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Abstract

We develop variational search distributions (VSD), a method for finding and gen-
erating discrete, combinatorial designs of a rare desired class in a batch sequential
manner with a fixed experimental budget. We formalize the requirements and
desiderata for active generation and formulate a solution via variational inference.
In particular, VSD uses off-the-shelf gradient based optimization routines, can
learn powerful generative models for designs, and can take advantage of scalable
predictive models. We empirically demonstrate that VSD can outperform existing
baseline methods on a set of real sequence-design problems in various biological
systems.

1 Introduction

We consider a variant of the active search problem [15, 22, 51], where we wish to find members
(designs) of a rare desired class in a batch sequential manner with a fixed experimental budget. We
call sequential active learning of a generative model of these designs active generation. Examples
of rare designs are compounds that could be useful pharmaceutical drugs, or highly active enzymes
for catalyzing chemical reactions. We assume the design space is discrete or partially discrete, high-
dimensional, and practically innumerable. For example, the number possible configurations of a
single protein is 20O(100) [see, e.g., 38].

We are interested in this active generation objective for a variety of reasons. We may wish to study
the properties of the “fitness landscape” [33] to gain a better scientific understanding of a phe-
nomenon such as natural evolution. Or, we may not be able to completely specify the constraints
and objectives of a task, but we would like to characterize the space of, and generate new feasible
designs. For example, we want enzymes that can degrade plastics in an industrial setting, but we
may not yet know the exact conditions (e.g. temperature, pH), some of which may be anti-correlated
with enzyme catalytic activity. Alternatively, if we know these multiple objectives and constraints,
we may only want to generate designs from a Pareto set.

Assuming we can take advantage of a prior distribution over designs, we formulate the search prob-
lem as inferring the posterior distribution over rare, desirable designs. Importantly, this posterior can
be used for generating new designs. Specifically, we use (black-box) variational inference (VI) [35],
and so refer to our method as variational search distributions (VSD). Our major contributions are: (1)
we formulate the batch active generation objective over a (practically) innumerable discrete design
space, (2) we present a variational inference algorithm, VSD, which solves this objective, and (3)
we show that VSD performs well empirically. VSD uses off-the-shelf gradient based optimization
routines, is able to learn powerful generative models, and can take advantage of scalable predictive
models. In our experiments we show that VSD can outperform existing baseline methods on a set of
real applications. Finally, we evaluate our approach on the related sequential black-box optimization
(BBO) problem, where we want to find the globally optimal design for a specific objective and show
competitive performance when compared with state-of-the-art methods.
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2 Problem Formulation

We are given a design space X , which can be discrete or mixed discrete-continuous and high dimen-
sional, and where for each instance that we choose x ∈ X , we measure some corresponding property
of interest (so-called fitness) y ∈ R. For example, in our motivating application of DNA/RNA or
protein sequences (henceforth referred to as just sequences), X = VM where V is the sequence
vocabulary (e.g., amino acid labels, |V| = 20) and M is the length of the sequence. However, we do
not limit the application of our method to sequences. Using this framing, a real world experiment
(for example, measuring the activity of an enzyme) can be modeled as an unknown relationship,

y = f�(x) + ϵ, (1)

for some black-box function (e.g. the experiment), f�, and measurement error ϵ ∈ R, distributed
according to p(ϵ) with Ep(ϵ)[ϵ] = 0. Instead of modeling the whole space, X , we are only interested
in a set of events which we choose based on fitness, S ⊂ X . In particular for active generation we
wish to learn a generative model, by efficiently querying the black-box function in Equation 1, that
only returns samples x(s) ∈ S. For the purposes of this work, we define this solution space as the
super level-set, S := {x : y > τ} for τ ∈ R (e.g., wild-type fitness), and so our task is to learn
the super level-set distribution, p(x|y > τ), in an active manner1. We contrast this objective to the
related objectives of; BBO for the fittest design, x∗ = argmaxx f�(x), directly estimating the super
level-set, S, or the shape of the black-box function for the super level-set, F := {f�(x) : x ∈ S}.
We visualize these related objectives in Figure 1. We assume that S ⊂ X are rare events in a high
dimensional space, and that we have access to a prior belief, p(x), which helps narrow in on this
subset ofX . We are given a dataset,DN := {(yn,xn)}Nn=1, which may contain only a few instances
of yn > τ . Given p(x) and DN we aim to recommend batches of unique candidates, {xbt}Bb=1, for
experimental evaluation in a series of rounds, t ∈ {1, . . . , T}, where B = O(1000) and we desire
xbt ∈ S. Each round, DN is augmented with the experimental results of the previous batch, so
N ← N + B. Estimating this super level-set distribution of x is computationally and statistically
challenging and, therefore, we cast this as a variational inference problem. As we shall see later, our
solution allows us to satisfy the following requirements and additional desiderata for our problem.
Requirements & Desiderata. Problem requirements (R) and other desiderata (D).

