
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAN MAMBA ALWAYS ENJOY THE “FREE LUNCH”?

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have been the cornerstone of current Large Language Models
(LLMs); however, its linear growth in overhead during inference with respect
to sequence length poses challenges for modeling long sequences. In this con-
text, Mamba has gradually attracted attention due to its constant-level size during
inference and existing empirical results have shown that it can perform compa-
rably to Transformers in sequence modeling while offering significant savings.
However, one may ask that, can Mamba always enjoy the “free lunch”? In this
paper, we focus on analyzing the expressive ability of Mamba from a theoretical
standpoint. First, inspired by the connection between Mamba and linear attention,
we investigate potential shortcomings of the Mamba when performing the COPY
operation. Our results indicate that Mamba with constant size may encounter bot-
tlenecks when handling COPY, while it can achieve perfect performance when the
size scales linearly with sequence length. Based on this observation, we analyze
Mamba’s ability to tackle DP problems when equipped with Chain of Thought
(CoT). Our findings suggest that to solve arbitrary DP problems, the total cost of
Mamba is comparable to standard and efficient Transformers. However, similar to
efficient Transformers, when facing DP problems with favorable properties such
as locality, Mamba can provide savings in overhead. Our results contribute to a
deeper understanding of Mamba.

1 INTRODUCTION

Reccently, Transformer-based large language models (LLMs) have become the mainstream of mod-
ern neural network architectures due to their outstanding performance across a wide range of tasks
(Vaswani et al., 2017; Kenton & Toutanova, 2019; Brown et al., 2020; Dosovitskiy et al., 2020; Min
et al., 2022). However, the core component of Transformers—the attention layer—while providing
excellent performance, also leads to emerging drawbacks: during training, the computational cost
scales quadratically with sequence length, and during inference, the cost scales linearly with se-
quence length. This limitation becomes increasingly unacceptable when dealing with long sequence
tasks. To address this issue, many works have attempted to improve the attention mechanism to
reduce its time and storage costs (Tay et al., 2023; Choromanski et al., 2020; Katharopoulos et al.,
2020; Beltagy et al., 2020; Child et al., 2019). However, these improved structures often achieve
efficiency in the attention layer at the expense of some performance.

Faced with the scaling challenges of Transformers, the exploration of new model architectures to
replace Transformers has gradually come into focus, leading to the development of modern RNN
architectures, including RWKV (Peng et al., 2023), RetNet (Sun et al., 2023), and Mamba (Gu &
Dao, 2023). Among them, the Mamba architecture (Gu et al., 2021; Gu & Dao, 2023), based on the
state space model (SSM), has garnered attention for its performance comparable to Transformers in
many sequence modeling tasks Dao & Gu (2024) and vision tasks (Zhu et al., 2024; Xu et al., 2024).
These models utilize hardware-aware algorithms during training, resulting in computational costs
that scale linearly with sequence length, and require constant-level computation and storage during
inference. Mamba’s strong performance and computational efficiency make it a strong competitor
to Transformers.

Despite Mamba demonstrating excellent performance, one can not help but ask, can Mamba always
enjoy such “free lunch”, that is, can Mamba always save considerable overhead while maintaining
performance of Transformers? More recent results have revealed Mamba’s shortcomings in certain
tasks, especially those involving retrieval (Arora et al., 2023; Hendrycks et al., 2020; Jelassi et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2024). Specifically, Akyürek et al. (2024) study the in-context language learning capabilities of
different models and find that Transformers outperformed other models, including Mamba, due to
the specialized attention heads. Jelassi et al. (2024) also discover that Transformers are superior to
Mamba on tasks that require copying from the input context. Park et al. (2024) point out that Mamba
struggles to retrieve vectors from the context of multi-query associative recall (MQAR) (Arora et al.,
2023), while Transformers can easily handle it well. Furthermore, Waleffe et al. (2024) conduct
experiments on larger models (up to 8B parameters) with a broader range of tasks, discovering that
when it comes to in-context learning and recalling information from text, although Mambas can
contain the same knowledge as Transformers, it will be more difficult for them to directly copy
useful information from history.

Although there has been some empirical exploration, the theoretical investigation concerning the
above “free lunch” question still remains open to explore. In this paper, we attempt to explore
Mamba’s expressive ability from a theoretical standpoint. Specifically, inspired by the comparison
between Mamba and linear attention mechanism, we first focus on Mamba’s ability to perform the
COPY operation, which is closely related to the ability to retrieve information from context. Our
theoretical results show that Mamba’s performance in executing COPY operations is closely related
to the size of its model and experiments also confirm the limitations of Mamba in executing copy
tasks and retrieval from long sequences. Further, following the setting of Feng et al. (2024); Yang
et al. (2024), we explore Mamba’s capability to solve DP tasks equipped with Chain of Thought
(CoT). We find that to solve arbitrary DP problems, Mamba, standard Transformers and efficient
Transformers including Linear and Sparse Transformers (Katharopoulos et al., 2020; Child et al.,
2019) seem to be on equal footing in terms of inference cost; however, when dealing with m-locality
DP problems, Mamba may offer significant savings like efficient Transformers. Our results can be
concluded as follows:

• A constant-sized Mamba may encounter bottlenecks when executing COPY operations
(Theorem 1 in Section 4);

• When the size of Mamba scales linearly with the sequence length, it can perform COPY
operation accurately (Theorem 2 in Section 4);

• To solve arbitrary DP problems, the total cost required by Mamba is comparable to that of
standard and efficient Transformers (Theorem 3 in Section 5);

• When dealing with DP problems that have favorable locality properties, Mamba can bring
savings in overhead compared to standard Transformers (Theorem 4 in Section 5).

2 RELATED WORK

SSMs and Attention Mechanism: The attention mechanism is a core component of LLMs (Brown
et al., 2020; Touvron et al., 2023). Drawing connections between SSMs and attention is a fascinat-
ing direction as it not only aids in our understanding of the Mamba structure but also facilitates
the transfer of well-established acceleration techniques from attention mechanisms to Mamba (Dao,
2023; Katharopoulos et al., 2020). Based on observations of the similarities between them, Dao
& Gu (2024) proposed the state space dual (SSD) layer based on SSMs to achieve significant im-
provements in training efficiency. Sieber et al. (2024) introduce the Dynamical Systems Framework
(DSF), under which attention and SSMs can be directly compared. Additionally, Han et al. (2024)
reformulate the structure of SSMs to establish links with linear attention, aiming to investigate the
key factors behind success in vision tasks. We follow this convenient reformulation and comparison,
based on which we furthermore explore Mamba’s ability to perform the COPY operation.

Comparisons between Transformers and Mamba: More recent works compare the performance
of Mamba and Transformers across various tasks from different perspectives. Merrill et al. (2024)
theoretically demonstrate that, similar to Transformers, Mamba is also unable to solve state tracking
problems such as permutation composition. Jelassi et al. (2024) find that Transformers significantly
surpass SSMs when facing tasks related to copying and retrieving information from context. Park
et al. (2024) investigate Mamba’s capability for in-context learning and demonstrate that Mamba
outperforms Transformers in sparse parity learning while it is weaker in tasks involving non-standard
retrieval functionality. Similarly, Waleffe et al. (2024) conduct experiments on a larger scale and
find that Mamba lag behind Transformers in tasks that require strong copying and long-context

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

reasoning. Our experiments reference the setups of these works and conduct similar investigations.
We also note that Jelassi et al. (2024) find theoretical conclusions that appear to be similar to ours,
namely that generalized SSMs (GSSMs) including Mamba cannot copy uniformly input sequences
unless the size of the state space grows linearly with the sequence length. Although our work
also focuses on “copy”, Jelassi et al. (2024)’s definition of the copy task is at the sequence level,
investigating the ability of GSSMs to replicate entire sequences that satisfy some distribution and
providing a lower bound for their state space memory. In contrast, our COPY operation is defined
at the token level, exploring the conditions under which Mamba can copy some specific historical
token and providing constructions for Mamba with linear-scaling size to achieving this operation.

