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Abstract

We propose Noise Conditional Variational Score
Distillation (NCVSD), a novel method for dis-
tilling pretrained diffusion models into genera-
tive denoisers. We achieve this by revealing that
the unconditional score function implicitly char-
acterizes the score function of denoising poste-
rior distributions. By integrating this insight into
the Variational Score Distillation (VSD) frame-
work, we enable scalable learning of generative
denoisers capable of approximating samples from
the denoising posterior distribution across a wide
range of noise levels. The proposed generative
denoisers exhibit desirable properties that allow
fast generation while preserve the benefit of it-
erative refinement: (1) fast one-step generation
through sampling from pure Gaussian noise at
high noise levels; (2) improved sample quality
by scaling the test-time compute with multi-step
sampling; and (3) zero-shot probabilistic infer-
ence for flexible and controllable sampling. We
evaluate NCVSD through extensive experiments,
including class-conditional image generation and
inverse problem solving. By scaling the test-time
compute, our method outperforms teacher diffu-
sion models and is on par with consistency mod-
els of larger sizes. Additionally, with significantly
fewer NFEs than diffusion-based methods, we
achieve record-breaking LPIPS on inverse prob-
lems. The source code is available at https:
//github.com/xypeng9903/ncvsd.
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1. Introduction
Diffusion models (Song & Ermon, 2019; Ho et al., 2020;
Song et al., 2021b; Karras et al., 2022), also known as
score-based generative models, have emerged as a dom-
inant paradigm for high-dimensional data generation. A
defining characteristic lies in their inherently iterative sam-
pling mechanism, offering unprecedented flexibility for
inference-time control. This characteristic facilitates sev-
eral advantages, including the flexible trade-off between
computational complexity and sample quality, as well as en-
abling zero-shot controllable sampling across a wide range
of downstream tasks (Chung et al., 2023; Yu et al., 2023;
Song et al., 2023b; Uehara et al., 2025). Nevertheless, the it-
erative process suffers from significant limitations regarding
sampling efficiency and real-time applications. To address
this issue, recent years have witnessed a surge of interest in
distilling teacher diffusion models into fast generators (Luo
et al., 2023; Yin et al., 2024b; Zhou et al., 2024; Sauer et al.,
2024). However, these generators support only one or a few
sampling steps, thereby discarding the capacity for iterative
refinement of generated samples, which is especially crucial
for imperfectly trained generators and zero-shot controllable
sampling. This raises a fundamental question: Can we de-
velop a generative model that enables fast generation while
preserving the desirable attributes of iterative refinement?

To tackle this challenge, we develop generative denoisers —
a class of models specifically designed to generate approx-
imate samples from the denoising posterior distributions.
Well-trained generative denoisers demonstrate a unique com-
bination of advantages that effectively balance sampling ef-
ficiency and flexibility. Specifically, i) they enable efficient
one-step unconditional generation by sampling from pure
Gaussian noise; ii) they inherently support multi-step sam-
pling with improved sample quality, offering a paradigm
shift from traditional training-time computation to flexible
test-time computation (OpenAI, 2024; Geng et al., 2025);
iii) they facilitate asymptotic exact probabilistic inference
through seamless integration with the Split Gibbs Sampler
framework (Vono et al., 2019), as illustrated in Figure 1.

To train generative denoisers, we first establish a funda-
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Figure 1. The proposed generative denoisers, distilled from pretrained diffusion models, support a variety of tasks. In (a), the generative
denoiser demonstrates the ability to generate diverse samples that approximate the denoising posterior distribution at arbitrary noise levels.
In (b), we present the 4-step class-conditional generation results on the ImageNet-512×512 dataset. In (c), we showcase the plug-and-play
probabilistic inference capability of the generative denoiser.

mental theoretical connection by demonstrating that the
unconditional score function inherently characterizes the
score function of denoising posterior distributions. This
insight enables us to extend conventional Variational Score
Distillation (VSD) (Wang et al., 2024) by explicitly condi-
tioning on noisy data, emerging as a novel diffusion distilla-
tion approach, namely Noise Conditional VSD (NCVSD).
Furthermore, we introduce an auxiliary adversarial loss to
facilitate learning from real data, thereby overcoming the
performance upper bound imposed by the teacher diffusion
models. Finally, we meticulously engineer the parameteriza-
tion of generative denoisers, which not only enables efficient
knowledge transfer from the teacher diffusion model but
also leverages the inductive bias of preconditioning, as elu-
cidated by Karras et al. (2022).

To demonstrate the effectiveness of NCVSD, we evaluate
the distilled generative denoisers via extensive experiments,
including class-conditional image generation on ImageNet-
64×64 and ImageNet-512×512 datasets, as well as solving a
wide range of linear and nonlinear inverse problems. In the
class-conditional image generation task, we observed that
generative denoisers beat consistency models (CM) (Song
et al., 2023c) with state-of-the-art training method sCM (Lu
& Song, 2025) of similar sizes. In addition, we observed
that by scaling the test-time compute, generative denoisers
can achieve performance comparable to sCM of larger sizes.
For example, on ImageNet-512×512 dataset, the 4-step FID
of generative denoiser (1.73), distilled from EDM2-L (Kar-
ras et al., 2024), surpasses the FID of sCM (1.88) distilled
from EDM2-XXL. In inverse problem solving tasks, we
observed that PnP-GD, the proposed plug-and-play method

for solving inverse problems using our generative denoisers,
achieves competitive results compared to state-of-the-art
diffusion-based inverse problem solvers (Chung et al., 2023;
Wu et al., 2024; Zhang et al., 2024), while reducing the re-
quired number of function evaluations (NFE) by an order of
magnitude. In particular, we achieve record-breaking LPIPS
performance on a range of linear inverse problems. For chal-
lenging nonlinear inverse problems, current diffusion-based
solvers typically require 1k NFE to produce reasonable re-
sults, whereas the proposed method only requires 50 NFE.

2. Backgrounds
2.1. Diffusion Models

Diffusion models aim to generate samples that approximate
the target data distribution qdata(x0). To achieve this, they
employ a family of Gaussian perturbation kernels defined
as q(xt|x0) = N (xt|x0, σ

2
t I), which gradually perturb the

original distribution into a sequence of noisy distributions
q(xt) = Eqdata(x0)[q(xt|x0)]. The noise scale σt is designed
to monotonically increase with the diffusion time step t.
Through this progressive perturbation process, the final dis-
tribution q(xT ) at terminal time T becomes sufficiently
close to the isotropic Gaussian distribution N (0, σ2

T I). In
this paper, we adopt σt = t following the approach in (Kar-
ras et al., 2022) for simplicity.

The main idea of diffusion models is to find a way to sample
from q(xt) with annealing decreasing noise levels, such that
at the end of the sampling process the distribution of the
samples, q(xtmin), will be close to the original data distri-
bution qdata(x0). One notable example is the Probability
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Flow Ordinary Differential Equation (PF-ODE) (Song et al.,
2021b; Karras et al., 2022), which takes the following form:

dxt = −t∇xt
log q(xt)dt, xT ∼ q(xT ), (1)

where the unknown gradient of the log density∇ log q(xt),
also known as the score function, can be linked to the condi-
tional expectation through Tweedie’s formula (Efron, 2011):

∇xt
log q(xt) = t−2 (E[x0|xt]− xt) . (2)

Therefore, the score function can be estimated by train-
ing a neural network Dϕ(xt, t) ≈ E[x0|xt] with in-
put xt and t and parameters ϕ, referred to as the
score model, through a simple regression objective as
minϕ Et,qdata(x0)q(xt|x0)

[
∥x0 −Dϕ(xt, t)∥22

]
.

2.2. Variational Score Distillation

To address the slow inference speed of diffusion mod-
els, recent studies have explored methods for distilling
diffusion models into GAN-like generators x0 = Gθ(z),
z ∼ N (0, I). Notably, Variational Score Distillation
(VSD), initially developed for 3D generation in Prolific-
Dreamer (Wang et al., 2024), has been successfully adapted
to accelerate image generation through diffusion model dis-
tillation (Luo et al., 2023; Yin et al., 2024b;a; Nguyen &
Tran, 2024). The objective of VSD is to minimize the re-
versed KL divergence of the diffused model distribution and
the diffused data distribution1:

min
θ
Lvsd(θ) := Et[DKL(pθ(xt)||q(xt))], (3)

where pθ(xt) := Ez,x0=Gθ(z)[q(xt|x0)] and q(xt) :=
Eqdata(x0)[q(xt|x0)] are defined by adding Gaussian noise
N (0, t2I) on the generated data x0 = Gθ(z) and real data
x0 ∼ pdata, respectively. The fundamental result of VSD is
that the gradient of the VSD objective can be linked to the
score functions (Wang et al., 2024; Luo et al., 2023):

∇θLvsd(θ) = Et,z,x0=Gθ(z),xt∼q(xt|x0)[
(∇xt log pθ(xt)−∇xt log q(xt))

∂Gθ(z)
∂θ

]
, (4)

where ∇xt
log q(xt) can be estimated using a pretrained

score model, and ∇xt log pθ(xt) can be estimated via an
auxiliary score model for the generated data x0 = Gθ(z),
with the training of the score model being conducted online
with the training of the generator Gθ(z).

