
Published as a conference paper at ICLR 2023

VALUE MEMORY GRAPH: A GRAPH-STRUCTURED
WORLD MODEL FOR OFFLINE REINFORCEMENT
LEARNING

Deyao Zhu1 Li Erran Li2∗ Mohamed Elhoseiny1

1 King Abdullah University of Science and Technology
2 AWS AI, Amazon and Columbia University
{deyao.zhu, mohamed.elhoseiny}@kaust.edu.sa, erranlli@gmail.com

ABSTRACT

Reinforcement Learning (RL) methods are typically applied directly in environ-
ments to learn policies. In some complex environments with continuous state-action
spaces, sparse rewards, and/or long temporal horizons, learning a good policy in
the original environments can be difficult. Focusing on the offline RL setting,
we aim to build a simple and discrete world model that abstracts the original
environment. RL methods are applied to our world model instead of the envi-
ronment data for simplified policy learning. Our world model, dubbed Value
Memory Graph (VMG), is designed as a directed-graph-based Markov decision
process (MDP) of which vertices and directed edges represent graph states and
graph actions, separately. As state-action spaces of VMG are finite and relatively
small compared to the original environment, we can directly apply the value it-
eration algorithm on VMG to estimate graph state values and figure out the best
graph actions. VMG is trained from and built on the offline RL dataset. Together
with an action translator that converts the abstract graph actions in VMG to real
actions in the original environment, VMG controls agents to maximize episode
returns. Our experiments on the D4RL benchmark show that VMG can outperform
state-of-the-art offline RL methods in several goal-oriented tasks, especially when
environments have sparse rewards and long temporal horizons. Code is available at
https://github.com/TsuTikgiau/ValueMemoryGraph

1 INTRODUCTION

Humans are usually good at simplifying difficult problems into easier ones by ignoring trivial details
and focusing on important information for decision making. Typically, reinforcement learning (RL)
methods are directly applied in the original environment to learn a policy. When we have a difficult
environment like robotics or video games with long temporal horizons, sparse reward signals, or
large and continuous state-action space, it becomes more challenging for RL methods to reason the
value of states or actions in the original environment to get a well-performing policy. Learning a
world model that simplifies the original complex environment into an easy version might lower the
difficulty to learn a policy and lead to better performance.

In offline reinforcement learning, algorithms can access a dataset consisting of pre-collected episodes
to learn a policy without interacting with the environment. Usually, the offline dataset is used as a
replay buffer to train a policy in an off-policy way with additional constraints to avoid distribution
shift problems (Wu et al., 2019; Fujimoto et al., 2019; Kumar et al., 2019; Nair et al., 2020; Wang
et al., 2020; Peng et al., 2019). As the episodes also contain the dynamics information of the original
environment, it is possible to utilize such a dataset to directly learn an abstraction of the environment
in the offline RL setting. To this end, we introduce Value Memory Graph (VMG), a graph-structured
world model for offline reinforcement learning tasks. VMG is a Markov decision process (MDP)
defined on a graph as an abstract of the original environment. Instead of directly applying RL methods
to the offline dataset collected in the original environment, we learn and build VMG first and use

∗Work done outside of Amazon

1

https://github.com/TsuTikgiau/ValueMemoryGraph

Published as a conference paper at ICLR 2023

Figure 1: Demonstration of a successful episode where a robot trained in the dataset “kitchen-partial”
accomplishes 4 subtasks in sequence guided by VMG. Vertex values are shown via color shade. By
searching graph actions that lead to the high-value future region (darker blue) calculated by value
iteration on the graph, VMG controls the robot arm to maximize episode rewards and finish the task.

it as a simplified substitute of the environment to apply RL methods. VMG is built by mapping
offline episodes to directed chains in a metric space trained via contrastive learning. Then, these
chains are connected to a graph via state merging. Vertices and directed edges of VMG are viewed as
graph states and graph actions. Each vertex transition on VMG has rewards defined from the original
rewards in the environment.

To control agents in environments, we first run the classical value iteration algorithm(Puterman, 2014)
once on VMG to calculate graph state values. This can be done in less than one second without
training a value neural network thanks to the discrete and relatively smaller state and action spaces in
VMG. At each timestep, VMG is used to search for graph actions that can lead to high-value future
states. Graph actions are directed edges and cannot be directly executed in the original environment.
With the help of an action translator trained in supervised learning (e.g., Emmons et al. (2021)) using
the same offline dataset, the searched graph actions are converted to environment actions to control
the agent. An overview of our method is shown in Fig.1.

Our contribution can be summarized as follows:

• We present Value Memory Graph (VMG), a graph-structured world model in offline rein-
forcement learning setting. VMG represents the original environments as a graph-based
MDP with relatively small and discrete action and state spaces.

• We design a method to learn and build VMG on an offline dataset via contrastive learning
and state merging.

• We introduce a VMG-based method to control agents by reasoning graph actions that lead
to high-value future states via value iteration and convert them to environment actions via
an action translator.

• Experiments on the D4RL benchmark show that VMG can outperform several state-of-the-
art offline RL methods on several goal-oriented tasks with sparse rewards and long temporal
horizons.

2

Published as a conference paper at ICLR 2023

2 RELATED WORK

Offline Reinforcement Learning One crucial problem in offline RL is how to avoid out-of-the-
training-distribution (OOD) actions and states that decrease the performance in test environments
(Fujimoto et al., 2019; Kumar et al., 2019; Levine et al., 2020). Recent works like Wu et al. (2019);
Fujimoto et al. (2019); Kumar et al. (2019); Nair et al. (2020); Wang et al. (2020); Peng et al. (2019)
directly penalize the mismatch between the trained policy and the behavior policy via an explicit
density model or via divergence. Another methods like Kumar et al. (2020); Kostrikov et al. (2021a;b)
constrains the training via penalizing the Q function. Model-based reinforcement learning methods
like Yu et al. (2020; 2021); Kidambi et al. (2020) constrains the policy to the region of the world
model that is close to the training data. Compared to previous methods, graph actions in VMG
always control agents to move to graph states, and all the graph states come from the training dataset.
Therefore, agents stay close to states from the training distribution naturally.

Hierarchical Reinforcement Learning Hierarchical RL methods (e.g., Savinov et al. (2018);
Nachum et al. (2018); Eysenbach et al. (2019); Huang et al. (2019); Liu et al. (2020); Mandlekar et al.
(2020); Yang et al. (2020); Emmons et al. (2020); Zhang et al. (2021)) use hierarchical policies to
control agents with a high-level policy that generate commands like abstract actions or skills, and
a low-level policy that converts them to concrete environment actions. Our method can be viewed
as a hierarchical RL approach with VMG-based high-level policy and a low-level action translator.
Compared to previous methods which learn high-level policies in environments, our high-level policy
is instead trained in VMG via value iteration without additional neural network learning.

