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Abstract

The proliferation of web agents necessitates001
advanced navigation and interaction strategies002
within complex web environments. Current003
models often struggle with efficient navigation004
and action execution due to limited visibility005
and understanding of web structures. Our pro-006
posed R2D2 framework addresses these chal-007
lenges by integrating two paradigms: Remem-008
ber and Reflect. The Remember paradigm uses009
a replay buffer that aids agents in reconstruct-010
ing the web environment dynamically, thus en-011
abling the formulation of a detailed “map” of012
previously visited pages. This helps in reducing013
navigational errors and optimizing the decision-014
making process during web interactions. Con-015
versely, the Reflect paradigm allows agents to016
learn from past mistakes by providing a mecha-017
nism for error analysis and strategy refinement,018
enhancing overall task performance. We eval-019
uate R2D2 using the WebArena benchmark,020
demonstrating substantial improvements over021
existing methods, including a 50% reduction022
in navigation errors and a threefold increase023
in task completion rates. Our findings suggest024
that a combination of memory-enhanced navi-025
gation and reflective learning promisingly ad-026
vances the capabilities of web agents, poten-027
tially benefiting various applications such as028
automated customer service and personal digi-029
tal assistants.030

1 Introduction031

Web agents—–autonomous AI agents designed to032

navigate and perform natural language-described033

tasks within web environments—-have become in-034

creasingly integral to applications such as online035

customer service (Huang et al., 2024a), automated036

data retrieval (Huang et al., 2024b), and personal-037

ized digital assistants.1. These agents interact with038

complex web interfaces to execute user-described039

1https://www.anthropic.com/news/
3-5-models-and-computer-use

Figure 1: Traditional methodologies conceptualize web
navigation within the framework of an Unknown MDP.
The ReACT agent operates under high uncertainty due
to incomplete information regarding the outcomes of
their actions, leading to erroneous navigational paths,
impeding effective task resolution. R2D2 transforms
the task into a Known MDP, improving robustness.

tasks, often emulating human actions like clicking 040

buttons, filling forms, and extracting information 041

(Shi et al., 2017; Liu et al., 2018; Yao et al., 2022; 042

Zhou et al., 2023). Despite recent advancements 043

in web agents’ capabilities, a persistent challenge 044

remains: agents frequently fail to navigate effec- 045

tively within intricate web environments. As illus- 046

trated in Fig. 1, the successful resolution of a user 047

query usually requires a long series of actions. 048
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Figure 2: This diagram represents various approaches for web agents framed as a search problem, where each node
symbolizes a webpage. (a) Reactive: The agent chooses the best immediate actions without any proactive strategy.
(b) Tree-search with reflections: the agent investigates different routes by actively navigating websites and allows
for reversing direction (shown by dashed arrows). Both a) and b) approaches are Unknown-MDP-based. At each
timestep, agents’ observation space is constrained, which typically results in suboptimal or inefficient results. c)
R2D2: Our proposed framework constructs the search space, leveraging stored state information from a replay
buffer. By transforming the task into a Known MDP, R2D2 enhances agents’ ability to navigate and interact with
web interfaces.