2.3. Diffusion-based Posterior Sampling

In practical applications, sampling from a posterior distribu-
tion q(x0|y) ∝ qdata(x0)q(y|x0) given conditions y in of

1Without loss of generality, we omit the weighting functions
for KL divergences across different t, as they can be transformed
into the density of t or considered as the importance weight.

great interest. Diffusion methods have recently been widely
adopted for posterior sampling, but existing approaches
often involve trade-offs between flexibility, posterior exact-
ness, and computational efficiency. Supervised methods (Sa-
haria et al., 2022; Rombach et al., 2022) lack flexibility, as
they require retraining for each specific task. Zero-shot
methods offer greater flexibility by approximating the con-
ditional score from a pretrained unconditional one, but they
introduce irreducible errors by approximating the denoising
posterior with Dirac (Chung et al., 2023) or Gaussian dis-
tributions (Song et al., 2023b; Peng et al., 2024). Recently,
asymptotically exact methods, such as PnP-DM (Wu et al.,
2024), ensure exact posterior sampling in the asymptotic
limit but are computationally expensive, relying on reverse
diffusion simulations for sampling from denoising posterior
distributions that requires a large number of NFEs.

In this paper, we propose a posterior sampling method that
strikes a balance between flexibility, posterior exactness,
and computational efficiency. To achieve this, we first es-
tablish a fundamental theoretical connection, demonstrating
that the conditional score function conditioned on noisy data
has a tractable closed-form solution that can be precisely
expressed using the unconditional score function. Building
on this result, we distill a one-step generative denoiser ca-
pable of efficiently sampling from the denoising posterior
distribution across a wide range of noise levels. Leverag-
ing this efficient generative denoiser, we address the slow
reverse diffusion simulations in PnP-DM through a simple
plug-in replacement of the generative denoiser. This results
in an efficient and flexible posterior sampling method with
asymptotically exact guarantees.

3. Noise Conditional Variational Score
Distillation

3.1. Conditioning VSD on Noisy Data

The core objective of NCVSD is to learn a conditional gen-
erative model µθ(x0|yσ) that generates samples approxi-
mating the denoising posterior distribution q(x0|yσ) ∝
qdata(x0)N (yσ|x0, σ

2I) across a wide range of noise levels
σ > 0, where yσ denotes the noisy data generated by adding
Gaussian noise on x0. To this end, we propose to solve the
following reverse KL minimization problem:

min
θ

EσEq(yσ) [DKL(µθ(x0|yσ)||q(x0|yσ))] , (5)

where σ is drawn from a predefined distribution of noise
levels, q(yσ) = Eqdata(x0)[N (yσ|x0, σ

2I)] is the marginal
distribution of yσ , and µθ(x0|yσ) is defined using implicit
distribution induced from a conditional one-step generator
as x0 = Gθ(yσ, σ, z), z ∼ N (0, I).

However, directly optimizing Equation (5) is challenging,
as the high-density regions of q(x0|yσ) may be extremely
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sparse in high-dimensional space (Song & Ermon, 2019;
Wang et al., 2024). Inspired by VSD, we diffuse the original
distributions µθ(x0|yσ) and q(x0|yσ) using Gaussian ker-
nels q(xt|x0) = N (xt|x0, t

2I), to construct an alternative
optimization problem. Specifically, we define

pθ(xt|yσ) := Eµθ(x0|yσ) [q(xt|x0)] , (6)
q(xt|yσ) := Eq(x0|yσ) [q(xt|x0)] . (7)

We then minimize the reverse KL divergence between
pθ(xt|yσ) and q(xt|yσ) for all t:

min
θ
Lncvsd(θ) :=Et,σ,yσ

[DKL(pθ(xt|yσ)||q(xt|yσ)]. (8)

Similar to Equation (4) for VSD, the gradient of the NCVSD
loss relates to conditional score functions:

∇θLncvsd(θ) = Et,σ,yσ,z,x0=Gθ(yσ,σ,z),xt∼q(xt|x0)[
(∇xt log pθ(xt|yσ)−∇xt log q(xt|yσ))

∂Gθ(yσ,σ,z)
∂θ

]
. (9)

We denote ∇xt log pθ(xt|yσ) and ∇xt log q(xt|yσ) as the
model score and data score, where the former represents the
score function of the generative denoiser’s output distribu-
tion and the latter corresponds to the data distribution. The
derivation of Equation (9) is provided in Appendix A.1.

Estimate Data Score: The pretrained score model, which
solely estimates ∇xt

log q(xt), cannot be direclty utilized
to predict ∇xt

log q(xt|yσ). We address this by show-
ing that ∇xt log q(xt|yσ) has a tractable closed-form so-
lution, which can be exactly represented by∇xt log q(xt),
as demonstrated in Proposition 1.

Proposition 1. Suppose (x0,yσ,xt) follow the joint dis-
tribution qdata(x0)N (yσ|x0, σ

2I)N (xt|x0, t
2I). For any

ρ > 0, define the denoising posterior of x0 with noise level
ρ as q(x0|yρ) ∝ qdata(x0)N (yρ|x0, ρ

2I). We obtain that

q(x0|xt,yσ) = q
(
x0|yσeff

)
, (10)

∇xt log q(xt|yσ) = t−2
(
E
[
x0|yσeff

]
− xt

)
, (11)

where yσeff = σ−2yσ+t
−2xt

σ−2+t−2 , and σeff = (σ−2 + t−2)−
1
2

is the noise level of q(x0|yσeff), which is referred to as the
effective noise level.

Please refer to Appendix A.2 for the proof. Note that the
unconditonal score function can be linked with E [x0|yσeff ]
according to Equation (2). By Proposition 1, estimating
∇xt log q(xt|yσ) can be reduced to leveraging a pretrained
unconditional score model D0(yρ, ρ) ≈ E[x0|yρ], which
is readily available in many settings. This leads to our
proposed estimator for ∇ log q(xt|yσ) using D0:

t−2
(
D0

(
σ−2yσ+t

−2xt

σ−2+t−2 , (σ−2 + t−2)−
1
2

)
− xt

)
. (12)

Estimate Model Score: ∇ log pθ(xt|yσ) can be estimated
by training a conditional score modelDϕ(xt, t,yσ, σ) using
common diffusion objective:

min
ϕ

Eµθ(x0|yσ)q(xt|x0)

[
∥x0 −Dϕ(xt, t,yσ, σ)∥22

]
. (13)

It is worth mentioning that∇ log pθ(xt|yσ) cannot be esti-
mated in the same manner as ∇xt

log q(xt|yσ). The joint
distribution of (yσ,x0) is q(yσ)µθ(x0|yσ), which differs
from the assumption in Proposition 1. As a result, the distri-
bution of yσ given x0 is no longer Gaussian.

3.2. Auxiliary Adversarial Loss

The effectiveness of the NCVSD gradient in Equation (9)
critically depends on accurate estimation of both the data
score and the model score. However, in practice, the data
score provided by the pre-trained teacher score model is
often imperfect, and accurately estimating the model score
is challenging due to the evolving model parameter θ dur-
ing training. To address these issues, prior works have
shown that incorporating an auxiliary adversarial loss can
improve performance by leveraging real data in addition
to the teacher model (Kim et al., 2024; Yin et al., 2024b;
Zhou et al., 2025; Sauer et al., 2024). Inspired from these
approaches, we propose minimizing the Jensen-Shannon di-
vergence (JSD) alongside the KL divergence minimization
in Equation (8):

min
θ
Ladv(θ) := Et,σ,yσ

[DJS(pθ(xt|yσ)||q(xt|yσ)]. (14)

To optimize Equation (14), we introduce a classification
neural network, Cψ , referred to as the discriminator, to con-
vert the JSD minimization (Equation (14)) into a tractable
adversarial optimization problem (Goodfellow et al., 2014):

min
θ

max
ψ

Et,σ,yσ

[
Eq(x0|yσ)q(xt|x0)[logCψ(xt, t,yσ, σ)]

+ Eµθ(x0|yσ)q(xt|x0)[log(1− Cψ(xt, t,yσ, σ)]
]
. (15)

Although sampling from q(x0|yσ) is intractable, we can ap-
ply the bidirectional Monte Carlo method (Grosse et al.,
2016; Zhao et al., 2024) by leveraging the fact that
q(yσ)q(x0|yσ) = qdata(x0)N (yσ|x0, σ

2I). This enables
us to compute an unbiased estimate of Equation (15) using
samples from the training data distribution qdata(x0).