Model-based Reinforcement Learning Recent research in model-based reinforcement learning
(MBRL) has shown a significant advantage (Ha & Schmidhuber, 2018; Janner et al., 2019; Hafner
et al., 2019; Schrittwieser et al., 2020; Ye et al., 2021) in sample efficiency over model-free rein-
forcement learning. In most of the previous methods, world models are designed to approximate the
original environment transition. In contrast, VMG abstracts the environment as a simple graph-based
MDP. Therefore, we can apply RL methods directly to VMG for simple and fast policy learning. As
we demonstrate later in our experiments, this facilitates reasoning and leads to good performance in
tasks with long temporal horizons and sparse rewards.

Graph from Experience Similar to VMG, methods like Hong et al. (2022); Jiang et al. (2022);
Shrestha et al. (2020); Marklund et al. (2020); Char et al. (2022) study the credit assignment problem
on a graph created from the experience. Hong et al. (2022); Jiang et al. (2022) are designed for
discrete environments. Shrestha et al. (2020); Marklund et al. (2020) considers the environments
with finite actions and continuous state space by discretizing states or state features via kNN. Char
et al. (2022) introduces a stitch operator to create a graph directly by adding new transitions. It
can work with environments with low-dimensional continuous action spaces like Mountain Car
Continuous (1 dimension) and Maze2D (2 dimensions). However, the stitch operator is hard to scale
to high-dimensional action spaces. In contrast, VMG discretizes both state and action spaces and
thus can work with continuous high-dimensional action spaces.

Representation Learning Contrastive learning methods learns a good representation by maximiz-
ing the similarity between related data and minimizing the similarity of unrelated data (Oord et al.,
2018; Chen et al., 2020; Radford et al., 2021) in the learned representation space. Bisimulation-based
methods like Zhang et al. (2020) learn a representation with the help of bisimulation metrics (Ferns &
Precup, 2014; Ferns et al., 2011; Bertsekas & Tsitsiklis, 1995) measuring the ‘behavior similarity’ of
states w.r.t. future reward sequences given any input action sequences. In VMG, we use a contrastive
learning loss to learn a metric space encoding the similarity between states as L2 distance.

3 VALUE MEMORY GRAPH (VMG)

Our world model, Value Memory Graph (VMG), is a graph-structured Markov decision process
constructed as a simplified version of the original environment with discrete and relatively smaller
state-action spaces. RL methods can be applied on the VMG instead of the original environment to
lower the difficulty of policy learning. To build VMG, we first learn a metric space that measures the

3

Published as a conference paper at ICLR 2023

, ,
Contrastive

Loss

(a) Contrastive learning (b) Action reconstruction

Figure 2: The training pipeline of the state encoder Encs and the action encoder Enca to build the
memory map. Encs converts original states s into points in the memory map. Enca maps actions a
as transitions in the memory map.

reachability among the environment states. Then, a graph is built in the metric space from the dataset
as the backbone of our VMG. In the end, a Markov decision process is defined on the graph as an
abstract representation of the environment.

3.1 VMG METRIC SPACE LEARNING

VMG is built in a metric space where the L2 distance represents whether one state can be reached from
another state in a few timesteps. The embedding in the metric space is based on a contrastive-learning
mechanism demonstrated in Fig.2a. We have two neural networks: a state encoder Encs : s→ fs
that maps the original state s to a state feature fs in the metric space, and an action encoder
Enca : fs, a → ∆fs,a that maps the original action a to a transition ∆fs,a in the metric space
conditioned on the current state feature fs. Given a transition triple (s, a, s′), we add the transition
∆fs,a to the state feature fs as the prediction of the next state feature f̃s′ = fs + ∆fs,a. The
prediction is encouraged to be close to the ground truth fs′ and away from other unrelated state
features. Therefore, we use the following learning objective to train Encs and Enca:

Lc = D2(f̃s′ , fs′) +
1

N

∑
max(m−D2(f̃s′ , fsneg,n

), 0) (1)

Here, D(·, ·) denotes the L2 distance. sneg,n denotes the n-th negative state. Given a batch of
transition triples (si, ai, s

′
i) randomly sampled from the training set and a fixed margin distance

m, we use all the other next states s′j|j ̸=i as the negative states for si and encourage f̃s′i to be
at least m away from negative states in the metric space. In addition, we use an action decoder
Deca : fs,∆fs,a → ã to reconstruct the action from the transition ∆fs,a conditioned on the state
feature fs as shown in Fig.2b. This conditioned auto-encoder structure encourages the transition
∆fs,a to be a meaningful representation of the action. Besides, we penalize the length of the transition
when it is larger than the margin m to encourage adjacent states to be close in the metric space.
Therefore, we have the additional action loss La shown below.

La = D2(ã, a) + max(∥∆fs,a∥2−m, 0) (2)

Lmetric, the total training loss for metric learning, is the sum of the contrastive and action losses.

Lmetric = Lc + La (3)

3.2 CONSTRUCT THE GRAPH IN VMG

To construct the graph in VMG, we first map all the episodes in the training data to the metric space
as directed chains. Then, these episode chains are combined into a graph with a reduced number of
state features. This is done by merging similar state features into one vertex based on the distance
in the metric space. The overall algorithm are visualized in Fig.3a and can be found in Appx.B.1.
Given a distance threshold γm, a vertex set V , and a checking state si, we check whether the minimal
distance in the metric space from the existing vertices to the checking state si is smaller than γm. If
not or if the vertex set is empty, we set the checking state si as a new vertex vJ and add it to V . This
process is repeated over the whole dataset. After the vertex set V is constructed, each state si can be
classified into a vertex vj of which the distance in the metric space is smaller than γm. In the training

4

Published as a conference paper at ICLR 2023

(a) Merging vertices to construct the graph

𝑣!!

𝑣!"

𝑣!!

𝑣!"
𝑅! 𝑣"! , 𝑣""

=
1
2
avg 𝑟 + avg(𝑟) +

1
2
avg(𝑟)

𝑒!"→!!

(b) Define the reward of graph actions

Figure 3: Create a graph and define rewards in VMG. In Fig.3a, three episodes are mapped as three
chains in the metric space colored differently. We merge nodes that are close to each other together
and combine these chains into a directed graph. In Fig.3b, the graph reward RG(vj1 , vj2) of the
action from the green vertex vj1 to the blue vertex vj2 is defined as the average over rewards in the
original episodes.

set, each state transition (si, ai, s
′
i) represents a directed connection from si to s′i. Therefore, we

create the graph directed edges from the original transitions. For any two different vertices vj1 , vj2 in
V , if there exist a transition (si, ai, s

′
i) where si and s′i can be classified into vj1 and vj2 , respectively,

we add a directed edge ej1→j2 from vj1 to vj2 .