Transformers and modern RNNs with CoT: Chain-of-Thought (CoT) (Wei et al., 2022) is em-
ployed to enhance the performance of LLMs by enabling them to provide step-by-step reasoning
before arriving at a final answer. It has been shown theoretically that Transformers with CoT exhibit
significantly improved expressive power, allowing them to solve more complex problems compared
to Transformers without CoT (Merrill & Sabharwal, 2023b; Feng et al., 2024; Merrill & Sabharwal,
2023a; Li et al., 2024; Yang et al., 2024). Our analysis of Mamba equipped with CoT follows the
framework set by Feng et al. (2024); Yang et al. (2024) in their analysis of dynamic programming
(DP) problems. Furthermore, Wen et al. (2024) examine the effect of CoT on enhancing the expres-
sive power of modern RNNs including SSMs by drawing connections with a Turing machine with
O(log(n)) space. Their findings indicate that when using CoT, RNNs with log(n) bit memory will
have strictly stronger representation power than those without CoT. Different from this, our work
explores the ability of Mamba equipped with CoT from the perspective of solving DP problems fol-
lowing the setting of Feng et al. (2024) and show constructions for Mamba layers with linear-scaling
size relative to the sequence length to solve DP problems.

3 PRELIMINARIES

In this section, we introduce the Mamba structure that we focus on and its reformulated form firstly
introduced by Han et al. (2024), which facilitates a better understanding of the connection between
Mamba and linear attention as illustrated in Section 4.1. It should be noted that to better distinguish
different types of variables, in this paper, we use bold uppercase letters to represent matrices such as
A, bold lowercase letters to represent vectors such as a, and all non-bold letters to represent scalars
such as a and ∆. This may differ slightly from the notations used in some Mamba-related literatures
(Dao & Gu, 2024; Zhu et al., 2024), where uppercase letters are used to describe A, B, C in SSMs.

State Space Model: The state space model (SSM) is inspired by the continuous system that maps a
scalar input x(t) ∈ R to its output y(t) ∈ R through a high-dimensional hidden state h ∈ Rdh (Gu
& Dao, 2023; Dao & Gu, 2024; Han et al., 2024; Zhu et al., 2024; Han et al., 2024). Specifically,
this system can be written as:

h′(t) = Ah(t) + bx(t), y(t) = cTh(t) + dx(t),

where A ∈ Rdh×dh denotes the evolution parameters, b, c ∈ Rdh are projection parameters and d
is a scalar parameter. The above continuous system can be discretized using transformation called
zero-order hold (ZOH), resulting in a discrete version that can be used for neural networks. In this
process, A, b will be transformed as A, b. The discrete version for SSM can be written as:

hi = Ahi−1 + bxi, yi = cThi + dxi,

where A = exp(∆A), b = (∆A)−1(exp(∆A) − I) · ∆b ≈ ∆b and ∆ ∈ R is a timescale
parameter. The matrix A is typically assumed to have certain structures such as being diagonal,
leading to the structured SSMs (Gu et al., 2022; Gupta et al., 2022).

Selective State Space Module: To enhance the SSM, Mamba makes the parameters bi, ci,∆i

dependent on different inputs xi. More specifically, A is set to be diagonal resulting in that
Aihi−1 = ãi ⊙ hi−1 where ãi = exp(∆ia), a = diag(A) and ⊙ denotes the element-wise
product. In addition, bixi = ∆ibixi = bi(∆i ⊙ xi). Thus, this transformation ultimately results in:

hi = ãi ⊙ hi−1 + bi(∆i ⊙ xi), yi = cTi hi + d⊙ xi.

Furthermore, to extend the case of processing scalar inputs xi to vectors xi ∈ Rd, Mamba performs
the above operations on each dimension independently, which can be formalized as:

Hi = Ãi ⊙Hi−1 + bi(∆i ⊙ xi)
T , yi = HT

i ci + d⊙ xi, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where Ãi = [ã
(j)
i]dj=1 ∈ Rdh×d , bi = Wbxi ∈ Rdh , ci = Wcxi ∈ Rdh , ∆i =

Softplus(W 2
∆W 1

∆xi) ∈ Rd and W 1
∆,W 2

∆ are linear projection parameters. Thus, given the input
X = [xi]

N
i=1 ∈ Rd×N , we denote the output of the SSM module in Mamba as Y = SSM(X)

where Y = [yi]
N
i=1 and yi follows Eq (1). This formalization was introduced by Han et al. (2024)

to build a bridge between Mamba and linear attention and here we follow this form.

Mamba Layer: Given some input sequence X = [xi]
N
i=1 ∈ Rd×N , the input will be processed

through stacked Mamba layers where each layer can be viewed as consisting of a residual connection
and a Mamba block f (l) : Rd → Rd. Specifically, this process can be formulated as

Xl = Xl−1 + f (l)(Xl−1), l = 1, 2, . . . , L (2)

f (l)(Xl−1) = W
(l)
3 · SSM(W

(l)
1 Xl−1 + b

(l)
1)⊙ σ(W

(l)
2 Xl−1 + b

(l)
2), (3)

where σ(·) denotes SiLU activation function. A Mamba block combines the output of the SSM
module with a gated MLP (Gu & Dao, 2023; Chowdhery et al., 2023; Shazeer, 2020), which can be
viewed as consisting of two branches. Here we call the branch with the SSM module as “the SSM
branch” and the other as “the gated branch”. It should be noticed that for the sake of simplifying the
analysis, we focus on the core components of Mamba including SSM module and the gated MLP
while ignoring other structures including the σ(·) before SSM module, Layer Normalization and 1D
Convolutions. The simplified Mamba structure that we focus on can be illustrated by Figure 1. In
addition, to avoid confusion, we clarify that the SSM module here is specifically the Selective State
Space Module used in Mamba and this will be consistent throughout the subsequent sections.

4 CAN MAMBA ALWAYS PERFORM COPY PERFECTLY?

In this section, we firstly interpret the reformulated SSM module introduced in Section 3 as a spe-
cial linear attention. Then based on this observation, we explore the capability of Mamba to execute
COPY operations during inference, which is highly related to the ability to perform in-context learn-
ing and retrieve information.

4.1 VIEWING MAMBA AS LINEAR ATTENTION

The attention mechanism is the key to the success of the Transformer architecture. Recent works has
explored the relationship between Mamba and attention mechanisms, particularly linear attention
from different perspectives Han et al. (2024); Dao & Gu (2024); Sieber et al. (2024). The linear
causal attention mechanism can be formalized as:

yi =

i∑
j=1

vjk
T
j qi =

i∑
j=1

(qT
i kj)vj =

i∑
j=1

aijvj , (4)

where qi, ki, vi are usually interpreted as query, key, value respectively and aij denotes the attention
scores of the i-th token to the j-th one. In attention mechanisms in Transformers, there exists aij > 0

for all j ≤ i and
∑j

i=1 aij = 1, which can be implemented by Softmax function, or approximated
by kernel methods (Katharopoulos et al., 2020; Choromanski et al., 2020).

On the other hand, given the input sequence [xi]
N
i=1 and recalling Eq (1), that the output of the SSM

module will have the following form when we set H0 = O and d = 0:

yi = (∆i ⊙ xi)b
T
i ci +

i−1∑
j=1

[
Πj ⊙ (∆j ⊙ xj)b

T
j

]
ci, (5)

where Πj = Ãi ⊙ Ãi−1 ⊙ · · · ⊙ Ãj+1. We notice that since in practice all elements of ∆ are
positive and A is set to be negative (Gu & Dao, 2023; Dao & Gu, 2024; Han et al., 2024), so that
the elements of Ãi in Eq (1) belong to the interval [0, 1]. For the sake of simplicity in analysis, we
replace the matrix Ãi with a constant ai (i.e., considering the case where all elements of Ãi are the
same), where ai ∈ [0, 1] (Dao & Gu, 2024). In fact, the subsequent analysis can be easily extended
to the normal case where the elements of matrix Ãi are different. Then, Eq (5) can be rewritten as

yi =

i∑
j=1

αj(∆j ⊙ xj)b
T
j ci =

i∑
j=1

αj(c
T
i bj)(∆j ⊙ xj), (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: The illustration of the simplified Mamba layer we focus on. Left Part: A Mamba layer
can be composed of a Mamba block with the residual connection; The Mamba block uses a gated
MLP to control the output of the SSM module, where we call the branch with the SSM module as
“the SSM branch” while the other as “the gated branch”; Right Part: The SSM module used in
Mamba can be rewritten in a form similar to linear attention, where ∆i, bi, and ci in SSM are all
derived from the current xi, similar to vi, ki, and qi in linear attention respectively.

where αj = Πi
k=j+1ak for j ≤ i − 1 and αi = 1. In this form, we can observe that it bears

similarities to linear attention without normalization in Eq (4), where (∆j ⊙xj), bj , ci corresponds
to vj , kj and qi respectively and cTi bj acts like attention scores aij . Considering αj−1 ≥ αj and
αj ∈ [0, 1] for all j ≤ i, the main difference is that each term in Eq (6) is weighted by a coefficient
αj to achieve the forgetting of inputs at longer distances while the attention mechanism uses the
constraints for attention scores imposed by Softmax function to make sure the scaling of outputs.