Accordingly, we employ a weighted sum of Equations (8)
and (15) as the training loss to implement NCVSD. To ef-
fectively balance the contributions of Lncvsd and Ladv, we
employ uncertainty weighting (Kendall et al., 2018; Karras
et al., 2024; Lu & Song, 2025) to transform the optimiza-
tion of Lncvsd into a form that resembles a Gaussian log-
likelihood. Additionally, we scale Ladv by the number of
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the data dimensions, ensuring that both losses are approx-
imately on the same scale. For further details and pseudo
code or a single iteration of the NCVSD training iteration,
please refer to Appendix B.2 and Algorithm 3.

3.3. Multi-Step Sampling

The proposed generative denoiser also support multi-step
sampling, allowing a trade-off between sample quality
and inference cost. To this end, we introduce latent vari-
ables x1:N

2 following the Denoising Diffusion Implicit
Model (DDIM) (Song et al., 2021a) to extend q(x0|yσ)
into q(x0:N |yσ) as q(x0:N |yσ) := q(x0|yσ)q(x1:N |x0),
and q(x1:N |x0) := q(xN |x0)

∏N
i=2 q(xi−1|xi,x0). Ac-

cordingly, the reverse process is defined as p(x0:N ) =

p(xN )
∏N
i=1 p(xi−1|xi). To enable a gradual approxima-

tion of q(x0|yσ) using an annealing decreasing noise sched-
ule {σi}Ni=1 as i decreases during the multi-step sampling,
we construct the forward and reverse processes such that the
marginal distributions p(xi) equal to q(xi|yσ) for all i, as
formalized in Proposition 2.

Proposition 2. By constructing the following distributions:

q(xN |x0) = N (x0, σ
2
NI),

q(xi−1|xi,x0) = N
(
x0+σi−1

√
1− ζ · xi−x0

σi
, σ2
i−1ζI

)
,

p(xN ) = Eq(x0|yσ)[q(xN |x0)],

p(xi−1|xi) = Eq(x0|xi,yσ)[q(xi−1|xi,x0)],

we have that for any ζ ∈ (0, 1], q(xi|x0) = N (xi|x0, σ
2
i I)

and p(xi) = q(xi|yσ) for i = 1, 2, ..., N . In addition, the
following equality holds:

q(x0|xi,yσ) = q
(
x0 | yσeff =

σ−2yσ+σ
−2
i xi

σ−2+σ−2
i

)
, (16)

and the effective noise level σeff = (σ−2 + σ−2
i )−

1
2 .

Please refer to Appendix A.3 for the proof. According
to Proposition 2, multi-step sampling for the generative
denoiser can be achieved by sampling recursively from
p(xi−1|xi) as iteratively perform the following two steps:

1. sampling x0 from µθ (x0|yσeff) according to Equa-
tion (16);

2. sampling xi−1 from q(xi−1|xi,x0);

The pseudocode for multi-step sampling is presented in
Algorithm 2.

2Note that {xi}Ni=0 and {xt}t∈[0,T ] differ. The discrete-time
latent variable xi is introduced exclusively during the sampling
phase, whereas xt denotes a continuous-time, noise-corrupted data
variable that exists solely during the training process. Besides, the
noise level corresponding to xi is σi, while that of xt is t.

Algorithm 1 Probablistic inference with PnP-GD

Input: generative denoiser µθ(x0|yσ), energy function
1
βE(·), noise annealing schedule σN > ... > σ1 ≈ 0,
uN ∼ N (0, σ2

NI)
for i = N, ..., 2 do

xi0 ∼ µθ(x0|yσi
= ui) or multi-step sampling

if σi < σema then
x0 ← µ · x0 + (1− µ) · xi0

else
x0 ← xi0

end if
ui−1 ∼ exp

(
− 1
βE(u

i−1)− 1
2σ2

i−1
∥ui−1 − xi0∥22

)
end for
Output: x0

3.4. Parameterization

In practice, we carefully design the parameterization of
the required models, including the one-step generator
for generative denoiser Gθ(yσ, σ, z), the score model
Dϕ(xt, t,yσ, σ) in Equation (13), and the discriminator
Cψ(xt, t,yσ, σ) in Equation (15). The configurations are
provided in Appendix B.1. The careful design not only effec-
tively reuses knowledge from the teacher diffusion model
but also leverages the inductive bias of preconditioning
from (Karras et al., 2022), which significantly accelerates
training while maintaining performance.

4. Plug-and-Play Probabilistic Inference with
Generative Denoiser

This section focuses on sampling from an unnormalized
target distribution defined by

π(x0) ∝ qdata(x0) exp

(
− 1

β
E(x0)

)
, (17)

where E(x0) is a given energy function, and β > 0 con-
trols the influence of the energy. Efficient sampling from
π(x0) is crucial for various machine learning tasks, includ-
ing classical Bayesian inference where 1

βE(x0) represents
the negative log-likelihood, determining optimal policies in
offline reinforcement learning (Peters et al., 2010; Lu et al.,
2023), modeling desired sample distributions aligned with
human preferences (Korbak et al., 2022; Uehara et al., 2025),
among others. To address this, we propose a plug-and-play
(PnP) probabilistic inference method, dubbed PnP-GD, us-
ing a well-trained generative denoiser µθ(x0|yσ) that can
achieve asymptotic exact sampling from π(x0) under the
ideal scenario µθ(x0|yσ) = q(x0|yσ), as detailed below.

Split Gibbs Sampler: Motivated by asymptotic exact pos-
terior sampling for diffusion models (Wu et al., 2024; Xu &
Chi, 2024), we leverage Split Gibbs Sampler (SGS) (Vono
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et al., 2019; Coeurdoux et al., 2024) to achieve plug-and-
play probabilistic inference with µθ(x0|yσ). Specifically,
we first introduce an auxiliary random variable u and de-
fine the joint distribution of x0 and u as πσ(x0,u) :=
exp(log qdata(x0)− 1

βE(u)−
1

2σ2 ∥u−x0∥22), where σ gov-
erns the strength of the penalty of the difference between
x0 and u. Notably, the marginal distribution of πσ(x0,u),
πσ(x0), converges to our target distribution π(x0) as σ → 0
in terms of the total variation distance (Vono et al., 2019),
resulting in asymptotically exact sampling from π(x0).

To sample from πσ(x0,u), SGS alternately implements
sampling from πσ(x0|u) and πσ(u|x0) with an annealing
decreasing value of σ, as follows:

πσ(x0|u) ∝ exp
(
log qdata(x0)− 1

2σ2 ∥u− x0∥22
)
, (18)

πσ(u|x0) ∝ exp
(
− 1
βE(u)−

1
2σ2 ∥u− x0∥22

)
, (19)

where Equations (18) and (19) are referred to as prior step
and likelihood step, respectively. As the prior step is equiv-
alent to sampling from q(x0|yσ = u), it can be approxi-
mated by a well-trained generative denoiser with input u
and noise level σ, i.e., µθ(x0|yσ = u). The likelihood
step is generally straightforward to sample, for instance, by
implementing the Unadjusted Langevin Algorithm (ULA)
(Welling & Teh, 2011), provided that E is differentiable.

Note that PnP-DM and PnP-DM are both built upon the
foundation of SGS. The primary distinction lies in how
the prior step is approximated. In PnP-DM, simulating
the reverse diffusion process is required, which is not only
computationally inefficient but also prone to irreducible
discretization errors. In contrast, our approach significantly
improves computational efficiency by requiring only one or
a few NFEs for the prior step, while being free from any
errors beyond those introduced by imperfect model training.

ULA with Adaptive Step Size: Theoretically, when the
potential function in ULA is L-gradient Lipschitz, ULA
provides performance guarantees if its step size is smaller
than a constant proportioned to L−1 (Durmus et al., 2019;
Balasubramanian et al., 2022). For the likelihood step in
Equation (19), it can be shown that the potential function,
1
βE(·)+

1
2σ2 ∥ ·−x0∥2, is (β−1L+σ−2)-gradient Lipschitz,

provided that E(·) is L-gradient Lipschitz. Based on this,
we propose an adaptive step size γσ for ULA that adapts to
the current noise level σ of PnP-GD as γσ := C1 ·(β−1C2+
σ−2)−1, where C1 and C2 are hyperparameters. As can be
seen, the step size decreases monotonically as σ is annealed
towards zero, which aligns with intuition. Note that Zhang
et al. (2024) also suggested reducing the step size as σ
decreases, and empirical results indicate the effectiveness of
this approach. In the experiments, C1 is fixed to 0.1, while
C2 is tuned for different probabilistic inference tasks.

