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ABSTRACT

In this paper, we investigate how model distillation impacts the development of
reasoning features in large language models (LLMs). To explore this, we train a
crosscoder on Qwen-series models and their fine-tuned variants. Our results sug-
gest that the crosscoder learns features corresponding to various types of reason-
ing, including self-reflection and computation verification. Moreover, we observe
that distilled models contain unique reasoning feature directions, which could be
used to steer the model into over-thinking or incisive-thinking mode. In particular,
we perform analysis on four specific reasoning categories: (a) self-reflection, (b)
deductive reasoning, (c) alternative reasoning, and (d) contrastive reasoning. Fi-
nally, we examine the changes in feature geometry resulting from the distillation
process and find indications that larger distilled models may develop more struc-
tured representations, which correlate with enhanced distillation performance. By
providing insights into how distillation modifies the model, our study contributes
to enhancing the transparency and reliability of Al systems.

1 INTRODUCTION

The field of natural language processing has witnessed a rapid development of large language models
(LLMs) over the past decade. Early breakthroughs like the Transformer architecture (Vaswani et al.,
2017) revolutionized sequence modeling by utilizing self-attention mechanisms (Cheng et al.,[2016).
This enabled training on unprecedented scales, leading to the era of foundation models (Kaplan et al.,
2020; Hoffmann et al.} 2022). OpenAI’s GPT series (Achiam et al.| [ 2023)) further scaled model sizes
and datasets, showing that performance follows predictable power-law scaling laws in model size
and data. These scaling efforts often yielded emergent abilities — qualitative leaps in capability not
seen in smaller models. Another key breakthrough that has further enhanced the potential of these
models is the incorporation of chain-of-thought (CoT) reasoning (Wei et al.|[2022)). By encouraging
models to articulate intermediate reasoning steps, chain-of-thought methods have not only improved
task performance but have also enabled more complex, multi-step problem solving.

While most LLM improvements have come from scale and supervised fine-tuning, reinforcement
learning (RL) has recently emerged as a promising avenue to instill better reasoning abilities. These
approaches have culminated in the development of highly competent reasoning models, such as ol
(Jaech et al., [2024)) and Deepseek-R1 (Guo et al., [2025]), which exhibit exceptional performance on
tasks that demand rigorous logical inference. Through RL fine-tuning, these models learned how to
refine its reasoning strategies — recognizing mistakes, breaking down complex problems, and trying
alternative approaches. Moreover, the output from these reasoning models has also been used to
empower smaller models, the process known as model distillation (Polino et al., |[2018]).

Despite the empirical success of model distillation, a critical gap remains in our understanding of
how distillation modifies the model. Therefore, we take the first modest step toward understanding
how distillation changes the model. Specifically, we aim to address the following three questions:

Q1: What distinctive features do distilled models develop, and how do these features relate to the
models’ reasoning capabilities?
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Q2: Do distilled models exhibit a greater number of unique features as the base model size in-
creases? If so, how does this divergence scale with model size?

Q3: How does the feature geometry change as a result of distillation? Are there indications of more
structured or organized representations in distilled models compared to their base counterparts?

By understanding the unique features and changes in feature geometry introduced during distillation,
we can gain deeper insights into how distillation modifies the model. This contributes to improving
the transparency and reliability of Al systems and provides valuable insights into building safe and
robust models.

The remainder of this paper is organized as follows. In Section [2] we review the related literature.
Section [3| provides an overview of the sparse autoencoder and the sparse crosscoder. Next, Section
[ examines the unique features of distilled models. In Section[5] we delve deeper into four specific
types of reasoning features, and analyze the faithfulness of features via ablation experiments and
steering. Section [6] explores the changes in feature geometry resulting from distillation. Section
concludes the paper.