The fundamental challenges associated with pre-049

vious methodologies are twofold: first, these ap-050

proaches model web navigation as an Unknown051

Markov Decision Process (MDP), wherein the052

agent has limited visibility into the consequences053

of its actions, often leading to suboptimal perfor-054

mance outcomes. Second, prior methods engage055

in complex reasoning during the inference phase056

while observing a stream of experiences, and in057

their simplest forms, they discard incoming tra-058

jectories immediately after a single episode. This059

rapid forgetting of potentially valuable experiences060

impedes the agent’s capacity to leverage useful in-061

formation for future decision-making.062

Meanwhile, a primary obstacle in enhancing063

web agent performance lies in navigation-related064

failures, which account for approximately 60% of065

their operational errors (as illustrated in Fig. 6).066

These failures occur when agents become disori-067

ented within the web environment, preventing them068

from reaching the target webpages necessary to ex-069

ecute desired tasks. Such navigation inefficiencies070

significantly hinder the overall effectiveness of web071

agents. The remaining 40% of errors stem from ex-072

ecution failures and edge cases, where agents either073

misinterpret user intentions or mishandle specific074

web elements.075

Inspired by cognitive studies showing that hu-076

mans excel at complex tasks by iteratively re-077

fining strategies based on feedback (Palenciano078

et al., 2021; Zenkri et al., 2024), as well as by079

approaches in robotics for structured exploration080

of unfamiliar spaces (Thrun, 2002), we propose081

the R2D2 (Remembering, Reflecting, and Dynamic082

Decision Making) framework that enhances both083

navigation and task execution for web agents. Our084

method transforms the task from Unknown-MDP085

into a Known MDP by introducing the Remem-086

ber Paradigm. It leverages a structured replay 087

buffer of the agent’s experiences that guides the 088

agent to more promising avenues (Blundell et al., 089

2016; Schaul et al., 2016; Parisotto and Salakhut- 090

dinov, 2017; Savinov et al., 2018). At a high level, 091

our approach enables the agent to record and re- 092

call previously visited pages—essentially construct- 093

ing a dynamic map of the web environment—and 094

then leverage this knowledge to refine its strategies. 095

By converting the agent’s experience into a well- 096

organized search space, we empower it to identify 097

reliable navigation routes to target resources rather 098

than re-deriving them from scratch during infer- 099

ence. This reduces the computational overhead at 100

test time and helps avoid repetitive or unproductive 101

exploration. 102

To enable continual improvement based on both 103

successes and failures, R2D2 incorporates the Re- 104

flect Paradigm. Previous efforts in this domain of- 105

ten focus narrowly on immediate, execution-level 106

errors and struggle with more pervasive navigation 107

challenges (Shinn et al., 2023; Pan et al., 2024; 108

Wang et al., 2024a). In contrast, our method lever- 109

ages the refined, known search space described ear- 110

lier to minimize navigational missteps, allowing the 111

reflection mechanism to operate more effectively 112

on remaining execution problems. By reducing the 113

burden of basic wayfinding, the agent’s reflective 114

capabilities can more efficiently identify and cor- 115

rect subtle issues, ultimately leading to a higher 116

overall success rate on complex web tasks. 117

Our proposed method diverges from traditional 118

techniques by providing a more comprehensive and 119

structured representation of the agent’s historical 120

experiences. Instead of simply recalling past states 121

(Agashe et al., 2024) or relying on on-the-fly rea- 122

soning (Koh et al., 2024; Zhou et al., 2024), our 123

approach organizes the agent’s accumulated expe- 124
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riences into a coherent and reusable resource that125

effectively guides future decisions. We evaluate126

our approach using the WEBARENA benchmark127

(Zhou et al., 2023), where it achieves substantial128

gains compared to baseline models, including ap-129

proximately a 50% reduction in navigation errors130

and a threefold increase in overall task completion131

rates. Moreover, R2D2 outperforms state-of-the-132

art methods by 17%, thereby demonstrating a more133

robust and informed capability for executing com-134

plex web-based tasks.135

2 Related Works136

Enhancing Web Agents. Existing research has137

illuminated that language models, without interven-138

tion, struggle to express linguistic intent in formal139

instruction that can control an extra-linguistic en-140

vironment, such as web site navigation (Shi et al.,141

2017; Liu et al., 2018; Yao et al., 2022; Zhou et al.,142

2023; Deng et al., 2023). This inadequacy stems143

primarily from the intrinsic challenges associated144

with perception, strategic planning, and task execu-145

tion in the intricate web environments.146

To mitigate these challenges, enhancements to147

web agents have been categorized into two follow-148

ing principal strategies. (1) Perception Alignment:149

This strategy aims to augment agents’ capabilities150

in interpreting graphical user interface elements151

by integrating multimodal data from webpages,152

enhancing both textual and visual comprehension153

(Gou et al., 2024; Anonymous, 2024). (2) Post-hoc154

Reflection: Studies indicate that enabling agents155

to engage in reflective practices post interaction156

can facilitate learning from historical trajectories,157

thereby improving future task executions (Shinn158

et al., 2023; Song et al., 2024; Pan et al., 2024;159

Wang et al., 2024a). (3) Online Search Algorithms:160

This involves the adoption of sophisticated search161

algorithms, including Monte Carlo Tree Search and162

other tree-based exploration methods, integrated163

with high-level planning driven by LLM-derived164

knowledge (Zhang et al., 2024; Koh et al., 2024;165

Meng et al., 2024). Furthermore, Gu et al. 2024166

discusses speculative planning that leverages simu-167

lations of world models.168

Despite these enhancements, the performance169

of current web agents are constrained by the as-170

sumptions of Unknown MDP, where the potential171

outcomes of actions are not available. In contrast,172

this paper proposes a novel approach where we re-173

construct the web environment’s structure based on174

the agents’ exploratory actions, thereby furnishing 175

them with outcome information crucial for making 176

informed and grounded decisions. 177

Continual Exploration of the Agentic Environ- 178

ment. Tasking agents to explore an unknown en- 179

vironment has been an active research direction 180

in the community (Brohan et al., 2023). Recent 181

studies have focused on how agents abstract expe- 182

riences into actionable skills, a development that 183

is becoming increasingly central to advancements 184

in this field (Wang et al., 2023a,b; Liu et al., 2024). 185

Within the domain of web-based agents, these skills 186

are often conceptualized as workflows. Sodhi et al. 187

(2024) have introduced a novel framework that 188

leverages human-engineered workflows to com- 189

pose policies to tackle web tasks. Although im- 190

proving agents’ performance, manually crafting 191

workflows can be a tedious process. 192

Unlike previous strategies that rely solely on 193

high-quality successful trajectories or hand-crafted 194

workflows, R2D2 introduces a two-part mecha- 195

nism that continuously learns from the full range of 196

agent experiences, including failed attempts. R2D2 197

moves beyond the limitations of purely Unknown- 198

MDP-based assumptions and handcrafted work- 199

flows, resulting in more informed, robust decision- 200

making and improved overall performance. 201

3 Method 202

In this section, we present R2D2, a framework 203

for tackling complex web navigation tasks by in- 204

tegrating two paradigms: Remember and Reflect. 205

The Remember paradigm constructs a structured 206

replay buffer from past observations(§3.2), while 207

the Reflect paradigm diagnoses and corrects er- 208

rors in failed trajectories(§3.3). We then introduce 209

mechanisms of the reflective memory (§3.4). Fi- 210

nally, we illustrate how these paradigms interact to 211

improve the agent’s performance through retrieval 212

and in-context learning demonstrations (§3.5). 213

3.1 Method Overview 214

Given a user’s task query q and an initial obser- 215

vation o0 from the environment, the agent must 216

produce a sequence of actions to address q. We 217

define an episode as the process where the agent 218

starts from o0 and executes a trajectory t. Let 219

t = {a1, a2, . . . , aH} be the trajectory of length 220

H , where each ah is an action at step h. Af- 221

ter each action ah, the agent receives an obser- 222

vation oh, thereby forming an observation se- 223
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Figure 3: An overview of the R2D2 architecture, highlighting the Remember and Reflect Paradigms. The Remember
paradigm constructs a structured replay buffer from previous observations, enabling the agent to use past episodic
data through A* search for navigation. Meanwhile, the Reflect paradigm diagnoses errors and generates corrective
insights, which are then stored in a reflective memory for future decision-making processes.

