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Abstract

Machine learning has driven an exponential increase in computational demand,
leading to massive data centers that consume significant energy and contribute to
climate change. This makes sustainable data center control a priority. In this paper,
we introduce SustainDC, a set of Python environments for benchmarking multi-
agent reinforcement learning (MARL) algorithms for data centers (DC). SustainDC
supports custom DC configurations and tasks such as workload scheduling, cooling
optimization, and auxiliary battery management, with multiple agents managing
these operations while accounting for the effects of each other. We evaluate
various MARL algorithms on SustainDC, showing their performance across diverse
DC designs, locations, weather conditions, grid carbon intensity, and workload
requirements. Our results highlight significant opportunities to improve data center
operations using MARL algorithms. Given the increasing use of DC due to AI,
SustainDC provides a crucial platform for developing and benchmarking advanced
algorithms essential for achieving sustainable computing and addressing other
heterogeneous real-world challenges.

1 Introduction

One of the growing areas of energy and carbon footprint (CFP ) can be traced to cloud data centers
(DCs). The increased use of cloud resources for batch workloads related to AI model training,
multimodal data storage and processing, or interactive workloads like streaming services, hosting
websites have prompted enterprise clients to construct numerous data centers. Governments and
regulatory bodies are increasingly focusing on environmental sustainability and imposing stricter
regulations to reduce carbon emissions. This has prompted industry-wide initiatives to adopt more
intelligent DC control approaches. This paper presents SustainDC, a sustainable DC Multi-Agent
Reinforcement Learning (MARL) set of environments. SustainDC helps promote and prioritize
sustainability, and it serves as a platform that facilitates collaboration among AI researchers, enabling
them to contribute to a more environmentally responsible DC.

The main contributions of this paper are the following:

• A highly customizable suite of environments focused on Data Center (DC) operations,
designed to benchmark energy consumption and carbon footprint across various DC config-
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urations. The framework supports the subclassing of models for different DC components
ranging from workloads and individual server specifications to cooling systems, enabling
users to test fine-grained design choices.

• The environments are implemented using the Gymnasium Env class, facilitating the bench-
marking of various control strategies to optimize energy use, reduce carbon footprint, and
evaluate related performance metrics.

• Supports both homogeneous and heterogeneous multi-agent reinforcement learning (MARL)
controllers and traditional non-ML controllers. Extensive studies within these environments
demonstrate the advantages and limitations of various multi-agent approaches.

• SustainDC enables reward shaping, allowing users to conduct ablation studies on specific
DC components to optimize performance in targeted areas.

• SustainDC serves as a comprehensive benchmark environment for heterogeneous, multi-
agent, and multi-objective reinforcement learning algorithms, featuring diverse agent inter-
actions, customizable reward structures, high-dimensional observations, and reproducibility.

Code, licenses, and setup instructions for SustainDC are available at GitHub2. The documentation
can be accessed at 3.

2 Related Work

Recent advancements in Reinforcement Learning (RL) have led to an increased focus on optimizing
energy consumption in areas such as building and DC management. This has resulted in the
development of several environments for RL applications. CityLearn (1) is an open-source platform
that supports single and MARL strategies for energy coordination and demand response in urban
environments. Energym (2), RL-Testbed (3) and Sinergym (4) were developed as RL wrappers that
facilitate communication between Python and EnergyPlus, enabling RL evaluation on the collection
of buildings modeled in EnergyPlus. SustainGym (5) is one of the latest suite of general purpose
RL tasks for evaluation of sustainability, simulating electric vehicle charging scheduling and battery
storage bid, which lends itself to benchmarking different control strategies for optimizing energy,
carbon footprint, and related metrics in electricity markets.

Most of the above-mentioned works use EnergyPlus (6) or, Modelica (7), (8) which were primarily
designed for modeling thermo-fluid interactions with traditional analytic control with little focus on
Deep Learning applications. The APIs provided in these works only allow sampling actions in a
model free manner, lacking a straightforward approach to customization or re-parameterization of
system behavior. This is because most of the works have a set of pre-compiled binaries (e.g. FMUs in
Modelica) or fine-tuned spline functions (in EnergyPlus) to simulate nominal behavior. Furthermore,
there is a significant bottleneck in using these precompiled environments from Energyplus or Mod-
elica for Python based RL applications due to latency associated with cross-platform interactions,
versioning issues in traditional compilers for EnergyPlus and Modelica, unavailability of open source
compilers and libraries for executing certain applications.