EMA Samples: We observe that the vanilla implementation

of PnP-GD produces generated samples with excessively
sharp details. We hypothesize that this issue arises from the
amplification of fine-grained details during the final steps of
the PnP-GD process. To mitigate this problem, we propose
averaging over multiple samples in the last MCMC chain of
the PnP-GD process using an exponential moving average
(EMA). This approach approximately computes an average
of a mode of the posterior distribution π(x0), bringing the
result closer to the posterior mean and thus reducing the
sharpness of the generated samples.

The pseudocode for the PnP-GD procedure is provided in Al-
gorithm 1. Additionally, the multi-step sampling approach
discussed in Section 3.3 can also be applied to approximate
the prior step.

5. Experiments
In this section, we evaluate proposed method by testing the
distilled generative denoisers on i) class-conditional image
generation on ImageNet-64×64 and ImageNet-512×512
datasets (Deng et al., 2009), and ii) plug-and-play in-
verse problem solving with PnP-GD on FFHQ-256×256
dataset (Karras et al., 2019). In Appendix B, we provide fur-
ther details regarding the NCVSD training, class-conditional
generation and inverse problem solving using PnP-GD. We
include additional experimental results in Appendix C.

5.1. Image Generation

Setup: To test the generation performance of the proposed
NCVSD, we follow the settings of EDM2 (Karras et al.,
2024), ECM (Geng et al., 2025), and sCM (Lu & Song,
2025), to train and scale different sizes of models on Ima-
geNet 64×64 and ImageNet 512×512 datasets (Deng et al.,
2009). Specifically, we distill models of different sizes from
EDM2 teachers, including NCVSD-S, NCVSD-M, NCVSD-
L from EDM2-S, EDM2-M and EDM2-L, repectively. We
standardize to Fréchet Inception Distance (FID) (Heusel
et al., 2017) to measure the generation performance to com-
pare different methods, following EDM2.

Baselines: We select consistency models (CM) (Song et al.,
2023c) and its subsequent improvements (Geng et al., 2025;
Lu & Song, 2025) as our primary comparisons. This is
because models trained using NCVSD and CM exhibit very
similar behaviors. Both approaches generate clean data from
its noisy version of arbitrary noise levels, support multi-step
generation to balance sample quality and sampling cost, and
allow zero-shot controllable sampling. For instance, the
original version of CM (Song et al., 2023c) already supports
zero-shot image editing, and recently Tian et al. (2024)
and Xu et al. (2024) have developed methods for zero-shot
controllable sampling with consistency models to address a
broader range of inverse problems.
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Table 1. Sample quality on class-conditional ImageNet-64×64 and ImageNet-512×512. We report the number of function evaluations
(NFE), Fréchet Inception Distance (FID), and the number of training iterations (#Iter).

Class-Conditional ImageNet-64×64
Method NFE↓ FID↓ #Iter↓
Teacher Diffusion Models

EDM2-S (Karras et al., 2024) 63 1.58 1024k
EDM2-M (Karras et al., 2024) 63 1.43 2048k
EDM2-L (Karras et al., 2024) 63 1.33 1024k
EDM2-XL (Karras et al., 2024) 63 1.33 640k

Consistency Models

CD (Song et al., 2023c) 2 4.70 600k
ECM-S (Geng et al., 2025) 1 5.51 100k

2 3.18 100k
ECM-M (Geng et al., 2025) 1 3.67 100k

2 2.35 100k
ECM-L (Geng et al., 2025) 1 3.55 100k

2 2.14 100k
ECM-XL (Geng et al., 2025) 1 3.35 100k

2 1.96 100k
sCD-XL (Lu & Song, 2025) 1 2.44 400k

2 1.66 400k

Noise Conditional Variational Score Distillation

NCVSD-S (Proposed) 1 3.13 32k×3
2 2.66 32k×3
4 2.14 32k×3

NCVSD-M (Proposed) 1 3.04 32k×3
2 2.47 32k×3
4 1.92 32k×3

NCVSD-L (Proposed) 1 2.96 32k×3
2 2.35 32k×3
4 1.53 32k×3

Class-Conditional ImageNet-512×512
Method NFE↓ FID↓ #Iter↓
Teacher Diffusion Models

EDM2-S (Karras et al., 2024) 63×2 2.23 2048k
EDM2-M (Karras et al., 2024) 63×2 2.01 2048k
EDM2-L (Karras et al., 2024) 63×2 1.88 1792k
EDM2-XL (Karras et al., 2024) 63×2 1.85 1280k
EDM2-XXL (Karras et al., 2024) 63×2 1.81 896k

Consistency Models

sCD-S (Lu & Song, 2025) 1 3.07 200k
2 2.50 200k

sCD-M (Lu & Song, 2025) 1 2.75 200k
2 2.26 200k

sCD-L (Lu & Song, 2025) 1 2.55 200k
2 2.04 200k

sCD-XL (Lu & Song, 2025) 1 2.40 200k
2 1.93 200k

sCD-XXL (Lu & Song, 2025) 1 2.28 200k
2 1.88 200k

Noise Conditional Variational Score Distillation

NCVSD-S (Proposed) 1 2.95 32k×3
2 2.60 32k×3
4 2.00 32k×3

NCVSD-M (Proposed) 1 2.85 32k×3
2 2.08 32k×3
4 1.92 32k×3

NCVSD-L (Proposed) 1 2.56 32k×3
2 2.03 32k×3
4 1.76 32k×3

Results: Table 1 compares various methods on class-
conditional image generation using Fréchet Inception Dis-
tance (FID), Number of Function Evaluations (NFE), and
training iterations. As can be seen, our methods outperform
CMs of comparable sizes while requiring significantly fewer
training iterations (32k×3 versus 200k, when accounting for
score model and discriminator iterations for a fair compari-
son), demonstrating computational efficiency. Our methods
also exhibit predictable performance gains with increased
model size; the FID of NCVSD consistently decreases as
model sizes grow, indicating training time scalability similar
to that of teacher EDM2 models and CMs. Furthermore, by
increasing test-time computation (i.e., NFE), our methods
can match or exceed the performance of larger diffusion
models or CMs. For instance, on the ImageNet-512×512
dataset, the FID of 4-step NCVSD-L (1.76) surpasses that
of 2-step sCD-XXL (1.88) and the diffusion model EDM2-

XXL (1.81). Similar results are observed on the ImageNet-
64×64 dataset, where the FID of 4-step NCVSD-L (1.53)
is better than the FID of 2-step sCD-XL (1.66).

5.2. Inverse Problem Solving

Setup: To evaluate the zero-shot probabilistic inference
ability, we test PnP-GD (Section 4) on several inverse prob-
lems on the FFHQ 256× 256 dataset (Karras et al., 2019).
To obtain a generative denoiser, we first pretrain a XS size
EDM2 model on FFHQ 256 × 256 and then distill using
NCVSD (see Appendix B.3 for details). The performance is
evaluated using Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018) for perceptual quality, and Peak
Signal-to-Noise Ratio (PSNR) for distortion quality.

We conduct comparisons across a variety of noisy linear and
nonlinear inverse problems. For linear inverse problems, we
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Table 2. Quantitative results on noisy inverse problems. The results are averaged over 100 images. We use bold and underline when the
proposed method (PnP-GD) achieves the best and the second best, respectively.

Method NFE↓ Inpaint (box) Deblur (Gaussian) Deblur (motion) Super resolution Phase retrieval

LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑
DDRM (Kawar et al., 2022) 100 0.159 22.37 0.236 23.36 - - 0.210 27.65 - -
DPS (Chung et al., 2023) 1000 0.198 23.32 0.211 25.52 0.270 23.14 0.260 24.38 0.410 17.64
DiffPIR (Zhu et al., 2023) 100 0.186 25.02 0.236 27.36 0.255 26.57 0.260 26.64 - -
ΠGDM (Song et al., 2023a) 99 0.284 21.76 0.245 25.72 0.240 26.29 0.245 25.69 - -
DWT-Var (Peng et al., 2024) 99 0.158 21.26 0.186 27.70 0.189 28.06 0.187 27.78 - -
DAPS (Zhang et al., 2024) 1000 0.133 24.07 0.165 29.19 0.157 29.66 0.177 29.07 0.140 29.94
PnP-DM (Wu et al., 2024) 2483 - - 0.191 27.81 0.183 28.23 0.190 27.77 0.364 22.39

PnP-GD (Proposed) 50 0.128 21.75 0.155 27.06 0.160 28.02 0.151 27.93 0.186 27.82

Figure 2. Sample diversity for addressing ill-poseness. Top: box
inpainting with 128×128 mask. Bottom: super resolution from
16× downsampled images.

consider (1) box inpainting using a center box mask of size
128×128, (2) Gaussian deblurring with kernels sized 61×61
and a standard deviation of 3.0, and (3) motion deblurring
with kernels sized 61× 61 and a std of 0.5. For nonlinear
inverse problems, we consider (1) super-resolution from 4×-
bicubic downscaled images and (2) the challenging phase
retrieval problem with 4× oversampling. Following (Chung
et al., 2023; Zhang et al., 2024), we report the best result
from four independent samples.