4.2 THE TRADE-OFF OF MAMBA WHEN PERFORMING COPY

Based on the observation of the connection between the SSM module and attention mechanism, we
investigate the capability of Mamba to recover historical inputs, which is foundational for the model
to process information based on context. The COPY operation we focus on is defined as follows:
Definition 1 (COPY operation). Given the considered input sequence X = [x1]

N
i=1, we define the

L-local matching set Si = {i − L + 1 ≤ j ≤ i : |cTi bj | ≥ δ} and denote vi = ∆i ⊙ xi as
historical records. Then the output of COPY operation is a sequence of vectors o1,o2, ...,oN with
oi = vpos(i) where pos(i) ∈ Si is the position we want to copy.

The L-local matching set Si describes the indices of historical keys bj that is highly relevant to
the current query ci within a local window of length L, that is, the “attention scores |cTi bj |” is
lower-bounded by δ. Thus, the position of the historical record we most want to replicate should be
within this highly relevant set. It should be noted that here we do not specify particular conditions
for the positions we want to copy for a given i ∈ [N], which are usually determined by specific
tasks. Therefore, our analysis can be applied to general scenarios. We then make the following
assumption:
Assumption 1. For the given sequence X = [xi]

N
i=1, the following conditions holds:

• For i ∈ [N], cTi bpos(i) ≥ ρ where ρ ≥ δ and 0 ≤ |cTi bj | < δ for all j /∈ Si.

• For any i ∈ [N], there exists
∑

j∈Si
αj |cTi bj | < 1.

The first condition of Assumption 1 places a restriction on the attention score between the historical
keys and the current query: for those positions not within the L-local matching set Si, the relevance
between the two will be strictly constrained within δ; whereas for the position we want to replicate,
its relevance is lower-bounded by ρ, ensuring a certain gap from other historical records. The second
condition of Assumption 1 imposes a constraint on the stability of the output caused by the records
in Si, that is, ∥

∑
j∈Si

αjc
T
i bjvj∥ < 1 when ∥vj∥ ≤ 1 for j ∈ Si.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Now we present the following result:
Theorem 1 (Perform COPY operation with constant size). Under Assumption 1, given a input
sequence x1,x2, . . . ,xN and for any ϵ > 0, there exists a Mamba block with constant size that
can approximate the COPY operation, that is, for i ∈ [N], we have ∥yi − oi∥ ≤ ϵ if the following
condition is satisfied:

ρ ≥
(
1− ϵ

2M∥∆∥∞

)
1

αpos(i)
+

δ

2

 amax,<

1− amax,<
+

(
1

amin,>

)L−1

− 1

1− amin,>

 , (7)

where amax,< = max1≤j<pos(i) aj and amin,> = minpos(i)<j≤i aj . Moreover, in such cases, there
exists δ ≤ ϵ

(L−1)M∥∆∥∞
when L ≥ 2.

The proof of Theorem 1 can be seen in Appendix A.1. Theorem 1 presents the trade-off between the
historical coefficient aj , the window length L of Si, and the lower bound of the attention score cTi bj
when performing the COPY operation with constant size. At first glance, the lower bound ρ exhibits
exponential growth with respect to L, that is, ρ = Ω

(
(1/amin,>)

L
)
, which seems unacceptable.

In addition, when amin,> and L are smaller and amax,< is larger, the aforementioned condition (7)
will be satisfied more easily. More specifically, as seen from (7), when we want to copy the vector
vpos(i) from the hidden state, the terms before pos(i) should be forgotten sufficiently (amax,< is
smaller) so that the record remembered by the hidden state is as pure as possible. In addition, the
forgetting coefficient after pos(i) should not be too small (correspondingly, amin,> should be as
large as possible) to make sure that vpos(i) is recorded to some extent. Futhermore, the maximum
distance L between the copied position and the current position should not be too far. In these cases,
the lower bound of the relevance score cTi bpos(i) will be smaller, which means that it will be easier to
achieve the COPY operation. Moreover, it should be noticed that as the possible position of pos(i)
move further away from the current position (L grows), the attention scores of irrelevant historical
records will decrease, that is, |cTi bj | will be smaller for j /∈ Si.

One cannot help but think that the sufficient condition for Mamba to achieve the COPY operation
illustrated by Theorem 1 is extremely stringent as the lower bound of the attention score for the
historical record we want to copy grows exponentially with L. This naturally leads to the question:
will Mamba perform the COPY operation more easily when we increase the model size? We point
out that when the size of Mamba increases linearly with the length of the input sequence, Mamba
will be capable of accurately restoring the historical records. Below, we present our results:
Theorem 2 (Perform COPY operation with linear-scaling size). Given sequence x1,x2, . . . ,xN ∈
[−M,M]d, there exists a Mamba block with size O(N) that can perform the defined COPY oper-
ation, that is, yi = oi for any i ∈ [N]. Moreover, the l∞ norm of the Mamba block parameters is
upper bounded by O(ploy(M,N)).

The proof of Theorem 2 can be found in Appendix A.2. Theorem 2 is based on a simple intuition:
when the size grows linearly with the length of input sequence, the model will have enough space to
store these historical records and therefore can retrieve them. All parameters being upper bounded by
O(ploy(M,N)) means that the problem can also be solved by the same Mamba block with log(N)
precision, which has been also adopted in previous works (Merrill & Sabharwal, 2023b;a; Feng
et al., 2024; Yang et al., 2024; Wen et al., 2024). Furthermore, here we only provide an existence
construction, and whether the Mamba layers will actually learn these constructions is beyond the
scope of our analysis. It should be noticed that during inference, such a Mamba block will have the
same cost as Transformers at each step(growing linearly with length). Based on this observation, we
will elaborate in Section 5 that when faced with the DP problems, Mamba will incur the same order
of overhead as the Transformer.

4.3 MAMBA EMPIRICALLY WEAKER IN COPY TASKS THAN TRANSFORMERS

Although theoretical analysis shows that Mamba might face difficulties in performing COPY opera-
tion, in practice, Mamba may mitigate this issue through multi-layer stacking, and the actual number
of parameters might be sufficient to handle tasks of a certain scale. Therefore, following previous
works (Jelassi et al., 2024; Waleffe et al., 2024), we conduct experiments on both synthetic data and
more realistic task to explore the practical performance of Mamba.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Experiment on the copy task and more realistic phonebook task. Left Part: The training
process of Transformers and Mamba models of different sizes on the copy task. Center Part: The
performance of Mamba when the length of the string to be copied is changed. Right Part: The
performance of pre-trained Mamba as the length of the phone book increases.

4.3.1 EXPERIMENTS ON SYNTHETIC DATA

First, we conduct experiments on the copy task introduced by Jelassi et al. (2024). In this task,
models are given a string of a certain length and then are required to copy this string exactly as out-
put. During training, we uniformly sample a length from the interval [Nmin, Nmax] and then sample
characters from the alphabet at each position to obtain a string as a instance. During evaluation, we
sample strings of fixed length Nmax as inputs, and then we ask models to repeat them while count-
ing the ratio of correctly copied characters as accuracy. More experimental details can be found in
Appendix A.5.

For the left part of Figure 2, we firstly compare Transformer and Mamba of similar size (126M
and 135M, labeled as TF and Mamba) while fixing the string length. The result shows that while
both can perform the copy task finally, Transformer learns the task quickly whereas Mamba requires
nearly seven times the number of examples. For smaller models, on the one hand, we find that the
performance of Transformer is hardly affected when we halve the number of layers (63M, marked
as TF-small); on the other hand, we consider two approaches for Mamba: (i) reducing the number
layers (67M, labeled as Mamba-small-L), which causes Mamba to require more examples to achieve
similar accuracy; (ii) reducing the hidden size (67M, labeled as Mamba-small-D), in such case
Mamba learn the copy task even more slowly; (iii) reducing the hidden size while increasing
layers (69M, labeled as Mamba-small-LD), in which case Mamba can not learn the task with 5.8×
105 examples and the training process becomes unstable. Our results indicate that for the copy task,
the hidden size of Mamba seems more important than the number of layers at the same model size,
while Transformers are consistently better than Mamba.