(R1) Rare feasible designs, S, are rare events in X
that need to be identified

(R2) Sequential non-myopic candidate generation,
x ∈ S, for sequential experimentation

(R3) Discrete search over (combinatorially) large
design spaces, e.g. x ∈ X = VM

(R4) Batch generation of up to O(1000) diverse can-
didate designs per round

(R5) Generative models, x(s) ∼ q(x), that are task-
specific for fit designs

(D1) Guaranteed convergence for certain choices of
priors, variational distributions and predic-
tive models

(D2) Gradient based optimization strategies for can-
didate searching

(D3) Scalable predictive models that enable high-
throughput experiments.

3 Variational Search Distributions

We cast the estimation of p(x|y > τ) as a sequential optimization problem using variational in-
ference. To do this we optimize the well-known evidence lower bound (ELBO), LELBO(ϕ) =
Eq(x|ϕ)[log p(y > τ |x)] − DKL[q(x|ϕ)∥p(x|D0)] , where we assume access to a prior distribution
over the space of designs, p(x|D0), that may be informed/pre-trained. Furthermore, we estimate
log p(y > τ |x) using a surrogate model by recognizing an equivalence between this distribution and
the probability of improvement (PI) acquisition function from Bayesian optimization (BO) [25],

log p(y > τ |x) ≈ log p(y > τ |x,DN ) = logEp(y|x,DN )[1[y > τ ]] = logαPI(x,DN , τ) . (2)

Here 1 : {false, true} → {0, 1} is the indicator function and p(y|x,DN ) is typically esti-
mated using the posterior predictive distribution of a Gaussian process (GP) given data DN . So

1One could consider other definitions of this solution set, S, for example the Pareto set of non-dominated
designs in a multi-objective optimization setting. We leave the formulation of VSD for other S as future work.
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(a) argmaxx f�(x) (b) S (c) p(x) (d) p(x|y > τ) (e) F

Figure 1: Fitness landscape tasks. (a) f�(x) and white ‘×’ — the maximum fitness design, x∗. (b)
white hatched area — the super-level set of all fit designs, S. (c) prior belief p(x). (d) blue contours
— the density of the super-level set, p(x|y > τ). (e) the black box function for the super-level set,
F . See the text for definitions of these tasks. Our primary goal is to estimate (d).

p(y > τ |x,DN ) = Ψ((µN (x)− τ)/σN (x)), where Ψ(·) is a cumulative standard normal distribu-
tion function, and µN (x), σ2

N (x) are the posterior predictive mean and variance, respectively, of the
GP. We can now rewrite the ELBO as,

LELBO(ϕ, τ,DN ) = Eq(x|ϕ)[logαPI(x,DN , τ)]− DKL[q(x|ϕ)∥p(x|D0)] . (3)

We refer to our method that optimizes the objective in Equation 3 as VSD, as we are using the
variational posterior distribution as a means of searching the space of fit sequences, satisfying (R1),
(R2) and (R4). Concretely, we draw a set of sample candidates from our search distribution, (R5),
each round,

{xbt} ∼
B∏

b=1

q(x|ϕ∗
t ), where ϕ∗

t = argmax
ϕ

LELBO(ϕ, τ,DN ) . (4)

In general, because of the discrete combinatorial nature of our problem, we cannot readily use the
re-parametrization trick to estimate the gradients of the ELBO above. Instead, we use of the score
function gradient estimator [30] with standard gradient descent methods (D2),

∇ϕLELBO(ϕ, τ,DN ) = Eq(x|ϕ)

[(
logαPI(x,DN , τ)− log

q(x|ϕ)
p(x|D0)

)
∇ϕ log q(x|ϕ)

]
, (5)

where we use Monte-Carlo sampling to approximate this expectation with a suitable variance reduc-
tion scheme, such as using a control variate or baseline. We find that the exponentially smoothed
average of the ELBO works well in practice, and is the same strategy employed in Daulton et al.
[13]. Effectively, VSD implements black-box variational inference [35] for parameter estimation,
and despite the high-dimensional nature of X , we find we only need O(1000) samples to estimate
the required expectations for ELBO optimization on problems with M = O(100), satisfying (R3).