Baselines: We select the following baselines: (1) plug-and-
play diffusion models (PnP-DM) (Wu et al., 2024), (2) de-
coupled annealing posterior sampling (DAPS) (Zhang et al.,
2024), (3) guided diffusion models with learned wavelet
variances (DWT-Var) (Peng et al., 2024), (4) pseudoinverse-

guided diffusion models (ΠGDM) (Song et al., 2023a), (5)
diffusion posterior sampling (DPS) (Chung et al., 2023),
diffusion models for plug-and-play image restoration (Diff-
PIR) (Zhu et al., 2023), and denoising diffusion restoration
models (DDRM) (Kawar et al., 2022).

Results: The quantitative results for noisy inverse problems
are presented in Table 2. Our method achieves the best
or second best LPIPS across all inverse problems, demon-
strating a superior perceptual quality compared to diffusion-
based solvers. Notably, the state-of-the-art diffusion-based
method, DAPS, requires 1k NFE, whereas our method uses
only 50 NFE. We observed that the PSNR performance of
our method does not achieve the best performance as LPIPS,
which can be attributed to the distortion-perception trade-
off (Blau & Michaeli, 2018), indicating that our method
tends to generate results that retain more high-frequency
details rather than approximate the mean of all possible so-
lutions. This approach typically leads to higher MSE (lower
PSNR) but aligns more closely with perceptual quality met-
rics such as LPIPS (Chung et al., 2023; Zhang et al., 2024).
In Figure 2, we show that PnP-GD can generate images with
diversity as well as fined details for addressing ill-poseness
in inverse problems. Additionally, our approach efficiently
and stably handles challenging nonlinear phase retrieval
problem. While current diffusion-based solvers typically re-
quire over 1k NFE to achieve reasonable reconstructions for
phase retrieval, our method attains competitive performance
with just 50 NFE, representing roughly 20× acceleration.

6. Discussion
Our method integrates insights from multiple fields, refin-
ing and advancing existing approaches. Conceptually, the
key distinction between our method and recent generative
models—particularly diffusion models (DMs) and consis-
tency models (CMs) (Song et al., 2023c) – lies in how clean
data is predicted from its noisy counterpart. Our method
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directly models the full posterior distribution over clean
data, whereas DMs learn the MMSE prediction, and CMs
solve for the initial conditions of PF-ODEs. This design
choice offers notable advantages. Compared to DMs, our ap-
proach enables more efficient data generation. Meanwhile,
it surpasses CMs in facilitating plug-and-play probabilistic
inference via SGS, offering asymptotically exact guarantee.

Regarding multi-step sampling, our method requires signifi-
cantly fewer NFEs to match the performance of DMs. This
efficiency stems from modeling reverse transitions using
multi-modal implicit distributions rather than single-modal
Gaussian distributions. Our approach shares similarities
with denoising diffusion GANs (Xiao et al., 2022) and mo-
ment matching (Salimans et al., 2024). However, denoising
diffusion GANs are trained on a fixed, limited set of noise
levels, restricting flexibility in inference-time control. Mo-
ment matching, on the other hand, does not function as a
true denoising posterior sampler since its output remains
deterministic with respect to the noisy input.

Another closely related line of work involves the distilla-
tion of diffusion models into amortized posterior samplers
(Mammadov et al., 2024; Lee et al., 2025). Our approach
offers significant advantages in inference-time flexibility,
extending beyond the constraints of solving a single inverse
problem defined at training. These advantages include gen-
erating high-quality unconditional samples and tackling a
broader range of inverse problems. Furthermore, since prior
terms are optimized using proxy objectives in these works
(see Equation (14) in (Mammadov et al., 2024) and Equa-
tion (9) in (Lee et al., 2025)), they do not guarantee that the
posterior distribution is the unique minimizer of their loss
functions. Consequently, these methods cannot be directly
applied to train generative denoisers that support marginal-
preserving multi-step sampling (Section 3.3) and the SGS
sampler (Section 4), as our method does.

7. Conclusion
In conclusion, we propose NCVSD, a novel method for
distilling pretrained diffusion models into generative de-
noisers. NCVSD is grounded in the theoretical insight that
the unconditional score function implicitly characterizes
the score function of denoising posterior distributions. Em-
pirically, our method exhibits outstanding performance in
both few-step image generation and zero-shot inverse prob-
lem solving tasks, proving its potential as an efficient and
flexible generative model.

Limitations: The proposed method relies on pre-trained
diffusion models to distill a generative denoiser, which lim-
its the possibility of training a denoiser from scratch. Ad-
ditionally, achieving state-of-the-art performance requires
adversarial training, which involves careful manual tuning

to ensure stable convergence. As a result, we have not
been able to validate the effectiveness of NCVSD beyond
its current scale due to computational constraints. We also
note that the proposed noise conditional score estimator
(Equation (12)) is not limited to the VSD framework; rather,
it can be integrated with any score distillation method to
distill generative denoisers from pretrained score models.
Improving stability of distillation, developing pretraining
techniques for generative denoisers, and applying the noise
conditional score estimator to other score distillation meth-
ods all represent promising avenues for future research.

Impact Statement
This work contributes to synthetic data generation and
data augmentation by enabling the efficient production of
high-quality samples. It also addresses a key challenge in
diffusion-based inverse problem solvers by providing an
efficient and accurate posterior sampling method, facilitat-
ing fast solutions across various scenarios. However, the
potential misuse of synthetic data generation, such as creat-
ing harmful or misleading content, raises ethical concerns.
Responsible deployment and adherence to ethical guidelines
are essential to ensure the technology is used for societal
benefit.
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A. Proofs
A.1. Derivation of NCVSD Gradient as in Equation (9)

Denote xt = Gθ(yσ, σ, z) + t · ϵ, ϵ ∼ N (0, I), we have

∇θEt,yσ [DKL(pθ(xt|yσ)||q(xt|yσ))]
= Et,yσ,z,ϵ[∇θ(log pθ(xt|yσ)− log q(xt|yσ))]

= Et,yσ,z,ϵ

[
∂

∂θ
log pθ(xt|yσ) +∇xt

(log pθ(xt|yσ)− log q(xt|yσ))
∂xt
∂θ

]
= Et,yσ,z,ϵ

[
∂

∂θ
log pθ(xt|yσ)

]
︸ ︷︷ ︸

1⃝

+Et,yσ,z,ϵ

[
(∇xt

log pθ(xt|yσ)−∇xt
log q(xt|yσ))

∂Gθ(yσ, σ, z)

∂θ

]
. (20)

It suffices to show that 1⃝ equals to zero:

Et,yσ,z,ϵ

[
∂

∂θ
log pθ(xt|yσ)

]
= Et,yσ

[∫
pθ(xt|yσ)

∂

∂θ
log pθ(xt|yσ)dxt

]
= Et,yσ

[∫
pθ(xt|yσ)

1

pθ(xt|yσ)
∂

∂θ
pθ(xt|yσ)dxt

]
= Et,yσ

[
∂

∂θ

∫
pθ(xt|yσ)dxt

]
= Et,yσ

[
∂

∂θ
1

]
= 0. (21)

A.2. Noise Conditional Score Estimator

The Tweedie’s formula in Equation (2) plays a central role in deriving the conditional score estimator for NCVSD. For
completeness, we provide the proof of its conditional version here.

Lemma 1 (Conditional Tweedie’s formula). If x0,y,xt follow the joint distribution q(x0,y,xt) = q(x0)q(y|x0)q(xt|x0)
with q(xt|x0) = N

(
xt|x0, t

2I
)
. Then

∇xt
log q(xt|y) = t−2

(
E[x0|xt,y] − xt

)
.

Proof.

