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ABSTRACT

Unhealthy eating habits are a major contributing factor to public health problems
such as the globally rising obesity rate. One way to help solve this problem is
by creating systems that can suggest better food choices in order to improve the
way people eat. A critical challenge with these systems is making sure they offer
1) suggestions that match what users like, while also 2) recommending healthy
foods. In this paper, we introduce a novel food recommender system that provides
healthy food recommendations similar to what the user has previously eaten. We
used collaborative filtering to generate recommendations and re-ranked the recom-
mendations using a novel health score and a BERT embedding similarity score.
We evaluated our system on human subjects by conducting A/B testing on several
methods deployed in a web application.

1 INTRODUCTION

Unhealthy eating habits are a major concern worldwide, leading to various health issues such as
obesity, heart disease, and diabetes Gracia (2020); Gonçalves et al. (2021). Numerous studies have
highlighted the long-term effects of poor diet choices, emphasizing the urgent need for dietary im-
provements across populations Kandel (2023); Centers for Disease Control and Prevention (2023);
Morris et al. (2016). As awareness about the impact of food on health grows, there has been a no-
ticeable shift towards healthier eating habits. People are increasingly moving towards foods that not
only satisfy their taste buds, but are also healthier.

In this context, recommendation systems have a critical role to play. By guiding users towards
healthier food choices and showing the users the nutritious value of each food items, these systems
can influence eating behaviors. Therefore, in this paper, we present an experiment in which we
develop a system that matches food recommendations to a user’s personal taste and also introduces
healthier alternatives. This approach aims to facilitate a gradual shift in eating patterns, promoting
a sustainable and healthy diet.

1.1 MOTIVATION

In recent years, numerous food recommendation systems Gao et al. (2022); Meng et al. (2020);
Pecune et al. (2020); Toledo et al. (2019); Zitouni et al. (2022) have been developed to predict
individual preferences and guide food choices based on specific criteria. While these systems have
shown relative success in understanding user preferences through historical interactions, there are
still some improvements that can be done:

• Incorporating Nutritional Information: Many existing food recommender systems Gao
et al. (2022); Toledo et al. (2019); Zitouni et al. (2022) do not integrate comprehensive
nutritional data. The system proposed in this paper addresses this gap by integrating de-
tailed nutritional profiles for each food item. It considers essential nutrients like protein,
fiber, and vitamins while also taking into account harmful components such as sodium and
sugars. This dual focus ensures that the recommendations not only cater to users’ taste pref-
erences, but also align with their overall health goals, thus avoiding the recommendation of
unhealthy food items.

• Semantic Embeddings for Similar Foods: Previous systems have not fully leveraged the po-
tential of semantic embeddings to capture the relationships between different food items.
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By using BERT, our system can understand and identify foods with similar flavor profiles
and culinary attributes. This allows for the recommendation of potentially healthier alterna-
tives that are still similar to the user’s preferred foods, thereby maintaining user satisfaction
while promoting healthier eating habits.

• User Control and Customization: Our system allows users to customize their recommenda-
tions by specifying which nutrients to consider, assigning different weights to each nutrient,
and choosing whether their recommendations should prioritize similarity, healthiness, or a
balanced approach. This level of customization ensures that the recommendations are tai-
lored to the user’s specific dietary goals and preferences, providing a more personalized
and interactive experience.

By addressing these limitations, this study aims to create a comprehensive and user-centric food rec-
ommender system that uses detailed nutritional analysis to offer personalized, health-oriented food
recommendations. This approach not only bridges the gap between user preferences and nutritional
science, but also promotes healthier dietary habits on a larger scale.

1.2 OBJECTIVES

The primary objective of this paper is to develop a recommender system that effectively aligns with
individual dietary preferences while promoting healthier eating choices. This objective is under-
pinned by several key aims, which collectively address both the technological challenges and the
practical applications of improving dietary habits through advanced computing techniques.

1. Personalization of Recommendations: The first aim is to personalize food recommenda-
tions to individual tastes and dietary requirements. This involves analyzing user data to
understand preferences and eating patterns, which will then inform the system’s sugges-
tions. The system must be able to adapt to user feedback and evolve over time, ensuring
that the recommendations remain relevant and appealing to each user.

2. Integration of Nutritional Guidelines: Another critical aim is to integrate comprehensive
nutritional guidelines into the recommendation process. This involves not only suggesting
foods based on taste compatibility, but also ensuring that these recommendations align with
healthful eating practices.

3. Usability: The system should be user-friendly and accessible to a broad audience. This
means designing an interface that is intuitive and engaging. While the focus of this paper
is on the backend system, future work will study frontend UI/UX design and usability.