For the center part of Figure 2, we change the maximum length Nmax while maintaining the model
size. The results showed that when Nmax are 10, 20, and 30, the number of training examples needed
for Mamba to learn the task (achieving 95% accuracy in 3 consecutive evaluations) is approximately
1.36 × 104, 3.52 × 104, and 1.15 × 105 respectively, indicating that the required number grows
more than linearly relative to Nmax. Notably, when Nmax = 40, Mamba will be unable to learn the
task within 5.8 × 105 examples. Additionally, we observe instability in Mamba’s training as Nmax

increases. In contrast, Transformer can still learn quickly and maintain stability even at Nmax = 40,
which again indicate that Transformer outperforms Mamba in executing copy operations.

4.3.2 EXPERIMENTS ON PHONEBOOK TASK

For more realistic tasks, we consider the “phonebook” task following Waleffe et al. (2024); Jelassi
et al. (2024). In this task, models are given a phone book consisting of N names and their corre-
sponding phone numbers, and then models are asked in a few-shot manner to provide the phone
number for some given person in the phone book, for example, “Bob: 111111; Alice: 222222; Tom:
{ } ”, which relates to the ability to copy at specified positions. We examine the pre-trained Mamba
models of sizes 370M, 1.4B, and 2.8B (Gu & Dao, 2023).

It can be seen from the right part of Figure 2 that when the length N of the phone book increases,
the performance of models declines to a certain extent while larger models are better at retrieving
the required information. Additionally, we notice that there will be some improvement in perfor-
mance when we provide Mamba with task-related information in advance, such as adding the prompt
“Please remember the phone number of Tom” at the beginning (labeled as Mamba(2.8B)++). This

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

suggests that informing the model about the task in advance helps it to perform better in selective
memory during processing subsequent inputs, thereby enhancing the effectiveness of the copy.

5 THE EXPRESSIVE POWER OF MAMBA EQUIPPED WITH COT

Although Mamba may face certain bottlenecks when handling copy tasks, another interesting ques-
tion is: when augmented with other techniques, such as Chain of Thought (CoT), will Mamba see an
improvement in its capabilities? Now, we turn our attention to the expressive ability of Mamba
equipped with CoT to solve dynamic programming (DP) problems. Specifically, following the
setup by Feng et al. (2024); Yang et al. (2024), a DP problem can be described by input sequences
{s(1), s(2), . . . , s(N)}, state space I, transition function fT , and aggregation function fA. Each of
component can be described as follows:

• Input sequences: We use {s(1), s(2), . . . , s(N)} to denote the input of the sequences and the vector
n =

[
|s(1)|, |s(2)|, . . . , |s(N)|

]T
to describe the scale of the problem, where |s(i)| denotes the length

of the i-th sequence.

• State Space: For a given DP problem, the state space In (and its size) will be determined based
on the problem size n. Each state i ∈ In corresponds to an intermediate value dp(i) that needs to
be computed, and i ≺ j means that state i needs to be solved before state j. There exists a function
fI : In → In to calculate the next state, that is, j = fI(i) if j is the next state to solve after i.

• Transition function: The intermediate DP value can be calculated by the transition function
fT as dp(i) = fT (n, s, {(j,dp(j)) : j ≺ i}) where s is the concatenation of the input tokens
which corresponds to all elements of all input sequences. Furthermore, this can be formulated as
dp(i) = fT (n, {sj : j ∈ Di}, {dp(k) : k ∈ Vdp(i)}) where Di and Vdp(i) are the sets of input
tokens indices and DP values needed to solve state i respectively.

• Aggregation function: To produce the final answer, the aggregation function needs to collect the
required intermediate DP values and calculate the final result, which can be formalized as anwser =
fA({dp(i) : i ∈ An}) where An is the set of DP values needed in the aggregation according to the
problem size n.

It should be noted that in the above definition, we use s(i) to denote the i-th input sequence and
si to denote the i-th input token, where s is all input tokens transformed from the concatenated
input sequences (s(1), s(2), . . . , s(N)). It can be referenced from Section 4.1 of Feng et al. (2024)
for more detailed examples for DP problems. We consider the process by which the Mamba layer
defined as Eq (2) gradually generates the solution to DP problems when using CoT. The format of
the generated sequence can be written as:

s(1) | s(2) | . . . | s(N) | (i1,dp(i1)) . . . (i|In|,dp(i|In|)) final answer

where the input sequence is separated using the symbol | as a delimiter.

Assumption 2. Given the input sequences s(1), s(2), . . . , s(N), we consider the following constraints
for the DP problem:

• For any i ∈ In, there exists |Di| ≤ Ns, |Vdp(i)| ≤ Ndp and |A(n)| ≤ NA.

• The size of the state space |In|, all elements of input sequences (or equivalently, si for all
i ∈ [|s|]), all intermediate DP values (dp(i) for any i ∈ In), and the final answer can all
be polynomially upper bounded by the problem size n.

• The functions used to solve the DP problem, including the function fI to determine the
next state, the transition function fT , the aggregation function fA and A(n) can all be
approximated with polynomial efficiency by a constant-size MLP (with the SiLU activation
function) (Feng et al., 2024).

The first constraint of the Assumption 2 illustrates that the number of input tokens and previous DP
values used in the transition function is upper bounded by Ns and Ndp respectively. In addition,
the number of DP values used in aggregation is at most NA. The second constraint allows that all
involved inputs and outputs used in functions can be represented by the log-precision model. The

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

third constraint allows a constant-sized degenerated Mamba (see Lemma 2) to implement functions
required to solve the DP. In fact, due to the first constraint, the sizes of inputs and outputs of these
functions will be a constant related to {Ns, Ndp, NA}. Now we present our conclusion as follows:

Theorem 3 (Perform DP problems with CoT). Considering any DP problem and given input se-
quences that satisfies Assumption 2, for any integer T ∈ N, there exists several Mamba layers with
size O(T), such that the answer generated by the Mamba layers will be correct when the length of
the answer is no more than T .

Models with CoT Standard TF Sparse/Linear TF Mamba
storage O(1) O(

√
T) O(T)

inference each step O(T) O(T) O(T)

all steps O(T 2) O(T 2) O(T 2)

Table 1: The comparison of costs for solving any DP prob-
lems between Transformers and Mamba.

The proof of Theorem 3 can be seen
in Appendix A.3. Theorem 3 states
that for any DP problem, to gener-
ate correct answers with a length no
greater than T in CoT, the size of
the Mamba layer should scale lin-
early with the sequence length. Addi-
tionally, it can be noted that each step
of CoT for Mamba has a complexity of O(T) and thus the total cost is O(T 2). In comparison with
standard Transformers, Feng et al. (2024) point out that a constant-sized Transformer (O(1) relative
to T) can solve any DP problem when equipped with CoT. Thus during each step of CoT inference,
the inference cost for Transformer is O(T), making the total cost still O(T 2); While for efficient
Transformers, especially linear or sparse Transformers, the conclusions obtained by Yang et al.
(2024) are also similar: to solve any DP problem, they all require a hidden dimension of O(

√
T)

(and particularly, block size B = Θ(
√
T) for sparse transformers), which results in a inference cost

of O(T). Consequently, the total cost remains O(T 2). Therefore, when equipped with CoT and
solving any DP problems, Mamba does not offer additional cost savings compared to Transformers
and thus all models are on equal footing in this regard. This comparison can be illustrated in Table 1.

It seems that this is a frustrating conclusion: similar to efficient Transformers, Mamba also appears
not to provide savings in overhead. However, we should note that although there seems to be no
shortcut to solving arbitrary DP problems, it may be possible to achieve solutions for slightly sim-
pler problems using efficient models. We aim to show that just as efficient Transformers can offer
advantages when dealing with DP problems with local properties introduced by Yang et al. (2024),
Mamba can also similarly address such problems with a smaller overhead compared to standard
Transformers. We assume that when solving some DP problem with CoT, the output tokens can be
written as o1,o2, . . . ,oT . If oi = f({oj : i−m ≤ j < i}) for any i ∈ [T], that is, the calculation
for oi only depends on at most m preceding intermediate DP values, then we call the DP problem is
m-locality DP problem. With this assumption, we present the following result:

Theorem 4 (Perform m-locality DP problems with CoT). Consider any m-locality DP problem
and given input sequences that satisfies Assumption 2, for any integer T ∈ N, there exists several
Mamba layers with size O(m), such that the answer generated by the Mamba layers will be correct
when the length of the answer is no more than T .