quence O = {o1, o2, . . . , oH}. Consider N dis-224

tinct user queries {q1, q2, . . . , qN}, each associ-225

ated with its own episode and and observation226

sequence Oi = {oi,1, oi,2, . . . , oi,H}. Across all227

N user queries, R2D2 forms the union of these228

observations:Oall =
⋃N

i=1Oi.229

R2D2 addresses errors in trajectories by catego-230

rizing them into two distinct types: (1) Naviga-231

tion failure. We define O∗ as the key observations232

essential for successfully addressing the query q.233

After performing the trajectory t, the observation234

sequence do not contain all the key observations,235

which leads to agents’ navigation failure in the en-236

vironment, formally O ∩ O∗ ̸= O∗. The agent237

fails because of incomplete information or tools238

to address the user query. (2) Execution failure.239

After performing t, O ∩O∗ = O∗. In other words,240

navigation was successful, since the proper path241

was followed, but the agent still failed to address242

the user query.243

The Remember paradigm aims to build a replay244

buffer from Oall, allowing the agent to store and245

revisit past observations and experiences (Blun-246

dell et al., 2016; Schaul et al., 2016; Parisotto and247

Salakhutdinov, 2017; Savinov et al., 2018). The248

Reflection paradigm then corrects trajectories that249

failed due to execution issues, providing explicit250

rationales for these execution failures. The success-251

ful and corrected trajectories and their rationales252

are stored in a reflective memory for agent’s fu-253

ture reference. Finally, the Retriever leverages this254

reflective memory by selecting relevant corrected255

trajectories as in-context demonstrations, thereby256

continually improving the agent’s performance.257

3.2 Remember Paradigm 258

Building the Replay Buffer. To effectively rep- 259

resent the web environment and enable its system- 260

atic reconstruction from the observation sequence 261

Oall, R2D2 structures the replay buffer as a directed 262

graph G = (O,E). Here, the vertex set O includes 263

the root node o0, which corresponds to the home- 264

page observation, and each subsequent vertex rep- 265

resents another webpage observation oi. The edge 266

set E consists of tuples ((oi, oj), a) where each 267

edge corresponds to an action a that transitions the 268

agent from one observation oi to another observa- 269

tion oj . Due to the noisy and dynamic nature of 270

web pages, R2D2 store the differences between 271

consecutive observations at each vertex rather than 272

the full webpage state. 273

A∗ Search within the Buffer. The search algo- 274

rithm employs a breadth-first search (A∗) strategy 275

(Hart et al., 1968; Meng et al., 2024) to navigate 276

and evaluate web environments effectively. Instead 277

of expanding nodes level-by-level, R2D2 incorpo- 278

rates a heuristic that guides the search toward po- 279

tentially relevant and promising webpages more 280

efficiently (Bonet and Geffner, 1999; Guez et al., 281

2018; Moldovan and Abbeel, 2012). This heuris- 282

tic, provided by the LLM, estimates the relevance 283

and utility of exploring a particular webpage node, 284

thereby reducing unnecessary expansions and fo- 285

cusing on paths that are more likely to yield correct 286

information. 287

In A∗ search, each node o in the replay buffer 288

graph is associated with both a cost (e.g., the depth 289

from the start node or the number of steps taken) 290

and a heuristic h(o), which estimates how close o 291
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is to a relevant webpage that can answer the query292

q. We derive the heuristic by prompting the LLM293

to assess the likelihood that the subtree rooted at o294

will yield information relevant to q. A∗ search pro-295

ceeds by maintaining a priority queue that selects296

which node to expand next based on the sum of the297

cost-to-come and the heuristic estimate. Webpages298

that are deemed relevant are added to a candidate299

queue, prioritizing content that potentially answers300

the query, while non-relevant pages are bypassed to301

streamline the search. This exploration continues302

until all reachable nodes have been evaluated. Sub-303

sequently, for each candidate node in the queue,304

paths are constructed back to the root, mapping305

feasible routes that could satisfy the query. The306

LLM then ranks these paths based on relevance307

and utility, culminating in the selection of the opti-308

mal trajectory P ∗.309

Algorithm 1 Optimized Web Search Using A∗ and
Language Model
Require: User query q, Initial observation o0
Ensure: Optimal solution trajectory P ∗ for q
1: Initialize replay buffer graph G = (O,E)
2: Add root node o0 to O
3: Initialize priority queue QA∗ with (o0, f(o0) = h(o0))
4: Initialize candidate queue Qcand ← ∅
5: while QA∗ is not empty do
6: (oi, f(oi))← dequeue(Q)
7: if IsRelevant(oi, q, LLM) then
8: Qcand ← enqueue(Qcand, (oi, f(oi)))
9: end if