Class probability estimation: So far our method indirectly computes the PI acquisition function by
transforming the predictions of a GP surrogate model, p(y|x,DN ), as in Equation 2. Instead we may
choose to follow the reasoning used by Bayesian optimization by density-ratio estimation (BORE)
in [47, 32, 40] and directly estimate the quantity we care about, p(y > τ |x,DN ). We do this with
class probability estimation (CPE) using p(z = 1|x,DN ) ≈ πθ(x), where z := 1[y > τ ] ∈ {0, 1},
and πθ : X → [0, 1]. We can recover the class probability estimates using a proper scoring rule [16]
such as Brier score or log-loss on training data, Dz

N = {(zn,xn)}Nn=1, e.g.,

LCPE(θ,Dz
N ) :=

1

N

N∑
n=1

zn log πθ(xn) + (1− zn) log(1− πθ(xn)). (6)

The VSD objective using CPE becomes,

LELBO(ϕ, θ,DN ) = Eq(x|ϕ)[log πθ(x)]− DKL[q(x|ϕ)∥p(x)] , (7)

into which we plug θ∗t = argmaxθ LCPE(θ,Dz
N ). Using a CPE also opens up the choice of estima-

tors that are more scalable than a GP surrogate, satisfying our last desideratum (D3). This may be
crucial if we choose to run more than a few rounds of experiments with B = O(1000). Additionally,
since VSD is a black box method, we can choose to use CPEs that are non-differentiable, such as
decision tree ensembles.
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(a) DHFR (b) TrpB (c) TFBIND8

Figure 2: Fitness landscape results. Precision (Equation 13), recall (Equation 14) and performance
(Equation 15) – higher is better – for the combinatorially (near) complete datasets, DHFR and TrpB
and TFBIND8. The random method is implemented by drawing B samples uniformly.

The complete VSD algorithm is given in Algorithm 1 (Appendix D), in which we have allowed for
a threshold function, τt = fτ ({y : y ∈ DN}, γt). This function can be used to modify the threshold
each round, e.g. following [47], an empirical quantile function τt = Q̂y(γt) where γt ∈ (0, 1), or a
constant τ in the case of estimating the density of the super-level set.

Theoretical analysis and related work: We show in Appendix A that the VSD objective, in fact,
generalizes the BO objective, providing a lower bound that is tight iff the prior is a Dirac delta
distribution centered at x∗

t . In the sequel [44] we provide convergence guarantees for VSD, satis-
fying desideratum (D1). In Appendix B we provide a formulation that generalizes several related
optimization algorithms (and VSD) including Bayesian optimization with probabilistic reparameter-
isation (BOPR) [13], design by adaptive sampling (DbAS) [9], conditioning by adaptive sampling
(CbAS) [8] and BORE [47]. The key takeaway is that, as seen in Table 2, VSD satisfies all the
requirements and desiderata for our problem.

4 Experiments

We evaluate our method, VSD, on a number of real-world sequence design tasks involving various
biological systems. The corresponding datasets involve |V| ∈ {4, 20}, 8 ≤ m ≤ 237 and 65, 000 <
|X | < 20237. We carry out fitness landscape experiments where we assess the quality of all the
sequences proposed by the competing algorithms and black-box optimization (BBO) experiments
where we evaluate the best performing sequence. We use a mean field variational distribution and
independent prior for the fitness landscape experiments, and we also use a long short-term memory
(LSTM) and decoder-transformer variational distribution and prior for the higher dimensional BBO
experiments. See Appendix C for full details of the experiments, including a description of the
evaluation metrics and results on batch diversity.
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Figure 3: AAV & GFP BBO results. Simple regret (Equation 17) – lower is better – on GFP and AAV
with independent and auto-regressive variational distributions. The proximal exploration (PEX) and
AdaLead results are replicated between the plots, since they are unaffected by choice of variational
distribution.

Figure 2 shows the results for the fitness landscape experiments, and the BBO experimental results
can be found in Figure 3. VSD is clearly the best performing method for all tasks, with the related
method CbAS also performing well. We have consistently found the evolutionary-search based
methods, PEX and AdaLead, to be effective on lower-dimensional problems, however we consis-
tently observe their performance degrading as the dimension of the problem increases – e.g. on
the BBO experiments. We suspect this is a direct consequence of their random mutation strategies
being suited to exploration in low dimensions, but less efficient in higher dimensions compared to
the learned generative models employed by VSD, CbAS, and DbAS. Our version of BORE (which
is just the expected log-likelihood component of Equation 7) performs badly in most cases, and this
is a direct consequence of its proposal distribution collapsing to a Kronecker delta centered on x∗

t .
In a non-batch setting, this behavior is not problematic, but shows how crucial the Kullback-Liebler
(KL) divergence regularization of VSD is in this batch setting.