SustainDC allows users to simulate the electrical and thermo-fluid behavior of large DCs directly in
Python. Unlike other environments that rely on precompiled binaries or external tools, SustainDC is
easily end-user customizable and fast It enables the design, configuration, and control benchmarking
of DCs with a focus on sustainability. This provides the ML community with a new benchmark
environment specifically for Heterogeneous MARL in the context of DC operations, allowing for
extensive goal-oriented customization of the MDP transition function, state space, actions space, and
rewards.

3 Data Center Operational Model

Figure 1 illustrates the typical components of a DC operation as modeled in SustainDC. Workloads
are uploaded to the DC from a proxy client. For non-interactive batch workloads, some of these jobs
can be scheduled flexibly, allowing delays to different periods during the day for optimization. This

2GitHub repository: https://github.com/HewlettPackard/dc-rl.
3Documentation: https://hewlettpackard.github.io/dc-rl.
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Figure 1: Operational Model of a SustainDC Data Center
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Figure 2: Model of the data center. The configuration allows customization of the number of cabinets
per row, the number of rows, and the number of servers per cabinet. The cooling system, comprising
the CRAH, chiller, and cooling tower, manages the heat generated by the IT system.

creates a scheduling challenge of postponing workloads to times when Grid Carbon Intensity (CI),
energy consumption, or energy pricing is lower.

As the servers (IT systems) in the DC process these workloads, they generate heat that must be
removed. A complex HVAC system with multiple components is used to cool the IT system. As
shown in Figure 2, warm air rises from the servers via convection. Driven by the HVAC fan’s forced
draft, this warm air enters the Computer Room Air Handler (CRAH) (depicted by red arrows), where
it is cooled to an optimal setpoint by a heat exchange process using a "primary" chilled water loop.
The chilled air is then returned to the IT room through a plenum located beneath the DC (shown by
blue arrows). The warmed water from this loop returns to the Chiller, where another heat exchange
process transfers heat to a "secondary" chilled water loop, which carries the heat to a Cooling Tower.
The cooling tower fan, operating at variable speeds, rejects this heat to the external environment,
with fan speed and energy consumption determined by factors such as the secondary loop’s inlet
temperature at the cooling tower, the desired outlet temperature setpoint, and external air temperature
and humidity. Depending on the external Weather and processed Workload, the IT and cooling
systems consume Grid Energy. Selecting the optimal cooling setpoint for the CRAH can reduce the
DC’s carbon footprint and also impacts the servers’ energy efficiency (9).

Larger DCs may include onsite Battery Banks that charge from the grid during low CI periods and
may optionally provide auxiliary energy during high CI periods. This introduces a decision-making
sustainability challenge to determine the optimal charging and discharging intervals for the batteries.

These three control problems are interrelated, motivating the development of testbeds and envi-
ronments for evaluating multi-agent control approaches that collectively aim to minimize carbon
footprint, energy and water usage, energy cost, and other sustainability metrics of interest.

4 SustainDC environment overview

A high-level overview of SustainDC is provided in Figure 3, outlining the three main environments
developed in Python along with their individual components, customization options, and associated
control challenges.
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(a) High-level overview of SustainDC, showing the three main
environments (Workload Env, Data Center Cooling Env, and Battery
Env) along with their customizable components and control actions.
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Figure 3: SustainDC overview and RL loop

The Workload Environment models and controls the execution and scheduling of delay-tolerant
workloads within the DC.

In the Data Center Environment, servers housed in IT room cabinets process these workloads. This
environment simulates both electrical and thermo-fluid dynamics, modeling heat generated by the
workload processing and its transfer to the external environment through HVAC cooling components.

The Battery Environment simulates grid charging during off-peak hours and supplies auxiliary energy
to the DC during periods of high grid carbon intensity, offering a solution to manage energy demand
sustainably.

Detailed physics-based implementations for each environment are available in the supplementary
document. Customization parameters for all aspects of the DC environment design in SustainDC can
be fully specified through dc_config.json, a universal configuration file.

