard)

TB
SubTB(0.9)
SubTB(0.9) short

Figure A.4: Training GFlowNets using only short subtrajectories in different grid environments
using the SubTB(𝜆 = 0.9) objective.

partition function 𝑍 =
∑

𝑥∈X 𝑅(𝑥) and the learned forward policy 𝑃𝐹 . Similarly, the ‘true backward’
flow function, written 𝐹𝐵 (𝑠) = ∑

𝜏:𝑠∈𝜏 𝑃𝐵 (𝜏)𝑅(𝑥𝜏) where 𝑥𝜏 is the terminal state of 𝜏, is uniquely
determined by the reward function 𝑅 and the learned backward policy 𝑃𝐵. In particular, 𝐹𝐵 (𝑠0) =∑

𝑥∈X 𝑅(𝑥).
We repeat the experiments on gradient bias, but by replacing the learned state flows 𝐹 in the losses
by either the true forward or the true backward state flows (𝐹𝐹 or 𝐹𝐵 respectively) computed exactly
using the current values of the learned 𝑃𝐹 and 𝑃𝐵. (These modifications are not applied in training,
but are used only to compute the gradient similarities. The small size of the environment makes
computation of the true state flows tractable; this is not possible in general.)

The gradient similarity over the course of training is shown in Fig. A.5 (cf. Fig. 5 in the main text).
The similar behavior of SubTB(𝜆) with learned and true forward state flows suggests that the learned
state flows remain close enough to their optimal values and that the variance-reducing benefits of
SubTB(𝜆) with true state flows are retained.

B EXPERIMENT DETAILS: MOLECULES

All experiments with SubTB(𝜆) are based upon the published code of Malkin et al. (2022), which
extends that of Bengio et al. (2021a). The proxy model giving the reward, the held-out set of
molecules used to compute the correlation metric, and the GFlowNet model architecture – a graph
neural network – are identical to those in Bengio et al. (2021a), and the off-policy exploration rate
and early stopping likelihood are the same as those tuned for the training with the TB objective in
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Figure A.5: Gradient similarity with state flows analytically computed in two ways (see §A.2).
(Compare with Fig. 5.)

Malkin et al. (2022). All models are trained for a maximum of 50000 batches of 4 trajectories each.
(Some training runs terminated early because of numerical overflows in the gradients, in which case
we report the metric of the last stable model whose cumulative number of batches is a multiple of
5000.)

C EXPERIMENT DETAILS: BIT SEQUENCES

The modes 𝑀 as well as the test sequences are selected as described in Malkin et al. (2022).
The policy for all methods is parameterized by a Transformer (Vaswani et al., 2017) with 3 layers,
dimension 64, and 8 attention heads. All methods are trained for 50,000 iterations with minibatch
size of 16 using Adam optimizer. For GFlowNets with FM objective as well as the baselines, we
use the exact same implementation and hyperparameters reported in Malkin et al. (2022). For TB
and SubTB(𝜆), we pick the best learning rate from {0.0075, 0.001, 0.001, 0.003, 0.005} for forward
logits, and for Z, use a learning rate of 10× the learning rate for forward logits. For SubTB(𝜆), we
found the best 𝜆 value of 1.9 from the values {0.8, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.0}.

D EXPERIMENT DETAILS: ANTIMICROBIAL PEPTIDE GENERATION

Following Malkin et al. (2022) we use the following amino acids: [‘A’, ‘C’, ‘D’, ‘E’,
‘F’, ‘G’, ‘H’, ‘I’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’,
‘V’, ‘W’, ‘Y’]. We take 6438 known AMP sequences and 9522 non-AMP sequences from
the DBAASP database Pirtskhalava et al. (2021). The classifier that serves as the proxy reward
function is trained on this dataset, using 20% of the data as the validation set. The reward model is
a Transformer, with 4 hidden layers, hidden dimension 64, and 8 attention heads. We train it with a
minibatch of size 256, with learning rate 10−4, and with early stopping on the validation set. We use
a Transformer with 3 hidden layers with hidden dimension 64 with 8 attention heads as the architec-
ture of the policy for all methods. All methods are trained for 20, 000 iterations, with a minibatch
size of 16, using the reported hyperparameters for all the baselines from (Malkin et al., 2022). For
TB and SubTB(𝜆), we pick the best learning rates from {0.005, 0.007, 0.01, 0.03, 0.05, 0.07} for
forward logits and from {0.007, 0.01, 0.03, 0.05} for log 𝑍 . For SubTB(𝜆), the best performing 𝜆
value of 1.9 chosen from {0.9, 0.99, 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 1.8, 1.9, 2.0} is used.