2 RELATED WORKS

Mechanistic Interpretability is a line of research that attempts to reverse-engineer neural networks,
by breaking down their computations into human-understandable components. One approach fo-
cuses on finding circuits, a sets of neurons and weights that together implement a sub-function in
the model (Michaud et al., 2024; [Olah et al., 2020; [Templeton et al., 2024). A prominent example
is the discovery of induction heads (Olsson et al., 2022) — pairs of attention heads that enable a
form of copying mechanism crucial for in-context learning. Another approach focuses on studying
the representations of neural networks (Liu et al., 2022; Baek et al., 2025} |Park et al., |2024; [Zhong
et al., 2024; Baek et al.,[2024). For instance, Kantamneni & Tegmark| (2025) found that LLMs use
helical representations of numbers to perform addition. Beyond understanding how LLMs operate,
mechanistic interpretability can also highlight potential failure modes and suggest ways to mitigate
them.

LLM Representations Understanding LLM representations is a crucial component of comprehend-
ing model behavior. This line of research builds upon the Linear Representation Hypothesis (LRH)
(Olah et al., [2020), which posits that each feature corresponds to a one-dimensional direction. Em-
pirical studies have demonstrated that LLMs form linear representations across various domains, in-
cluding space-time (Gurnee & Tegmarkl, |2023; L1 et al., |2021)) and truth values (Marks & Tegmarkl,
2023)). LRH has led to approaches like sparse autoencoders (Lieberum et al.,2024)) and transcoders
(Paulo et al.| [2025) to find interpretable linear combinations of neurons. Some recent works have
pointed out potential exceptions to the LRH by revealing multi-dimensional circular features (Engels
et al., 2024).

Model Distillation is a method for compressing deep neural networks by transferring knowledge
from a large, high-performing teacher model to a smaller, more efficient student model. Originally
introduced by Hinton| (2015)), knowledge distillation has now become a pivotal technique for trans-
ferring advanced capabilities from large language models (LLMs) to relatively smaller language
models (Xu et al.l 2024). The success of distillation is exemplified by DeepSeek-R 1-Distill-Qwen-
32B (Guo et al.| 2025)), a 32-billion-parameter distilled model that outperforms OpenAl-ol-mini
across various benchmarks.

Model Diffing refers to an interpretability technique for comparing neural networks. [Shah et al.
(2023) proposed a framework for comparing two learned algorithms, by finding an input transfor-
mation that leaves one output invariant but not the other. Recent work by [Lindsey et al.| (2024)
demonstrated that a sparse crosscoder could be used to compare two models and identify which
features are newly introduced by instruction fine-tuning.

Model Steering refers to a general method of controlling and modifying models’ outputs without
additional training. One of the well-known steering methods is activation addition (Turner et al.,
2023; Jorgensen et al., 2023} ivan der Weij et al., 2024), where the model could be steered into
behave in a certain way by adding a single feature vector to the activation, for instance, love to
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hate direction. |Sakarvadia et al.| (2023 showed that it is possible to improve factual accuracy on
benchmarks by injecting supplemental information via steering.

3 PRELIMINARIES

3.1 SPARSE AUTOENCODER

Sparse Autoencoder (SAE) is a technique for decomposing model activations into a sparse set of
linear feature directions. The forward pass of standard SAEs is defined as

SAE(z) = WiecReLU(Wep o), (1

where Wy, is the decoder matrix, and W, is the encoder matrix. SAEs are trained to minimize
the reconstruction loss, as well as the sparsity loss on activated features:

L = ||SAE(z) — x|* + Sparsity Loss, ()

where various forms of sparsity loss have been proposed in the literature, including weighted L1
(Bricken et al., 2023; |Cunningham et al.l |2023), JumpReL.U (Rajamanoharan et al., 2024), and
TopK (Gao et al.,[2024).

3.2 SPARSE CROSSCODER

Sparse Crosscoder (Lindsey et al.,|2024) is a variant of SAEs that allow examining interactions be-
tween different activations, for example, from different models, different layers, or different context
positions. To train a sparse crosscoder using activations from two models A and B, the crosscoder
feature activation is computed as

f(xj) = ReLU Z We(:w +bene | 3)
i=A,B

D) = WD fa) + A

a (1']) decf(xj) + dec’ ( )

where a(¥) (z;) is the activation of model 7 at token z;, and a’(*) () is the reconstructed activation.