Figure 3a further illustrates SustainDC, showing the Workload Environment, Data Center Environ-
ment, and Battery Environment along with their customizable parameters. Figure 3b depicts the RL
loop in SustainDC, illustrating how agents’ actions and states optimize DC operations, considering
external variables like grid CI, workload, and weather.

4.1 Workload Environment

The Workload Environment (EnvLS) manages the execution and scheduling of delay tolerant work-
loads within the DC by streaming workload traces (measured in FLOPs) over a specified time period.
SustainDC includes a set of open-source workload traces from Alibaba (10) and Google (11) data
centers. Users can customize this component by adding new workload traces to the data/Workload
folder or by specifying a path to existing traces in the dc_config.json file.

Some workloads are flexible, meaning they can be rescheduled within an allowable time horizon.
Tasks such as updates or backups do not need immediate execution and can be delayed based on
urgency or Service-Level Agreements (SLA). This flexibility allows workloads to be shifted to periods
of lower grid carbon intensity (CI), thereby reducing the DC’s overall carbon footprint (CFP ).

Users can also customize the CI data. By default, we provide a one-year CI dataset for the following
states: Arizona, California, Georgia, Illinois, New York, Texas, Virginia, and Washington, locations
selected due to their high data center density. The carbon intensity data files, sourced from eia.gov
(https://api.eia.gov/bulk/EBA.zip), are located in the data/CarbonIntensity folder.

Let Bt be the instantaneous DC workload trace at time t, with X% of the load reschedulable up to N
simulation steps into the future. The objective of an RL agent (AgentLS) is to observe the current
time of day (SCt), the current and forecast grid CI data (CIt...t+L), and the remaining amount of
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reschedulable workload (Dt). Based on these observations, the agent chooses an action Als,t (as
shown in Table 1) to reschedule the flexible portion of Bt, to minimize the net CFP over N steps.

4.2 Data Center Environment

The Data Center environment (EnvDC) provides a comprehensive set of configurable models and
specifications. For IT-level design, SustainDC enables users to define IT Room dimensions, server
cabinet arrangements (including the number of rows and cabinets per row), and both approach and
return temperatures. Additionally, users can specify server and fan power characteristics, such as idle
power, rated full load power, and rated full load frequency.

On the cooling side, SustainDC allows customization of the chiller reference power, cooling fan
reference power, and the supply air setpoint temperature for IT Room cooling. It also includes
specifications for the pump and cooling tower, such as rated full load power and rated full load
frequency. All these parameters can be configured in the dc_config.json file.

One of SustainDC’s key features is its ability to automatically adjust HVAC cooling capacities based
on workload demands and IT room configurations, a process known as "sizing." This ensures that the
data center remains adequately cooled without unnecessary energy expenditure. In contrast, previous
environments often neglected this capability, resulting in inaccurate outcomes. For example, changing
IT room configurations in other environments typically impacted only IT energy consumption without
considering the overall cooling requirements, leading to inconsistent RL-based control results, as
seen in RL-Testbed in (3). SustainDC addresses this by integrating custom supply and approach
temperatures derived from Computational Fluid Dynamics (CFD) simulations, simplifying the
complex calculations of temperature changes between the IT Room HVAC and the IT Cabinets (9).

In addition, SustainDC includes weather data (in data/Weather) in the .epw format for the same
locations as the CI data. This data, sourced from https://energyplus.net/weather, represents
typical weather conditions for these regions. Users can also specify their own weather files if needed.

Given B̂t as the adjusted workload from the Workload Environment, the goal of the RL agent
(AgentDC) is to select an optimal cooling setpoint Adc,t (Table 1) to minimize the net carbon
footprint CFP from combined cooling (Ehvac) and IT (Eit) energy consumption over an N -step
horizon. In SustainDC, the agent’s default state space includes the time of day and year (SCt),
ambient weather (tdb), IT Room temperature (troom), previous step cooling (Ehvac) and IT (Eit)
energy usage, and forecasted grid CI data (CIt...t+L).

4.3 Battery Environment

The Battery Environment (EnvBAT ) is based on battery charging and discharging models, such as
fcharging(BatSoc, δτ) from (12). Parameters for these components, including battery capacity, can
be configured in the dc_config.json file.