∇xt
log q(xt|y) =

∇xt
q(xt|y)

q(xt|y)

=
1

q(xt|y)
∇xt

∫
q(xt|x0,y)q(x0|y)dx0

=
1

q(xt|y)
∇xt

∫
q(xt|x0)q(x0|y)dx0 (by conditional independence xt ⊥⊥ y | x0)

=
1

q(xt|y)

∫
q(x0|y)∇xt

q(xt|x0)dx0

=
1

q(xt|y)

∫
q(x0|y)q(xt|x0)∇xt log q(xt|x0)dx0

=

∫
q(x0|xt,y)∇xt log q(xt|x0)dx0 (by Bayes’ rule: q(x0|xt,y) = q(x0|y)q(xt|x0)

q(xt|y) )

= Eq(x0|xt,y)

[
t−2(x0 − xt)

]
= t−2

(
E[x0|xt,y]− xt

)
. (22)
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Then, we provide the proof of Proposition 1 in the main paper as follows.
Proposition 1. Suppose (x0,yσ,xt) follow the joint distribution qdata(x0)N (yσ|x0, σ

2I)N (xt|x0, t
2I). For any ρ > 0,

define the denoising posterior of x0 with noise level ρ as q(x0|yρ) ∝ qdata(x0)N (yρ|x0, ρ
2I). We obtain that

q(x0|xt,yσ) = q
(
x0

∣∣∣ yσeff =
σ−2yσ+t

−2xt

σ−2+t−2

)
,

∇xt
log q(xt|yσ) = t−2

(
E
[
x0

∣∣∣ yσeff =
σ−2yσ+t

−2xt

σ−2+t−2

]
− xt

)
,

where σeff = (σ−2 + t−2)−
1
2 is the noise level of q(x0|yσeff), which is referred to as the effective noise level.

Proof.

q(x0|xt,yσ) ∝ qdata(x0)q(xt|x0)q(yσ|x0)

∝ qdata(x0) exp
(
− 1

2t2 ∥x0 − xt∥2
)
exp

(
− 1

2σ2 ∥x0 − yσ∥2
)

∝ qdata(x0) exp
(
−( 1

2t2 + 1
2σ2 )∥x0∥2 + ⟨x0, t

−2xt + σ−2yσ⟩
)

∝ qdata(x0) exp
(
− 1

2(t−2+σ−2)−1 (∥x0∥2 − 2⟨x0,
t−2xt+σ

−2yσ

t−2+σ−2 ⟩)
)

∝ qdata(x0) exp
(
− 1

2(t−2+σ−2)−1

∥∥x0 − t−2xt+σ
−2yσ

t−2+σ−2

∥∥2) (completing the square)

∝ q
(
x0

∣∣∣ yσeff =
σ−2yσ+t

−2xt

σ−2+t−2

)
. (23)

Both sides are normalized, so Equation (10) holds.

By Lemma 1, we have∇xt log q(xt|yσ) = t−2
(
E[x0|xt,yσ]− xt

)
. Additionally, Equation (23) implies E[x0|xt,yσ] =

E[x0 | yσeff =
σ−2yσ+t

−2xt

σ−2+t−2 ]. Hence, Equation (11) holds.

A.3. Multi-Step Sampling

NCVSD implements multi-step sampling based on a DDIM-like latent variable model, and we provide the pseudo code in
Algorithm 2. In this section, we provide a detailed definition of the latent variable model and demonstrate that it correctly
preserves desired marginals. For ease of reading, we rewrite the definition as follows:

q(x0:N |yσ) = q(x0|yσ)q(x1:N |x0), (24)

q(x1:N |x0) = q(xN |x0)

N∏
i=2

q(xi−1|xi,x0), (25)

where q(xN |x0) is defined as N (x0, σ
2
NI). To ensure that the marginal distribution q(xi|x0) equals to N (x0, σ

2
i I) for all

i = 1, 2, ..., N , we construct q(xi−1|xi,x0) as follows:

xi−1 = x0 + σi−1

(√
ζϵ+

√
1− ζϵ̂

)
, ϵ ∼ N (0, I), ϵ̂ =

xi − x0

σi
, (26)

where ζ ∈ [0, 1]. Or equivalently,

q(xi−1|xi,x0) := N
(
x0 + σi−1

√
1− ζ · xi − x0

σi
, σ2
i−1ζI

)
. (27)

Then, we provide the proof of Proposition 2 in the main paper as follows.
Proposition 2. By constructing the following distributions:

q(xN |x0) = N (x0, σ
2
NI),

q(xi−1|xi,x0) = N
(
x0+σi−1

√
1− ζ · xi−x0

σi
, σ2
i−1ζI

)
,

p(xN ) = Eq(x0|yσ)[q(xN |x0)],

p(xi−1|xi) = Eq(x0|xi,yσ)[q(xi−1|xi,x0)],
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Algorithm 2 Multi-step generative denoising

Input: noisy data yσ , input noise level σ, generative denoiser µθ(x0|yσ), noise annealing schedule σN > σN−1 > ... >
σ1 ≈ 0, random factor ζ ∈ [0, 1]
xN ∼ N (0, σ2

NI)
for i = N, ..., 2 do
σeff = (σ−2 + σ−2

i )−
1
2

yσeff = σ2
eff · (σ−2yσ + σ−2

i xi)
x0 ∼ µθ (x0|yσeff)
xi−1 ∼ q(xi−1|xi,x0)

end for
Output: x0

where ζ ∈ [0, 1]. Then, we have that q(xi|x0) = N (xi|x0, σ
2
i I) and p(xi) = q(xi|yσ) for i = 1, 2, ..., N . In addition, the

following equality holds:

q(x0|xi,yσ) = q
(
x0 | yσeff =

σ−2yσ+σ
−2
i xi

σ−2+σ−2
i

)
,

and the effective noise level σeff = (σ−2 + σ−2
i )−

1
2 .

Proof. We divide the proof into three parts, respectively devoted for proving q(xi|x0) = N (x0, σ
2
i I), p(xi) = q(xi|yσ),

and q(x0|xi,yσ) = q
(
x0 | yσeff =

σ−2yσ+σ
−2
i xi

σ−2+σ−2
i

)
.

Part I: Similar to (Lemma 1, Song et al. (2021a)), since q(xi|x0) = N (x0, σ
2
i I) already hold for i = N , we can prove that

q(xi|x0) = N (x0, σ
2
i I) holds for i = 1, 2, ..., N − 1 by induction. Specifically, suppose q(xi|x0) = N (x0, σ

2
i I), then

q(xi−1|x0) =

∫
q(xi−1|xi,x0)q(xi|x0)dxi (28)

is a Gaussian distribution. Its mean and variance can be determined by Bayes’ theorem for Gaussian variables (2.115,
Bishop & Nasrabadi (2006)) as

q(xi−1|x0) = N
(
x0 + σi−1

√
1− ζ · x0−x0

σi
, σ2
i−1ζI+ (σi−1

√
1−ζ

σi
)2 · σ2

i I
)
= N (x0, σ

2
i−1I). (29)

Therefore, q(xi|x0) = N (x0, σ
2
i I) for i = 1, 2, ..., N .

Part II: Since p(xN ) = Eq(x0|yσ)[q(xN |x0)] = q(xN |yσ) already hold for i = N , we also prove the statement p(xi) =
q(xi|yσ) holds for i = 0, 1, ..., N by induction. Specifically, suppose p(xi) = q(xi|yσ), and we consider the following
marginalization representation of q(xi−1|yσ):

q(xi−1|yσ) =
∫ ∫

q(xi−1,x0,xi|yσ)dx0dxi

=

∫ ∫
q(xi|yσ)q(x0|xi,yσ)q(xi−1|x0,xi,yσ)dx0dxi

=

∫
q(xi|yσ)︸ ︷︷ ︸
p(xi)

(∫
q(x0|xi,yσ)q(xi−1|x0,xi)dx0

)
︸ ︷︷ ︸

p(xi−1|xi)

dxi

= p(xi−1). (30)

Therefore, p(xi) = q(xi|yσ) for i = 0, 1, ..., N .

Part III: By q(xi|x0) = N (x0, σ
2
i I), the joint distribution of x0,yσ,xi is qdata(x0)N (yσ|x0, σ

2I)N (xi|x0, σ
2
i I). Equa-

tion (16) holds according to Proposition 1. Thus, we conclude the proof.
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Algorithm 3 One gradient optimization step of the generative denoiser Gθ
Input: generative denoiser Gθ and EMA parameter θ−, score model D0 for estimating data score ∇ log q(xt|yσ), score
model Dϕ for estimating model score ∇ log pθ(xt|yσ), uncertainty weighting model wλ, discriminator Cψ , learning rate
η, and EMA rate function β

Sample x0 from the dataset
Sample t, σ from predefined distributions
Sample yσ ∼ N (x0, σ

2I)
Sample xθ = Gθ(yσ, σ, z), where z ∼ N (0, I)
Sample x̃θ ∼ N (xθ, t

2I)

Compute effective noisy sample as

σeff ← (σ−2 + t−2)−
1
2 , yσeff ← σ2

eff · (σ−2yσ + t−2x̃θ)

Compute estimation for the data and model scores (rescale and omit xt)

s0 ← D0(yσeff , σeff), sϕ ← Dϕ(x̃θ, t,yσ, σ)

Compute loss and do gradient update for θ

L(θ, λ)← e−wλ(t) ∥xθ − stopgrad(s0 − sϕ + xθ)∥22 + dim(x0) · wλ(t)− dim(x0) · logCψ(x̃θ, t,yσ, σ)
[θ, λ]← [θ, λ]− η · [∇θL(θ, λ),∇λL(θ, λ)]
θ− ← β(t)θ− + (1− β(t)) θ

B. Experimental Details
In this section, we introduce parameterization of the neural networks used in the experiments, the training and inference
details for NCVSD, and the details for inverse problem solving using PnP-GD.