The proof of Theorem 4 can be seen in Appendix A.4. Theorem 4 shows that when handling m-
locality DP problem with CoT, the needed size of Mamba depends on the problem’s locality. When
m is much smaller than the total needed length T , the cost for each step becomes a constant O(m);
therefore, the total cost becomes O(mT) rather than O(T 2) leading to savings in cost.

6 DISCUSSION

In this paper, inspired by the similarity between the SSM module in Mamba and linear attention,
we explore Mamba’s potential bottlenecks in the COPY operation and show that Mamba with linear
size can complete it. Additionally, we present that Mamba has the same cost as standard or efficient
Transformers when solving DP problems using CoT. Our findings contribute to a deeper understand-
ing of Mamba. However, we would like to illustrate that while Mamba may slightly underperform
Transformers in certain tasks, it offers advantages in others like sparse parity learning(Park et al.,
2024) and can achieve comparable performance with lower costs(Gu & Dao, 2023). Therefore, as
shown in Park et al. (2024); Waleffe et al. (2024); Wen et al. (2024), exploring hybrid architectures
and deeper theoretical analysis for them is a promising direction for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Archi-
tectures and algorithms. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st Inter-
national Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 787–812. PMLR, 21–27 Jul 2024.

Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric
Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Jason
Phang, Shivanshu Purohit, Hailey Schoelkopf, Dashiell Stander, Tri Songz, Curt Tigges, Ben-
jamin Thérien, Phil Wang, and Samuel Weinbach. GPT-NeoX: Large Scale Autoregressive Lan-
guage Modeling in PyTorch, 9 2023. URL https://www.github.com/eleutherai/
gpt-neox.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language mod-
els. arXiv preprint arXiv:2312.04927, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

10

https://www.github.com/eleutherai/gpt-neox
https://www.github.com/eleutherai/gpt-neox

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Dongchen Han, Ziyi Wang, Zhuofan Xia, Yizeng Han, Yifan Pu, Chunjiang Ge, Jun Song, Shiji
Song, Bo Zheng, and Gao Huang. Demystify mamba in vision: A linear attention perspective.
arXiv preprint arXiv:2405.16605, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. pp. 5156–5165, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2, 2019.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of
thought. arXiv preprint arXiv:2310.07923, 2023a.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023b.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
arXiv preprint arXiv:2404.08819, 2024.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? A comparative study
on in-context learning tasks. In Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 39793–39812. PMLR,
21–27 Jul 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Jerome Sieber, Carmen Amo Alonso, Alexandre Didier, Melanie N Zeilinger, and Antonio Orvieto.
Understanding the differences in foundation models: Attention, state space models, and recurrent
neural networks. arXiv preprint arXiv:2405.15731, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Comput. Surv., 55(6):109:1–109:28, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. Rnns are not transformers (yet): The key bottleneck
on in-context retrieval. arXiv preprint arXiv:2402.18510, 2024.

Rui Xu, Shu Yang, Yihui Wang, Bo Du, and Hao Chen. A survey on vision mamba: Models,
applications and challenges. arXiv preprint arXiv:2404.18861, 2024.

Kai Yang, Jan Ackermann, Zhenyu He, Guhao Feng, Bohang Zhang, Yunzhen Feng, Qiwei Ye,
Di He, and Liwei Wang. Do efficient transformers really save computation? arXiv preprint
arXiv:2402.13934, 2024.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
sion mamba: Efficient visual representation learning with bidirectional state space model. arXiv
preprint arXiv:2401.09417, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOF OF THEOREM 1

Theorem 5 (Perform COPY operation). Given a input sequence x1,x2, . . . ,xN and for any ϵ > 0,
there exists an SSM module with constant size that can approximate the COPY operation defined
above when the following condition is satisfied for i ∈ [N]:

ρ ≥
(
1− ϵ

2M∥∆∥∞

)
1

αpos(i)
+ δ

 amax,<

1− amax,<
+

(
1

amin,>

)L−1

− 1

1− amin,>

 , (8)

where amax,< = max1≤j<pos(i) aj and amin,> = minpos(i)<j≤i aj . Moreover, in such cases, there
exists δ ≤ ϵ

2(L−1)M∥∆∥∞
when L ≥ 2.

Proof. We firstly show that given the i-th input xi, a SSM module can retrieve the most relevant
historical record vpos(i) from the hidden state and perform the defined COPY operation under the
condition illustrated in our theorem. To achieve this, recalling that vj = ∆j ⊙xj in Eq (6), we have
that

∥∥yi − vpos(i)

∥∥
∞ =

∥∥∥∥∥∥
i∑

j=1

αj(∆j ⊙ xj)b
T
j ci − vpos(i)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
i∑

j=1

αj(c
T
i bj)vj − vpos(i)

∥∥∥∥∥∥
∞

(9)

=

∥∥∥∥∥∥
∑

j ̸=pos(i)

αj(c
T
i bj)vj + αpos(i)(c

T
i bpos(i))vpos(i) − vpos(i)

∥∥∥∥∥∥
∞

(10)

=

∥∥∥∥∥∥
∑

j ̸=pos(i)

αj(c
T
i bj)vj +

[
αpos(i)(c

T
i bpos(i))− 1

]
vpos(i)

∥∥∥∥∥∥
∞

(11)

≤ M∥∆∥∞

 ∑
j ̸=pos(i)

αj |cTi bj |+ 1− αpos(i)c
T
i bpos(i)

 , (12)

where in (12) we use the fact that ∥xi∥∞ ≤ M and αpos(i)|cTi bpos(i)| ≤ 1 (from the second
condition in Assumption 1). Thus, to prove

∥∥yi − vpos(i)

∥∥
∞ ≤ ϵ, we can show that

cTi bpos(i) ≥
(
1− ϵ

M∥∆∥∞

)
1

αpos(i)
+

∑
j ̸=pos(i)

αj

αpos(i)

∣∣cTi bj∣∣. (13)

Recalling that αj =
∏i

k=j+1 ak, we have

αj

αpos(i)
=


∏pos(i)

k=j+1 ak = apos(i)apos(i)−1 . . . aj+1, when j < pos(i)∏j
k=pos(i)+1

1
ak

= 1
ajaj−1...apos(i)+1

, when j > pos(i).
(14)

Then we can consider the second term on the right side of Inequality (13) as∑
j ̸=pos(i)

αj

αpos(i)

∣∣cTi bj∣∣ = ∑
j /∈Si

αj

αpos(i)

∣∣cTi bj∣∣+ ∑
j∈Si,j ̸=pos(i)

αj

αpos(i)

∣∣cTi bj∣∣ (15)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

For the first term on the right side, we have

∑
j /∈Si

αj

αpos(i)

∣∣cTi bj∣∣ ≤ δ

 ∑
j /∈Si,j<pos(i)

αj

αpos(i)
+

∑
j /∈Si,j>pos(i)

αj

αpos(i)

 (16)

≤ δ

pos(i)−1∑
j=1

αj

αpos(i)
+

i∑
j=pos(i)+1

αj

αpos(i)

 (17)

≤ δ

pos(i)−1∑
k=1

(amax,<)
k +

i−pos(i)∑
k=1

(
1

amin,>

)k
 (18)

≤ δ

amax,<(1− a
pos(i)−1
max,<)

1− amax,<
+

(
1

amin,>

)i−pos(i)

− 1

1− amin,>

 (19)

where amax,< = max1≤j<pos(i) aj and amin,> = minpos(i)<j≤i aj . In (16) we use the assumption
that

∣∣cTi bj∣∣leδ for j /∈ Si; in (17) we use αj

αpos(i)
> 0 for all j ≤ i; in (18), we use the fact that

αj

αpos(i)
≤ (amax,<)

pos(i)−j for j < pos(i) and αj

αpos(i)
≤
(

1
amin,>

)j−pos(i)

for j > pos(i); in (19),
we use the formula for the sum of a geometric series.

Furthermore, considering that the vector vpos(i) to be copied must exist in the L-local matching set
Si so there is i− L+ 1 ≤ pos(i) ≤ i, we have the following

∑
j /∈Si

αj

αpos(i)

∣∣cTi bj∣∣ ≤ δ

amax,<(1− a
pos(i)−1
max,<)

1− amax,<
+

(
1

amin,>

)L−1

− 1

1− amin,>

 (20)

≤ δ

 amax,<

1− amax,<
+

(
1

amin,>

)L−1

− 1

1− amin,>

 . (21)

In (20), we use the fact that amax,< ∈ (0, 1) while 1
amin,>

> 1; in (21) we just ignore the term

a
pos(i)−1
max,< for simplicity (in fact, we can find that when i is sufficiently large, the effect of this term

can be neglected).