4. Evaluation: Finally, the system must include mechanisms for continuous evaluation and
improvement. This involves setting up A/B testing to gather user responses and system
performance data. These insights will be used to refine the algorithms and decide which
models to incorporate in the deployed production system.

By achieving these objectives, this research aims to bridge the gap between nutritional science and
consumer technology, creating a tool that not only makes healthier eating easier, but also more
desirable. The ultimate goal is to contribute to public health outcomes by leveraging technology to
influence and improve dietary behaviors on a large scale.

1.3 SYSTEM ARCHITECTURE

The architecture of the healthy food recommender system is designed to effectively integrate user
preferences with nutritional data to generate personalized food suggestions that promote healthier
eating habits. Figure 1 provides a visual overview of each component in the system, as detailed in
the subsequent text.

1. Generate Recommendations Using EASE/SVD:
The system initiates the recommendation process using one of two collaborative filtering
methods: EASE (Embarrassingly Shallow Autoencoders) or SVD (Singular Value Decom-
position). These algorithms are adept at processing sparse datasets and uncovering latent
user-item interactions. A principal reason for integrating these methods is to encourage
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Figure 1: Architecture of the healthy food recommender system.

users to explore beyond their typical food choices, thereby expanding their dietary hori-
zons and encouraging exploration outside their usual preferences.

2. Generate Embedding Using BERT:

Subsequent to the initial recommendation phase, the system employs BERT to create con-
textual embeddings for each food item, which are essential for grasping the complex se-
mantic relationships between items, allowing the system to suggest similar items.

3. Retrieve k Similar Food Items:

Utilizing the embeddings generated by BERT, the system retrieves k similar food items for
each of the initially recommended items. While collaborative filtering with EASE/SVD
enhances the diversity of options presented to the user, retrieving similar items with em-
beddings aligns these recommendations with the user’s taste preferences.

4. Nutritional Score:

Each food item undergoes an evaluation for its nutritional content to derive a health-centric
score. This score incorporates various nutritional parameters to ensure that each recommen-
dation supports health and wellness, helping prioritize foods that provide health benefits.

5. Recommendation Score:

The system combines the similarity scores from BERT with the nutritional scores to calcu-
late a comprehensive recommendation score for each item. This integration ensures that the
final recommendations are both appealing to the user’s taste and beneficial to their health.

6. Healthy Alternatives:

The final output is a selection of healthy alternatives, chosen based on the highest rec-
ommendation scores. These alternatives are tailored to the user’s preferences, yet offer
healthier options, aiming to seamlessly integrate improved nutrition into their daily lives.
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2 DATA & PREPROCESSING

To build our recommender system, we extracted training data from the meal descriptions provided by
the COCO Nutrition Database Korpusik et al. (2014; 2016; 2019), which captured 41,424 users’ food
preferences. Using a convolutional neural network for semantic tagging Korpusik et al. (2017a);
Korpusik & Glass (2017); Korpusik et al. (2017b); Korpusik & Glass (2018; 2019), we identified
and extracted individual food items (both the natural language and the matching USDA food codes)
that users had eaten. Our data pre-processing yielded a total of 11,548 different foods.

Next, we needed nutritional information for each food item to calculate health scores. For this,
we used the USDA Food and Nutrient Database for Dietary Studies (FNDDS) U.S. Department of
Agriculture, Agricultural Research Service (2023), which contains a comprehensive list of nutrients
such as protein, saturated fats, dietary fiber, sodium, potassium, etc. We used the FNDDS as our
food database, which we used to find similar and healthier alternatives to a given food item.

Since our recommendation algorithms, Singular Value Decomposition (SVD) Gower (2014) and
Embarrassingly Shallow AutoEncoders (EASE) Steck (2019), rely on collaborative filtering tech-
niques, creating a user-item interaction matrix was a necessary first step. We translated the food
preferences data into a matrix where users were represented by rows, and food items were repre-
sented by columns.

To process this matrix, we experimented with two methods:

1. A count-based approach, recording how many times a user liked (i.e., ate) a specific food
item. We normalized the data to minimize the influence of outliers using standardization.
The z-score (normalized count) for a food x is computed as:

z =
(x− µ)

σ
(1)

where µ is the mean number of times each food was eaten, and σ is the standard deviation.
The normalized distribution of counts has a mean of 0 and a standard deviation of 1.