3.3 DEFINE A GRAPH-BASED MDP

VMG is a Markov decision process (MDP) (SG,AG,PG,RG) defined on the graph.
SG,AG,PG,RG denotes the state set, the action set, the state transition probability, and the re-
ward of this new graph MDP, respectively. Based on the graph, each vertex is viewed as a graph state.
Besides, we view each directed connection ej1→j2 starting from a vertex vj1 as an available graph
action in vj1 . Therefore, the graph state set SG equals the graph vertex set V and the graph action set
is the graph edge set E . For the graph state transition probability PG from vj1 to vj2 , we define it as 1
if the corresponding edge exists in E otherwise 0. Therefore,

PG(vj2 |vj1 , ej1→j2) =

{
1 if ej1→j2 ∈ E
0 otherwise

(4)

We define the graph reward of each possible state transition ej1→j2 as the average over the original
rewards from vj1 to vj2 in the training setD, plus “internal rewards”. The internal reward comes from
the original transitions that are inside vj1 or vj2 after state merging. An example of graph reward
definition is visualized in Fig.3b. Concretely,

Rj1→j2 = avg{ri|∀si classified to vj1 , s
′
i classified to vj2 , (si, ai, ri, s

′
i) ∈ D} (5)

RG(vj1 , vj2) =

{
1
2Rj1→j1 +Rj1→j2 +

1
2Rj2→j2 if ej1→j2 ∈ E

Not defined otherwise
(6)

Note that the rewards of graph transitions outside of E are not defined, as these transitions will not
happen according to Eq.4. For internal rewards where both the source si and the target s′i of the
original transition (si, s

′
i) are classified to the same vertex, we split the reward into two and allocate

them to both incoming and outgoing edges, respectively. This is shown as 1
2Rj1→j1 and 1

2Rj2→j2 in
Eq.6. Now we have a well-defined MDP on the graph. This MDP serves as our world model VMG.

3.4 HOW TO USE VMG

VMG, together with an action translator, can generate environment actions that control agents to
maximize episode returns. We first run the classical RL method value iteration (Puterman, 2014)
on VMG to compute the value V (vj) of each graph state vj . This can be done in one second
without learning an additional neural-network-based value function due to VMG’s finite and discrete
state-action spaces.

To guide the agent, VMG provides a graph action that leads to high-value graph states in the future at
each time step. Due to the distribution shift between the offline dataset and the environment, there

5

Published as a conference paper at ICLR 2023

can be gaps between VMG and the environment. Therefore, the optimal graph action calculated
directly by value iteration on VMG might not be optimal in the environment. We notice that instead
of greedily selecting the graph actions with the highest next state values, searching for a good future
state after multiple steps first and planning a path to it can give us a more reliable performance.
Given the current environment state sc, we first find the closest graph state vc on VMG. Starting
from vc, we search for Ns future steps to find the future graph state v∗ with the best value. Then,
we plan a shortest path P = [vc, vc+1, ..., v

∗] from vc to v∗ via Dijkstra (Dijkstra et al., 1959) on the
graph. We select the Nsg-th graph state vc+Nsg and make an edge ec→c+Nsg as the searched graph
action. The graph action ec→c+Nsg is converted to the environment action ac via an action translator:
ac = Tran(sc, vc+Nsg). The pseudo algorithm can be found in Appx.B.2.

The action translator Tran(s, s′) reasons the executed environment action given the current state s
and a state s′ in the near future. Tran(s, s′) is trained purely in the offline dataset via supervised
learning and separately from the training of VMG. In detail, given an episode from the training set and
a time step t, we first randomly sample a step t+ k from the future K steps. k ∼ Uniform(1,K).
Then, Tran(s, s′) is trained to regress the action at at step t given the state st and the future state st+k

using a L2 regression loss LTran = D2(Tran(st, st+k), at). Note that when k = 1, p(at|st, st+k) is
determined purely by the environment dynamics and Tran(s, s′) becomes an inverse dynamics model.
As k increase, the influence of the behavior policy that collects the offline dataset on p(at|st, st+k)
will increase. Therefore, the sample range K should be small to reflect the environment dynamics
and reduce the influence of the behavior policy. In all of our experiments, K is set to 10.

4 EXPERIMENTS

4.1 PERFORMANCE ON OFFLINE RL BENCHMARKS

Test Benchmark We evaluate VMG on the widely used offline reinforcement learning benchmark
D4RL (Fu et al., 2020). In detail, we test VMG on three domains: Kitchen, AntMaze, and Adorit.
In Kitchen, a robot arm in a virtual kitchen needs to finish four subtasks in an episode. The robot
receives a sparse reward after finishing each subtask. D4RL provides three different datasets in
Kitchen: kitchen-complete, kitchen-partial, and kitchen-mixed. In AntMaze, a robot ant needs to go
through a maze and reaches a target location. The robot only receives a sparse reward when it reaches
the target. D4RL provides three mazes of different sizes. Each of them contains two datasets. In
Adroit, policies control a robot hand to finish tasks like rotating a pen or opening a door with dense
rewards. For evaluation, D4RL normalizes all the performance of different tasks to a range of 0-100,
where 100 represents the performance of an “expert” policy. More benchmark details can be found in
D4RL (Fu et al., 2020) and Appx.A.

Table 1: Experimental results on domains Kitchen, AntMaze, and Adroit from D4RL benchmark.
VMG outperforms baselines in Kitchen and AntMaze where only sparse rewards are provided and
achieves comparable performance in Adroit. Results and the standard deviation are calculated over
three trained models.

Dataset BC BRAC-p BEAR DT AWAC CQL IQL VMG
kitchen-complete 65.0 0.0 0.0 - - 43.8 62.5 73.0± 6.7
kitchen-partial 38.0 0.0 0.0 - - 49.8 46.3 68.8± 11.9
kitchen-mixed 51.5 0.0 0.0 - - 51.0 51.0 50.6± 4.1
kitchen-total 154.5 0.0 0.0 - - 144.6 159.8 192.4
antmaze-umaze 54.6 - - 59.2 56.7 74.0 87.5 93.7± 2.3
antmaze-umaze-diverse 45.6 - - 53.0 49.3 84.0 62.2 94.0± 2.0
antmaze-medium-play 0.0 - - 0.0 0.0 61.2 71.2 82.7± 3.1
antmaze-medium-diverse 0.0 - - 0.0 0.7 53.7 70.0 84.3± 2.1
antmaze-large-play 0.0 - - 0.0 0.0 15.8 39.6 67.3± 3.2
antmaze-large-diverse 0.0 - - 0.0 1.0 14.9 47.5 74.3± 3.1
antmaze-total 100.2 - - 112.2 107.7 303.6 378.0 496.3
pen-human 63.9 8.1 -1.0 - - 37.5 71.5 70.7± 5.2
pen-cloned 37 1.6 26.5 - - 39.2 37.3 58.2± 1.6
hammer-human 1.2 0.3 0.3 - - 4.4 1.4 4.1± 1.2
hammer-cloned 0.6 0.3 0.3 - - 2.1 2.1 2.2± 1.4
door-human 2 -0.3 -0.3 - - 9.9 4.3 1.5± 0.5
door-cloned 0.0 -0.1 -0.1 - - 0.4 1.6 2.2± 0.7
adroit-total 104.7 9.9 25.7 - - 93.5 118.2 138.9
kitchen+antmaze+adroit 359.4 - - - - 541.7 656.0 827.6

