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Abstract001

Today, Large language models (LLMs) are re-002
shaping the norms of human communication,003
sometimes decoupling words from genuine hu-004
man thought. This transformation is deep, and005
undermines the trust and interpretive norms that006
were historically tied to authorship. We draw007
from linguistic philosophy and AI ethics to de-008
tail how large-scale text generation can induce009
semantic drift, erode accountability, and obfus-010
cate intent and authorship. Our work here intro-011
duces conceptual frameworks including hybrid012
authorship graphs (modeling humans, LLMs,013
and texts in a provenance network), epistemic014
doppelgängers (LLM-generated texts that are015
indistinguishable from human-authored texts),016
and authorship entropy. We explore mecha-017
nisms such as “proof-of-interaction” authorship018
verification and educational reforms to restore019
confidence in language. While LLMs’ bene-020
fits are undeniable (broader access, increased021
fluency, automation, etc.), the upheavals they022
introduce to the linguistic landscape demand023
reckoning. This paper provides a conceptual024
lens to chart these changes.025

1 Introduction026

“Last year’s words belong to last year’s language027
And next year’s words await another voice”028

Language has been the keystone of our communi-029

cation and thought for thousands of years. From an-030

cient cuneiform tablets to modern digital platforms,031

people have relied on written language as a store of032

facts, beliefs, and ideas. Underlying this tradition033

is a widespread assumption: that any text reflects034

a human mind, shaped by cognitive processes and035

linked to specific authors. Thus, language has been036

an expression of human intention, demanding both037

attention from the reader, and accountability from038

the author (Winograd, 1972; Bender and Koller,039

2020). Over our long evolutionary trajectory, these040

assumptions have steadily held true, and are now041

woven into the very fabric of how we understand042

and interpret language.043

Figure 1: LLMs introduce a shift in communicative dy-
namics. Traditionally, human-to-human communication
directly conveys intentional thought from speaker to
listener (top). But when mediated by LLMs, language
can lose direct intentional grounding, resulting in mes-
sages disconnected from the speaker’s original intent
and confusing the listener (bottom).

But the swift ascent of large language models 044

(LLMs) over the past five years has begun to fun- 045

damentally reconfigure this relationship. Trained 046

on internet-scale corpora and with representa- 047

tional flexibility from billions of parameters (e.g., 048

GPT (Brown et al., 2020), PaLM (Chowdhery 049

et al., 2022), LLaMA (Touvron et al., 2023)) or 050

DeepSeek (DeepSeek-AI, 2024), these can gen- 051

erate well-polished and coherent text with mini- 052

mal guidance. They can replicate stylistic nuances, 053

rhetoric, and emotional tones (Schick et al., 2021; 054

Solaiman et al., 2019), which were attributed solely 055

to human creativity till very recently. 056

On the one hand, these capabilities are surprising 057
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and extraordinary, suggesting potential for a new058