The crosscoder is trained to minimize the loss, which is a sum of reconstruction MSE and the sum
of per-feature decoder vector’s L2 norm:

£= 3 1 = a3 le) 3 I Ol 5)

i=A,B i=A,B

4 UNIQUE FEATURES OF DISTILLED MODELS

We train a sparse crosscoder with 32768 features on 200 million tokens from the huggingface dataset
open—-thoughts/OpenThoughts—114k and another 200 million tokens from the huggingface
dataset togethercomputer/RedPajama-Data-1T-Sample. The former includes math,
science, and code reasoning traces generated by DeepSeek-R1, whereas the latter includes general
text dataset; In this way, we aimed to identify both reasoning and general text features of the models.
We analyze three distilled models: DeepSeek-R1-Distill-Qwen-1.5B, 7B and 14B. The crosscoder
was trained to reconstruct a residual stream input to the half depth layer of each model. To identify
features unique to each model, we define the relative decoder norm as the ratio between the L1 norm
of the decoder vector for each model:

(B)
. IWaeeklln
Relative Decoder Norm (RDN) = ———— (6)
HWdec k || 1
RDN
Normalized Relative Norm (NRN) = — (7
1+ RDN
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Table 1: Exemplary Features of Qwen-1.5b Crosscoder with Activating Examples.

Feature Activating Examples

Self-reflection reasoning (a) 3. Therefore, the altitude from B is perpendicular to AC, so
its slope is the negative reciprocal: 3/4. The altitude passes
through B(0,0), so its equation is y = (3/4)x. Find the
intersection of x=5 and y=(3/4)x. When x=5, y=15/4=3.75.
Therefore, the orthocenter H is at (5, 15/4). Wait, let
(b) that’s a clue. So the total numbers are n*(n+1). Let’s check
for n=1. Then it would be 1#*2=2 numbers. But the pattern for
n=1 would be a single line. Let’s imagine: perhaps for n=1, the
line is 1*2. But maybe the problem’s examples start from n=2.
But the constraints say 1 < n <70, so I need to handle all cases.
But let

Computation Verification (a) YES. Test case 2: 00110011. The string is 0,0,1,1,0,0,1,1.
Firsty is 2, last; is 7. The substring from 2 to 7+1 (8) is S[2:8],
which is ‘110011°. There are ‘0’s here. So the check fails.
Hence, output NO. Test case
(b) check again: Wait, first term from a
22 % (a+b+c):ala+ b+ c)x? Second term from
bz x (2a + b)z : b(2a + b)z? Third term from ¢ * ax?: acz? So
combining z? terms:
ala+b+c)+b(2a+b) + ac = a® + ab + ac+

0.60 —
4 L
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2 3
= 0.55] 10
2 €
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< 0.501
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]
=
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Figure 1: (Left) Average normalized relative norm across all features for base models of various
sizes. (Right) Distribution of normalized relative norm for Qwen-14b crosscoder features.

In our discussion, we set model A as the base model, and B as the reasoning model. In this case,
shared features correspond to RDN = 1, and NRN = 0.5. RDN — 0 and NRN — 0, correspond to
features that are unique to base model. RDN — oo and NRN — 1, correspond to features that are
unique to the distilled model.

We first examine the distribution of relative decoder norms. Figure [T] shows the distribution of
normalized relative norm, as well as the average NRN across models of different size. We observe
that most features are indeed shared features (NRN = 0.5), with exponentially decaying number of
features on each tail of the distribution. Average relative norm is particularly larger for Qwen-14b
crosscoder, indicating that larger distilled models may have more unique features than the smaller
models.