5 Conclusion

We have presented the problem of active generation (sequentially finding designs of a rare class
under some experimental constraints), and a method for efficiently generating samples which we
call variational search distributions (VSD). Underpinned by variational inference, VSD satisfies
critical requirements and important desiderata, including learning generative models for feasible/fit
sequences and batch candidate generation. We showcased the benefits of our method empirically
on a set of combinatorially complete and high dimensional sequential-design biological problems
and show that it can effectively learn powerful generative models of fit designs. There is a close
connection between active generation and black box optimization, and with the advent of powerful
generative models we hope that our explicit framing of generation of fit sequences would lead to
further study of this connection. Finally, our framework can be generalized to more complex appli-
cation scenarios, potentially involving other challenging combinatorial optimization problems [5],
such as graph structures [3], and mixed discrete-continuous variables, which are worth investigating
as future work directions.
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A VSD as a Black-Box Optimization Lower Bound

A natural question to ask is how VSD relates to the BO objective for PI [14, Ch.7],

x∗
t = argmax

x
logαPI(x,DN , τ) . (8)

Firstly, we can see that the expected log-likelihood of term of Equation 3 lower-bounds this quantity.

Proposition A.1. For a parametric model, q(x|ϕ), given ϕ ∈ Φ ⊆ Rm and q ∈ P : X ×Φ→ [0, 1],

max
x

logαPI(x,DN , τ) ≥ max
ϕ

Eq(x|ϕ)[logαPI(x,DN , τ)] , (9)

and the bound becomes tight as q(x|ϕ∗
t )→ δ(x∗

t ), a Dirac delta function at the maximizer x∗
t .

Taking the argmax of the RHS will result in the variational distribution collapsing to a delta distribu-
tion at x∗

t for an appropriate choice of q(x|ϕ). The intuition for Equation 9 is that the expected value
of a random variable is always less than or equal to its maximum. The proof of this is in Daulton
et al. [13], Staines & Barber [42]. Extending this lower bound, we can show the following.
Proposition A.2. For a divergence D : P(X )× P(X )→ [0,∞), and a prior p0 ∈ P(X ),

max
x

logαPI(x,DN , τ) ≥ max
ϕ

Eq(x|ϕ)[logαPI(x,DN , τ)]− D[q(x|ϕ)∥p0(x)] . (10)

We can see that this bound is trivially true given the range of divergences, and this covers VSD as
a special case. However, this bound is tight if and only if p0 concentrates as a Dirac delta at x∗

t
with an appropriate choice of q(x|ϕ). In any case, the lower bound remains valid for any choice of
informative prior p0 or even a uninformed prior, which allows us to maintain the framework flexible
to incorporate existing prior information whenever that is available.

B Related Work

We will consider related work first in terms of methods that have similar components to VSD, then
second in terms of related problems to our specification of active generation. VSD can be viewed as
one of many methods that makes use of the bound [42],

max
x

f�(x) ≥ max
ϕ

Eq(x|ϕ)[f�(x)] . (11)

The maximum is always greater than or equal to the expected value of a random variable. This
bound is useful for black-box optimization (BBO) of f�, and becomes tight if q(x|ϕ) → δ(x∗), see
Appendix A for more detail and VSD’s relation to BO. Other well known methods that make use
of this bound are evolution strategies (ES) and natural evolution strategies (NES) [52], variational
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Method w(x) ϕ′ Fixed x(s) ∼ q(x|ϕ′)?
VSD log πθ∗(x) + log p(x|D0)− log q(x|ϕ) ϕ No

CbAS πθ∗(x)p(x|D0)/q(x|ϕ∗
t−1) ϕ∗

t−1 Yes
DbAS πθ∗(x) ϕ∗

t−1 Yes
BORE∗ πθ∗(x) ϕ No

BOPR α(x,DN ) ϕ No
Table 1: How related methods can be adapted from Equation 12. VSD, CbAS and DbAS may also
use a cumulative distribution representation of αPI(x,DN , τ) in place of πθ∗(x).

optimization (VO) [42, 6], estimation of distribution algorithms (EDA) [26], and BOPR [13]. For
learning the parameters of the variational distribution, ϕ, they variously make use of maximum
likelihood estimation or the score function gradient estimator (REINFORCE) [53]. Algorithms that
modify Equation 11 to stop the collapse of q(x|ϕ) to a point mass for batch design include DbAS [9]
and CbAS [8]. They use fixed samples x(s) from q(x|ϕ∗

t−1) for approximating the expectation, and
then optimize ϕ using a weighted maximum-likelihood or variational style procedure. DbAS and
CbAS were formulated for offline (non-sequential) tasks, they have often been used in a sequential
setting. We can take a unifying view of many of these algorithms by recognizing the general gradient
estimator, where we give each component in Table 1.