6

Published as a conference paper at ICLR 2023

Baselines We mainly compare our method with two state-of-the-art methods CQL (Kumar et al.,
2020) and IQL (Kostrikov et al., 2021b) in all the above-mentioned datasets. Both CQL and IQL
are based on Q-learning with constraints on the Q function to alleviate the OOD action issue in the
offline setting. In addition, we also report the performance of BRAC-p (Wu et al., 2019), BEAR
(Kumar et al., 2019), DT (Chen et al., 2021), and AWAC (Nair et al., 2020) in the datasets they used.
Performance of behavior cloning (BC) is from (Kostrikov et al., 2021b).

Hyperparameters In all the experiments, the dimension of metric space is set to 10. The margin
m in Eq.1 and 2 is 1. The distance threshold γm is set to 0.5, 0.8, and 0.3 in Kitchen, AntMaze, and
Adorit, separately. Hyperparameters are selected from 12 configurations. We use Adam optimizer
(Kingma & Ba, 2014) with a learning rate 10−3, train the model for 800 epochs with batch size
100, and select the best-performing checkpoint. More details about hyperparameters and experiment
settings are in Appx.D.

Performance Experimental results are shown in Tab.1. VMG’s scores are averaged over three
individually trained models and over 100 individually evaluated episodes in the environment. In
general, VMG outperforms baseline methods in Kitchen and AntMaze and shows competitive
performance in Adroit. Note that a good reasoning ability in Kitchen and AntMaze domains is
crucial as the rewards in both domains are sparse, and the agent needs to plan over a long time before
getting reward signals. In AntMaze, baseline methods perform relatively well in the smallest maze
‘umaze’, which requires less than 200 steps to solve. In the maze ‘large’ where episodes can be longer
than 600 steps, the performance of baseline methods drops dramatically. VMG keeps a reasonable
score in all three mazes, which suggests that simplifying environments to a graph-structured MDP
helps RL methods better reason over a long horizon in the original environment. Adroit is the most
challenging domain for all the methods in D4RL with a high-dimensional action space. VMG still
shows competitive performance in Adroit compared to baselines. Experiments show that learning a
policy directly in VMG helps agents perform well, especially in environments with sparse rewards
and long temporal horizons.

4.2 UNDERSTANDING VALUE MEMORY GRAPH

To analyze whether VMG can understand and represent the structure of the task space correctly, we
visualize an environment, the corresponding VMG, and their relationship in Fig.4. We study the task
“antmaze-large-diverse” shown in Fig.4a as the state space of navigation tasks is easier to visualize
and understand. The target location where the agent receives a positive reward is denoted by a red
circle. A successful trajectory is plotted as the green path. To visualize VMG, all the state features
fs are reduced to two dimensions via UMAP (McInnes et al., 2018) and used as the coordinate to
plot corresponding vertices as shown in Fig.4b. The graph state values are denoted by color shades.
Vertices with darker blue have higher values. As shown in Fig.4b, VMG allocates high values to
vertices that are close to the target location and low values to far away vertices. Besides, the topology
of VMG is similar to the maze. This is further visualized in Fig.4c where graph vertices are mapped
to the corresponding maze locations to show their relationship. Our analysis suggests that VMG can

(a) AntMaze Large (b) VMG (c) VMG mapped to the maze

Figure 4: An example of VMG learned from the dataset ‘antmaze-large-diverse’. Fig.4a shows the
environment with the target location highlighted by a red circle. VMG is visualized via UMAP in
Fig.4b. Graph state values are represented by color shades with higher values in darker blue. Graph
states that are close to the target have high values calculated by value iteration. In Fig.4c, graph states
are mapped to the corresponding maze locations to show the relationship.

7

Published as a conference paper at ICLR 2023

Figure 5: VMG and a successful trial in the task “pen-human”.
The blue pen is rotated to the same orientation as the green one.

3H
UI
RU
P
DQ
FH

1
XP

EH
U�R

I�9
HU
WLF
HV

����

����

����

����

�N

��N

��N

��N

��� ��� ��� ���
3HUIRUPDQFH 1XPEHU�RI�9HUWLFHV

𝛾.

Figure 6: Influence of γm
in “kitchen-partial” in
performance and VMG
size.

learn a meaningful representation of the task. Another VMG visualization in the more complicated
task “pen-human” is shown in Fig.5 and and more visualizations can be found in Appx.J.

4.3 REUSABILITY OF VMG WITH NEW REWARD FUNCTIONS

Table 2: VMG success rate of ignored skills. Agents
can perform these skills by rerunning value iteration
with the new reward function in a trained VMG.

Value Iteration on Bottom Burner Top Burner Hinge Cabinet

Orig. Reward 0.7 3.7 0.0
New Reward 69.7 88.3 7.3

In offline RL, policies are trained to mas-
ter skills that can maximize accumulated
returns via an offline dataset. When the
dataset contains other skills that don’t lead
to high rewards, these skills will be simply
ignored. We name them ignored skills. We
can retrain a new policy to master ignored
skills by redefining new reward functions
correspondingly. However, rerunning RL methods with new reward functions is cumbersome in the
original complex environment, as we need to retrain the policy network and Q/value networks from
scratch. In contrast, rerunning value iteration in VMG with new reward functions takes less than
one second without retraining any neural networks. Note that the learning of VMG and the action
translator is reward-free. Therefore, we don’t need to retrain VMG but recalculate graph rewards
using Eq.6 with new reward functions.

We design an experiment in the dataset “kitchen-partial” to verify the reusability of VMG with new
reward functions. In this dataset, the robot only receives rewards in the following four subtasks: open
a microwave, move a kettle, turn on a light, and open a slide cabinet. Besides, there are training
episodes containing ignored skills like turning on a burner or opening a hinged cabinet. We first train
a model in the original dataset. Then, we define a new reward function, where only ignored skills
have positive rewards and relabel training episodes correspondingly. After that, we recalculate graph
rewards using Eq.6, rerun value iteration on VMG, and test our agent. Experimental results in Tab.2
show that agents can perform ignored skills after rerunning value iteration in the original VMG with
recalculated graph rewards without retraining any neural networks.