2. A binary approach, where the count is 1 if a user ate the food and 0 if not. The binary value
for a user-item preference b is:

b =

{
1 if user likes (i.e., ate) the item
0 otherwise

(2)

3 APPROACH

We used a two-step approach, in which a collaborative filtering algorithm generated the first set of
10 food recommendations based on the user’s meal history, followed by a second step consisting of
a novel health score and a BERT Devlin et al. (2018) embedding similarity score to retrieve 10 more
healthy recommendations for each of the first 10.

3.1 STEP 1—COLLABORATIVE FILTERING FOR PRELIMINARY FOOD RECOMMENDATIONS

In our recommendation system, we investigated two collaborative filtering algorithms for the first
pass at recommending foods: Singular Value Decomposition (SVD) Gower (2014) and Embarrass-
ingly Shallow AutoEncoders (EASE) Steck (2019). Both models give personalized recommenda-
tions based on a user-item matrix.

3.1.1 SVD MODEL

SVD is a common technique in collaborative filtering to generate recommendations. This method
factors the user—item matrix into three matrices that uncover latent features underlying the interac-
tions between users and items.

We have incorporated Stochastic Gradient Descent (SGD) Kiefer & Wolfowitz into our SVD model
to optimize the prediction of how much a user would like a particular food item. This iterative
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optimization method updates the model’s parameters, gradually improving the accuracy of recom-
mendations.

Moreover, to account for user and item biases—preferences or qualities affecting the ratings inde-
pendently of each other—we introduced bias terms into our model. Specifically, we set both user
and item biases to 0.01. Our loss function is defined as follows:

min
p,q,b

∑
u,i

(
rui − µ− bu − bi − pTu qi

)2
+ λ

(
∥pu∥2 + ∥qi∥2 + b2u + b2i

)
(3)

We minimize the regularized squared error of the predicted ratings, where the predicted rating for a
given user u on item i, rui, is the sum of the overall average rating µ, the user bias bu, and the item
bias bi, adjusted by the interaction of the corresponding user and item latent factor vectors pu and
qi. Regularization is applied to prevent overfitting by penalizing the magnitude of the latent factors
and biases, controlled by the regularization parameter λ.

3.2 EASE MODEL

To capture the co-occurrence and interaction strength between different items, we first computed the
Gram matrix G from the given user-item matrix X as follows:

G = XTX (4)

To prevent overfitting and to make the matrix invertible, we added a regularization parameter λ to
each of the diagonal elements of the Gram matrix as follows:

Gii = Gii + λ (5)

An essential minimization step in the EASE model involves inverting the Gram matrix G to solve
problems of the form Gx = b. This process can become computationally expensive as the number
of users and items increases. To mitigate this, we employed matrix preconditioners, denoted as P,
which have demonstrated their efficiency in various applications to improve the matrix inversion pro-
cess Bergamaschi et al. (2003); Mas et al. (2015); Colley et al. (2017). In this approach, the original
problem Gx = b is transformed into the preconditioned system P−1Gx = P−1b. Specifically, we
used the Jacobi preconditioner, which leverages only the diagonal components of the Gram matrix,
significantly reducing the computational overhead of matrix inversion. The Jacobi preconditioner P
is computed as follows:

P = D(G) (6)

where the function D(X) constructs a diagonal matrix from the diagonal elements of X. As the
size and complexity of the data increase, more advanced solvers, such as the adaptive Algebraic
Multigrid method Hu et al. (2019) and multilevel sparsifiers Hu & Lin (2024), can be employed to
further enhance efficiency.

Our enhancements make the EASE model more efficient, allowing us to build the model twice as
quickly as without the preconditioner, as shown in Table 1. We decided to use λ = 0.01 as it is the
fastest.

Table 1: Latency (s) with and without Jacobi Preconditioner for different values of the regularization
parameter (λ).

REGULARIZATION (λ) NO PRECONDITIONER (s) JACOBI PRECONDITIONER (s)

0.1 25.16 11.23
0.01 25.28 10.06
0.02 25.77 10.96
0.05 25.11 11.24

5
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Table 2: Comparison of the top 5 most similar food items recommended by BERT and Word2Vec
for the item ”Lucky Charms Cereal”.

METHOD FOOD ITEM SIMILARITY

BERT Lucky Charms Cereal 1.00
Chocolate Lucky Charms Cereal 0.95
Chocolate Lucky Charms Cereal 0.95
Lucky Charms Cereal Singlepak 0.87

Lucky Charms 0.86

Word2Vec Honey Nut Cheerios Cereal 0.9999
Lucky Charms Cereal Singlepak 0.9996

Cereal 0.9957
Crispy Rice 0.9931

Kix Cereal Bowlpak 0.9928

3.3 STEP 2—ADDING HEALTHIER OPTIONS WITH A HEALTH SCORE AND SEMANTIC
EMBEDDINGS

While the preliminary recommendations provided by the collaborative filtering step are similar to
foods that the user has previously eaten, these recommendations are not necessarily healthier than
what the user tends to eat, which is an important aspect of a food recommender system intended
to improve diet. To address this shortcoming, we implemented a mechanism with a weighted score
balancing similarity to what the user has previously eaten and a health score inspired by FDA guide-
lines. While we used equal weights for both parts, this weight could easily be adjusted by the user
to either emphasize healthiness or likeability more.