10: for each action a available at oi do
11: oj ← Transition(oi, a) {Obtain next observation

via action a}
12: if oj not in Visited then
13: h(oj)← Heuristic(oj , q)
14: f(oj)← f(oi) + h(oj)
15: QA∗ ← enqueue(Q, (oj , f(oj)))
16: end if
17: end for
18: end while
19: Initialize trajectory set T ← ∅
20: for each oi in Qcand do
21: t← Backtrack(oi) {Generate trajectory from o0 to oi

by following parent pointers}
22: T ← T ∪ {t}
23: end for
24: P ∗ ← RankAndSelectOptimal(T , q) {Use LLM to rank

trajectories based on relevance and utility}
25: return P ∗

This A∗-base approach enables more informed310

and targeted exploration of the replay buffer. By311

guiding the agent through the environment with312

a heuristic informed by the LLM, R2D2 narrows313

down the search space and accelerates the discov-314

ery of relevant information. This ultimately results315

in faster and more accurate trajectory generation,316

effectively addressing complex user queries.317

3.3 Reflect Paradigm 318

R2D2 first determines2 the error type of a failed 319

trajectory t. For all navigation failures, R2D2 per- 320

forms search within the replay buffer to correct 321

their navigation behaviors. We discuss details of 322

how we address navigation failure in §3.2. We 323

now discuss using reflection techniques to address 324

execution errors. 325

The reflection process is designed to enhance the 326

system’s capability to learn from mistakes within 327

trajectories rather than only successes (Madaan 328

et al., 2023; Shinn et al., 2023). When the failure 329

reason of a trajectory t is classified as an execution 330

failure, we prompt the LLM to identify the first er- 331

roneous action ai. The trajectory is then truncated 332

to include only the actions before the error point, 333

{a1, a2, . . . , ai−1}, which are considered correct. 334

Following this, a detailed reflection on the erro- 335

neous action ai is generated, providing a rationale 336

for its failure and potential strategies for avoidance 337

in the future. This reflection, along with the trun- 338

cated trajectory, is stored in the reflective memory 339

(Weston et al., 2015; Mirowski et al., 2017; Wayne 340

et al., 2018) that is to be introduced in §3.4. 341

3.4 Reflective Memory Mechanism 342

We introduce the reflective memory mechanism 343

that stores corrected and truncated trajectories for 344

future retrieval. The reflective memory is struc- 345

tured as a key-value store: 346

Key-Value Architecture. The reflective memory 347

mechanism functions as a key-value store where 348

each user query is encoded into a unique query vec- 349

tor serving as the key, encapsulating the query’s 350

semantic intent for efficient retrieval via vector sim- 351

ilarity metrics. The corresponding value comprises 352

a truncated and corrected trajectory, as described 353

in §3.1, along with reflective insights. Specifically, 354

for execution failures, only steps up to the first error 355

are stored, while for navigation failures, corrected 356

trajectory segments are retained once identified. 357

During inference, a new query vector is generated 358

and matched against existing keys to retrieve the 359

most relevant trajectories. 360

Basic Operations. In alignment with conventional 361

memory module architectures, the reflective mem- 362

ory mechanism defines two basic operations: (1) 363

Lookup. Given a query, the memory retrieves the 364

value(s) associated with the closest key vectors. (2) 365

2Please refer to Fig. 7 in Appendices for the detailed
prompt.

5



Update. If a newly truncated trajectory provides a366

more accurate or enriched reflection for an exist-367

ing query, the memory updates the current value.368

R2D2 uses an LLM to make such decision. Please369

refer to Fig. 8 in the Appendix for an example.370

3.5 Paradigm Coordination and Inference371

Exploration Phase. Using a ReACT agent (Yao372

et al., 2023), R2D2 processes user queries and col-373

lects observational data to build Oall. Trajectories374

are classified and corrected via Remember and Re-375

flect paradigms, then stored in the memory.376

Inference Phase. During inference, user queries377

are encoded into vectors and matched against re-378

flective memory to retrieve relevant trajectories as379

in-context demonstrations (Karpukhin et al., 2020;380

Brown et al., 2020). These demonstrations guide381

the agent’s response. Failed trajectories undergo re-382

flection, and the memory is updated to improve fu-383

ture performance. This coordination allows R2D2384

to leverage past experiences and reflections, ensur-385

ing continuous learning and enhanced handling of386

complex queries.387

4 Experiments388

In this section, we evaluate the proposed R2D2389

framework for web agent tasks and compare it with390

baseline methods. We first delve into the details391

of our experimental setup (§4.1), discuss the re-392

sults obtained(§4.2), and perform ablation studies393

to understand the strengths of different components394

(§4.3). Furthermore, we provide a comprehensive395

error analysis (§4.5).396

4.1 Experimental Setup397

Benchmark. We use the WebArena benchmark398

(Zhou et al., 2023). This benchmark comprises399

diverse web interaction scenarios, ranging from400

web shopping to customer relationship manage-401

ment system (CMS). The dataset consists of 812402

user queries with annotated ground truth trajecto-403

ries. The Webarena benchmark further provides a404

set of validators to programmatically validate the405

functional correctness of each task.406

Implementation Details. We choose gpt-4o3 as407

our main LLM for both Remember and Reflect408

paradigm. We use the retriv4 framework as the409

3OpenAI. (2024). ChatGPT (November 20th version).
4https://github.com/AmenRa/retriv