4.4 ABLATION STUDY

Distance Threshold The distance threshold γm directly controls the “radius” of vertices and affects
the size of the graph. We demonstrate how γm affects the performance in the task “kitchen-partial”
in Fig.6. The dataset size of “kitchen-partial” is 137k. A larger γm can reduce the number of vertices
but hurts the performance due to information loss. More results can be found in Appx.E.

Graph Reward Here we study how will different designs of the graph reward RG(vj1 , vj2) affect
the final performance. In addition to the original version defined in Eq.5 and Eq.6 that averages
over the environment rewards, we try maximization and summation and denote them as RG,max

and RG,sum, separately. Besides, we also study the effectiveness of the the internal reward through
the following three variants of Eq.6: RG,rm = Rj1,j2 , RG,rm,h = Rj1,j2 + 1

2Rj2,j2 , RG,rm,t =
1
2Rj1,j1 +Rj1,j2 , if ej1→j2 ∈ E . Experimental results shown in Tab.3 suggest that the original design
of the graph rewards represent the environment well and leads to the best performance.

8

Published as a conference paper at ICLR 2023

Table 3: Ablation study of graph reward design in VMG.
The original design gives us the best performance.

Variants kitchen-partial antmaze-medium-play pen-human

RG,max 31.5 48.3 50.8
RG,sum 50.3 56.3 66.4
RG,rm 55.0 55.0 65.2
RG,rm,h 54.6 78.0 72.2
RG,rm,t 67.0 78.5 65.9
RG (Orig.) 68.8 82.7 70.7

Importance of Contrastive Loss The
contrastive loss is the key training objective
to learning a meaningful metric space. The
contrastive loss pushes states that can be
reached in a few steps to be close to each
other and pushes away other states. To ver-
ify this, we train a variant of VMG without
the contrastive loss and show the results in
Tab.4. The variant without the contrastive
loss does not work at all (0 scores) in the ’kitchen-partial’ and ’antmaze-medium-play’ tasks, and
the performance in ’pen-human’ significantly decreases from 70.7 to 41.2. Results indicate the
importance of contrastive loss in learning a robust metric space.

Table 4: Ablation study of contrastive loss, action de-
coder, and Dijkstra search.

Model kitchen-partial antmaze-medium-play pen-human

VMG 68.8 82.7 70.7
- contrastive loss 0.0 0.0 41.2
- action decoder 15.4 66.3 68.5
- multi-step search 39.8 61.5 72.1

Effectiveness of Action Decoder The ac-
tion decoder is trained to reconstruct the
original action from the transition in the
metric space conditioned on the state fea-
ture shown in Fig.2b. In this way, the train-
ing of the action decoder encourages transi-
tions in the metric space to better represent
actions and leads to a better metric space.
To show the effectiveness of the action decoder, we train a VMG variant without the action decoder
and show the results in Tab.4. The performance without the action decoder drops in all three tested
tasks, especially in ’kitchen-partial’ (from 68.8 to 15.4). The results verify our design choice.

Multi-Step Search In Tab.4, we list the performance of our method without Multiple-Step Search.
Compared to the original version, we observe a performance drop in ‘kitchen-partial’ and ‘antmaze-
medium-play’ and similar performance in ‘pen-human’, which suggests that instead of greedily
searching one step in the value interaction results, searching multiple steps first to find a high value
state in the long future and then plan a path to it via Dijkstra can help agents perform better. We
think the advantage might caused by the gap between VMG and the environment. An optimal path on
VMG searched directly by value iteration may not be still optimal in the environment. At the same
time, a shorter path from Dijkstra helps reduce cumulative errors and uncertainty, and thus increases
the reliability of the policy.

Limitations As an attempt to apply graph-structured world models in offline reinforcement learning,
VMG still has some limitations. For example, VMG doesn’t learn to generate new edges in the graph
but only creates edges from existing transitions in the dataset. This might be a limitation when there
is not enough data provided. In addition, VMG is designed in an offline setting. Moving to the online
setting requires further designs for environment exploring and dynamic graph expansion, which can
be interesting future work. Besides, the action translator is trained via conditioned behavior cloning.
This may lead to suboptimal results in tasks with important low-level dynamics like gym locomotion
(See Appx.H). Training the action translator by offline RL methods may alleviate this issue.

5 CONCLUSION

We present Value Memory Graph (VMG), a graph-structured world model in offline reinforcement
learning. VMG is a Markov decision process defined on a directed graph trained from the offline
dataset as an abstract version of the environment. As VMG is a smaller and discrete substitute for the
original environment, RL methods like value iteration can be applied on VMG instead of the original
environment to lower the difficulty of policy learning. Experiments show that VMG can outperform
baselines in many goal-oriented tasks, especially when the environments have sparse rewards and
long temporal horizons in the widely used offline RL benchmark D4RL. We believe VMG shows a
promising direction to improve RL performance via abstracting the original environment and hope it
can encourage more future works.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We would like to thank Ahmed Hefny and Vaneet Aggarwal for their helpful feedback and discussions
on this work.

REFERENCES

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In Proceedings
of 1995 34th IEEE conference on decision and control, volume 1, pp. 560–564. IEEE, 1995.

Ian Char, Viraj Mehta, Adam Villaflor, John M Dolan, and Jeff Schneider. Bats: Best action trajectory
stitching. arXiv preprint arXiv:2204.12026, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

Scott Emmons, Ajay Jain, Misha Laskin, Thanard Kurutach, Pieter Abbeel, and Deepak Pathak.
Sparse graphical memory for robust planning. Advances in Neural Information Processing Systems,
33:5251–5262, 2020.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in Neural Information Processing Systems, 32,
2019.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous markov
decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011.

Norman Ferns and Doina Precup. Bisimulation metrics are optimal value functions. In UAI, pp.
210–219, 2014.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Zhang-Wei Hong, Tao Chen, Yen-Chen Lin, Joni Pajarinen, and Pulkit Agrawal. Topological
experience replay. arXiv preprint arXiv:2203.15845, 2022.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. Advances in Neural Information Processing Systems, 32, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in Neural Information Processing Systems, 32, 2019.

Zhengyao Jiang, Tianjun Zhang, Robert Kirk, Tim Rocktäschel, and Edward Grefenstette. Graph
backup: Data efficient backup exploiting markovian transitions. arXiv preprint arXiv:2205.15824,
2022.

10

Published as a conference paper at ICLR 2023

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning, pp.
5774–5783. PMLR, 2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021b.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Kara Liu, Thanard Kurutach, Christine Tung, Pieter Abbeel, and Aviv Tamar. Hallucinative topologi-
cal memory for zero-shot visual planning. In International Conference on Machine Learning, pp.
6259–6270. PMLR, 2020.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Silvio Savarese, and Li Fei-Fei. Learning to
generalize across long-horizon tasks from human demonstrations. arXiv preprint arXiv:2003.06085,
2020.