Upon sorting features by NRN, we find the features unique to distilled model, as shown in Table[I}
We asked GPT-40-mini to annotate top 100 features and bottom 100 features. Unique features of
distilled models include various reasoning features, such as (a) self-reflection reasoning, where the
model recognizes that its thinking process may be incorrect and corrects itself, often using the word
wait; and (b) Verification reasoning, where the model verifies that its solution is indeed a correct
answer to the question. We found that bottom 100 features sometimes activate on reasoning contexts
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Figure 2: Ablation Experiment: Histogram depicting the average logit change in both base and
distilled models as a result of ablating features with (a) NRN > 0.5, and (b) firing frequency in top
k €1[0.5,1,2,5,10,20]%.

as well; however, we believe that base model’s crosscoder feature simply learns the token feature
wait, since (a) we were not able to steer the base model into self-correcting more by manipulating the
relevant latents; (b) feature ablation experiment suggests that these reasoning features may likely be
acausal in the base model; and (c) base model does not self-correct that much and the average logit
of words such as ‘wait’ is significantly smaller than the distilled model, so it is unlikely for a base
model to develop a self-reflection reasoning feature. We present the results of steering experiment
and ablation experiment in the next section.

5 CASE STUDY: REASONING FEATURES

In this section, we study four specific types of reasoning features: (a) self-reflection, (b) deductive
reasoning, (c) alternative reasoning, and (d) contrastive reasoning. We examine how these reasoning
features are distributed along the normalized relative decoder norm (NRN) dimension. To identify
each reasoning context, we collect activations from the following target tokens:

e Self-reflection: “Wait,”
¢ Deductive: “Therefore,” “Thus”
* Alternative: “Alternatively”

¢ Contrastive: “But,” “However”

Here, we hypothesized that each reasoning feature will likely fire frequently on related target tokens.
In order to testify the causality of these reasoning features, we perform ablation experiments. Among
all active features firing on the above target tokens, we zero-ablate features with (a) NRN > 0.5, and
(b) firing frequency in top k& € [0.5, 1,2, 5, 10,20]% in each reasoning category. We then measure
the average logit change across 100 randomly chosen target tokens. Figure [2] shows the results
of our ablation experiments. We find that across all reasoning categories, the distilled model’s
target logit drops significantly as a result of ablation, while the base model’s target logit tends to
remain identical. This experiment verifies that a set of reasoning features are causally responsible for
performing certain types of reasoning in distilled models, and that such causal effects are relatively
small for base models.

We also found that certain features may be highly relevant in determining how long the model thinks.
For example, distilled model’s behavior could be steered into ‘over-thinking’ mode or ‘incisive-
thinking’ mode, as shown in Figure[3|and Figure[0] When we steer the model by adding the feature’s
decoder vector (single feature) to the model, the model enters the ‘over-thinking’ mode, where the
model thinks for extremely long, even for a very simple question like ‘What is 5-1?°. Moreover,
the model checks their answer multiple times until they stop thinking and conclude their answer is
correct.

Distilled model could also be steered into ‘incisive-thinking’ mode. We hypothesize that such
incisive-thinking feature may be highly correlated with the deductive feature defined above. De-
ductive feature fires around the concluding statement, and therefore we believe steering the model
via deductive feature’s decoder vector (single feature) may make the model more confident. In
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Distilled Model: Before Steering

What is the next number in the sequence: 16,
32,48, ...7 <think>

Okay, so I have this sequence here: 16, 32, 48,
and I need to figure out what the next number is.
Hmm, let me think about how sequences work.
They often follow a pattern, whether it’s addi-
tion, multiplication, or some other operation.
First, let me look at the differences between the
numbers. The first number is 16, the second is
32, so the difference between them is 16. Then,
the second to the third is 32 to 48, which is also
16. So, the difference is consistent at 16. That
suggests that the sequence might be increasing
by 16 each time. If that’s the case, the next num-
ber would be 48 plus 16, which is 64.

But wait, maybe that’s too simplistic. Maybe
it’s not a straightforward addition. Sometimes
sequences involve multiplication or exponential
growth. Let me check if multiplying by a con-
stant gives the right result. If I multiply 16 by 2,
I get 32, which matches the next number. Then,
multiplying 32 by 1.5 gives 48, which is correct.
But if I multiply 48 by, say, 1.25, I get 60, which
is different from 64.