E EXPERIMENT DETAILS: FLUORESCENT PROTEIN GENERATION

We consider a variant of the GFP task from Trabucco et al. (2022). The vocabulary of
amino acids is the same as §D: [‘A’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘K’,
‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘V’, ‘W’, ‘Y’]. Following Tra-
bucco et al. (2022), we consider the dataset of 56,086 proteins from Sarkisyan et al. (2016) processed
based on Brookes et al. (2019). Each protein is accompanied by a score quantifying its fluorescence.
As with the AMP data, we keep 20% of the data as a validation set used for early-stopping. The
regressor trained with the dataset is a Transformer, with 4 hidden layers, hidden dimension 64, and
8 attention heads. We train it with a minibatch of size 256, with learning rate 10−4, with early stop-
ping on the validation set. The architecture of the policy for all methods is a Transformer with 3
hidden layers with hidden dimension 64 with 8 attention heads. All methods are trained for 20, 000
iterations, with a minibatch size of 16. We use the same implementation for all methods as the ones
used in §D.
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Figure F.1: The Spearman correlation between the sampling probability and reward on a test set is
plotted over the course of training for each value of 𝜆.

To define an exploratory training policy, we set the the random action probability to 0.01 selected
from {0.0001, 0.0005, 0.001, 0.01} and the reward exponent 𝛽 (having the same meaning as in §4.2)
to 3 selected from {2, 3, 4}. For trajectory balance we use a learning rate of 5 × 10−3 selected from
{10−5, 10−4, 5×10−4, 10−3, 5×10−3} for the flow parameters and 1×10−2 for log 𝑍 . For SubTB(𝜆),
we choose the best 𝜆 from {0.7, 0.8, 0.9, 0.99}, and found 𝜆 = 0.99 to perform the best. For TB and
SubTB(𝜆), we tune for the best learning rates from {0.0001, 0.0003, 0.0005, 0.00075, 0.001} for the
forward logits. For log 𝑍 , we use a learning rate of 10× the learning rate for the forward logits.

For FM we use a learning rate of 10−3 selected from {10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3} with
leaf loss coefficient 𝜆𝑇 = 30. For A2C with entropy regularization we share parameters between
the actor and critic networks, and use learning rate of 5 × 10−3 selected from {10−5, 10−4, 5 ×
10−4, 10−3, 5×10−3} with entropy regularization coefficient 5×10−2 selected from {10−4, 10−3, 5×
10−3, 10−2, 5×10−2}. For SAC we use the formulation in Christodoulou (2019) with a learning rate
of 10−3 selected from {10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3}, a target network update frequency of
400 and initial random steps of 200. For the MARS baseline, we set the learning rate to 5 × 10−4

selected from {10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3}. We run the experiments on 3 seeds and report
the mean and standard error over the three runs in Table 3.

F INVERSE PROTEIN FOLDING: NON-AUTOREGRESSIVE SEQUENCE
GENERATION

We consider the inverse protein folding problem suggested in Sinai et al. (2020). A target protein
3D backbone conformation is given, and the task is to sample amino acid sequences of a fixed length
𝐿 = 40 from the Boltzmann distribution corresponding to their energy in the target conformation.
The energy is provided by a physics model (Rohl et al., 2004; Chaudhury et al., 2010). The policy
model is a 3-layer convolutional architecture that closely follows previous work (Sinai et al., 2020).
Specifically, for the policy function, the convolution size was set to 7 with 32 hidden features and
ReLU activation in each layer. The policy network has one additional convolutional layer of size 20
(number of amino acids), and without the activation function. The flow network has an additional
two linear layers of sizes [1280,64], and [64, 1] with ReLU activation in between. We report mean
result over three runs.

For this task, rather than generating sequences from left to right, we consider an action space in
which actions modify one letter at a time at arbitrary positions. The first action uniformly randomly
samples an amino acid sequence. On each subsequent action, the agent selects a position in the
sequence and replaces the letter in this position with another letter in the vocabulary. Generation
terminates after exactly 𝑁 = 40 replacement steps. The forward policy is conditioned on the number
of steps taken so far in the trajectory; the backward policy is fixed to be uniform over the 𝑁 · 𝐿
actions.

As a metric of how well the learned model matches the target distribution, we measure the correlation
between log 𝑅(𝑥) and the marginal sampling likelihood log 𝑝𝜃 (𝑥) on a held-out set of terminal
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states. The results are presented in Fig. F.1. We observe that intermediate values of lambda lead to
the best fit to the target distribution.
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