backbone of the reflective memory index, and se- 410

lect “sentence-transformers/all-MiniLM-L6-v2” as 411

the dense embedding model for our retriever. 412

Baselines. We compare our framework against 413

several represetative agent frameworks: (1) Re- 414

ACT (Yao et al., 2023): a widely-used framework, 415

which takes an observation of the environment as 416

input, performs Chain-of-Thought reasoning, and 417

then generates the next action. (2) Tree-Search 418

(Koh et al., 2024): an inference-time tree-search 419

strategy to perform best-first tree-search in web en- 420

vironments. It enables agents to revert to the most 421

recently validated state upon encountering a failed 422

trajectory. (3) LATS (Zhou et al., 2024): a method 423

based on Monte Carlo tree search that employs 424

LLMs as agents, value functions, and optimizers 425

for decision-making. (4) Anticipatory Reflection 426

(Wang et al., 2024a): a method that explicitly con- 427

siders potential failures before action, alignment 428

and backtracking after actions to maintain task ob- 429

jectives. (5) AutoEval (Pan et al., 2024): methods 430

that boost agent performance using domain-general 431

automatic evaluators. (6) BrowserGym (Chezelles 432

et al., 2024): a framework that incorporates addi- 433

tional actions and observation tools for agents to 434

interact with the environment.5 435

4.2 Main Results 436

Overall Performance. As shown in Tab. 1, our 437

R2D2 model consistently achieves higher success 438

rates than both Tree-Search and ReACT across all 439

tasks. For example, on the CMS and Reddit tasks, 440

R2D2 outperforms Tree-Search by substantial mar- 441

gins. These gains demonstrate the effectiveness 442

of combining a systematic replay buffer with a 443

reflective memory paradigm. By leveraging past in- 444

teractions, R2D2 avoids repeated mistakes, leading 445

to more accurate and efficient decisions. 446

Substantial Improvements in Complex Domains. 447

The results in the CMS and GitLab domains are par- 448

ticularly notable. R2D2 achieved a 30.4% success 449

rate in CMS and 28.0% in GitLab, considerably 450

higher than other tested methods. These domains 451

often require complex navigations with web inter- 452

faces, where R2D2’s capability to leverage past 453

5We also notice there are other methods that use different
setups, such as SteP (Sodhi et al., 2024) that employs human-
engineered workflows, and AWM (Wang et al., 2024b) that
uses BrowserGym framework that customizes a larger action
space than standard WebArena to interact. For the sake of
direct comparison, these frameworks that depend on additional
human efforts are not taken into comparison here.

6
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Method Tasks Total SR

CMS Reddit Shopping Map GitLab

ReACT(Yao et al., 2023)† – – – – – 13.1%
Tree-Search (Koh et al., 2024)† 16.5% 10.5% 28.1% 25.8% 13.3% 19.2%
AutoEval (Pan et al., 2024)‡ – – – – – 20.2%
LATS (Zhou et al., 2024)‡ 15% 25% 30% 27% 17% 22.5%
AR (Wang et al., 2024a)‡ 16% 24% 32% 27% 18% 23.4%
BrowserGym (Drouin et al., 2024)‡ – – – – – 23.5%
R2D2† 30.4% 20.8% 35.8% 29.6% 28.0% 27.5%

Table 1: Performance comparison across multiple web-based tasks. Reported success rates (SR) are organized by
model and method, including baseline approaches and our proposed R2D2. Superscripts indicate the model used: †

GPT-4o, ‡ GPT-4. The baseline results are from corresponding papers.

visited states and reflect on past actions proves es-454

pecially beneficial.455

Comparison with Reflection-based Frameworks.456

When compared to complex frameworks employ-457

ing sophisticated reflection mechanisms (e.g., AR,458

AutoEval), R2D2 holds its own or exceeds perfor-459

mance, with a total success rate (SR) of 27.5%.460

While AR and AutoEval offer robust reflection461

capabilities, R2D2’s integrated approach to first462

remembering and then reflecting allows it to pre-463

emptively correct paths and further refine strategies.464

The success can be attributed to the method’s dual-465

paradigm system. We show more analysis in §4.3.466

4.3 Ablation Study467

Ablating rounds of execution. To better under-468

stand the strength of our proposed framework, we469

compare R2D2 with advanced baselines that em-470

phasize reflection techniques. Fig. 4 illustrates a471

marked increase in the success rate of R2D2 during472

initial episodes. Upon manual inspection, we at-473

tribute this early performance enhancement primar-474

ily to the effective resolution of navigation failures.475

By the fifth episode, R2D2 substantially outper-476

forms AR and LATS, confirming its methodolog-477

ical superiority. This highlights R2D2’s ability to478

leverage historical data and adaptive strategies ef-479

fectively. While AR demonstrates commendable480

learning capabilities through its anticipatory reflec-481

tion, it fails to match R2D2’s effectiveness. LATS,482

in contrast, shows minimal improvement. These483

findings support the practical superiority of the484

R2D2 model in dynamic learning environments.485

Ablating Remember & Reflect Paradigms. In486

this ablation study focused on the CMS domain, the487

full R2D2 model substantially outperforms its vari-488

ants, as shown in Fig. 5. The “– Reflection” vari-489

Figure 4: Performance comparison with different
reflection-based methods. R2D2 achieves marked in-
crease at the first episode. Our manual inspection in
Fig. 6 shows 75% of the initial increase is attributed to
fixing the navigation failures.

ant, which lacks advanced reflection capabilities, 490

shows moderate gains, while the “– Navigation” 491

variant, which removes navigation, achieves only 492

marginal improvement. Notably, the “– Reflection” 493

variant, though initially showing some improve- 494

ment, demonstrates a limited performance increase 495

in later episodes, suggesting that while navigation 496

capabilities can provide early benefits, their effec- 497

tiveness without reflection support plateaus quickly. 498

This observation highlights the critical role of nav- 499

igation in sustaining performance improvements 500

over time, reinforcing that reflection alone is in- 501

sufficient for long-term success in complex web 502

environments. 503

Ablating Failed Trajectories. To elucidate the 504

learning dynamics of R2D2, we conduct a study 505

to isolate the impact of failed trajectories. During 506

this study, only successful trajectories are provided 507

as in-context demonstrations at inference time, 508
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Figure 5: Performance comparison with ablation vari-
ants. Removing navigation or reflection capabilities
from R2D2 is very harmful to performance.