Hmm, another approach is to see if it’s a linear
relationship. If I let n represent the position of
the number (like n=1 for the first number), then
the first number is 16, the second is 32, the third
is 48, and so on. If I set up the equation, like:
anp =a1+ (n—1)d

where d is the common difference. Earlier, I
found that d is 16, so substituting, I get:

anp =16+ (n—-1)%x16a, = 16(1 +n —1)
[Dividing into 16 * (1 +n — 1)] a,, = 16n

So, for n=1: 16*1=16, n=2:16%2=32, n=3:48,
which checks out. So, the general term is 16n,
which makes the next term at n=4 equal to 64.
But why did I have this uncertainty earlier about
multiplication? Because in the first two num-
bers, 16 and 32, 16 multiplied by 2 gives 32,
but then 32 multiplied by 1.5 gives 48, which
is different from just 48 times something else.
However, if I use the linear term, it’s still 64.

-+ - (Continued)

Distilled Model: After Steering

What is the next number in the sequence: 16,
32,48, ...7 <think>

First, I’ll analyze the given sequence: 16, 32,
48, and determine the differences between con-
secutive terms to identify any pattern.

Looking at the differences: - 32 - 16 = 16 - 48 -
32=16

It appears that the sequence increases by 16 each
time. To confirm this pattern, I can test the next
term by adding another 16 to the last term:

48 + 16 = 64

Thus, the next number in the sequence would be
64. < /think>

To determine the next number in the sequence
**16, 32, 48, ...**, let’s analyze the differences
between consecutive terms.

1. **Find the differences:**
-32—-16=16-48 —32=16

It appears that each term in the sequence in-
creases by **16%*.

2. **Continuing the pattern:**

- Next term: 48 + 16 = 64

**Final Answer:**

Figure 3: Distilled Model’s behavior steered into incisive thinking mode.

particular, original distilled models tend to repeat or check the same statement multiple times, es-
pecially when the problem becomes complex. Steered model, however, tends to be more confident
and incisive in their thinking process.

6 FEATURE GEOMETRY OF DISTILLED MODELS

Does the distilled model have better feature geometry? One possible explanation for improved LLM
capabilities is that these models build better representations — much like how humans enhance their
understanding of a subject by connecting the dots and organizing their knowledge more effectively.
To investigate whether distilled models have more structured representations, we measure the quality
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Figure 4: Cumulative fraction as a function of parallelogram loss for different models and function
classes. Distilled model’s representations tend to become more structured as the model scales.

of semantic parallelograms (e.g., the classic example: man:woman::king:queen). We use the dataset
from|Todd et al.|(2023). This dataset consists of a pair of words that are related by a specific function.
By using two pairs from the same function class, one can construct a semantic parallelogram. We
then measure the parallelogram loss; Let (E,, Ey, E., E;) be the PCA-ed activations. Then, the
parallelogram loss is defined as

|E, — Ey — E. + E4||
VIE]? + [Es]2 + [Ec|? + [[Eq]?

For each function class, we first select entries that consist of a single token, and then compute the
parallelogram loss over all possible pairs. We use the residual stream input activations from the
half-depth layer of the model, reduce the representations to 20D using PCA, and then evaluate the
parallelogram loss. Figure ] shows the parallelogram loss for different models and function classes.
While the base model generally outperforms the distilled model in Qwen-1.5B, we observe that the
distilled model starts to outperform the base model as the model size increases. In fact, the 14B
distilled model exhibits better parallelogram performance than the base model across all evaluated
function classes. This implies that as model size scales, distilled models achieve better-structured
representations, which subsequently leads to improved distillation performance. In Appendix [Al
we also show that such structure improvement is robust against the number of PCA dimensions we
choose.