cognitive revolution in AI. On the other, this trans-059

formation weakens the link tying text to a human060

mind. Teachers worry that student essays reflect061

an LLM’s fluency rather than the messy traces of a062

student’s thoughts (Cotton et al., 2023; Zhou et al.,063

2023). Researchers question whether a paper re-064

flects a scholar’s insights or a model’s reassembly065

of existing content (Zellers et al., 2019). Even066

everyday exchanges: emails, tweets, and blogs067

might stem from digital processes rather than hu-068

man voices (Duarte et al., 2022; Weidinger et al.,069

2021). In this sense, it would be ironic if LLMs, in-070

stead of illuminating and edifying human language071

communication, lead to its devolution.072

The broader NLP community, as creators of073

LLM technologies, bears a direct responsibility for074

their societal implications (Gabriel, 2020; Bender075

et al., 2021). By ignoring the epistemic and ethi-076

cal consequences of these systems, we risk having077

text lose its role as an indicator of human intent078

and thought (Floridi and Chiriatti, 2020; Raji et al.,079

2022). This can fundamentally degrade how we080

conduct discourse, value expertise, and maintain081

trust (O’Neil, 2016; Zuboff, 2019). This paper082

grapples with this tension between positive appli-083

cations of LLMs (Team, 2022; Hutchinson et al.,084

2023; Miller, 2019) and the challenge LLMs pose085

to language’s role in human thought. Section 2086

explores language’s philosophical aspects like in-087

tentionality and authorship. Section 3 identifies088

two key issues stemming from widespread LLM089

text, namely semantic drift and erosion in trust. In090

Section 4, we describe possible approaches to re-091

establish accountability and measure semantic drift092

using methods from NLP, cryptography, and HCI.093

Section 5 looks at social implications and possible094

responses in education, scholarship, etc. Section 6095

argues that approaches like watermarking do not096

address core issues. Section 7 explores rethinking097

ideas about language and authorship with ideas on098

human-AI collaboration, educational changes and099

human-only publishing spaces. We briefly sum-100

marize alternative perspectives and arguments in101

Section 8 . We conclude with a reflection on the102

need to maintain language’s cognitive and epis-103

temic roles in the future.104

2 Language, Authorship, and Meaning105

Language’s function has been debated for centuries,106

from Plato’s dialogues on rhetoric to modern ana-107

lytic philosophy (Plato, 1997; Wittgenstein, 1953). 108

While language is commonly viewed as an informa- 109

tion channel for transmitting information, linguists 110

argue that language is a communal sense-making 111

act. It has been closely linked to intention, context, 112

and the ability to hold speakers accountable (Searle, 113

1969; Austin, 1975; Floridi, 2013). 114

Language as an Intentional Act: Searle’s 115

speech-act theory (Searle, 1969) and Austin’s work 116

on performativity (Austin, 1975) argue that lan- 117

guage is not just a conduit for information transfer, 118

but also enacts intentions. To say something is of- 119

ten to do something: to promise, question, declare, 120

for example. The force of an utterance depends 121

on the speaker’s agency and recognition of those 122

intentions by a listener (Grice, 1975). This has 123

been fundamental to authorship, particularly in aca- 124

demic and legal discourse, where a text is an intel- 125

lectual act tied to its creator’s identity and respon- 126

sibility (Dworkin, 1996). Even when ghostwriters 127

were traditionally involved, the text ultimately re- 128

flected a coherent cognitive source (Foucault, 1984; 129

Chartier, 1994; Sperber and Wilson, 1986). 130

The rise of LLM-generated text disrupts these 131

frameworks (Floridi and Chiriatti, 2020). Do AI- 132

generated documents bear the same weight without 133

deliberate intent? This uncertaintiy can raising 134

questions about authorship, intellectual property, 135

and trust, especially for scientific or legal text (Raji 136

et al., 2022; Huang and Rust, 2021; van Dis et al., 137

2023). Authorship has historically entailed a social 138

contract: a published text can be challenged or 139

critiqued, holding its human creator(s) responsible 140

for factual or ethical shortcomings (Woodmansee, 141

1994; Chartier, 1994). But with LLM-authored 142

text, accountability becomes diffused: does it lie 143

with the prompter, the model trainer, or the dataset 144

creator? This diffusion of responsibility strains 145

traditional legal and academic norms (Hacker et al., 146

2023; Mittelstadt and Floridi, 2016; Kosseff, 2019). 147

As the intent and accountability of text becomes 148

murky, its meaningfulness and trustworthiness can 149

become suspect too. 150

Language as a Cognitive Interface: Beyond 151

communication, language shapes cognition and our 152

capacity to abstract and solve problems (Clark and 153

Chalmers, 1998; Vygotsky, 1978; Whorf, 1956). It 154

is often considered an “interface" to thought. Re- 155

search in child cognitive development suggests that 156

engagement with language enables reasoning, cog- 157

nitive flexibility, and problem-solving (Tomasello, 158
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2003; Bruner, 1983; Lakoff and Johnson, 1980).159