Meanwhile, with Assumption 1, we can consider the second term on the right side of Inequality (15)
as ∑

j∈Si,j ̸=pos(i)

αj

αpos(i)

∣∣cTi bj∣∣ ≤ 1

αpos(i)
− cTi bpos(i). (22)

Thus, considering (13), (21) and (22), to show ∥yi − oi∥∞ ≤ ϵ, the following condition should be
satisfied

cTi bpos(i) ≥
(
1− ϵ

M∥∆∥∞

)
1

αpos(i)
+ δ

 amax,<

1− amax,<
+

(
1

amin,>

)L−1

− 1

1− amin,>

 (23)

+
1

αpos(i)
− cTi bpos(i). (24)

After reformulating, there exists

cTi bpos(i) ≥
(
1− ϵ

2M∥∆∥∞

)
1

αpos(i)
+

δ

2

 amax,<

1− amax,<
+

(
1

amin,>

)L−1

− 1

1− amin,>

 . (25)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Recalling that cibTpos(i) ≥ ρ, we can find that if we set the lower bound of ρ as the right side of
Inequality (25), we will have ∥yi − oi∥ ≤ ϵ.

Moreover, in such case, with the second condition of Assumption 1, we have cTi bpos(i) ≤ 1
αpos(i)

thus there is

1

αpos(i)
≥
(
1− ϵ

2M∥∆∥∞

)
1

αpos(i)
+

δ

2

 amax,<

1− amax,<
+

(
1

amin,>

)L−1

− 1

1− amin,>

 . (26)

By reformulating, when L ≥ 2, we can get that

δ ≤ ϵ

M∥∆∥∞

 amax,<

1− amax,<
+

(
1

amin,>

)L−1

− 1

1− amin,>


−1

(27)

≤ ϵ

M∥∆∥∞


(

1
amin,>

)L−1

− 1

1− amin,>


−1

(28)

≤ ϵ

M∥∆∥∞
· 1

L− 1
, (29)

where in (29) we use the inequality 1−a
(1
a)x−1

≤ 1
x for 0 < a < 1 and x ≥ 1 where a and x are

replaced by amin,> and L− 1 in (28) respectively when L ≥ 2.

We have shown above that an SSM module can perform the defined COPY operation under the
conditions described in Theorem 1. To prove that a Mamba block can do the same, we only need
to demonstrate that a Mamba block defined by Eq (3) degenerates into an SSM module. In fact, we
only need to deactivate the gating branch to achieve this. For example, we can set W1 = W3 =
I, b1 = 0,W2 = O and b2 = k1 where the constant k satisfies σ(k) = 1. Thus, we complete our
proof.

A.2 PROOF OF THEOREM 2

Theorem 6 (Perform COPY operation with linear-scaling size). Given sequence x1,x2, . . . ,xN ∈
[−M,M]d, there exists a Mamba block with size O(N) that can perform the defined COPY oper-
ation, that is, yi = oi for any i ∈ [N]. Moreover, the l∞ norm of the Mamba block parameters is
upper bounded by O(ploy(M,N)).

Proof. Recalling that the output of SSM module in Mamba can be rewritten in the form of Eq (6),
where (∆j ⊙ xj), bj , ci corresponds to vj , kj and qi respectively. Our intuition is to store all
the information of vi from our history in the hidden state space of size O(N) (similar to the KV
cache in attention format), and then use the appropriate ci as the query for retrieval. We can set
A = O so that Eq (6) further transforms in a way that does not forget historical information, that is,
yi =

∑i
j=1(∆j ⊙ xj)b

T
j ci =

∑i
j=1 vjb

T
j ci.

Let x̃i = [xi, ei, epos(i)] ∈ Rd+2N where ei ∈ RN denote the one-hot vector where only the i-th
value is 1. We use ei, epos(i) to denote the current position and the position of historical token
we want to copy respectively. Then, we construct Wb = [ON×d, IN ,ON] ∈ RN×(d+2N) so that
b̃i = Wbx̃i = ei. Then, at the i-th step, the information newly recorded in the state space will be
vib̃

T
i = vie

T
i ∈ Rd×N and the updated state space will be Hi = Hi−1 +

∑i−1
j=1 vj b̃

T
j + vib̃

T
i =

[v1,v2, . . . ,vi,Od×(N−i)] thus at the last step, we can record all historical information in the state
space by HT =

∑N
j=1 vj b̃

T
j = [v1,v2, . . . ,vN]. Then, at the output process, we can construct

Wc = [ON×d,ON , IN] ∈ RN×(d+2N) so that c̃i = Wcx̃i = epos(i). Thus, the output will be
yi = Hic̃i =

∑i
j=1 vjb

T
j epos(i) = vpos(i).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

At the same time, we note that in the above process, the vectors ei, epos(i) to denote position in x̃i

are sparse. In fact, we only need to use two indices pi = i and ppos(i) = pos(i) to store them thus
the total size to store all indices is O(N). Additionally, Wb,Wc are also sparse so we require at
most O(N) space to store these two matrices. Therefore, the model size we need is O(Nd) that
scales linearly with the length N . Similar to the proof of Theorem 1, we can degenerate the Mamba
block into the aforementioned SSM module by deactivating the gating branch. In addition, we
note that xi ∈ [−M,M]d and pi, ppos(i) ∈ [1, N] thus the largest value involved in the aforemen-
tioned process will not exceed NM2 (the largest value in hidden states), which is upper bounded by
O(ploy(M,N)). Thus, we complete our proof.

A.3 PROOF OF THEOREM 3

In this part, we first present the necessary lemmas before completing the proof of Theorem 3. In
fact, these lemmas are very similar to those presented by Feng et al. (2024) in Appendix C.1 regard-
ing MLP. The main difference is that we need to degenerate Mamba blocks to MLP and consider
different activation functions (SiLU for Mamba instead of GELU). Thus, we only provide detailed
proofs of these relevant lemmas when necessary.
Lemma 1 (Perform multiplication). For any ϵ > 0 and M > 0, there exists Mamba block param-
eters with l∞ norm upper bounded by O(poly(M, 1/ϵ)) such that |f(a, b) − ab| ≤ ϵ holds for all
a, b ∈ [−M,M].

Proof. We first show that a two-layer MLP using the SiLU activation function can achieve the above
operation. We use the same construction as in Lemma C.1. in Feng et al. (2024), except that we use
the SiLU activation function instead of GELU. Specifically, let g : R2 → R be a two-layer MLP
with SiLU activation, and the hidden dimension is 4, then we can construct f as

g(a, b) =
λ2

2

(
σ

(
a+ b

λ

)
+ σ

(
−a− b

λ

)
− σ

(
a− b

λ

)
− σ

(
−a+ b

λ

))
, (30)

where λ is a scaling factor. In addition, considering σ(x) = x
1+e−x , σ′(x) = 1+(x+1)e−x

(1+e−x)2 , σ′′(x) =

e−x(2+2e−x+xe−x−x)
(1+e−x)3 , we have σ(0) = 0, σ′(0) = 1

2 , σ′′(0) = 1
2 . Then, using the Taylor expansion

with the Lagrange remainder, we can obtain that

σ

(
a+ b

λ

)
+ σ

(
−a− b

λ

)
− σ

(
a− b

λ

)
− σ

(
−a+ b

λ

)
=

1

2!

1

2

((
a+ b

λ

)2

+

(
−a− b

λ

)2

−
(
a− b

λ

)2

−
(
−a+ b

λ

)2
)

+R2 =
2ab

λ2
+R2,

where R2 is the second-order remainder term. Assuming that λ > 2M , we have |±a±b
λ | < 2M

λ < 1
and then

|R2| ≤
4

3!

(
2M

λ

)2

max
x∈[−1,1]

|σ′′′(x)|

=
4

3!

(
2M

λ

)2

max
x∈[−1,1]

∣∣∣∣ (x− 3)e−x − 4xe−2 + (x+ 3)e−3x

(1 + e−x)4

∣∣∣∣
≤ 4

3!

(
2M

λ

)2
4e+ 4e2 + 4e3

(1 + e−1)4

≤ 4

3!

8M3

λ3

81

2

=
216M3

λ3
.

Thus if we set λ ≥ 216M3

2ϵ we will have |g(a, b)− ab| ≤ λ2

2 |R2| ≤ ϵ.

Then, we note that a Mamba block f defined as Eq (3) can degenerate into the above MLP g by
deactivating its SSM branch. Specifically, we only need to set W1 to be zeros and b = 1 so that the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

input of the SSM branch is a constant 1, that is,

f(x) = W3 · SSM(1)⊙ σ(W2x+ b2).