The objective of the RL agent (AgentBAT ) is to optimally manage the battery’s state of charge
(BatSoct). Using inputs such as the net energy consumption (Ehvac +Eit) from the Data Center
environment, the time of day (SCt), the current battery state of charge (BatSoct), and forecasted grid
CI data (CIt...t+L), the agent determines an action Abat,t (as outlined in Table 1). Actions include
charging the battery from the grid, taking no action, or discharging to provide auxiliary energy to the
data center, all aimed at minimizing the overall carbon footprint, energy consumption, etc.

4.4 Heterogeneous Multi Agent Control Problem

While SustainDC enables users to tackle the individual control problems for each of the three
environments, the primary goal of this paper is to establish a multi-agent control benchmark that
facilitates joint optimization of the CFP by considering the coordinated actions of all three agents
(AgentLS , AgentDC , and AgentBAT ). The sequence of operations for the joint multi-agent and
multi-environment functions can be represented as follows:
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AgentLS :(SCt × CIt ×Dt ×Bt) → Als,t (1)
AgentDC :(SCt × tdb × troom × Ehvac × Eit × CIt) → Adc,t (2)

AgentBAT :(SCt ×Bat_SoC × CIt) → Abat,t (3)

EnvLS :(Bt ×Als,t) → B̂t (4)

EnvDC :(B̂t × tdb × troom ×Adc,t) → (Ehvac, Eit) (5)
EnvBAT :(Bat_SoC ×Abat,t) → (Bat_SoC,Ebat) (6)
CFPt =(Ehvac + Eit + Ebat)× CIt (7)

where Ebat represents the net discharge from the battery based on the change in battery state of
charge (Bat_SoC), which can be positive or negative depending on the action Abat,t. If the battery
provides auxiliary energy, Ebat is negative; if it charges from the grid, Ebat is positive.

The objective of the multi-agent problem is to determine θLS , θDC , and θBAT , which parameterize
the policies for AgentLS , AgentDC , and AgentBAT , respectively, such that the total CFP is
minimized over a specified horizon N . For this study, we set N = 31× 24× 4, representing a 31-day
horizon with a step duration of 15 minutes.(

θLS , θDC , θBAT

)
= argmin

( t=N∑
t=0

CFPt

)
(8)

4.5 Rewards

While CFP reduction is the default objective in SustainDC, the reward formulation is highly
customizable, allowing users to incorporate alternative objectives such as total energy consumption,
operating costs across all DC components, and water usage.

We primarily consider the following default rewards for the three environments (EnvLS , EnvDC ,
EnvBAT ):

(rLS , rDC , rBAT ) =
(
− (CFPt + LSPenalty),−(Ehvac,t + Eit,t),−(CFPt)

)
Here, LSPenalty is a penalty applied to the Load Shifting Agent (AgentLS) in the Workload Envi-
ronment (EnvLS) if it fails to reschedule flexible workloads within the designated time horizon N .
Specifically, if Dt is positive at the end of a horizon N , LSPenalty is assigned. Details on calculating
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Table 1: Overview of control choices in SustainDC: the tunable knobs, the respective action choices,
optimization strategies, and visual representations.
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Figure 4: Extendable and plug-and-play design of SustainDC for data center control to address the
multi-agent holistic optimization of data centers for resolving multiple dependencies in real-time.

LSPenalty are provided in the supplemental document. Users can opt for custom reward formulations
by subclassing the base reward class in utils/reward_creator.py.

Based on these individual rewards, we can formulate an independent or collaborative reward structure,
where each agent receives partial feedback in the form of rewards from the other agent-environment
pairs. The collaborative feedback reward formulation for each agent is formulated as:

RLS = α ∗ rLS + (1− α)/2 ∗ rDC + (1− α)/2 ∗ rBAT

RDC = (1− α)/2 ∗ rLS + α ∗ rDC + (1− α)/2 ∗ rBAT

RBAT = (1− α)/2 ∗ rLS + (1− α)/2 ∗ rDC + α ∗ rBAT

Here, α is the weighting parameter. This reward-sharing mechanism enables agents to incorporate
feedback from their actions across environments, making it suitable for independent critic multi-agent
RL algorithms, such as IPPO (13). For instance, the adjusted CPU load B̂t influences data center
energy demand (Ecool + Eit), which subsequently affects the battery optimizer’s charge-discharge
decisions and ultimately impacts the net CO2 footprint. Consequently, we explore a collaborative
reward structure and conduct ablation experiments with varying α values to assess the effectiveness
of reward sharing.