While some argue that LLMs function as cognitive160

enhancers (Clark and Chalmers, 1998; Warwick,161

2003), others caution that reliance on LLM-driven162

generation can lead to reduced cognitive engage-163

ment (Nichols, 2021; Carr, 2010). In particular,164

LLM-driven writing and summarization has raised165

concerns about cognitive deskilling (Carr, 2011;166

Lai and Viering, 2022). Studies show that compo-167

sition itself is integral to thinking, forcing individu-168

als to clarify ambiguity, structure arguments, and169

synthesize knowledge (Kellogg, 2008; Galbraith,170

1999). Further, LLM-generated summarization171

risks eroding cognitive effort, like digital offload-172

ing has been shown to reduce critical engagement173

(Sparrow et al., 2011; Nichols, 2021).174

Chain-of-Thought and Cognitive Parallels:175

The emergence of chain-of-thought prompting176

(CoT) (Wei et al., 2022) represents a major shift177

in LLM problem-solving. By externalizing logical178

steps, CoT compensates for the depth limitations179

of transformer architectures (Vaswani et al., 2017;180

Yao et al., 2023). This mirrors how humans ar-181

ticulate thoughts through language, diagrams, or182

writing to enhance problem-solving (Clark and183

Chalmers, 1998; Menary, 2010). Beyond com-184

putational efficiency, CoT also bears parallels to185

how externalizing reasoning through symbols has186

been linked to the expansion of human intelli-187

gence (Deacon, 1997; Dor, 2015). If language188

enabled humans to extend cognition beyond indi-189

vidual memory, CoT might mark a similar mile-190

stone in LLM development. Whether CoT aug-191

ments human intelligence or leads intellectual com-192

placency will depend on how societies integrate193

LLM-based thought and reasoning in education,194

work, and decision-making.195

3 The Crisis of Language196

Given these philosophical foundations, the increas-197

ing role of LLMs ruptures the linguistic landscape198

through two forces: (1) Semantic Drift & Model199

Collapse, the idea that the influx of AI-generated200

text can shift the distribution and meaning of lan-201

guage, and lead to compounding errors; and (2)202

Eroding Epistemic Trust in text, epitomized by203

what we term epistemic doppelgängers (LLM out-204

puts that are indistinguishable from human outputs).205

We also suggest a metric, authorship entropy, to206

represent the uncertainty about the origin of a text.207

3.1 Semantic Drift and Model Collapse 208

Semantic drift refers to changes in language us- 209

age and meaning over time, reflecting cultural 210

and social evolution. However, large-scale LLM- 211

generated content can accelerate or redirect se- 212

mantic change. For example, they might rein- 213

force common phrases while underrepresenting 214

less frequent expressions (Raji et al., 2022). LLMs 215

trained on text that partially includes their own 216

synthetic outputs can experience compounding er- 217

rors. Repeated assimilation of AI-generated text 218

leads to a shift away from organic language dis- 219

tributions (Shumailov et al., 2023; Carlini et al., 220

2023). Over time, certain stylistic artifacts become 221

over-represented, contributing to model collapse 222

(Menick et al., 2022), where the system’s expres- 223

sive range narrows towards the mean of what LLMs 224

produce. While prior work has studied distribution 225

shift in active learning (Blitzer et al., 2007), LLM 226

self-ingestion is a novel feedback loop. 227

Semantic drift and model collapse are inter- 228

twined in a hybrid loop of human and LLM lan- 229

guage production (Bommasani et al., 2021). Hu- 230

man writing feeds the training of LLMs, and LLM 231

outputs in turn influence human writing and fu- 232

ture training data. Without intervention, this loop 233

may have an unintended equilibrium: language 234

evolution not driven by human innovation, but by 235

statistical characteristics of LLM generated text. 236

The outcome can be a loss of semantic clarity (as 237

meanings shift in unpredictable ways) and reduced 238

linguistic innovation (Weidinger et al., 2021; Ben- 239

der et al., 2021). If significant portions of text that 240

we read comes to be machine-generated, we should 241

also ask if this can deteriorate our cognitive diver- 242

sity at a societal level. 243

3.2 Eroding Trust and Accountability 244

Texts have long been vehicles for accountabil- 245

ity. Historically, authors were usually identifiable, 246

and could be praised, critiqued, or legally chal- 247

lenged based on their claims (Woodmansee, 1994; 248

Chartier, 1994). LLM-generated content fragments 249

this chain of responsibility. This has significant 250

implications for defamation suits and retraction 251

practices for erroneous statements (Kosseff, 2019). 252

Even more pressingly, online disinformation cam- 253

paigns leveraging AI threaten political discourse, 254

as citizenry loses clarity on who authors the nar- 255

ratives shaping public opinion (Weidinger et al., 256

2021; Chesney and Citron, 2019). 257
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Empirical evidence is growing that synthetic text258