B.1. Parameterization

Score model We utilize a score model Dϕ to estimate the conditional score function ∇ log pθ(xt|yσ) in Equation (9):

∇ log pθ(xt|yσ) ≈ t−2 (Dϕ(xt, t, {yσ, σ})− xt) , (31)

where the parameters ϕ ofDϕ are initialized from the teacher modelD0 and then fine-tuned via optimization of Equation (13)
during the training process of the generator Gθ. The additional condition inputs (y, σ) is injected into Dϕ using a trainable
control net (Zhang et al., 2023) like architecture, and we use {·} to emphasize its input. Specifically, we copy the encoder of
the UNet model (does not share weights) and add the outputs of the copied encoder on the outputs of the original encoders
before input into the UNet decoder. We discard the zero convolutions in the original control net since it will break the
magnitude preserving property introduced by EDM2 (Karras et al., 2024). Instead, we propose a learnable magnitude
preserving addition layer to achieve the same goal as the zero-convolutions. Specifically, denote a as the output of the
original encoder, and denote b as the output of the copied encoder, we obtain the new output according to:

MP-Sumw(a,b) :=
(1− w)a+ wb√
(1− w)2 + w2

, (32)

where w ∈ [0, 1] is a learnable weight, and is initialized to 0 to prevent disrupting knowledge of the pretrained model, which
function similarly to the zero convolutions in the original control net (Zhang et al., 2023). We force w lies in [0, 1] using
similar implementation to the forced weight normalization in EDM2.

Generative denoiser In practice, we use a model Gθ(yσ, σ, z) to implement the generative denoiser µθ(x0|yσ). We
parameterize Gθ(yσ, σ, z) by adapting the network architecture of the pretrained score model D0(xt, t), given by

Gθ(yσ, σ, z) := Dθ(yσ, σ, {z}), z ∼ N (0, I), (33)
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where z is an additional noise input to introduce stochasticity for generating random samples. The parameters θ of Dθ are
initialized from the teacher model D0, which enables efficient transfer of knowledge from the teacher model D0, as well as
reusing the inductive bias of preconditioning (Karras et al., 2022). However, we observed that directly using Equation (33)
leads to severe mode collapse. To address this issue, we propose introducing stochasticity directly into yσ by adding random
noise z. Specifically, we add z to yσ using a scaling factor γ to achieve a higher noise level σ̂ = σ + γσ, resulting in
yσ̂ = yσ +

√
σ̂2 − σ2z 3. Additionally, the original conditions yσ and σ are fed into a trainable ControlNet, similar to the

score model Dϕ, to preserve critical information. Therefore, the generative denoiser is finally defined as:

Gθ(yσ, σ, z) := Dθ(yσ̂, σ̂, {yσ, σ}). (34)

Discriminator To parameterize Cψ(xt, t,yσ, σ) for the adversarial loss in Equation (15), we employ two UNet encoders,
Eψ1

and Eψ2
, to extract features from (xt, t) and (yσ, σ), respectively. The outputs of the final layers of these encoders are

concatenated along the channel dimension, followed by an average pooling layer applied to the spatial dimensions, a linear
layer, and a sigmoid layer to produce a scalar output in [0, 1]:

Cψ(xt, t,yσ, σ) := Proj
(
Eψ1(xt, t), Eψ2(yσ, σ)

)
, (35)

where Proj := Sigmoid ◦ Linear ◦AvgPool ◦ Concat, ψ := [ψ1, ψ2], and Eψ1
, Eψ2

are initialized from the encoder of the
teacher model D0.

B.2. Training and Inference

Uncertainty weighting We employ uncertainty weighting (Kendall et al., 2018; Karras et al., 2024; Lu & Song, 2025) to
balance the loss contributions across different t. Specifically, since the NCVSD gradient is a vector-Jacobian product, we
can convert it to a gradient of a L2 loss, as follows:

∇θLncvsd(θ) = E
[
(∇xt log pθ(xt|yσ)−∇xt log q(xt|yσ))

∂Gθ(yσ,σ,z)
∂θ

]
(36)

≈ t−2E
[
(Dϕ(xt, t,yσ, σ)−D0(yσeff , σeff))

∂Gθ(yσ,σ,z)
∂θ

]
(37)

= t−2∇θE
[
∥Gθ(yσ, σ, z)− stopgrad(Gθ(yσ, σ, z)−Dϕ(xt, t,yσ, σ) +D0(yσeff , σeff)︸ ︷︷ ︸

L2 target

)∥22
]

(38)

where stopgrad is the stop gradient operator, and the expectation is taken over (t, σ,yσ, z,xt) where xt ∼
N (Gθ(yσ, σ, z), t

2I). In Equation (37), we leverage the teacher model D0 and the score model Dϕ to approximate
the score functions as ∇xt log pθ(xt|yσ) ≈ t−2(Dϕ(xt, t,yσ, σ)− xt) and∇xt log q(xt|yσ) ≈ t−2(D0(yσeff , σeff)− xt).
The scale of Equation (38) varies considerably across noise levels. To address this, we introduce an uncertainty weighting
network wλ to ensure that the losses have unit variance accross noise levels. Specifically, we define the following two losses
L1 and L2, which respectively provide unbiased estimates of the gradients of Equation (38) and Ladv up to a scaling factor:

L1 := e−wλ(t) ∥xθ − stopgrad(s0 − sϕ + xθ)∥22 + dim(xθ) · wλ(t) (39)
L2 := − logCψ(x̃θ, t,yσ, σ) (40)

where xθ := Gθ(yσ, σ, z), x̃θ := xt, s0 := D0(yσeff , σeff), and sϕ := Dϕ(xt, t,yσ, σ) for notation simplicity and to
emphasize the dependency on parameters. Note that L1 can be viewed as the sum of independent negative Gaussian
log-likelihoods over the data dimensions, while L2 is also a negative log-likelihood. To balance the contributions of the two
losses, it is natural to scale L2 by the number of data dimensions. Therefore, we define the final loss as

L := L1 + dim(xθ) · L2. (41)

To summarize, we provide pseudo code for the NCVSD training algorithm in Algorithm 3. Note that before optimizing
Gθ using Algorithm 3, the score model Dϕ and the discriminator Cψ should also be optimized for the distribution of
x0 = Gθ(yσ, σ, z), as will be elaborated below.

3A similar approach has been proposed in EDM (Karras et al., 2022) for introducing stochasticity in the diffusion sampler.
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Table 3. Hyperparameter details for training and inference.

ImageNet 64×64 ImageNet 512×512 FFHQ 256×256

S M L S M L XS

Model details
Channel multiplier 192 256 320 192 256 320 128
Dropout probability 0% 0% 0% 0% 0% 0% 0%
Stochasticity strength γ 0.414 0.414 0.414 0.414 0.414 0.414 0.414
Model capacity of Gθ (Mparams) 368.2 653.5 1020.1 368.2 653.5 1020.1 146.2

Training details
Effective batch size 2048 2048 2048 2048 2048 2048 128
Learning rate max (αref) 0.0100 0.0090 0.0080 0.0100 0.0090 0.0080 0.0120
Learning rate decay (tref) 35000 35000 70000 70000 70000 70000 35000
Learning rate warm up K images 1000 1000 1000 1000 1000 1000 100
Adversarial loss warm up K images 16778 16778 16778 16778 16778 16778 2097
Learning rate scaling for Cψ 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Learning rate scaling for Gθ 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Adam β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Adam β2 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Training samples (Mi, 220) 64 64 64 64 64 64 4
Noise distribution Pmean for t -0.8 -0.8 -0.8 -0.4 -0.4 -0.4 -0.8
Noise distribution Pstd for t 1.6 1.6 1.6 1.0 1.0 1.0 1.6

Training cost
Mixed precision fp16 fp16 fp16 fp16 fp16 fp16 fp16
Loss scaling to prevent overflows 1.0 1.0 1.0 1.0 1.0 1.0 0.1
Batch size per GPU 64 32 16 64 32 8 8
A100 GPU hours ∼650 ∼1100 ∼1450 ∼650 ∼1100 ∼1450 ∼300