4.6 Extendable plug-n-play Data Center Simulation Platform

Figure 4 illustrates the extendable and plug-and-play design of SustainDC framework for data center
control to address the multi-agent optimization of data centers for resolving multiple internal and
external dependencies of agents in real-time. The three different controllers for Cooling Optimizer,
Flexible Load Shifter and Battery Controller can be substituted with RL or non-RL controllers.
Similarly, the underlying models performing the simulation can be substituted easily using the
Modules and Extendable Functions block. In the future, we plan to include the models for next
generation of fanless direct liquid cooling for AI servers (14) for Energy HVAC Model Plug-in.

5 Evaluation Metrics and Experimental Settings

We consider five metrics to evaluate various RL approaches on SustainDC. The CO2 footprint (CFP )
represents the cumulative carbon emissions associated with DC operations over the evaluation period.
HVAC Energy refers to the energy consumed by cooling components, including the chiller, pumps,
and cooling tower. IT Energy refers to the energy consumed by the servers within the DC. Water
Usage, the volume of chilled water recirculated through the cooling system, is a critical metric in DCs
where chilled water supply from a central plant is constrained, and efficient use of this resource helps
minimize the DC’s water footprint. Finally, Task Queue tracks the accumulation of compute FLOPs
from workloads that are deferred for rescheduling under lower CI periods. Higher Task Queue values
indicate poorer SLA performance within the DC.

Experiments were conducted on an Intel® Xeon® Platinum 8470 server with 104 CPUs, utilizing 4
threads per training agent. All hyperparameter configurations for benchmark experiments are detailed
in the supplemental document. The codebase and documentation are linked to the paper.
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6 Benchmarking Algorithms on SustainDC

The purpose of SustainDC is to explore the benefits of jointly optimizing the Workload, Data Center,
and Battery Environments to reduce the operating CFP of a DC. To investigate this, we can perform
ablation studies in which we evaluate net operating CFP by running trained RL agents in only
one or two of the SustainDC environments while employing baseline methods (B∗) in the other
environments. For the Workload Environment (EnvLS), the baseline (BLS) assumes no workload
shifting over the horizon, which aligns with current standard practices in most data centers. For
the Data Center Environment (EnvDC), we use the industry-standard ASHRAE Guideline 36 as
the baseline (BDC) (15). In the Battery Environment (EnvBAT ), we adapt the method from (12)
for real-time operation, reducing the original optimization horizon from 24 hours to 3 hours as our
baseline (BBAT ). Future work will include further baseline comparisons using Model Predictive
Control (MPC) and other non-ML control algorithms.

Next, we perform ablations on the collaborative reward parameter α, followed by benchmarking
various multi-agent RL approaches. This includes multi-agent PPO (16) with an independent critic
for each actor (IPPO) (13) and a centralized critic with access to states and actions from other MDPs
(MAPPO) (17). Given the heterogeneous nature of action and observation spaces in SustainDC, we
also benchmark several heterogeneous multi-agent RL (HARL) methods (18), including HAPPO
(Heterogeneous Agent PPO), HAA2C (Heterogeneous Agent Advantage Actor Critic), HAD3QN
(Heterogeneous Agent Dueling Double Deep Q Network), and HASAC (Heterogeneous Agent Soft
Actor Critic). MARL agents were trained on one location and evaluated across different locations.

In Figure 5, we compare the relative performance of different RL algorithms using a radar chart based
on the evaluation metrics in Section 5. Since reporting absolute values may lack context, we instead
plot relative performance differences, offering insights into the pros and cons of each approach.
(Absolute values for these benchmark experiments are provided in the supplementary document in
tabular format.) Metrics are normalized by their mean and standard deviation, with lower values
positioned at the radar chart periphery and higher values toward the center. Hence, the larger the area
for an approach on the radar chart, the better its performance across the evaluated metrics.