can fuel coordinated misinformation. Recent ex-259

periments demonstrate that AI-generated content260

is capable of crafting coherent yet deceptive so-261

cial media campaigns, blurring the line between262

authentic and automated discourse (Zellers et al.,263

2019). Furthermore, large-scale language mod-264

els have been observed to inadvertently plagiarize,265

amplify biases, and perpetuate stereotypes from266

their training data (Bender et al., 2021; Hovy and267

Spruit, 2016; Carlini et al., 2023). Without robust268

authorship signals or provenance tracking, verify-269

ing source credibility becomes increasingly chal-270

lenging, raising concerns about accountability in271

digital information ecosystems (Gehrmann et al.,272

2019; Kirchenbauer et al., 2023).273

3.3 Epistemic Doppelgängers and Authorship274

Entropy275

LLMs can produce text nearly indistinguishable276

from human writing. We refer to such outputs277

as epistemic doppelgängers: texts that impersonate278

human authorship so convincingly they can fool not279

only casual readers, but editors, teachers, and even280

domain experts. As with a human doppelgänger,281

the deception isn’t necessarily malicious, but its282

uncanniness can be destabilizing. GPT-generated283

news articles are often rated as more trustworthy284

than authentic ones (Zellers et al., 2019), and even285

the best AI detectors rarely surpass 70% accuracy.286

Worse, detection systems are often only effective287

when closely matched to the model they’re trying288

to catch, making them vulnerable to fine-tuning,289

or strategic prompting. In short, epistemic doppel-290

gängers erode the assumption that a well-formed291

sentence signals a human mind.292

This epistemic ambiguity leads us to what we293

call authorship entropy, a measure of uncertainty294

of text authorship. In a world where all documents295

are confidently human-written, authorship entropy296

is low: the provenance of text is legible, even if297

anonymous. But in an AI-saturated ecosystem, the298

space of plausible authors expands. By modeling299

this uncertainty as a probability distribution and300

applying Shannon entropy, we can quantify how301

“foggy” the authorship landscape is. Rising au-302

thorship entropy destabilizes trust: people may be-303

come suspicious of legitimate texts, or indifferent304

to provenance altogether. It weakens accountabil-305

ity: if we don’t know who wrote something, we306

can’t assign responsibility. Also, AI authors, by307

definition, evade moral blame.308

4 Technical Foundations: Authenticating 309

Authorship & Quantifying Drift 310

Our discussion thus far has been primarily con- 311

ceptual. In the next section, we explore technical 312

interventions aimed at reclaiming human account- 313

ability and reducing authorship entropy. 314

4.1 Author Graphs & Proof-of-Interaction 315

A possible direction is embedding provenance and 316

requirement of human interaction in the text gen- 317

eration process itself. For example, a hybrid au- 318

thorship graph can represent relationships between 319

human users, LLMs and texts that they generate 320

or indirectly influence. To explain, a document’s 321

node might have edges from an LLM node (if an 322

AI drafted it) and a human node (who guided or 323

edited it). If an AI’s training data included that doc- 324

ument, an edge from the document back to the AI 325

node (“trains”) can be included, forming a cyclic 326

network of influence. Figure 2 shows an example 327

of such a graph. Such explicit representations of 328

provenance and sources can provide grounding to 329

enforce downstream accountability. 330

A practical implementation of this can be 331

through Proof-of-Interaction (PoI) mechanisms 332

that ensure that a human was substantially involved 333

in creating a text. For instance, an editor can sign 334

off on an AI-generated passage after verifying it, 335

or a platform can require that any AI assistance be 336

logged and attested. Some have proposed proto- 337

cols where documents carry embedded metadata or 338

hashes that link to records of the human-AI collab- 339

oration that produced them. If a document cannot 340

present such proof-of-interaction, it might not be 341

trusted for certain uses. 342

Building on blockchain-inspired ideas 343

(Narayanan et al., 2016) and prior research 344

on authorship verification (Stamatatos, 2009; 345

Layton and Watters, 2020), we propose a process- 346

based approach to demonstrate genuine human 347

involvement. Let T denote a text document, 348

and let C = {C1, C2, . . . , Cn} denote the set 349

of discrete human contributions (e.g., edits, 350

approvals, interventions). Then we we define its 351

proof-of-interaction score for the text as: 352

PoI(T ) = f
(
C,HashChain

)
. 353

Here, HashChain refers to a cryptographically se- 354

cure chain of hashes that records the provenance of 355

these edits. f(·) outputs a scalar or structured PoI 356

score or certificate. This function can be designed 357
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to validate sufficiency (e.g., a minimum amount of358