In the SSM module, we can set Wb to be zeros, that is, no new information will be retained in the
hidden state. Following this, we set d = 1 resulting that given x = 1, we have SSM(1) = y =
cTH +d⊙x = cT1+ 1⊙ 1 = 1. Thus the SSM branch can be deactivated and the Mamba block
will degenerate into a two layer MLPs, that is,

f(x) = W3σ(W2x+ b2). (31)

Furthermore, given x = [a, b], we can set W2 ∈ R4×2 and W3 ∈ R4×1 to meet the two-layer MLP
g as Eq (30). Additionally, we note that all parameters of this Mamba block can be upper bounded
by O(poly(M, 1/ϵ)) under the l∞ norm. Thus, we complete our proof.

Remark 1. It should be noted that here we have only provided one possible construction and this
is not unique. For example, in the process of deactivating the SSM branch, we could also choose
to make ∆ sufficiently large and correspondingly Ã sufficently small with A ≤ 0 so that the hid-
den states approximates zeros. In fact, the expressive power of an Mamba block with two branches
should be stronger than that of a two-layer MLP since it already encompasses the latter. Neverthe-
less, we still provide one possible construction here.

Lemma 2 (Approximate two-layer MLPs with ReLU). Let g : Rd1 → Rd2 be a two-layer MLP
with ReLU activation, and all parameters are upper bounded by M . Then, for any ϵ > 0 , there
exists a Mamba block f and parameters upper bounded by O(poly(M, 1/ϵ)) in the l∞ norm, such
that for all x ∈ Rd1 , we have ∥f(x)− g(x)∥∞ ≤ ϵ.

Proof. Similar to Lemma 1, once again, we deactivate the SSM branch, causing a Mamba block to
degenerate into the form of Eq 31. Considering a two-layer MLP with a ReLU activation function
denoted as g(x) = W 3ReLU(W 2x) where W 2 ∈ Rd×d1 and W 3 ∈ Rd2×d, we can set similar
parameters for the degenerated Mamba blcok, that is, we consider W2 = λW 2, W3 = 1

λW 3

in Eq (31) where λ is some large constant. In order to prove the lemma, we need to show that
∥f(x)− g(x)∥∞ ≤ ϵ with some λ upper bounded by O(ploy(M, 1/ϵ)).

Considering a scalar z ∈ R, we firstly consider the upper bound of the following equation:∣∣∣∣ReLU(z)− 1

λ
SiLU(λz)

∣∣∣∣= ∣∣∣∣max(z, 0)− z

1 + e−λz

∣∣∣∣= |z|
eλ|z| + 1

≤ 1

λ
,

where we use the fact that ex +1 > x for any x ≥ 0. Then, let z = W 2x, we can show that for any
z ∈ Rd, ∥∥∥∥W 3ReLU(z)− 1

λ
W 3SiLU(λz)

∥∥∥∥
∞

≤ ∥W 3∥∞
∥∥∥∥ReLU(z)− 1

λ
SiLU(λz)

∥∥∥∥
∞

(32)

≤ Md

∥∥∥∥ReLU(z)− 1

λ
SiLU(λz)

∥∥∥∥
∞

(33)

≤ Mdmax
z∈R

∣∣∣∣ReLU(z)− 1

λ
SiLU(λz)

∣∣∣∣ (34)

≤ Md

λ
. (35)

Then, if we set λ > Md
ϵ , we will have ∥f(x)−g(x)∥∞ ≤ ϵ and all parameters of the Mamba block

is upper bounded by O(ploy(M, 1/ϵ)). Thus, we complete our proof.

Remark 2. We have proven that a Mamba block can approximate a two-layer MLP with ReLU
activation function, and since the latter can perform many basic operations, including linear trans-
formations and selection operations as constructed in Lemma C.3 and Lemma C.5 in Feng et al.
(2024), we can use Lemma 2 to adopt the same construction, enabling the Mamba block to perform
these operations. We present the following colloary more specifically, and the detailed proof can be
found in the above mentioned part in Feng et al. (2024).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lemma 3 (Perform linear transformation, easily derived from Lemma 2 and Lemma C.3 in Feng
et al. (2024)). Let W ∈ Rd2×d1 be any matrix used for implementing linear transformations upper
bounded by M and f : Rd1 → Rd2 be a Mamba block. Then, for any ϵ > 0, there exist Mamba
block parameters with l∞ norm bounded by O(poly(M, 1/ϵ)), such that for any x ∈ Rd1 , we have
∥f(x)−Wx∥∞ ≤ ϵ.

Lemma 4 (Perform select operation, easily derived from Lemma 2 and Lemma C.4 in Feng et al.
(2024)). Define the selection function g : Rd × Rd × R → Rd as follows:

g(x,y, t) =

{
x if t > 0
y if t < 0

(36)

Let f : Rd × Rd × R → Rd be a Mamba block. Then, for any ϵ > 0, α > 0, and M > 0, there
exist Mamba parameters with l∞ norm bounded by O(poly(M, 1/α, 1/ϵ)), such that for all x ∈
[−M,M]d, y ∈ [−M,M]d, and t ∈ [−∞,−α]∪ [α,+∞], we have ∥f(x,y, t)−g(x,y, t)∥∞ ≤ ϵ.

Next, we show that one Mamba layer or several Mamba layers can implement indicator functions
through the select operation. We mainly focus on the usual indicator functions I[a ̸= b], I[a > b]
and I[a < b].

Lemma 5 (Perform indicator function). Define the indicator function I(a, b, ◦) : R2 × {≠, >,<
} → {0, 1} where a, b ∈ [−M,M]. The output of the function will be 1 if a ◦ b is satisfied otherwise
the output will be 0. Let f : R2 → R be a Mamba block. Then, for any ϵ > 0, there exist Mamba
parameters with l∞ norm upper bounded by O(poly(M, 1/ϵ)), such that for any a, b ∈ [−M,M]
and ◦ ∈ {≠, >,<}, we have ∥f(a, b)− I(a, b, ◦)∥∞ ≤ ϵ.

Proof. We first show that a Mamba block can implement I[a > b] and I[a < b]. For I[a > b], it is
equivalent to consider g(1, 0, a − b) where g(·) defined in Lemma 4. So firstly we can use a linear
layer with appropriate parameters W0, b0 to convert the input [a, b] into the vector [1, 0, a−b]. Then
we can use Lemma 4 to implement I[a > b] by changing the parameters of the first linear layer from
{W1, b1} to {W1W0, b1 +W1b0}. The proof for I[a < b] is similar as well.

Noticing that I[a ̸= b] = 1 − (1 − I[a > b]) · (1 − I[a < b]), we can implement I[a ̸= b]
through the following layers: Firstly, we can use one Mamba block to implement 1 − I[a > b] and
1 − I[a < b] simultaneously, where the hidden dimension will be 8 and the output is a vector [1 −
I[a > b], 1− I[a < b]]. Then, another Mamba block is constructed to implement the multiplication
(1 − I[a > b]) · (1 − I[a < b]) according to Lemma 1 and the appropriate outermost linear layer
parameters are chosen to simultaneously achieve multiplication by a negative sign and addition of a
bias of 1, where the hidden dimension will be 4 and the output will be I[a ̸= b]. Thus, we complete
our proof.

Now, based on the basic operations that can be implemented by the Mamba blocks as discussed
above, we present the proof of Theorem 3:

Theorem 7 (Perform DP problems with CoT). Considering any DP problem and given input se-
quences that satisfies Assumption 2, for any integer T ∈ N, there exists several Mamba layers with
size O(T), such that the answer generated by the Mamba layers will be correct when the length of
the answer is no more than T .

Proof. Firstly, we illustrate the input format for the DP problem. We follow the embedding format
in the proof of Theorem 4.7 in Feng et al. (2024), that is, assuming that the input at any step of
solving the DP problem using CoT is a sequence of tokens embedded as follows:

x
(0)
t =

[
einputt , estatet , edpt , eanswer

t , esept , t, 1
]
,

where the specific value of each part is depend on the content represented by the current token. More
specifically, each part can be described as:

• If the current position denotes a input token, then we set einputt as the embedding of the
input and simultaneously set estatet = edpt = eanswer

t = esept = 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• If the current position is the final answer, then eanwser
t denotes the embedding of the answer

and we set einputt = estatet = edpt = esept = 0.