Inference details
Random factor ζ 1.0 1.0 1.0 1.0 1.0 1.0 -
1-step sampling timesteps 10 10 10 12 12 12 -
2-step sampling timesteps 10,22 10,22 10,22 10,22 10,22 10,22 -
4-step sampling timesteps 0,10,20,30 0,10,20,30 0,10,20,30 0,10,20,30 0,10,20,30 0,10,20,30 -

Training hyperparameters We perform one gradient descent optimization for the score model Dϕ (optimizing Equa-
tion (13)) and the discriminator Cψ (optimizing Equation (15)) before one gradient descent optimization for the generator
Dθ. To stabilize training, we employ adversarial loss warmup by disabling adversarial loss at the beginning of training. The
distribution of σ for the noisy data condition yσ is defined by sampling uniformly on EDM (Karras et al., 2022) inference
time noise schedule, given by

σi =
(
σρmax +

i
N−1 (σ

ρ
min − σ

ρ
max)

) 1
ρ

, i = 0, 2, ..., N − 1, (42)

where we select σmax = 80.0, σmin = 0.002, ρ = 7.0, and N = 1000. The distribution of t is defined using LogNormal
distribution (Karras et al., 2022) as log t ∼ N (Pmean, P

2
std) where Pmean, Pstd are hyperparameters. We provide detailed

training hyperparameters in Table 3.

Class-conditional generation The class-conditional image generation on ImageNet datasets is achieved by performing
denoising posterior sampling from pure Gaussian noise at a sufficiently high noise level σinit. We set σinit = 80.0 for all
experiments. To specifying the noise schedule σi for multi-step sampling proposed in Section 3.3, we select time steps i and
decide the noise level σi using the EDM inference time noise schedule given in Equation (42) with N = 40, σmin = 0.002,
σmax = 80, and ρ = 7.0. Detailed time steps for each experiment can be found in Table 3.
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Table 4. Hyperparameter details for PnP-GD.

Inpaint (Box) Deblur (Gaussian) Deblur (Motion) Super resolution Phase retrieval

Annealing schedule details
Steps (N ) 50 50 50 50 50
σmax 80.0 80.0 80.0 80.0 80.0
σmin 0.002 0.002 0.002 0.002 0.002
ρ 2.0 2.0 2.0 2.0 2.0

EMA schedule details
EMA threshold (σema) ∞ ∞ ∞ ∞ 0.2
EMA decay (µ) 0.2 0.6 0.6 0.6 0.6

Likelihood step details
Energy strength β 1e-4 2e-3 4e-3 1e-3 1e-3
ULA step - - - 100 100
ULA C1 - - - 0.1 0.1
ULA C2 - - - 0.1 0.1

B.3. Inverse Problem Solving

Model Training To train a generative denoiser on FFHQ dataset using NCVSD, we first pretrain a XS size diffusion
model using EDM2 codebase. The hyperparameters setup mostly following XS size EDM2 model for ImageNet-64×64
dataset, except that we use batch size of 128 and learning rate warmup of 1M images. Additionally, we implement loss
scaling of 0.1 to prevent fp16 overflows. We train the model until FID plateaus, which takes roughly 32M training images.
Training generative denoiser on FFHQ dataset is the same as on ImageNet dataset. The training hyperparameters can be
found in Table 3.

Likelihood Step The general model for inverse problems is given as follows:

y = A(x0) + n, n ∼ N (0, σ2
yI), (43)

where A is the degradation operator, which is possibly nonlinear, and n is an additive white Gaussian noise with std of σy.
Using Bayesian framework for solving inverse problems by formulating the posterior distribution q(x0) ∝ qdata(x0)q(y|x0),
the likelihood function is given by Gaussian likelihood as q(y|x0) = N (y|A(x0), σ

2
yI). With the energy function

formulation used in PnP-GD (Equation (17)), it is equivalent to define the energy as

E(x0) := ∥y −A(x0)∥22, β := 2σ2
y. (44)

However, for better empirical performance, we also consider β as a hyperparameter to tune, following DAPS (Zhang et al.,
2024). To accelerate the likelihood step, we use fast closed-form solvers implemented in PnP-DM (Wu et al., 2024) for
linear inverse problems. For nonlinear inverse problems, we use ULA with adaptive step size presented in Section 4.

Hyperparameters For the annealing schedule σi in PnP-GD (Algorithm 1), we use EDM inference time noise schedule
given in Equation (42). We provide the detailed hyperparameters of PnP-GD in Table 4.

B.4. Baseline Details

DDRM We borrow the results reported in DAPS (Zhang et al., 2024).

DPS We borrow the results reported in DAPS (Zhang et al., 2024).

DiffPIR For noisy super-resolution, Gaussian deblurring, and motion deblurring, we use the default setting in the original
paper. For noisy inpainting, we use λ = 7.0, ζ = 1.0, and 100 NFE.

ΠGDM We use the ΠGDM implementation provided in the codebase of Peng et al. (2024) since the original code base
does not support noisy linear inverse problems.
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Table 5. SSIM comparisons on noisy inverse problems. The results are averaged over 100 images. We use bold and underline when the
proposed method (PnP-GD) achieves the best and the second best, respectively.

Method Inpaint (box) Deblur (Gaussian) Deblur (motion) Super resolution Phase retrieval

DDRM (Kawar et al., 2022) 0.801 0.732 0.512 0.782 -
DPS (Chung et al., 2023) 0.792 0.764 0.801 0.753 0.441
ΠGDM (Song et al., 2023a) 0.663 0.720 0.733 0.720 -
DWT-Var (Peng et al., 2024) 0.796 0.795 0.798 0.802 -
DAPS (Zhang et al., 2024) 0.814 0.817 0.847 0.818 0.851
PnP-DM (Wu et al., 2024) - 0.780 0.795 0.787 0.628

PnP-GD (Proposed) 0.814 0.777 0.801 0.805 0.797

DWT-Var We report the results based on the original codebase of Peng et al. (2024)4 with the default settings. For box
inpainting, we use Type II guidance with the DWT-Var only used when the std of the diffusion noise is below 0.5.

DAPS We report the results based on the DAPS codebase5 with the default settings.

PnP-DM We compare with PnP-DM using EDM as priors, i.e., PnP-DM (EDM) in the original paper. For linear inverse
problems, we use the default setting and report the metrics based on single sample instead of the mean over 20 samples for a
more direct comparison to PnP-GD. For phase retrieval, we use σy = 0.05 instead of σy = 0.01 of the original paper for
fair comparisons.

C. Additional Results
Training FID curves In Figure 3, we plot the training FID v.s the number of training images, demonstrating classic
training time scaling law and the effectiveness of test time scaling.

Qualitative samples for class-conditional image generation on ImageNet 512×512 In Figures 4-5, we show qualitative
results of 4-step samples generated by NCVSD-L for class-conditional image generation on ImageNet-512×512 dataset.

SSIM comparisons for inverse problem solving In Table 5, we provide additional SSIM comparisons of different
methods.

Effectiveness of EMA rate in PnP-GD In Figure 6, we plot the LPIPS and PSNR values under different EMA decay
rates µ used in PnP-GD. As shown, PSNR tends to favor larger values of µ, as they give more weight to historical samples,
making the final results closer to the posterior mean. This approach tends to produce blurrier images but with less distortion.
In contrast, LPIPS favors smaller values of µ, making the final results closer to the posterior samples, which, while reducing
blur, can lead to higher distortion. For visualization, please refer to Figure 7.

Qualitative samples for inverse problem solving In Figure 8, we present visual comparisons with different methods
for inverse problem solving. As can be seen, our method (PnP-GD) generate samples with more high frequency details
compared to baselines.

4https://github.com/xypeng9903/k-diffusion-inverse-problems
5https://github.com/zhangbingliang2019/DAPS
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(b) Training FID on ImageNet 512×512

Figure 3. FID v.s the number of training images.
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Figure 4. Uncurated 4-step samples generated by NCVSD-L for class-conditional ImageNet 512×512 generation. Top: class 88 (macaw);
middle: class 89 (cokatoo); bottom: class 388 (giant panda).
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Figure 5. Uncurated 4-step samples generated by NCVSD-L for class-conditional ImageNet 512×512 generation. Top: class 425 (barn);
middle: class 933 (cheeseburger); bottom: class 980 (volcano).
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Figure 6. Effectiveness of EMA rate in PnP-GD.

Figure 7. Samples of PnP-GD under different EMA decay rate µ. From left to right, µ equals to 0.0, 0.2, 0.4, 0.6, 0.8.
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(a) Inpaint (box)

(b) Deblur (Gaussian)

(c) Deblur (motion)

(d) Super resolution

(e) Phase retrieval

Figure 8. Visual comparisons for inverse problem solving.
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