human interaction occurred), or provide a verifiable359

attestation (e.g., a digitally signed summary).360

Newer works in human-in-the-loop text genera-361

tion have proposed storing metadata that logs par-362

tial revisions (Cecchi and Babkin, 2024; Kang et al.,363

2024). Merging these ideas with zero-knowledge364

proofs can preserve user privacy. While this does365

not solve all issues (e.g., adversaries can simply366

simulate keystrokes or partial edits), such a sys-367

tem raises the cost of deception and provides an368

auditable trail of interaction.369

This idea also aligns with Chain-of-thought (Wei370

et al., 2022; Kojima et al., 2022) oversight, where371

an LLM seeks human verification for intermedi-372

ate reasoning. Some developers propose user-373

audited chains-of-thought, letting humans see ex-374

actly which steps an LLM took (Wang et al., 2022).375

Future research can unify chain-of-thought logs376

with proof-of-work, offering a secure record of377

how text was generated . This can clarify the roles378

of LLMs and humans in authoring text, although379

this approach may present challenges in preserving380

user privacy (Khowaja et al., 2023; Abadi et al.,381

2016; Glymour et al., 2023). These changes will382

necessarily introduce friction, and may be tedious383

for users. However, a proof-of-interaction system384

can ensure that every text is connected to at least385

one human via a “verified” edge. This can maintain386

the principle that for any published text, one can387

point to a human accountable for it.388

4.2 Metrics for Semantic Drift389

Verifying authorship addresses who wrote the text.390

But we should also ask what is being written. We391

propose tracking language changes by defining392

metrics for semantic drift and linguistic diversity,393

comparing human-authored and LLM-generated394

text periodically. By measuring shifts in word fre-395

quencies, syntax, or topics, we can identify drift396

if metaphoric language or dialectal terms decrease397

while AI-generated phrases increase.398

It is also worth monitoring model-internal drift:
how successive generations of LLMs differ when
trained on data that includes prior LLMs’ outputs.
If Phuman and PLLMθ

indicate the probability dis-
tributions of language utterances at a discrete time
step t, and if α denotes the proportion of LLM gen-
erated data, then the distribution of training data
that will be used to train the next iteration of the

Figure 2: An illustrative hybrid authorship graph, rep-
resenting provenance and interactions between human
agents, an LLM agent, and texts. In this example, Hu-
man H1 writes Document 1, which is later used in train-
ing the LLM. Document 2 is co-authored by H1 and the
LLM (perhaps H1 edited text generated by the LLM).
Document 3 is authored solely by the LLM.

LLMs, P t+1
LLM , is given by:

P
(t)
mix(x) = (1− α)Phuman(x) + αP

(t)
LLMθ

(x)

as LLM outputs re-enter training data (Shu- 399

mailov et al., 2023). If P (t)
mix increasingly diverges 400

from Phuman, the model parameters θ risk converg- 401

ing to a subspace that fails to capture the richness 402

of actual human language patterns. Further com- 403

putational or theoretical insights might be found in 404

work on catastrophic forgetting (Kirkpatrick et al., 405

2017) and domain shift (Ganin et al., 2016). While 406

the notion is not new (prior studies on machine- 407

in-the-loop domain adaptation raise similar con- 408

cerns (Ruder, 2019)), our contribution is to high- 409

light how large volumes of synthetic text can nudge 410

language distributions away from natural usage. 411

We propose coupling distributional metrics (e.g., 412

KL divergence) with textual diversity indices to 413

monitor linguistic homogenization. 414

Empirically testing these metrics on real corpora 415

that blend human and AI-generated text remains 416

a priority for future research. Experiments with 417

smaller LLMs (Carlini et al., 2023; Menick et al., 418

2022) suggest that repeated synthetic ingestion am- 419

plifies shallow lexical patterns. In Figure 3, we plot 420

the JS divergence between unigram distributions in 421

a base human-authored corpus, and a GPT2-base 422

model that is iteratively re-trained on its own sam- 423

pled data. We note a clear and increasing semantic 424

drift with an increasing number of steps. 425
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Figure 3: Semantic Drift in Synthetic Text: The plot
shows the Jensen-Shannon divergence between a base
human-authored text distribution and iteratively drifted
synthetic text distributions. As synthetic text is repeat-
edly generated and reintroduced into training data, the
divergence increases, illustrating the risk of semantic
drift and potential loss of linguistic diversity over time.
At each iteration, the GPT2 model is fine-tuned on text
sampled from the GPT2 model in the previous step