6.1 Single vs multi-agent Benchmarks

Figure 5a compares the relative performance of a single RL agent versus multi-agent RL benchmarks,
highlighting the advantages of a MARL approach for sustainable DC operations. Among single RL
agent approaches, the workload manager RL agent (Experiment 1) and the battery agent (Experiment
3) perform similarly in reducing water usage. The standalone DC (cooling) RL agent (Experiment 2)
demonstrates strong performance in both energy and CFP reduction. Note that for Experiments 1
and 3, the Lowest Task Queue metric should be disregarded, as the baseline workload manager does
not shift workloads and thus inherently has the lowest task queue.

When we evaluate pairs of RL agents working simultaneously, the absence of a cooling optimiza-
tion agent (e.g., Experiment 5) results in performance similar to single RL agent implementations
(Experiments 1 and 3), where only ALS or ABAT are used with baseline agents. This indicates
that the RL-based cooling optimizer significantly improves overall performance compared to the
rule-based ASHRAE Guideline 36 controller (as seen in Experiments 2 and 4). Finally, when all
three RL agents operate simultaneously without a shared critic (Experiment 7 using IPPO), they
achieve better outcomes in energy consumption, water usage, and task queue management, with a
CFP relatively similar to other experiments. The combined performance across all three agents
highlights the benefits of a MARL approach for DC optimization.

6.2 Reward Ablation on α

Figure 5b, shows the relative differences in performance when considering collaborative reward
components. We considered 2 values of α at the extremes to indicate no collaboration (α = 1.0)
and relying only on the rewards of other agents (α = 0.1). An intermediate value of α = 0.8 was
chosen based on similar work on reward-based collaborative approach in (19; 20). The improvement
in setting α = 0.8 shows that considering rewards from other agents can improve performance w.r.t.
no collaboration (α = 1.0) especially in a partially observable MDP.
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Figure 5: Benchmarking RL Algorithms on the Sustain DC environment
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6.3 Multiagent Benchmarks

We evaluated and compared the relative performances of various MARL approaches, including PPO
with independent actor-critics (IPPO, α = 0.8), centralized critic PPO (MAPPO), heterogeneous
multi-agent PPO (HAPPO), HAA2C, HAD3QN, and HASAC. Figures 5c, 5d, 5e, and 5f illustrate
the relative performance of these methods for DCs located in New York, Georgia, California, and
Arizona. Our results reveal a consistent trend where PPO-based shared actor-critic methods (MAPPO,
HAPPO) outperform the independent agent counterpart, IPPO. On further analysis, we observed
that while IPPO effectively reduces HVAC and IT energy, the battery agent struggles to optimally
schedule charging and discharging from the grid to meet data center demand. Among MAPPO,
HAPPO, and HAA2C, HAPPO consistently performs best (except in Georgia).

For the off-policy methods (HAD3QN and HASAC), performance varies significantly across regions,
with HASAC achieving the highest performance in Arizona. The reasons for these regional perfor-
mance variations are not fully understood and may be partially due to differences in weather and
carbon intensity. We plan to further investigate these variations in future work.

7 Limitations

The absence of an oracle that already knows the best results possible for the different environments
makes it difficult to quantify the threshold for performance compared to simpler environments. For
computational speed in RL, we used reduced order models for certain components like pumps and
cooling towers. We could not exhaustably tune the hyperparameters for all the networks.

8 Next Steps

We are planning to deploy the trained agents to real data centers and are working towards domain
adaptation for deployment with safeguards. We will augment the codebase with these updates. In
order to have a smooth integration with current systems where HVAC runs in isolation, we plan a
phased deployment with recommendation to the data center operative followed by direct integration
of the control agents with the HVAC system with safeguards. For real-world deployment, a trained
model should be run on a production server using appropriate checkpoints within a containerized
platform with necessary dependencies. Security measures must restrict the software to only read
essential data, generate decision variables, and write them with limited access to secure memory
for periodic reading by the data center’s HVAC management system. To ensure robustness against
communication loss, a backup mechanism for generating decision variables is essential.

9 Conclusion

This paper introduced SustainDC, a fully Python-based benchmarking environment for multi-agent
reinforcement learning (MARL) in sustainable, cost-effective, and energy-efficient data center
operations. SustainDC provides comprehensive customization options for modeling multiple aspects
of data centers, including a flexible RL reward design, an area we invite other researchers to explore
further. We benchmarked an extensive collection of single-agent and multi-agent RL algorithms in
SustainDC across multiple geographical locations, comparing their performance to guide researchers
in sustainable data center management with reinforcement learning.