Method Accuracy Steps

Tree-Search (Koh et al., 2024) 19.2% 33.8
AutoEval (Pan et al., 2024) 20.2% 29.2
R2D2 27.5% 13.1

Table 2: Comparison of task accuracy and number of
actions required. R2D2 reduces the number of online
steps while maintaining a higher success rate.

thereby restricting R2D2 to learning exclusively509

from positive examples. This variant falls 7.5%510

from the full implementation of R2D2 to 20.5%.511

This also reveals a critical limitation: the number of512

positive examples is insufficient to provide robust513

navigation and reflection to the agent during infer-514

ence. Consequently, if no relevant successful trajec-515

tory is identified at retrieval time. These findings516

substantiate the hypothesis that failed trajectories,517

despite not directly addressing user queries, are in-518

strumental in enriching R2D2’s strategic repertoire,519

and R2D2 extend beyond the mere memorization520

of positive examples.521

4.4 Efficiency Analysis522

Beyond improving task success rates, R2D2 also523

demonstrates significant efficiency gains by reduc-524

ing the number of online steps required per task.525

As shown in Table 2, we compare the average526

steps taken to successfully address a task between527

R2D2 and open-sourced representative baselines.528

R2D2 completes tasks with fewer steps on aver-529

age, achieving higher success rate6. Because web-530

based tasks are often bottlenecked by interactions531

with the live environment rather than by language532

6Offline memory construction for R2D2 involves at most
five actions per task, and the replay buffer creation is rule-
based, making it lightweight.

Figure 6: Error analysis of vanilla ReACT agents’ and
R2D2’s trajectories. “E” indicates execution failures,
“N” indicates navigation failures, and “S” indicates suc-
cess. R2D2 substantially reduces navigation failures,
achieving higher success rate.

model queries, minimizing the number of online 533

steps reduces latency and overall inference time. 534

Consequently, R2D2 ’s ability to leverage a cached 535

replay buffer avoids frequent back-and-forth roll- 536

outs, leading to improved efficiency alongside its 537

superior performance. 538

4.5 Error Analysis 539

As shown in Fig. 6, we manually inspect the tra- 540

jectories of the same 60 queries executed by the 541

vanilla ReACT agent and R2D2 agent. About 60% 542

of the vanilla ReACT agent trajectories stall at the 543

navigation stage, so there is not even an opportunity 544

to fail in execution. In contrast, the R2D2 agent 545

substantially reduces navigation failures, reliably 546

guiding itself toward the right content and thereby 547

reaching a point where it is possible to fail in exe- 548

cution more frequently. As a result, R2D2 achieves 549

a higher pass rate overall. We further annotate 550

and discuss erroneous trajectories in Appx. §A. We 551

also conduct a qualitative evaluation of the R2D2 552

framework, as detailed in Appx. §C. 553

5 Conclusion 554

The R2D2 framework significantly enhances web 555

agents’ capabilities by integrating Remember and 556

Reflect paradigms, enabling more effective naviga- 557

tion and interaction in complex web environments. 558

This approach leads to measurable improvements 559

in performance, reducing errors and increasing task 560

completion rates. R2D2 not only outperforms exist- 561

ing models but also offers a scalable solution adapt- 562

able to various domains. Future work could extend 563

its application, further optimizing agent functional- 564

ity across broader scenarios. 565
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Limitations566

Language Studied. Our experiments were exclu-567

sively conducted in English. This limitation re-568

stricts our understanding of the model’s efficacy569

across different linguistic contexts, potentially over-570

looking cultural and language-specific nuances that571

could affect the agent’s performance in non-English572

web environments.573

Focus on a Single Benchmark. Our experiments574

are confined to the WebArena benchmark using575

GPT-4o, which may raise concerns about their576

broader applicability. However, WebArena spans577

a broad set of tasks—ranging from online shop-578

ping to social media interactions—and R2D2 ’s579

strong performance across these varied scenarios580

suggests that our cached-search approach and Re-581

member/Reflect paradigms are not restricted to a582

single domain.583

Resource Constraints. Each complete pass584

through WebArena incurs a cost of approximately585

$200 in GPT-4o usage, making large-scale or multi-586

benchmark experimentation logistically challeng-587

ing. That said, our approach—leveraging an exter-588

nal replay buffer, reflection protocols, and a search-589

based decision layer—does not inherently depend590

on GPT-4o. We anticipate that future research can591

replicate these methods using different LLM back-592

ends or other text-based environments, suggesting593

that our reliance on WebArena and GPT-4o does594

not fundamentally limit R2D2 ’s scope or general-595

izability.596
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De Houwer, Marcel Brass, and Baptist Liefooghe. 734
2021. Exploring the link between novel task proce- 735
duralization and motor simulation. Journal of Cogni- 736
tion, 4(1). 737

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, 738
Sergey Levine, and Alane Suhr. 2024. Autonomous 739
evaluation and refinement of digital agents. 740

Emilio Parisotto and Ruslan Salakhutdinov. 2017. Neu- 741
ral map: Structured memory for deep reinforcement 742
learning. 743

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen 744
Koltun. 2018. Semi-parametric topological memory 745
for navigation. 746

Tom Schaul, John Quan, Ioannis Antonoglou, and David 747
Silver. 2016. Prioritized experience replay. 748

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her- 749
nandez, and Percy Liang. 2017. World of bits: An 750
open-domain platform for web-based agents. In Pro- 751
ceedings of the 34th International Conference on 752
Machine Learning, volume 70 of Proceedings of Ma- 753
chine Learning Research, pages 3135–3144. PMLR. 754