In summary, technical tools for authorship au-426

thentication (like detection, watermarking, and427

proof-of-interaction) and for linguistic monitoring428

(measuring drift and diversity) will be crucial parts429

of the solution. However, they are not panaceas.430

Detection can be evaded; verification can be cum-431

bersome; drift metrics can tell us there’s a problem432

but not fix it. We now turn to the human and in-433

stitutional side of the response: how education,434

policy, and cultural norms should adapt in order to435

safeguard the epistemic foundations of language.436

5 Societal Implications437

While LLMs can improve productivity and stream-438

line workflows, their widespread adoption raises439

concerns about academic integrity, scholarly pub-440

lishing, professional hiring, and public discourse441

(Coglianese and Lehr, 2017; Cotton et al., 2023;442

van Dis et al., 2023).443

Education LLMs are increasingly used as study444

aids, enhancing access for learners with different445

language skills (Khan et al., 2023; Chaudhuri et al.,446

2021; Xu et al., 2022; Luckin et al., 2023). How-447

ever, relying on LLMs for tasks like programming448

or essay writing can weaken essential skills: algo-449

rithmic thinking, structured argumentation, and cre-450

ativity (Cotton et al., 2023; Perkins and Salomon,451

1989). To address this, some schools use real-time452

or proctored writing tasks or oral exams to ensure453

understanding (Lund and Wang, 2023). Our chain-454

of-thought synergy (Sec. 7) encourages student par-455

ticipation in the generative process but is difficult 456

to scale. Education should focus on teaching skills 457

that AI cannot easily replace. 458

Academic Scholarship The academic ecosystem 459

assumes text is a reflection of an author’s intellect. 460

Automated text generation challenges this, raising 461

concerns over AI authorship and scholarly contribu- 462

tions (Willis and Williams, 2023). In the short term, 463

LLMs risk hallucinations (Ji et al., 2023) and pla- 464

giarism (van Dis et al., 2023). More seriously, they 465

can flood peer reviews and obscure genuine innova- 466

tion. Ideally though, LLMs should boost research 467

productivity and accelerate scientific progress. 468

Professional Settings In many industries, cover 469

letters, writing samples, and portfolio websites are 470

used to gauge candidates’ communication skills 471

and expertise (Sternberg and Williams, 1997). 472

LLM tools now make it easy to create polished 473

but shallow applications, complicating hiring man- 474

agers’ ability to assess true abilities. Some orga- 475

nizations are turning to live assessments like real- 476

time writing tests or structured panel interviews 477

(Koch et al., 2015; Levashina et al., 2014). But 478

these can be difficult for introverts, non-native 479

speakers, or candidates who do better with writ- 480

ten communication (van Tubergen and Kalmijn, 481

2014; Hu et al., 2020). Managing this requires a 482

delicate dance between fairness and authenticity. 483

The Public Sphere LLMs are reshaping public 484

discourse via AI-generated content, sparking con- 485

cerns about amplification and distortion (Zellers 486

et al., 2019; Ferrara, 2020). Disinformation cam- 487

paigns exploit AI’s capability to produce mislead- 488

ing content, drowning out authentic voices and con- 489

fusing public understanding. Although detection 490

methods advance, the adversarial landscape perpet- 491

uates a constant arms race (see Section 6). Con- 492

versely, LLMs present opportunities to democratize 493

communication by reducing barriers for individu- 494

als with limited writing skills, disabilities, or those 495

who are non-native speakers (Paritosh et al., 2022; 496

Xu et al., 2022). 497

In all of these domains just discussed, a common 498

thread is that trust is threatened by automatic text 499

generation from LLMs. As trust erodes, institutions 500

will react by imposing stricter verification, leading 501

to friction, surveillance, or cynicism. The chal- 502

lenge is developing norms that preserve the value 503

of human contribution and ensure transparency. 504
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6 Labels & Classifiers wont save us505