Eq(x|ϕ′)[w(x)∇ϕ log q(x|ϕ)] , (12)

BORE∗ has been adapted to discrete X by using the score function gradient estimator and CbAS
and DbAS have been adapted to use a CPE – their original derivations use the equivalent of a PI
acquisition function.

A number of finite horizon methods have been applied to biological sequence BBO tasks, such
as Amortized BO [46], GFlowNets [21], and the reinforcement learning based DynaPPO [2]. La-
tent space optimization (LSO)-like methods [17, 50, 43, 20] tackle optimization of sequences by
encoding them into a continuous latent space within which candidate optimization or generation
takes place. Selected candidates are decoded back into sequences before black box evaluation; see
González-Duque et al. [18] for a comprehensive survey. VSD does not require a latent space nor an
encoder, and as such can be seen as an amortized variant of probabilistic reparameterisation methods
[13] or continuous relaxations [29]. Heuristic stochastic search methods such as AdaLead [39] and
PEX [36] have also demonstrated strong empirical performance on these tasks. We compare the
properties of the most relevant methods to our problem in Table 2.

In contrast to finding the maximum using BBO, active generation considers another problem –
generating samples from a rare set of feasible solutions. Generation methods that estimate the
super level-set distribution, p(x|y > τ), include CbAS, which optimizes the forward KL diver-
gence, DKL[p(x|y > τ)∥q(x|ϕ)] using importance weighted cross entropy estimation [37]. Batch-
BORE [32] also optimizes the reverse KL divergence and uses CPE, but with Stein variational
inference [28] for continuous and diverse batch candidates. There is a rich literature on the related
task of active learning and BO for level-set estimation (LSE) [10, 19, 7, 54]. However, we focus on
learning a generative model of a discrete space.

For active generation VSD, CbAS and DbAS all use an acquisition function defined in the original
domain, X , to weight gradients (see Equation 12) for learning a conditional generative model, from
which xbt are sampled. An alternative is to use guided generation, that is to train an unconditional
generative model, and then have a discriminative model guide (condition) the samples from the
unconditional model at test time. This plug-and-play of a discriminative model has shown promise
for controlled image and text generation of pre-trained models [31, 12, 27, 55]. LaMBO [43] and
LaMBO-2 [20] take a guided generation approach to solve the active generation problem. LaMBO
uses an (unconditional) masked language model auto-encoder, and then optimizes sampling from its
latent space using an acquisition function as a guide. LaMBO-2 takes a similar approach, but uses a
diffusion process as the unconditional model, and modifies a Langevin sampling de-noising process
with an acquisition function guide.
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BOPR [13] ✗ ✓ ✓ ✗ – ✓ ✓ ✗ ✓ –
BORE [47] ✗ ✓ – ✗ – ✓ ✓ ✓ ✗ –

Batch BORE [32] ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
DbAS [9] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓
CbAS [8] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓

Amortized BO [46] ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
GFlowNets [21] ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

DynaPPO [2] ✗ ✓ ✓ ✓ ✓ ✗ ✓ – ✓ ✓
AdaLead [39] ✗ ✓ ✓ ✓ ✗ ✗ ✗ – ✗ ✗

PEX [36] ✗ ✓ ✓ ✓ ✗ ✗ ✗ – ✗ ✗
GGS [24] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

LSO e.g. [50] ✗ ✓ ✓ ✗ ✓ ✗ ✓ – ✓ –
LaMBO [43] ✓ ✓ ✓ ✓ ✓ ✗ ✓ – ✓ ✓

LaMBO-2 [20] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
VSD (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Table 2: Feature table of competing methods: ✓ has feature, ✗ does not have feature, – partially has
feature, or requires only simple modification. We follow Swersky et al. [46] in their definition of
amortization referring to the ability to use q(x|ϕ∗

t−1) for warm-starting the optimization of ϕt.

C Experiment Details

We compare our method, VSD, on a number of sequence design tasks and compare to existing
baseline methods.