Noah Shinn, Federico Cassano, Edward Berman, Ash- 755
win Gopinath, Karthik Narasimhan, and Shunyu Yao. 756
2023. Reflexion: Language agents with verbal rein- 757
forcement learning. 758

Paloma Sodhi, S.R.K Branavan, Yoav Artzi, and Ryan 759
McDonald. 2024. Step: Stacked LLM policies for 760
web actions. In First Conference on Language Mod- 761
eling. 762

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian 763
Li, and Bill Yuchen Lin. 2024. Trial and error: 764
Exploration-based trajectory optimization of LLM 765
agents. In Proceedings of the 62nd Annual Meeting 766
of the Association for Computational Linguistics (Vol- 767
ume 1: Long Papers), pages 7584–7600, Bangkok, 768
Thailand. Association for Computational Linguistics. 769

Sebastian Thrun. 2002. Probabilistic robotics. Commu- 770
nications of the ACM, 45(3):52–57. 771

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 772
dlekar, Chaowei Xiao, Yuke Zhu, Linxi (Jim) Fan, 773
and Anima Anandkumar. 2023a. Voyager: An open- 774
ended embodied agent with large language models. 775
Trans. Mach. Learn. Res., 2024. 776

Haoyu Wang, Tao Li, Zhiwei Deng, Dan Roth, and 777
Yang Li. 2024a. Devil’s advocate: Anticipatory re- 778
flection for LLM agents. In Findings of the Associ- 779
ation for Computational Linguistics: EMNLP 2024, 780
pages 966–978, Miami, Florida, USA. Association 781
for Computational Linguistics. 782

Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham 783
Neubig. 2024b. Agent workflow memory. 784

10

https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
http://arxiv.org/abs/2411.02305
http://arxiv.org/abs/2411.02305
http://arxiv.org/abs/2411.02305
http://arxiv.org/abs/2411.02305
http://arxiv.org/abs/2411.02305
https://aclanthology.org/2024.emnlp-main.141
https://aclanthology.org/2024.emnlp-main.141
https://aclanthology.org/2024.emnlp-main.141
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://arxiv.org/abs/1802.08802
http://arxiv.org/abs/1802.08802
http://arxiv.org/abs/1802.08802
http://arxiv.org/abs/1802.08802
http://arxiv.org/abs/1802.08802
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://doi.org/10.18653/v1/2024.findings-emnlp.60
https://doi.org/10.18653/v1/2024.findings-emnlp.60
https://doi.org/10.18653/v1/2024.findings-emnlp.60
https://doi.org/10.18653/v1/2024.findings-emnlp.60
https://doi.org/10.18653/v1/2024.findings-emnlp.60
http://arxiv.org/abs/1611.03673
http://arxiv.org/abs/1205.4810
http://arxiv.org/abs/1205.4810
http://arxiv.org/abs/1205.4810
http://arxiv.org/abs/2404.06474
http://arxiv.org/abs/2404.06474
http://arxiv.org/abs/2404.06474
http://arxiv.org/abs/1702.08360
http://arxiv.org/abs/1702.08360
http://arxiv.org/abs/1702.08360
http://arxiv.org/abs/1702.08360
http://arxiv.org/abs/1702.08360
http://arxiv.org/abs/1803.00653
http://arxiv.org/abs/1803.00653
http://arxiv.org/abs/1803.00653
http://arxiv.org/abs/1511.05952
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
https://openreview.net/forum?id=5fg0VtRxgi
https://openreview.net/forum?id=5fg0VtRxgi
https://openreview.net/forum?id=5fg0VtRxgi
https://doi.org/10.18653/v1/2024.acl-long.409
https://doi.org/10.18653/v1/2024.acl-long.409
https://doi.org/10.18653/v1/2024.acl-long.409
https://doi.org/10.18653/v1/2024.acl-long.409
https://doi.org/10.18653/v1/2024.acl-long.409
https://api.semanticscholar.org/CorpusID:258887849
https://api.semanticscholar.org/CorpusID:258887849
https://api.semanticscholar.org/CorpusID:258887849
https://aclanthology.org/2024.findings-emnlp.53
https://aclanthology.org/2024.findings-emnlp.53
https://aclanthology.org/2024.findings-emnlp.53


Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jin-785
bing Hou, Bowei Zhang, Haowei Lin, Zhaofeng He,786
Zilong Zheng, Yaodong Yang, Xiaojian Ma, and787
Yitao Liang. 2023b. Jarvis-1: Open-world multi-788
task agents with memory-augmented multimodal lan-789
guage models.790

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi791
Mirza, Arun Ahuja, Agnieszka Grabska-Barwinska,792
Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam793
Santoro, et al. 2018. Unsupervised predictive794
memory in a goal-directed agent. arXiv preprint795
arXiv:1803.10760.796

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015.797
Memory networks.798

Shunyu Yao, Howard Chen, John Yang, and Karthik799
Narasimhan. 2022. Webshop: Towards scalable real-800
world web interaction with grounded language agents.801
In Advances in Neural Information Processing Sys-802
tems, volume 35, pages 20744–20757. Curran Asso-803
ciates, Inc.804

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak805
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.806
React: Synergizing reasoning and acting in language807
models.808

Oussama Zenkri, Florian Bolenz, Thorsten Pachur, and809
Oliver Brock. 2024. Extracting principles of explo-810
ration strategies with a complex ecological task. In811
International Conference on Simulation of Adaptive812
Behavior, pages 289–300. Springer.813