Henrik Marklund, Suraj Nair, and Chelsea Finn. Exact (then approximate) dynamic programming for
deep reinforcement learning. In Bian and Invariances Workshop, ICML, 2020.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

11

Published as a conference paper at ICLR 2023

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory for
navigation. arXiv preprint arXiv:1803.00653, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Aayam Kumar Shrestha, Stefan Lee, Prasad Tadepalli, and Alan Fern. Deepaveragers: Offline
reinforcement learning by solving derived non-parametric mdps. In International Conference on
Learning Representations, 2020.

Michita Imai Takuma Seno. d3rlpy: An offline deep reinforcement library. In NeurIPS 2021 Offline
Reinforcement Learning Workshop, December 2021.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Ge Yang, Amy Zhang, Ari Morcos, Joelle Pineau, Pieter Abbeel, and Roberto Calandra. Plan2vec:
Unsupervised representation learning by latent plans. In Learning for Dynamics and Control, pp.
935–946. PMLR, 2020.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in Neural Information
Processing Systems, 34, 2021.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

Lunjun Zhang, Ge Yang, and Bradly C Stadie. World model as a graph: Learning latent landmarks
for planning. In International Conference on Machine Learning, pp. 12611–12620. PMLR, 2021.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method for
very large databases. ACM sigmod record, 25(2):103–114, 1996.

12

Published as a conference paper at ICLR 2023

CONTENTS

1 Introduction 1

2 Related Work 3

3 Value Memory Graph (VMG) 3

3.1 VMG Metric Space Learning . 4

3.2 Construct the Graph in VMG . 4

3.3 Define a Graph-Based MDP . 5

3.4 How to Use VMG . 5

4 Experiments 6

4.1 Performance on Offline RL Benchmarks . 6

4.2 Understanding Value Memory Graph . 7

4.3 Reusability of VMG With New Reward Functions 8

4.4 Ablation Study . 8

5 Conclusion 9

A Environment details 15

B Algorithms 15

B.1 Graph Construction . 15

B.2 Policy Execution . 15

C Architecture of Neural Networks 15

D Experiment Settings and Hyperparameters 16

E Ablation Studies 16

E.1 Distance Threshold . 16

E.2 State Merging Method . 17

E.3 Influence of m . 17

E.4 Influence of Discount Factor . 18

E.5 Influence of the Dimension of the Metric Space 18

E.6 Influence of K . 18

F Training Curve 18

G Environment/Graph Transition Ratio 19

H Experiments in Gym Locomotion Tasks 19

13

Published as a conference paper at ICLR 2023

I Future Works 20

J Visualization of VMG 20

14

Published as a conference paper at ICLR 2023

A ENVIRONMENT DETAILS

The datasets in D4RL (Fu et al., 2020) is under CC BY license and the related code is under Apache
2.0 License. We use the latest version of the datasets (v1/v0/v1 for AntMaze, Kithcen, Adroit,
separately). Different versions of datasets contain exactly the same training transitions. The newer
version fixes some bugs in the meta data information like the wrong termination steps. Performance is
measured by returns normalized to the range between 0 and 100 defined by the D4RL benchmark [9].
In detail, normalized score = 100× score−random score

expert score−random score . A score of 100 corresponds to the
average returns of a domain-specific expert. For AntMaze, and Kitchen, an estimate of the maximum
score possible is used as the expert score. For Adroit, this is estimated from a policy trained with
behavioral cloning on human-demonstrations and online fine-tuned with RL in the environment. For
more details about the datasets please refer to D4RL (Fu et al., 2020).

B ALGORITHMS

B.1 GRAPH CONSTRUCTION

The detailed algorithm of graph construction is shown in Alg.1.

Algorithm 1: Graph Construction
Input :Training Set D = {(si, ai, ri, s′i)|i = 1, 2, ..., N}, Empty vertices set V = {},

Current vertex index J = 1, Distance threshold γm, Empty edges set E = {}
1 for (si, ai, ri, s

′
i) in D do

2 fsi = Encs(si)
3 Compute the distance dij between fsi and fvj for every fvj in V
4 if min{dij |fsj in V} > γm or J = 1 then
5 vJ ← si, fvJ ← fsi
6 V .append((vJ , fvJ))
7 J ← J + 1
8 end
9 end

10 for (si, ai, ri, s
′
i) in D do

11 Find vj1 , vj2 that si and s′i are classified to in V , respectively
12 if vj1 ̸= vj2 and the connection ej1→j2 ̸∈ E then
13 E .append(ej1→j2)
14 end
15 end

B.2 POLICY EXECUTION

The detailed algorithm of policy execution is shown in Alg.2.

Details of Dijkstra When we use Dijkstra in Sec.3.4 to plan a path P from vc to v∗, we define
weights to each edge to make sure P is both short and high-rewarded. The weights used to plan
the path P are based on rewards. For each edge ej1→j2 , we define the edge weight wj1→j2 as
the gap between the maximal graph reward and the edge reward and denote the weight set asW .
wj1→j2 = max{RG(vj3 , vj4)|∀ej3→j4 ∈ E} −RG(vj1 , vj2).

C ARCHITECTURE OF NEURAL NETWORKS

For all the networks including the state encoder Encs, the action encoder Enca, the action decoder
Deca, and the action translator Tran(s, s′), we use a 3-layer MLP with hidden size 256 and ReLU
activation functions.

15

Published as a conference paper at ICLR 2023

Algorithm 2: Policy Execution
Input :Current state sc, State encoder Encs, Action translator Tran, Vertex and edge sets in

VMG (V, E), Vertices value V , Edge weightW
1 fsc = Encs(sc)
2 vc = argminvj |(vj ,fj)∈V D(fsc , fj)

3 Search future horizon of Ns steps starting from vc and select the best value vertex v∗

4 Compute the weighted shortest path P from vc to v∗ via Dijkstra. P = [vc, vc+1, ..., v
∗]

5 ac = Tran(sc, vc+Nsg)

D EXPERIMENT SETTINGS AND HYPERPARAMETERS

Our model is trained in a single RTX Titan GPU in about 1.5 hours. For inference, building the graph
from clustering takes about 0.5-2 minutes before the evaluation. After that, it takes about 0.5-10
minutes to evaluate 100 episodes. We implement VMG on the top of the offline RL python package
d3rlpy (Takuma Seno, 2021) with MIT license. In all the experiments, We use Adam optimizer
(Kingma & Ba, 2014) with a learning rate 10−3. Batch size is 100. Each model is trained for 800
epochs. We save models per 50 epochs and report the performance of the best one evaluated in
the environment from the checkpoints saved from the 500th to the 800th epochs. The remaining
hyperparameter settings can be found in Tab.5. Ns = ∞ means we search the future steps till the
end of the graph. For the domain Kitchen, the hyperparameters are tuned in “kitchen-partial”. For
AntMaze it is “antmaze-umaze-diverse”. For Adroit, hyperparameters are tuned individually. We
use the environment to tune the hyperparameters. We searched four hyperparameters in our main
experiments: γm in [0.3, 0.5, 0.8, 1.0, 1.2], reward discount in [0.8, 0.95], Nsg in [1, 2, 3], Ns in [12,
∞]. Hyperparameters are searched one by one, in total 12 configurations. For hyperparameters like
batch size or learning rate, we follow the default one in the RL library d3rlpy. The dimension of the
metric space is set to 10 in all the experiments. Tuning the hyperparameters offline is an ongoing and
important research topic in offline RL, and we left it for future work.