Proposals such as watermarking and policy bans,506

while helpful in the short term, offer only superfi-507

cial remedies (Gehrmann et al., 2019; Zellers et al.,508

2019; Papernot et al., 2016).509

Watermarking and Detection Arms Races Wa-510

termarking remains fragile against adversarial at-511

tacks like paraphrasing (Kirchenbauer et al., 2023).512

Detection classifiers also struggle with robustness513

as LLMs adapt and human post-editing obfuscates514

machine origins (Holtzman et al., 2020). This cre-515

ates a resource-intensive cat-and-mouse dynamic516

without stable solutions (Gallagher et al., 2023).517

More critically, these methods do not resolve at-518

tribution, leaving ethical and legal questions unan-519

swered (Authors, 2023; Devinney, 2023).520

Policy Bans and their Limitations Bans on AI-521

assisted writing are unenforceable due to weak de-522

tection and strong incentives for LLM use, effec-523

tively becoming honor systems (Devinney, 2023).524

Lagging legislation creates a fragmented regulatory525

landscape (Hacker et al., 2023), and the global na-526

ture of digital communication allows easy circum-527

vention of local policies (Katyal and Epps, 2022),528

failing to address authorship and accountability.529

Neglecting the Deeper Interpretive Question530

Fundamentally, current measures do not restore531

a discernible human presence. If language’s epis-532

temic function relies on text as an intentional ar-533

tifact, superficial labeling fails to reattach text to534

a mind (Bender and Koller, 2020). It still leaves535

us with a fundamentally ambiguous communica-536

tive landscape, and risks putting us in an era of537

permanent ambiguity in textual interpretation.538

7 Rethinking Language & Authorship539

We propose recalibrating the role of LLMs in lan-540

guage by leveraging their benefits while preserving541

human traits like intentionality, accountability, and542

diversity of thought. This requires an interdisci-543

plinary approach involving NLP, cognitive science,544

ethics, law, and education. In this section, we re-545

fine previous suggestions and introduce ideas on546

human-AI collaboration frameworks, governance,547

and cultural appreciation of human-only work (Mit-548

telstadt and Floridi, 2016; Floridi, 2019).549

7.1 Chain-of-Thought with Human Oversight550

As previously mentioned in Section 4, we advo-551

cate for embedding AI within a structured chain-of-552

thought framework that requires human oversight 553

at key decision points (Wei et al., 2022). In this 554

paradigm, LLMs can generate partial outlines, in- 555

termediate arguments, or suggested revisions, but 556

finalization has to be authenticated by a human user 557

after consideration. By logging human-AI interac- 558

tions through an auditable chain (with appropriate 559

privacy safeguards), this method establishes a trans- 560

parent record that delineates AI-generated content 561

from human refinement, addressing concerns about 562

accountability and intellectual ownership (Wang 563

et al., 2022; Christiano, 2022). 564

7.2 Governance & Collaborative Policy 565

Governance for LLM-usage has to be a negotia- 566

tion (between policymakers, educators, and user 567

communities, etc.) for it to work, rather than a 568

prescription (Floridi and Chiriatti, 2020; Hacker 569

et al., 2023). Several directions seem promising. 570

First, AI contribution statements, similar to conflict- 571

of-interest disclosures, can prompt authors to de- 572

clare the extent and nature of LLM involvement 573

(Devinney, 2023). Second, labeling protocols for 574

governmental or legal texts can introduce meta- 575

data or disclaimers to flag LLM-generated con- 576

tents (Union, 2023). Also, ethical AI certification 577

programs, modeled on data protection seals, can 578

help LLM developers conform with regulations 579

such as the EU AI Act (Union, 2023). 580

7.3 Educational Reforms and Cultural Shifts 581

To prevent cognitive deskilling, education has to 582

pivot and adapt. Assignments will have to adapt 583

to the inevitability of the use of LLMs for draft- 584

ing, but can require students to justify revisions 585

and incentivize peer engagement (Lai and Viering, 586

2022). Assessments like live problem-solving and 587

debates will have to focus on substance over pol- 588

ish (Paul and Elder, 2007; Lipman, 2003; Chi and 589

Wylie, 2014; Freeman et al., 2014). Finally, stu- 590

dents should be encouraged to play with LLMs, 591

and taught to interrogate them. AI literacy should 592

be a form of critical literacy, where students learn 593

not simply how to use LLMs, but when and when 594

not to (Bowman and Reeves, 2015). 595

7.4 Human-Only Publishing Spaces 596

A potential direction is establishing “human-only” 597

publishing spaces: media outlets, or creative com- 598

munities that employ verification measures (such 599

as mechanisms like proof-of-work logs) to ensure 600

7



that any content reflects considerable human intel-601

lectual effort and creativity. These spaces would602

offer a parallel track for those who value direct603

human expression. Some journals already forbid604

undisclosed AI collaboration for final submissions605

(Board, 2023). A fiction community might pride it-606

self on entirely human-crafted stories. Like organic607

labels in food, these spaces can serve audiences that608

value authentic human expression—akin to “slow609

food” movements in a fast-food world (Petrini,610

2001). Over time, such enclaves can serve as a611

‘control group’, preserving the standards and norms612

associated with human authorship.613