Additionally, we are collaborating with consortiums like ExaDigiT, which focuses on high-
performance computing (HPC) and supercomputing, as well as with industry partners, to implement
some of these approaches in real-world scenarios. SustainDC’s complexity and constraints, rooted in
realistic systems, make it a suitable platform for benchmarking hierarchical RL algorithms. We plan
to implement continual reinforcement learning to accommodate dynamic data center environments
and prevent out-of-distribution errors during equipment upgrades and accessory changes.

Moreover, SustainDC features an extendable, plug-and-play architecture of data center modeling
compatible with digital twin frameworks, supporting research into other aspects of data center
optimization for joint and multi-objective goals.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the introduction are shown in mainly across the SustainDC
Overview and Benchmarking sections
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see section Limitations
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Since this is an paper with an extensive set of benchmarking experiments, we
provide the experimental details for reproducibility in the supplemental document.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We are providing the links to the code, documentation and data in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details to the experimental settings in the supplemental as well
as the linked codebase

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: In this paper we do not show any results that are worth statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This is provided in the Evaluation Metrics and Experimental Settings section

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper is mainly focused on sustainable data center computing and as such
aspects of this are discussed in the Introduction and Conclusion

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer:[NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use open source datasets, certain repositories that are cited and our own
models for developing the environment.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the documentation
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Code, licenses, and setup instructions for SustainDC are available at GitHub4. The documentation
can be accessed at 5.

A Models

A.1 Workload Environment (EnvLS)

The Workload Environment (EnvLS) simulates the management and scheduling of data center (DC)
workloads, allowing for dynamic adjustment of utilization to optimize energy consumption and
carbon footprint. The environment is designed to evaluate the performance of reinforcement learning
(RL) algorithms in rescheduling delay-capable workloads within the DC.

Let Bt be the instantaneous DC workload trace at time t, with X% of the load being rescheduled
up to N simulation steps into the future. The goal of an RL agent (AgentLS) is to observe the
current time of day (SCt), the current and forecast grid CI data (CIt...t+L), and the amount of
rescheduled workload left (Dt). Based on these observations, the agent decides an action Als,t to
reschedule the flexible component of Bt to create a modified workload B̂t, thus minimizing the net
CFP =

∑N
t=0 CFPt over N steps. Here CFPt will be calculated based on the sum of the DC

IT load due to B̂t, the corresponding HVAC cooling load, and the charging and discharging of the
battery at every time step.

A.1.1 Actions (ALS)

The action space for AgentLS includes three discrete actions:

4GitHub repository: https://github.com/HewlettPackard/dc-rl.
5Documentation: https://hewlettpackard.github.io/dc-rl.
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• Action 0: Decrease Utilization - This action attempts to defer the flexible portion of the
current workload (Bnonflex) to a later time. The non-flexible (Bflex) workload is processed
immediately, while the flexible workload is added to a queue for future execution.

• Action 1: Do Nothing - This action processes both the flexible (Bflex) and non-flexible
(Bnonflex) portions of the current workload immediately, without any deferral.

• Action 2: Increase Utilization - This action attempts to increase the current utilization by
processing tasks from the queue, if available, in addition to the current workload.

A.1.2 Observations (SLS)

The state space observed by the RL agent consists of several features, including:

• Time of Day - Represented using sine and cosine transformations of the hour of the day to
capture cyclical patterns.

• Day of the Year - Represented using sine and cosine transformations to capture seasonal
variations.

• Current Workload - The current workload level, which includes both flexible and non-
flexible components.

• Queue Status - The length of the task queue, normalized by the maximum queue length.
• Grid Carbon Intensity (CI) - Current and forecasted CI values, capturing the environmental

impact of electricity consumption.
• Battery State of Charge (SoC) - The current state of charge of the battery, if available.

The observation space is a combination of these features, providing the agent with a comprehensive
view of the current state of the environment.