• If the current position denotes the j-th separator | between input sequences , then we set
esept = ej and einputt = estatet = edpt = eanswer

t = 0.

• If the current position denotes an intermediate DP state, then we use estatet to denote the
embedding of the DP state and edpt denotes the corresponding value. Similarly, other part
will be set to be 0.

• The scalar t denotes the current position in the whole sequence, which holds the value for
all above cases.

We illustrate that here we use a concatenation operation to replace the residual connection definced
in Eq (2), which is a technique also used by Feng et al. (2024); Yang et al. (2024) in similar proofs.
This is because, from the perspective of expressive capability, the two operations are equivalent:
the output of a Mamba block y = f(x) concatenated with the input (that is, [y,x]) can also be
represented using the residual connection: g([x,0]) + [0,x] = [y,0] + [0,x] = [y,x] where
g : R2d → R2d is another Mamba block and part of its parameters to be same as f and others
are set to be 0. Conversely, the concatenation can implement residual connection by using a linear
projection.

Here, we show our construction of several Mamba layers to solve the DP problem, which is com-
posed of different blocks to perform different tasks:

Block 1: The first block aims to calculate the problem size n and the embedding of the next state
enext state
t . This process can be described as follows:

• Compute the problem size n: (i) First, we can replicate the position of the token
tsep,1, tsep,2, . . . , tsep,N using the COPY operation. This can be achieved with a Mamba
layer of size O(Ntd) according to Theorem 2; (ii) Then, we calculate the size of the prob-
lem as n = [tsep,1 − 1, tsep,2 − tsep,1 − 1, . . . , tsep,N − tsep,N−1 − 1], which can be done
by applying a linear transformation using one Mamba layer, as shown by Lemma 3.

• Obtain the next state enext state: According to Assumption 2, the function enext state =
f(n, estate) which determines the next state, can be approximated by constant-sized MLPs.
Thus, this can also be implemented by having several Mamba layers degenerate into MLPs.

The output after this step can be written as:

x
(1)
t = [einputt , estatet , enext state, edpt , eanswer

t , esept ,n, t, 1]

Block 2: The second block is mainly constructed to find the indices of input tokens and intermediate
DP values that are needed to calculate the DP value corresponding to enext state. Specifically, this
can be described as follows:

• Calculate the needed indices: We calculate the positions of the input token ps
t =

Is(n, e
state) and the positions of tokens that correspond to needed DP values pdp

t =
Idp(n, e

state). If Is(n, estate) = ∅ or Idp(n, estate) = ∅, we set the positions to be a
special value γ. According to Assumption 2, these two functions can be done by constant-
size MLPs thus can be approximated by degenerated Mamba layers.

• Set the flag: (i) Set the flag fanswer
t based on whether the DP value of the current state is

needed in the final aggregation function. This can be achieved by several Mamba layers
with Assumption 2 that the function A = f(n, s) can be approximated by MLPs and
additionally using Lemma 5 to implement I[estatet ̸= estatej] where estatej ∈ A. (ii) Set the
flag f state

t to denote whether the current state is the last state. This can be implemented by
checking I[enext state

t ̸= 0] with Mamba layers using Lemma 5.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The output result after this step can be written as:

x
(2)
t = [einputt , estatet , enext state, edpt , eanswer

t , esept ,n,ps
t ,p

dp
t , fanswer

t , f state
t , t, 1]

Block 3: This block is designed to calculate the DP value for the next state. In detail, the implemen-
tation involves the following steps:

• Check the flag: We check the flag f state
t using several Mamba layers using 5 to implement

I[f state
t ̸= 1] using Lemma 5. If f state

t = 1, the current denote is the last state and we just
need to set pt = γ1 where pt denotes ps

t and pdp
t , which implies Is(n, e

state) = ∅ and
Idp(n, e

state) = ∅, that is, no input tokens or DP values are needed.

• Obtain the needed embeddings: If f state
t ̸= 1 , then (i) We copy the input token em-

beddings einput at positions ps
t . This COPY operation can be implemented by a Mamba

layer of size O(Nstd) using Theorem 2; (ii) Simultaneously, we copy the embeddings of
DP values at positions pdp

t , which can be achieved by a Mamba layer of size O(Ndptd).
If the position is empty, we just need to check I[pt ̸= γ1] and set the needed embeddings
einput or edp to be some special token. Totally, the size of Mamba layers in this step is
O((Ns +Ndp)td).

• Calculate the DP value: We calculate the DP value enext state
t for the next state with the

Assumption 2 that the transition function can be approximated by several Mamba layers
using Lemma 2.

The output result after this step can be written as:

x
(2)
t = [einputt , enext state, enext dp

t , eanswer
t , esept ,n, fanswer

t , f state
t , t, 1]

Block 4: The last block is constructed to implement the final aggregation function and output the
final answer. Specifically, the steps are as follows:

• Check the flag: We identify whether the current state is the last state by checking
I[f state

t ̸= 1] by using Lemma 5. If f state
t = 1, then all intermediate DP values have

been solved and we need to compute the final answer.

• Obtain the needed embeddings: We collect the DP value embeddings edp of these tokens
whose fanswer = 1, which can be achieved by COPY operation according to Theorem 2
with one Mamba layer of size O(NAtd).

• Generate the final answer: Finally, we compute the answer by implementing the aggre-
gation function, which can be achieved by constant-size MLPs according to Assumption 2,
thus can also be achieved by several degenerated Mamba layers.

In summary, given a sequence length t and equipped with CoT, the parameter size required by the
Mamba layers to generate the correct answer at each step is O(Ñtd), where Ñ = max{N,Ns +
Ndp, NA} is a constant independent of t, that is, the size of the Mamba layer scales linearly with t.
Thus, we complete our proof.

A.4 PROOF OF THEOREM 4

Theorem 8 (Perform m-locality DP problems with CoT). Consider any m-locality DP problem
and given input sequences that satisfies Assumption 2, for any integer T ∈ N, there exists several
Mamba layers with size O(m), such that the answer generated by the Mamba layers will be correct
when the length of the answer is no more than T .

Proof. The overall proof construction approach is similar to that of Theorem 3, with the only dif-
ference being that under the assumption of m-locality, when performing the COPY operation, the
constructed Mamba only needs to focus on at most m tokens preceding the current position. This
results in the size of the Mamba layers only needing to be O(Ñmd).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.5 MORE DETAILS OF EXPERIMENTS

For the copy task experiments, we mainly refer to the setup by Jelassi et al. (2024). For Transformers,
we select the GPT-NeoX architecture (Andonian et al., 2023) while for Mamba we use the Mamba
GitHub repository(Gu & Dao, 2023) and all experiments are conducted on A800 GPUs.

More specifically, for the left part of Figure 2, we configure 10 layers for the Transformer (TF) and
5 layers for TF-small, with both having a hidden size of 1024 and RoPE (Su et al., 2024) as the
positional encoding. For Mamba models, we configured 20 layers and a hidden size of 1024 for
Mamba, 20 layers and a hidden size of 720 for Mamba-small-D, 10 layers and a hidden size of 1024
for Mamba-small-L, and 40 layers and a hidden size of 512 for Mamba-small-LD. We use an online
sampling batch size of 8 and set the maximum context length to 220, meaning each example often
contains multiple instances. AdamW(Loshchilov, 2017) is chosen as the optimizer with a learning
rate of 1e-5 and weight decay of 0.1. We set Nmin = 10 and Nmax = 30 for all models.

For the middle part of Figure 2, the Transformer and Mamba setups match the aforementioned
configurations for TF and Mamba. Moreover, we set [Nmin, Nmax] to [5, 10], [10, 20], [20, 30] and
[30, 40] for sequence lengths of 10, 20, 30 and 40 respectively.

For the right part of Figure 2, we use pretrained Mamba models of size 370M, 1.4B and 2.8B(Gu &
Dao, 2023), which are pretrained on the Pile(Gao et al., 2020). For Mamba(2.8B)++, the prompt at
the begining is just like:

“The following is a phonebook with the form: Gary Battle: 8444797678 Gary Gallegos: 9960330831.
Remeber the phone number of Joseph Perry. Here is the phonebook:...”

21

	Introduction
	Related work
	Preliminaries
	Can Mamba always Perform COPY Perfectly?
	Viewing Mamba as linear attention
	The Trade-off of Mamba when performing COPY
	Mamba Empirically Weaker in COPY Tasks than Transformers
	Experiments on synthetic data
	Experiments on phonebook Task

	The expressive power of Mamba equipped with CoT
	Discussion
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	More Details of Experiments