8 Alternate Views614

We have emphasized how LLMs may erode tra-615

ditional assumptions about language and author-616

ship. But many scholars have a more sanguine617

outlook, and do not frame LLM-driven automation618

as a threat to language. For balance, we summarize619

key arguments in these perspectives.620

Democratization and Accessibility LLMs can621

enable non-native speakers and individuals with dis-622

abilities to participate in public discourse (Norvig623

and Thrun, 2009; Ogawa et al., 2022). By automat-624

ing surface-level writing concerns, these tools al-625

low users to focus on substantive ideas. For ex-626

ample, spell-checkers, were once controversial too627

(Felton, 2023; Christiansen, 2021). Additionally,628

LLMs increase accessibility for users with impair-629

ments (Wagner et al., 2020), reframing ‘linguistic630

inclusivity’ as a positive evolution.631

Accelerated Knowledge Dissemination Sum-632

marization tools help researchers digest literature633

efficiently (Fabbri et al., 2022; Sharma et al., 2022),634

and multilingual translation expands access to spe-635

cialized knowledge (Fan et al., 2021; Artetxe and636

Schwenk, 2019). With editorial oversight, these637

outputs can enhance comprehension without com-638

promising reliability (Szegedy et al., 2022). Ad-639

vocates argue that with transparency, LLMs can640

strengthen epistemic ecosystems rather than harm641

them (Diakopoulos, 2016).642

Evolving Norms of Collaboration In many do-643

mains, collaborative authorship is standard (techni-644

cal manuals, corporate reports, etc.), which rarely645

reflect a single voice (Darics, 2020; Leonard and646

Noonan, 2020). In this context, LLMs are seen as647

additional collaborators (Krause et al., 2022; Dinan648

et al., 2022). Rather than undermining authorship,649

they may shift workflows, with new roles emerg- 650

ing for human editors and fact-checkers (Eisenstein 651

and McNamara, 2023; Roose and Sullivan, 2023). 652

Empirical Evidence of Positive Outcomes 653

Some studies suggest that, when used responsi- 654

bly, LLMs can enhance writing without weaken- 655

ing critical thinking. They support non-native and 656

novice writers in building fluency (Lee et al., 2022; 657

Laubrock et al., 2022). In collaborative environ- 658

ments, there is evidence that AI systems help clar- 659

ity, and can identify redundancy (Yosinski et al., 660

2023; Rahimi et al., 2021). 661

Broadly, these perspectives argue that LLMs are 662

not existential threats to the integrity of language, 663

and that a ‘crisis’ of authorship is neither new nor 664

uniquely AI-induced. Rather, this is a natural evo- 665

lution in how we produce and share ideas. Possibly, 666

when questions about the origin and intent of a text 667

fade, newer and better-suited norms can emerge in 668

the linguistic landscape to replace them. 669

9 Conclusion & Reflection 670

LLMs are here to stay. Yet, they challenge the 671

epistemic and communicative foundations of lan- 672

guage by decoupling text from human intent. While 673

automated or impersonal writing is not new (for 674

example, memos or legal boilerplates), LLMs am- 675

plify this disconnection at an unseen scale. This 676

shift raises several prickly questions about intent, 677

accountability and trust. Any solutions here must 678

preserve the role of language in human agency and 679

accountability. They key will be to assert human 680

presence in language: whether through through 681

cryptographic attestations, proof-of-interaction, or 682

new cultural norms. 683

The future of language doesn’t hinge as much 684

on building better models, but on what we choose 685

to protect. If we can collaborate to implement 686

verifiable authorship and enforceable audit mecha- 687

nisms, we may harness LLMs’ advantages without 688

surrendering the uniquely human dimensions of 689

language. But a failure to act can lead to com- 690

munication devoid of color, reeking with hollow 691

expressions, and diluted cognitive depth in people. 692

The path to hell is famously paved with good inten- 693

tions. Still, through ingenuity and foresight, LLM 694

innovations could be steered toward enhancing hu- 695

man creativity, rather than eroding the intellectual 696

bedrock which is its basis. 697
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Limitations698

By design, this paper is more diagnostic than pre-699

scriptive. We introduce conceptual tools like epis-700

temic doppelgängers and authorship entropy to701

make sense of the shifting linguistic terrain. How-702

ever, many of these constructs remain speculative703

without empirical grounding. Nor do we pretend704

that quantitative metrics alone can capture the con-705

sequences of LLM saturation. What we offer is a706

framework to think with, not a solution to deploy.707

Second, some of our proposals (such proof-of-708

interaction logs, and human-only publishing en-709

claves) are challenging to implement and reify.710

They require infrastructure, extensive cooperation,711

and cultural shifts that may not be welcome. We712

should also acknowledge a significant tension: the713

paper champions the pre-eminence of human inten-714

tion in language, but we do not wish to gatekeep715

expression or discourage the increasingly creative716

and original uses of LLMs. The challenge is to717

protect the epistemic integrity of language with-718

out devolving into ‘purity tests’. To truly solve this719

challenge will requires contending with lived social720

realities of people, not just technical design.721
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