Parallelogram Loss =

®)

7 CONCLUSION

In this paper, we examined how model distillation impacts the development of reasoning features
in LLMs. We find various reasoning features from the sparse crosscoder, such as self-reflection
and computation verification feature. In particular, we observe that distilled models contain unique
reasoning feature directions, which could be used to steer the model into over-thinking or incisive-
thinking mode. Lastly, we find indications that larger distilled models may develop more structured
representations, which correlate with enhanced distillation performance. Ultimately, our work con-
tributes to improving the transparency and reliability of Al systems by providing insights into how
distillation modifies the model.
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A  PARALLELOGRAM LOSS FOR DIFFERENT PRINCIPAL COMPONENT
DIMENSIONS
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Figure 5: Parallelogram loss with activations PCA-ed into 2D.

—— Base

—— Distilled

english-spanish english-german english-french present-past

singular-plural

0 1 20 1 20 1 20 1 20 1 2

0 1 20 1 20 1 20 1 20 1 2

' 1 20 1 20 1 20 1 20 1 2
Parallelogram Loss
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Figure 8: Parallelogram loss with activations PCA-ed into 20D.
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B EXAMPLE OF STEERED OUTPUTS

Distilled Model: Before Steering

What is 5-1? <think>

To determine what 5 minus 1 equals, I start by
recognizing the numbers involved. The number
5 is being subtracted by 1, which is a basic arith-
metic operation.

Next, I perform the subtraction as indicated.
Subtracting 1 from 5 results in 4.

Finally, I confirm that the result is correct by
adding the result (4) to the smaller number (1)
to see if it equals the original larger number (5).
Since 4 plus 1 equals 5, the calculation is cor-
rect.

I conclude that 5 minus 1 indeed equals 4. <
/think>

To find the value of 5 — 1, follow these steps:

1. **Identify the Numbers Involved:** - Min-
uend (the number being subtracted from): 5 -
Subtrahend (the number being subtracted ): 1

2. **Perform the Subtraction:**

5—1=4
3. **Final Answer:**

Distilled Model: After Steering

What is 5-1? <think>

Okay, so I need to figure out what 5 minus 1
equals. Hmm, let’s start by visualizing this with
something I know, like money or maybe blocks.
If I have 5 coins and someone gives me 1 coin,
how many do I have left? That makes sense.
Alternatively, I could think of it in terms of
numbers on a number line. If I start at 5 and
jump back one step, where do I land? Let me
count down from 5. That would be 4, 3, 2, and
finally 1. Wait, so I'm at 1 then. That seems
right.

But maybe I can use some bodily actions to
double-check. If my fingers are on table and I
show five fingers, then I take one away, I should
have four fingers left. That gives me another
confidence that 5 minus 1 is 4.

Another way is to count backwards. Starting
from 5 and counting back one: 4, 3, 2, 1. Yep,
that’s four. So it seems like whatever method 1
use, [ end up with 1 as the answer after 5 minus
1.

Wait, could there be a mistake here? Did I forget
something or oversimplify? Let’s think. 5 mi-
nus 1 is straightforward. No fractions, no neg-
atives, just a simple subtraction. So yeah, it’s
definitely 4.

Wait a second, maybe I'm second-guessing my-
self too much. Did I not use a real number or
just a calculation without context? Well, the
problem says 5 minus 1, so it’s a basic subtrac-
tion. No, I think I have it right.

Is this a case where I missed something, like
borrowing in subtraction? No, in this case, [
don’t need to borrow. It’s just a basic subtrac-
tion without any borrowing involved. So yeah,
nothing here to complicate things further.
Perhaps I can also use real-world objects, like
apples, to apply this. If I have 5 apples and
someone takes 1, how many do I have left?
Starting with 5, take 1, what’s left? So, 4 ap-
ples. That also makes sense.

Wait, if I play with real coins and take one away,
5 minus 1, is that four coins? Yeah, that’s the
same thing.

But I can also do square roots or something, but
that’s overcomplicating. Wait, but maybe not.
Let me think, if I don’t know this subtraction,
maybe it’s in a different context.

-+ - (Continued)

Figure 9: Distilled Model’s behavior steered into over-thinking mode.
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