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu,814
and Volker Tresp. 2024. Webpilot: A versatile and815
autonomous multi-agent system for web task execu-816
tion with strategic exploration.817

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,818
Haohan Wang, and Yu-Xiong Wang. 2024. Lan-819
guage agent tree search unifies reasoning acting and820
planning in language models.821

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,822
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan823
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:824
A realistic web environment for building autonomous825
agents. arXiv preprint arXiv:2307.13854.826

A Error Analysis827

Among all the execution failures of R2D2, the er-828

rors can be classified as following:829

Pessimistic Reflection (30.3%). When the agent830

makes a mistake and enters the reflection phase,831

it occasionally produces overly pessimistic ratio-832

nales. Instead of proposing a plausible alternative833

action or a corrective step—such as trying a differ-834

ent button or re-verifying information on the same835

page—the agent may hastily conclude that the ser- 836

vice is unavailable, broken, or that no solution ex- 837

ists. This pessimism not only mischaracterizes the 838

underlying issue but also inhibits effective learning 839

from the mistake. By prematurely giving up, the 840

agent misses opportunities to refine its approach, 841

explore subtle variations in the action sequence, or 842

simply retry a failed step with slight modifications. 843

Lack of GUI understanding (24.2%). In certain 844

scenarios, the agent struggles to properly interpret 845

or interact with the graphical user interface (GUI) 846

elements of the webpage. For example, when 847

the user’s query requires submitting information 848

through an online form, the agent may fail to pin- 849

point the correct input fields or submission buttons, 850

even after correctly navigating to the right page. 851

As a result, it may click on the wrong element, re- 852

peatedly fail to submit required information, or get 853

stuck trying to identify how to move forward. 854

Difficulty with Executing Complex Plan (20.2%). 855

After reaching the desired section of a website, 856

the agent may still falter when asked to carry out 857

intricate, multi-step tasks. For instance, it could be 858

instructed to iterate through a list of items, adding 859

each one to a cart, verifying their details, and then 860

proceeding to a checkout process. This difficulty 861

suggests that, although navigation is now more 862

reliable, the agent still needs improved reasoning 863

capabilities and better long-term action planning to 864

handle scenarios that demand careful step-by-step 865

execution. 866

B Prompt Details 867

In this section, Fig. 7 and Fig. 8 show prompt de- 868

tails in the paradigms. 869

Figure 7: Error classification prompt to determine agent
trajectory error type.

C Qualitative Analysis 870

As shown in Tab. 3, an illustrative case can be ob- 871

served in the user query asking for the billing name 872

of the oldest complete order. The trajectory imple- 873
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User Query gpt-4o Failed Traj. R2D2 Intermediates R2D2 Final Traj.
Get the billing name of the oldest
complete order.

1. Click ’SALES’ icon 2. Click
order id/65 3. Scroll down 4. Stop
action: Grace Nguyen

5.

ROUND 1
Navigation: 1. Click ’SALES’ 2.
Click ’Orders’
Reflection: Agent fails to reach the
correct page.

1. Click ’SALES’ icon 2. Click
’Orders’ 3. Click ’↑ Purchase Date’ 4.
Click ’Filters’ icon 5. Click ’Status’ 6.
Type ’Complete’ 7. Click ’Apply
Filters’ 8. Click ’View’ 9. Stop action:
John Lee

10.
List the top 2 search terms in my
store.

1. Click ’CATALOG’ 2. Click
’SALES’ 3. Click ’REPORTS’ 4.
Click ’CATALOG’

5.

ROUND 1
Navigation: 1. Click ’REPORTS’ 2.
Click ’Search Terms’
Reflection: Agent fails to reach the
correct page.
...
ROUND 3
Navigation: Correct navigation!
Reflection: Arrives correctly but
needs to sort entries.

1. Click ’REPORTS’ 2. Click ’Search
Terms’ 3. Click ’Hits’ 4. Click ’↓
Hits’ 5. Click ’↑ Hits’ 6. Stop action:
Top 2 search terms are ’hollister’ (19
hits) and ’Joust Bag’ (10 hits).

7.

Table 3: Comparison of action trajectories for resolving user queries. This table illustrates how the GPT-4o model
fails to navigate complex web interfaces, whereas the proposed R2D2 framework successfully manages both
intermediate steps and final actions to accurately address the same queries. Please refer to ?? for more detailed
analysis.

Figure 8: Trajectory evalution prompt for Update Opera-
tion. The LLM compares two trajectory and determines
which one is better for addressing the user query.

mented by gpt-4o failed to resolve the query as it874

did not properly navigate the complex web inter-875

face. In contrast, the trajectory of R2D2 shows a se-876

ries of steps that meticulously navigate through the877

interface. This targeted navigation led directly to878

the successful completion of the task, emphasizing879

the necessity of precise and thoughtful navigation880

strategies to effectively interact with and extract881

information from sophisticated web environments.882

In instances where navigation is executed cor-883

rectly but is insufficient to solve the task, the re-884

flection module of R2D2 plays a crucial role. A885

clear example of this is the task to list the top 2886

search terms in the store. While the gpt-4o tra-887

jectory navigates correctly to the ’Search Terms’888

section, it does not delve deeper into analyzing or889

sorting the data, resulting in incomplete and inac-890

curate information retrieval. Conversely, R2D2 not891

only accesses the correct section but also actively892

manipulates the data display by sorting the search893

terms according to their hits, thereby precisely iden-894

tifying and articulating the top search terms. This895

demonstrates the power of R2D2’s reflective capa-896

bilities.897
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