Tables 2 and 3 show a comparison of food items based on their similarity to Lucky Charms Cereal,
using two different methods: BERT and Word2Vec Mikolov et al. (2013). We chose to use BERT
over Word2Vec as it looks at the whole sentence to understand the meaning of words given their
context, whereas Word2Vec looks at words individually and uses fixed embeddings without con-
text. Note that the second most similar food to Lucky Charms Cereal (after itself) using BERT is
Chocolate Lucky Charms Cereal, whereas the most similar using Word2Vec is Honey Nut Cheerios
Cereal, which is less similar semantically.

1. Embedding Generation: Each food item description is processed through the BERT
model to generate vector embeddings. These embeddings capture the semantic content
of each item in a high-dimensional space.

2. Clustering Food Items: We use the K-means clustering algorithm to group food items into
clusters based on their semantic similarity. Each cluster comprises items that are contextu-
ally related.

3. Finding Similar Items:
• Cluster Selection: We select the food item’s cluster.
• Item Comparison: Within the chosen cluster, we calculate the cosine similarity (see

Table 2) between the embedding of the item and the embeddings of other items in its
cluster.

• Top-k Retrieval: Based on these similarity scores, we retrieve the top-k items that are
most similar to the queried item, providing users with the most contextually related
food alternatives.

3.3.1 HEALTH SCORE

Calculating the health score of food items is an important process in our recommendation system.
Our novel score helps us evaluate the nutritional value of each food item. To do this, we consider
both healthy and unhealthy nutrients.

6
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Healthy Nutrient Contribution We start by assessing the healthy nutrients in a food item. The
contribution of these nutrients to the health score is calculated by comparing the amount present in
the item to the recommended daily intake, known as the Daily Recommended Value (DV). Each
nutrient is assigned a weight Wh which signifies its importance to health. We multiply this weight
by the percentage of the DV provided by the food item for that nutrient. Summing up these values
for all healthy nutrients gives us the healthy contribution to the score, as follows:

Healthy Contribution (HC) =
∑
h∈H

Wh ×
(

xh

DVh

)
(7)

where:

• H is a set of healthy nutrients.
• Wh is a weight assigned to a nutrient h.
• xh is the amount of nutrient h present in the food item.
• DVh is the Daily Recommended Value for nutrient h.

For healthy contribution, we consider the following nutrients and their respective weights—Protein
(g): 1.2, Dietary Fibre (g): 1, Vitamin C (mg): 0.8, and Potassium (mg): 0.8.

Unhealthy Nutrient Contribution Similarly, we calculate the contribution of unhealthy nutrients.
Instead of a direct comparison to the DV, we consider the proportion of these nutrients relative to an
upper limit. We subtract this proportion from a base value (5% of the DV) considered low by the
Food and Drug Administration (FDA) U.S. Food and Drug Administration (2023). We then multiply
by the nutrient’s weight. The sum of these values give us the unhealthy contribution:

Unhealthy Contribution (UC) =
∑
u∈U

Wu ×
(
0.05− xu

DVu

)
(8)

where:

• U is a set of unhealthy nutrients with upper threshold values.
• Wu is a weight for nutrient u.
• xu is the amount of nutrient u in the food item.
• DVu is an upper intake level or threshold for nutrient u.

For unhealthy contribution, we consider the following nutrients and their respective weights—Sugar
(g): 0.7, Sodium (mg): 0.7, and Total Saturated Fats (g): 1.

Nutritional Score The final health score for a food item is the sum of its healthy and unhealthy
contributions, normalized to be between -1 and 1:

Nutritional Score = HC + UC (9)

This score give us the overall nutritional quality of a food item, considering both its positive and
negative attributes. To enhance the adaptability, it is possible to include additional nutrients specified
by the user, such as Calcium, Magnesium, Carbohydrates, etc. in our nutritional score calculation.
Furthermore, the weight W assigned to each nutrient can be customized based on individual user
preferences or specific dietary needs. This flexibility ensures that our nutritional assessments are
both relevant and personalized.