C.1 Datasets

We use three well established datasets; a green fluorescent protein (GFP) from Aequorea victo-
ria [38], an adeno-associated virus (AAV) [11]; and DNA binding activity to a human transcription
factor (TFBIND8) [49, 4]. These datasets have been used variously by [9, 8, 1, 24, 21] among oth-
ers. The GFP task is to maximize fluorescence, this protein consists of 238 amino acids, of which
237 can mutate. The AAV task us to maximize the genetic payload that can be delivered, and this
protein has 28 amino acids, all of which can mutate. A complete combinatorial assessment is in-
feasible for these tasks, and so we use the convolution neural network oracle presented in [24] as
in-silico ground truth. TFBIND8 contains a complete combinatorial enumeration of the effect of
changing 8 nucleotides on binding to human transcription factor SIX6 REF R1 [4]. The dataset we
use contains all 65536 sequences, prepared by [49]. We also use two datasets from recent works
that enumerate the (near) complete combinatorial space of short sequences. The first dataset mea-
sures the antibiotic resistance of Escherichia coli metabolic gene folA, which encodes dihydrofolate
reductase (DHFR) [33]. Only a sub-sequence of this gene is varied (9 nucleic acids which encode
3 amino acids), and so a near-complete (99.7%) combinatorial scan is available. For variants that
have no fitness (resistance) data available, we give a score of -1. The next dataset is near-complete
combinatorial scan of four interacting amino acid residues near the active site of the enzyme tryp-
tophan synthase (TrpB) [23], with 159,129 unique sequences and fitness values, we use -0.2 for the
missing fitness values. These residues are explicitly shown to exhibit epsistasis – or non-additive
effects on catalytic function – which makes navigating this landscape a more interesting challenge
from an optimization perspective. The properties of these datasets are summarized in Table 3.

C.2 Evaluation

For all experiments we run a predetermined number of experimental rounds, T = 10, and we set the
batch size to B = 128. In the first set of experiments, we use a fixed threshold, τ , with the aim of
estimating p(x|y > τ) (or S for non probabilistic models). For the next set of experiments, we set
the threshold, τ , adaptively for testing VSD’s ability to find the fittest sequence.
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Dataset |V| m |Xavailable| |X |
TFBIND8 4 8 65,536 65,536

TrpB 20 4 159,129 160,000
DHFR 4 9 261,333 262,144

AAV 20 28 42,340 2028

GFP 20 237 51,715 20237

Table 3: Vocabulary size, sequence length, and number of available sequences for each of the
datasets we use in this work.

We compare against DbAS [9], CbAS [8] , AdaLead [39], and PEX [36] – all of which we have
adapted to use a CPE, BORE [47] that we have adapted to use the score function gradient estimator,
and a naı̈ve baseline that uses random samples from the prior, p(x|D0). To reduce confounding, all
methods share the same surrogate model, acquisition functions, priors and variational distributions.
For Adalead, we set κ = 0.5 since the CPE using τ is already performing the same thresholding.

C.3 Fitness Landscapes

In this setting we fix τ over all rounds, for all competing methods, and we only consider the com-
binatorially (near) complete datasets. The primary measures by which we compare methods are
precision, recall and performance (the last adapted from [21]),

Precisiont =
1

min{tB, |S|}

t∑
r=1

B∑
b=1

1[ybr > τ ] · 1[xbr /∈ X q
b−1,r], (13)

Recallt =
1

min{TB, |S|}

t∑
r=1

B∑
b=1

1[ybr > τ ] · 1[xbr /∈ X q
b−1,r], (14)

Performancet =
t∑

r=1

B∑
b=1

ybr · 1[xbr /∈ X q
b−1,r]. (15)

Here X q
br ⊂ X is the set of experimentally queried sequences by the bth batch member of the rth

round, including the initial training set. These are comparable among probabilistic and non proba-
bilistic methods. Precision and recall measure the ability of a method to efficiently explore S, where
min{tB, |S|} is the size of the selected set at round t (bounded by the number of good solutions),
and min{TB, |S|} is the number of positive elements possible in the experimental budget. Strictly,
recall should be normalized by |S|, but we use TB here since it may not be realistic to have the
experimental budget to fully explore S.

For the DHFR and TrpB experiments we set maximum fitness in the training dataset to be that of
the wild type, and τ to be slightly below the wild type fitness value. We use a randomly selected
Ntrain = 2000 below the wild-type fitness to initially train the CPE – which is a simple MLP (see
Appendix C.7), we also explicitly include the wild-type. The thresholds and wild-type fitness values
are; DHRF: τ = −0.1, ywt = 0, TrpB: τ = 0.35, ywt = 0.409. We follow the same procedure for
the TFBIND8 experiment, however, there is no notion of a wild-type sequence in this data, and so
we set τ = 0.75, and ytrain max = 0.85.