Table 5: Detailed Hyperparameter Setting

Dataset m K γm discount Nsg Ns

kitchen-complete 1 10 0.5 0.95 2 ∞
kitchen-partial 1 10 0.5 0.95 2 ∞
kitchen-mixed 1 10 0.5 0.95 2 ∞
antmaze-umaze 1 10 0.8 0.8 1 ∞
antmaze-umaze-diverse 1 10 0.8 0.8 1 ∞
antmaze-medium-play 1 10 0.8 0.8 1 ∞
antmaze-medium-diverse 1 10 0.8 0.8 1 ∞
antmaze-large-play 1 10 0.8 0.8 1 ∞
antmaze-large-diverse 1 10 0.8 0.8 1 ∞
pen-human 1 10 0.3 0.8 2 12
pen-cloned 1 10 0.3 0.8 2 12
hammer-human 1 10 1.0 0.8 2 12
hammer-cloned 1 10 1.0 0.8 2 12
door-human 1 10 0.3 0.8 2 12
door-cloned 1 10 0.3 0.8 2 12

E ABLATION STUDIES

E.1 DISTANCE THRESHOLD

More experimental results of the distance threshold γm in the tasks “antmaze-medium-play” and
“pen-cloned” can be found in Fig.7. Results suggest that the model is not so sensitive to γm if it is not
too large.

16

Published as a conference paper at ICLR 2023

(a) antmaze-medium-play (b) pen-cloned

Figure 7: More results of the influence of γm in performance and VMG size

E.2 STATE MERGING METHOD

Vertices in VMG are merged from the original states based on a distance threshold γm as described
in Sec.3.2. It is also possible to use other clustering methods to merge states. However, the dataset
sizes in some tasks can be up to 1 million. Many advanced clustering methods (like BIRCH (Zhang
et al., 1996)) are slow in this case (up to hours for BIRCH on machines with Intel Xeon Gold 6242).
Therefore, we compare with the classical K-means (Lloyd, 1982) implemented on Faiss (Johnson
et al., 2019) library with the GPU support in both the AntMaze domain and the Kitchen domains.
Faiss-based K-means can be finished up to 20 seconds in our setting. Our merging method takes up
to 1 minute. Experimental results are shown in Tab.6. VMG created by our merging method performs
better than the one created by K-means. The vertices of our method can be viewed as hyperspheres in
the metric space with the same radius γm. In contrast, K-means cannot directly specify the size of
each cluster, which can result in vertices with different “volumes” in the metric space. This might
lead to undesired distortion in the graph and reduce the performance. As K-means doesn’t have a
parameter to control the size of the clusters directly, we have to search for the best number of clusters
for every dataset. The number of clusters used in K-means is shown in Tab.7.

Table 6: Ablation study of different state merging methods. Our original design gives us better
performance.

AntMaze Kitchen

Model umaze umaze-diverse medium-play medium-diverse large-play large-diverse complete partial mixed

VMG with K-means 88.7 79.7 81.2 77.0 72.3 76.3 61.1 18.3 43.6
VMG 93.7 94.0 82.7 84.3 67.3 74.3 73.0 68.8 50.6

Table 7: Number of clusters used in K-means

AntMaze Kitchen

umaze umaze-diverse medium-play medium-diverse large-play large-diverse complete partial mixed
6000 2000 1000 1000 10000 10000 3000 25000 25000

E.3 INFLUENCE OF m

The value of the margin m in Eq.1 and Eq.2 implicitly defines the minimal distance of negative
state pairs in the learned metric space. To study the influence of m on the performance, here we set
m to 0.5, 1, and 2 in the datasets antmaze-medium-play, kitchen-partial, and pen-human and show
the results in Tab.8. In the antmaze experiment, performance becomes better with a larger m. But
in the task pen-human, a smaller m gives us better results. In kitchen-partial, m=1 shows the best
performance. Experimental results suggest that m=1 is a reasonable value for the tasks we evaluate
on. And if we tune m separately, it is possible to improve the performance.

17

Published as a conference paper at ICLR 2023

m 0.5 1 2

antmaze-medium-play 65.0 82.7 84.0
kitchen-partial 17.0 64.5 68.8
pen-human 75.1 70.7 65.7

Table 8: Influence of the margin m.

E.4 INFLUENCE OF DISCOUNT FACTOR

Here we study how different discount factor values will affect the performance of VMG. We set the
discount factor to the values 0.8, 0.95, and 0.99. Experiments in Tab.9 show that 0.99 leads to better
performance in pen-human and comparable performance in kitchen-partial. In antmaze-medium-play,
0.99 performs worse than 0.8 and 0.95, which suggest that a small discount factor in antmaze might
help reduce cumulative errors.

discount factor 0.8 0.95 0.99

antmaze-medium-play 82.7 76.3 75.0
kitchen-partial 58.2 68.8 68.1
pen-human 70.7 69.0 74.8

Table 9: Influence of the discount factor.

E.5 INFLUENCE OF THE DIMENSION OF THE METRIC SPACE

Here we study how different numbers of the metric space dimension will affect the performance
of VMG. We set the metric space dimensions to 5, 10, and 20. Experiments in Tab.10 show that
models with latent space dimensions 10 and 20 perform better than those with 5, which suggests
that a reasonable performance requires big enough dimensions of the latent space to represent the
states and actions better. Besides, space with 10 dimensions works better than 20 in kithcen-partial
but worse than 20 in pen-human, this suggests the performance has space to improve if we tune the
dimensions individually in each task.

metric space dim 5 10 20

antmaze-medium-play 71.0 82.7 82.0
kitchen-partial 5.75 68.8 46.0
pen-human 70.7 70.7 79.0

Table 10: Influence of the metric space dimension.