3.3.2 RECOMMENDATION SCORE

After establishing the health score for our food items, we proceed to the final part of our recommen-
dation system, which is the calculation of the Recommendation Score Rostami et al. (2020). This
score encapsulates both the healthiness and the personal preferences (i.e., semantic similarity) of our
recommendations.

7
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Table 3: Three healthiest and unhealthiest food items based on the Nutritional Score.

CATEGORY FOOD ITEM NUTRITIONAL SCORE

Healthy Food Items Lemon Tea Drink Mix 0.971
Low Calorie Tea Drink Mix Lemon Tea 0.971

Great Value, Drink Mix, Apple 0.96

Unhealthy Food Items Green Sugar -1.00
Belgian Milk Choc w/ Maple Sugar & Rice Crisps -0.99

Holiday Candy Corn -0.98

To determine the final Recommendation Score, we use the Nutritional Score with the Similarity
Score, which reflects how closely a food item aligns with the user’s taste preference. The formula
for the Recommendation Score is given by:

R = α× Similarity Score + (1− α)× Nutritional Score (10)
where R is the Recommendation of a food item, α is a parameter that balances the importance of
the similarity and health scores. By adjusting α, we can skew the recommendations toward favoring
either the similarity or the health aspect. In our implementation, we have chosen α = 0.5, providing
equal weight to both the health score and the similarity score.

4 EXPERIMENTS

4.1 AUTOMATIC EVALUATION

The Root Mean Square Error (RMSE), which we used to measure the accuracy of our predictions,
is given by the equation:

RMSE =

√∑
ui(rui − r̂ui)2

|R|
(11)

where rui is the ground truth rating from user u for item i and |R| is the number of ratings in our
dataset.

We found collaborative filtering effective, even on our user-item matrix with a sparsity of 95.3%.
Using SVD, the binary method for representing the user-item matrix was preferred as it resulted in a
lower Root Mean Square Error (RMSE) of 0.68 on the validation data (30% of the data), compared
to 0.76 with the z-score normalizer. Therefore, we used the binary normalizer to construct our final
user-item matrix.

4.2 A/B TESTING WITH HUMANS

We developed a web application using Flutter to facilitate user interaction with our recommendation
system (see Figure 2). New users are asked to select eight food items from a diverse set of 100 food
items upon signing up. This initial selection serves to avoid the cold-start problem by providing
initial data on user preferences.

Each user’s selections were used as input to generate 10 recommendations using either EASE or
SVD. Subsequently, for each of these 10 foods, the BERT similarity and health scores were used to
generate a refined list of 10 healthier alternatives, from which users selected which recommendations
they liked.

To evaluate the performance of the EASE and SVD models, we conducted A/B testing. The effec-
tiveness of each model was measured by the ratio of liked recommendations to the total number of
suggested items (i.e., 100). This approach helped us determine which model was more successful at
aligning user preferences with healthier eating habits. Both models were tested on a total of 22 users
to evaluate which garnered more likes for each user. As shown in Table 4, EASE achieved a 32%

8
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Table 4: Human Evaluation of EASE and SVD Models.

MODEL AVERAGE LIKED PERCENTAGE

EASE 0.32
SVD 0.26

average liking rate per user for recommended food items, while the SVD model recorded a slightly
lower average of 26%. This data indicates that the EASE model was more effective in matching
users with food items they preferred.

Figure 2: The Flutter web app for A/B testing. On the left, the user selects eight food items they like
out of 100 options. On the right, the user selects which recommendations they like.

5 FUTURE WORK

The goal for future work is to deploy our recommender system within a publicly available free iOS
application in the Apple Store to provide a seamless user experience for adopting healthier eating
habits through personalized recommendations. Additionally, we plan to conduct more extensive
A/B testing by using Amazon Mechanical Turk to gather feedback and preferences from a larger
user base, which will allow us to validate our models’ performance and refine our health score
calculations across different demographics and dietary needs.

6 ETHICS

This research was conducted following approval from the University’s Institutional Review Board
(IRB). The study involved human subjects, and the potential benefits for participants included the
discovery of new and healthy food options tailored to their personal preferences and nutritional
needs, which could contribute to improved dietary habits and better overall health outcomes. Addi-
tionally, the participants had the opportunity to contribute to the development of a technology aimed
at making healthy eating more accessible and personalized. We recognize the importance of safe-
guarding participants’ privacy. All personal information, including dietary preferences and health

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

goals, was anonymized to protect individuals’ identities. The data collected was securely stored and
accessed only by the research team for the purpose of this study. We ensured that the information
would not be used for any other purposes outside of the research, maintaining strict confidentiality
throughout the study. There were no significant risks anticipated for participants, and any privacy
concerns were addressed through these measures.
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