C.4 Black Box Optimization

In this experiment we aim to find the global maximizers of the black box function, (y∗,x∗). For this,
we set τ adaptively by specifying it as an empirical quantile of the observed target values,

τt = Q̃t
y(γ=pηt−1) (16)

where Q̃t
y is the empirical quantile function of targets at round t, pt−1 is a percentile from the

previous round, and η ∈ [0, 1] is a parameter that controls an ‘annealing’-like schedule for τt that
prioritizes exploration of the fitness landscape in earlier rounds and exploitation of known fit regions
in later rounds. This is a strategy loosely-similar to [41]. The main measure of interest for these ex-
periments is simple/instantaneous regret rt which quantifies how close the methods get to obtaining
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the globally fittest sequence,

rt = y∗ −max
y
{ybi}B,t

b=1,i=1, (17)

where y∗ is the fitness value of the maximum fitness sequence x∗.

For these experiments we use the higher dimension AAV (y∗=19.54) and GFP (y∗=4.12) datasets
to show that VSD can scale to higher dimensions. However, the X of these experiments is com-
pletely intractable to fully explore experimentally, and so we use a predictive oracle trained on all
of the original experimental data as the ground-truth black-box function. This is the same strategy
used in [8, 21, 48, 24] among others, and we use the exact CNN-based oracles from [24] for these
experiments. Unfortunately, it has been shown that some of the oracles used in these experiments
do not predict well out-of-distribution [45], limiting their applicability to real-world problems.

We follow [24] in the experimental settings for the AAV and GFP datasets, but we modify the max-
imum fitness training point and training dataset sizes to make them more amenable to a sequential
optimization setting. The initial percentiles, schedule, and max training fitness values are; AAV:
p0 = 0.8, η = 0.7, ymax = 5, GFP: p0 = 0.8, η = 0.7 ymax = 1.9. We again use a random
Ntrain = 2000 for training the CPEs, which in this case are CNNs with an embedding layer in-
put (same as the previous MLP), followed by two convolutional layers (with a kernel width of 7
residues) with max pooling, followed by two linear layers with leaky ReLU activations.

Again we find the simple proposal distribution in Equation 19 works as well as other more complex
auto-regressive and transition, q(xt|xt−1, ϕ), proposal distributions. However, this time we make
use of a prior distribution of the same form as Equation 19, fit using maximum likelihood on the
same training sequences used for the CPE, regardless of fitness. We find that a uniform prior leads
to far inferior convergence results for all methods (BORE and DbAS use this as the initial proposal
distribution) apart from AdaLead and PEX, which use alternative generative heuristics. The Random
method draws sequences randomly from this prior.

The results are summarized in Figure 3. VSD is among the leading methods, CbAS and DbAS for
both experiments, but it is never significantly better. We can see that AdaLead, PEX and BORE all
perform worse than random for reasons previously mentioned. Simple regret can drop below zero
for these experiments since an oracle is used as the black box function, but the global maximizer
is taken from the experimental data. This potentially highlights some of the overconfidence issues
inherent in these oracles outlined in [45].

C.5 Diversity Scores

The diversity of batches of candidates is a common thing to report in the literature, and to that end
we present the diversity of our results here. We have taken the definition of diversity from [21] as,

Diversityt =
1

B(B − 1)

∑
xi∈DBt

∑
xj∈DBt\{xi}

Lev(xi,xj), (18)

where Lev : X ×X → N0 is the Levenshtein distance. We caution the reader as to the interpretation
of these results however, as more diverse batches often do not lead to better performance, precision,
recall or simple regret (as can be seen from the Random method results). Though insufficient diver-
sity can also explain poor performance, as in the case of BORE. Results for the fitness landscape
experiment are presented in Figure 4, and black-box optimization for AAV & GFP in Figure 5.

C.6 Prior and Variational Distributions

In this section we summarize the main variational distribution architectures considered for VSD,
BORE, CbAS and DbAS, and the sampling distributions for the Random baseline method. Some-
what surprisingly, we find that we obtain consistently good results for the biological sequence ex-
periments using a simple independent (or mean-field) variational distribution,

q(x|ϕ) =
M∏

m=1

Categ(xm|softmax(ϕm)), (19)
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(a) DHFR (b) TrpB (c) TFBIND8

Figure 4: Fitness landscape diversity results. Higher is more diverse, as defined by Equation 18.