E.6 INFLUENCE OF K

The hyperparameter K used in training the action translator in Sec.3.4 defines the range of the future
states the action translator conditions on during training. To study the influence of K, here show
experiments with K=5, 10, and 20 in Tab.11. We notice that K = 5 doesn’t work in antmaze-medium
and kitchen-partial, which suggests that K=5 is not big enough to cover 2 steps in the graph transition.
In addition, the experiments with K = 20 show better results than K = 10 in kitchen-partial and
pen-human. In antmaze-medium-play, K = 10 performs the best. Experimental results suggest that a
big enough K helps the model perform better.

F TRAINING CURVE

Fig.8 shows the training curves of the contrastive loss Lc, the action loss La, and the anction translator
loss LTran in tasks kitchen-partial, antmaze-medium-play, and pen-human.

18

Published as a conference paper at ICLR 2023

K 5 10 20

antmaze-medium-play 7.0 82.7 74.0
kitchen-partial 0.3 68.8 76.8
pen-human 80.3 70.7 83.5

Table 11: Influence of K.

Figure 8: Training curve of the contrastive loss Lc, action loss La, and action translator loss LTran.

G ENVIRONMENT/GRAPH TRANSITION RATIO

VMG abstracts the original continuous environment into a finite and relatively small graph. An
one-step transition in the graph corresponds to multiple steps in the environment. Here we compute
the average numbers of environment transitions per graph transition in our main experiments and list
the results in Tab.12.

Table 12: Average number of environment transitions per graph transition.

AntMaze Kitchen Adroit

umaze medium large pen hammer door

- diverse play diverse play diverse complete partial mixed human cloned human cloned human cloned
4.4 3.3 14.4 15.1 10.3 9.7 1.1 2.0 2.0 1.8 4.9 3.1 9.9 1.0 1.5

H EXPERIMENTS IN GYM LOCOMOTION TASKS

VMG is introduced to help agents reason the long future better so as to improve their performance in
complex environments with sparse rewards and large search space due to long temporal horizons and
continuous state/action spaces. VMG may not help in gym locomotion tasks, as these tasks don’t
require agents to reason the long future and thus are out of our scope. Gym locomotion tasks provide
rich and dense reward signals, and the motion patterns to learn in these tasks are periodic and short.
Therefore, the problems VMG designed to solve are not an issue here. Our performance in these tasks

19

Published as a conference paper at ICLR 2023

is expected to be close to behavior cloning, since the low-level component, the action translator, is
trained via (conditioned) behavior cloning. The action translator is used to handle local dynamics that
are not modeled in VMG. Here we run new experiments in these tasks and show the results below.
Experimental results verify our assumption. Results and analysis suggest that an improved design
and/or learning strategy of the action translator might help improve the performance. For example,
training the action translator using conditioned offline RL methods instead of conditioned behavior
cloning. However, this is orthogonal to our VMG framework contribution to future reasoning, and
we leave it for future work.

Dataset VMG BC CQL IQL

halfcheetah-medium 42.2 42.6 44.0 47.4
hopper-medium 49.4 52.9 58.5 66.3
walker2d-medium 70.4 75.3 72.5 78.3
halfcheetah-medium-replay 38.2 36.6 45.5 44.2
hopper-medium-replay 15.2 18.1 95.0 94.7
walker2d-medium-replay 28.6 26.0 77.2 73.9
halfcheetah-medium-expert 80.5 55.2 91.6 86.7
hopper-medium-expert 49.5 52.5 105.4 91.5
walker2d-medium-expert 70.4 107.5 108.8 109.6

Table 13: Peformance of VMG in gym locomotion tasks. The performance of VMG is expected to be
closed to behavior cloning.

I FUTURE WORKS

There are several directions to improve VMG. Building hierarchical graphs to model different levels
of environment structures might help represent the environment better. For example, if a robot needs
to cook a meal, we might have a high-level graph to represent abstract tasks like washing vegetables,
cutting vegetables, etc. A low-level graph can be used to guide a goal-conditioned policy. This
might improve the high-level planning of the tasks. Extending VMG into the online setting is also
an important future step. In online reinforcement learning, data with new information is collected
throughout the training stage. Therefore, the graph needs to have a mechanism to continually expand
and include the new information. Besides, exploration is a crucial component in online reinforcement
learning. If we model the uncertainty of the graph, VMG can be used to guide the agent to explore
regions with high uncertainty to explore more effectively. Combined with Monte Carlo tree search on
VMG might also help policy explore and exploit better.

J VISUALIZATION OF VMG

More visualization of VMG in different tasks are demonstrated in Fig.9, 10, 11, 12. An episode is
denoted as a green path on the graph with a “+” sign at the end.

20

Published as a conference paper at ICLR 2023

(a) kitchen-complete (b) VMG of kitchen-complete

(c) kitchen-partial (d) VMG of kitchen-partial

(e) kitchen-mixed (f) VMG of kitchen-mixed

(g) antmaze-umaze (h) VMG of antmaze-umaze

Figure 9: Visualization of VMG in different tasks

21

Published as a conference paper at ICLR 2023

(a) antmaze-umaze-diverse (b) VMG of antmaze-umaze-diverse

(c) antmaze-medium-play (d) VMG of antmaze-medium-play

(e) antmaze-medium-diverse (f) VMG of antmaze-medium-diverse

(g) antmaze-large-play (h) VMG of antmaze-large-play

Figure 10: Visualization of VMG in different tasks

22

Published as a conference paper at ICLR 2023

(a) antmaze-large-diverse (b) VMG of antmaze-large-diverse

(c) pen-human (d) VMG of pen-human

(e) pen-cloned (f) VMG of pen-cloned

(g) hammer-human (h) VMG of hammer-human

Figure 11: Visualization of VMG in different tasks

23

Published as a conference paper at ICLR 2023

(a) hammer-cloned (b) VMG of hammer-cloned

(c) door-human (d) VMG of door-human

(e) door-cloned (f) VMG of door-cloned

Figure 12: Visualization of VMG in different tasks

24

	Introduction
	Related Work
	Value Memory Graph (VMG)
	VMG Metric Space Learning
	Construct the Graph in VMG
	Define a Graph-Based MDP
	How to Use VMG

	Experiments
	Performance on Offline RL Benchmarks
	Understanding Value Memory Graph
	Reusability of VMG With New Reward Functions
	Ablation Study

	Conclusion
	Environment details
	Algorithms
	Graph Construction
	Policy Execution

	Architecture of Neural Networks
	Experiment Settings and Hyperparameters
	Ablation Studies
	Distance Threshold
	State Merging Method
	Influence of m
	Influence of Discount Factor
	Influence of the Dimension of the Metric Space
	Influence of K

	Training Curve
	Environment/Graph Transition Ratio
	Experiments in Gym Locomotion Tasks
	Future Works
	Visualization of VMG