G
FP

A
AV

(a) Independent (b) LSTM (c) Transformer

Figure 5: Black-box optimization results for diversity on GFP and AAV with independent and auto-
regressive variational distributions. Higher is more diverse, as defined by Equation 18. The PEX and
AdaLead results are replicated between the plots, since they are unaffected by choice of variational
distribution.

where xm ∈ V and ϕm ∈ R|V|. However, this simple mean-field distribution was not capable of
generating convincing handwritten digits. We have also tested a variety of transition variational
distributions,

q(xt|xt−1, ϕ) =

M∏
m=1

Categ(xtm|softmax(NNm(xt−1, ϕ))), (20)

where NNm(xt−1, ϕ) is the mth vector output of a neural network that takes a sequence from the
previous round, xt−1, as input. We have implemented multiple neural net encoder/decoder archi-
tectures for NNm(xt−1, ϕ), but we did not consider architectures of the form NNm(ϕ) since the
variational distribution in Equation 19 can always learn a ϕm = NNm(ϕ′). We found that none of
these transition architectures significantly outperformed the mean-field distribution (Equation 19)
when it was initialized well (e.g. fit to the CPE training sequences). We also implemented auto-
regressive variational distributions of the form,

q(x|ϕ) = Categ(x1|softmax(ϕ1))

M∏
m=2

q(xm|x1:m−1, ϕ1:m) where, (21)

q(xm|x1:m−1, ϕ1:m) =

{
Categ(xm|softmax(LSTM(xm−1, ϕm−1:m))),

Categ(xm|softmax(DTransformer(x1:m−1, ϕ1:m))).
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For a LSTM recurrent neural network (RNN) and a decoder-only transformer with a causal mask,
for the latter see Phuong & Hutter [34, Algorithm 10 & Algorithm 14] for maximum likelihood
training and sampling implementation details respectively. We list the configurations of the LSTM
and transformer variational distributions in Table 4. We use additive positional encoding for all of
these models.

Configuration AAV GFP
LSTM Layers 4 4

Network size 32 32
Embedding size 10 10

Transformer Layers 1 1
Network Size 64 64

Attention heads 2 2
Embedding size 20 20

Table 4: LSTM and transformer network configuration.

C.7 Class Probability Estimator Architectures

For the fitness landscape experiments on the smaller combinatorially complete datasets we use a
two-hidden layer MLP, with an input embedding layer. The architecture is given in Figure 6 (a).
For the larger dimensional AAV and GFP datasets and Ehrlich function benchmark, we use the
convolutional architecture given in Figure 6 (b). On all but the Ehrlich benchmark, five fold cross
validation was used to select the hyper parameters before the CPEs are trained on the whole training
set for use in the subsequent experimental rounds. Model updates are performed by retraining on
the whole query set.

D The VSD Algorithm

The VSD algorithm is summarized in Algorithm 1.

Algorithm 1 VSD optimization loop with CPE.

Require: Threshold γ1 and fτ , dataset DN , black-box f�, prior p(x|D0), CPE πθ(x), variational
family q(x|ϕ), budget T and B.

1: function FITMODELS(DN , τ )
2: Dz

N ← {(zn,xn)}Nn=1, where zn = 1[yn > τ ]
3: θ∗ ← argminθ LCPE(θ,Dz

N )
4: ϕ∗ ← argmaxϕ LELBO(ϕ, θ

∗)
5: return ϕ∗, θ∗

6: for round t ∈ {1, . . . , T} do
7: τt ← fτ ({y : y ∈ DN}, γt)
8: ϕ∗

t , θ
∗
t ← FITMODELS(DN , τt)

9: {xbt}Bb=1← q(x|ϕ∗
t )

10: {ybt}Bb=1← {f�(xbt) + ϵbt}Bb=1

11: DN+B ←DN ∪ {(xbt, ybt)}Bb=1

12: τ∗ ← fτ ({y : y ∈ DN}, γ∗)
13: ϕ∗, θ∗← FITMODELS(DN , τ∗)
14: return ϕ∗, θ∗
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Sequential(
Embedding(

num_embeddings=A,
embedding_dim =8

),
Dropout(p=0.2),
Flatten(),
LeakyReLU(),
Linear(

in_features =8 * M,
out_features =32

),
LeakyReLU(),
Linear(

in_features =32,
out_features =1

),
)

(a) MLP architecture

Sequential(
Embedding(

num_embeddings=A,
embedding_dim =10

),
Dropout(p=0.2),
Conv1d(

in_channels =10,
out_channels =16,
kernel_size =7,

),
LeakyReLU(),
MaxPool1d(

kernel_size =2 or 4,
stride =2 or 4,

),
Conv1d(

in_channels =16,
out_channels =16,
kernel_size =7,

),
LeakyReLU(),
MaxPool1d(

kernel_size =2 or 4,
stride =2 or 4,

),
Flatten(),
LazyLinear(

out_features =128
),
LeakyReLU(),
Linear(

in_features =128,
out_features =1

),
)

(b) CNN architecture

Figure 6: CPE architectures used for the experiments in PyTorch syntax. A = |V|, M = M , GFP
uses a max pooling kernel size and stride of 4, all other datasets and benchmarks use 2.
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