A.1.3 Mathematical Model

Workload Breakdown Let Bt be the total workload at time t. This workload is divided into
flexible (Bflex,t) and non-flexible (Bnonflex,t) components:

Bt = Bflex,t +Bnonflex,t

The flexible workload Bflex,t is a fraction of the total workload:

Bflex,t = α ·Bt, 0 < α < 1

where α is the flexible workload ratio.

Actions and Workload Management Depending on the action Als,t chosen by the RL agent, the
workload is managed as follows:

1. Action 0: Decrease Utilization (Queue Flexible Workload)

B̂t = Bnonflex,t

The flexible workload Bflex,t is added to a task queue Qt for future execution:

Qt+1 = Qt +Bflex,t

2. Action 1: Do Nothing
B̂t = Bt = Bnonflex,t +Bflex,t

There is no change in the task queue:
Qt+1 = Qt

3. Action 2: Increase Utilization (Process Queue)

B̂t = Bt +min(Qt, Cmax −Bt)

where Cmax is the maximum processing capacity. The processed tasks are removed from the task
queue:

Qt+1 = Qt −min(Qt, Cmax −Bt)
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Figure 6: Illustration of the modeled data center, showing the IT section (cabinets and servers) and
the Cooling section (Cooling Tower, chiller, and CRAH). The airflow path is also depicted, with cool
air supplied through the raised floor and hot air returning via the ceiling. Note: We use CRAH and
CRAC interchangeably in the text, but they both represent the same device (CRAH).

A.2 Data Center Environment (EnvDC)

The Data Center Environment (EnvDC ) simulates the IT and HVAC operations within a DC, enabling
the evaluation of RL algorithms aimed at optimizing cooling setpoints to reduce energy consumption
and carbon footprint.

The data center modeled is illustrated in Figure 6. The IT section includes the cabinets and servers,
while the Cooling section comprises a Cooling Tower, a chiller, and the Computer Room Air Handler
(CRAH). The setup also features a raised floor system that channels cool air from the CRAH to the
cabinets. The hot air exits the cabinets and returns to the CRAH via the ceiling.

A.2.1 Data Center IT Model

Let B̂t be the net DC workload at time instant t obtained from the Workload Manager. The spatial
temperature difference, ∆Tsupply , given the DC configuration, is obtained from Computational Fluid
Dynamics (CFD). For a given rack, the inlet temperature Tinlet,i at CPUi is computed as:

Tinlet,i,t = ∆Tsupply,i + TCRACsupply,t

where TCRACsupply,t is the CRAC unit supply air temperature. This value is chosen by the RL agent
ADC .

Next, the CPU power curve fcpu(inlet_temp, cpu_load) and IT Fan power curve
fitfan(inlet_temp, cpu_load) are implemented as linear equations based on (9). Given a server inlet
temperature of Tinlet,i,t and a processing amount of B̂t performed by CPUi, the total rack power
consumption for rack k across all CPUs from i = 1 to K, and the total DC Power IT Consumption
can be calculated as follows:

PCPU,t =
∑
i

fcpu(Tinlet,i,t, B̃t)

PIT Fan,t =
∑
i

fitfan(Tinlet,i,t, B̃t)

Prack,k,t = PCPU,t + PIT Fan,t

Pdatacenter,t =
∑
k

Prack,k,t
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A.2.2 HVAC Cooling Model

Based on the DC IT Load Pdatacenter,t, the IT fan airflow rate, Vsfan, air thermal capacity Cair, and
air density, ρair, the rack outlet temperature Toutlet,i,t is estimated from (9) using:

Toutlet,i,t = Tinlet,i,t +
Prack,k,t

Cair · ρair · Vsfan

In conjunction with the return temperature gradient information ∆Treturn estimated from CFDs,
the final CRAC return temperature is obtained as:

TCRACreturn,t = avg(∆Treturn,i + Toutlet,i,t)

We assume a fixed-speed CRAC Fan unit for circulating air through the IT Room. Hence, the total
HVAC cooling load for a given CRAC setpoint TCRACsupply,t, return temperature TCRACreturn,t,
and the mass flow rate mcrac,fan is calculated as:

Pcool,t = mcrac,fan · Cair · (TCRACreturn,t − TCRACsupply,t)

To perform Pcool,t, the amount of cooling, the net chiller load for a chiller with Coefficient of
Performance (COP ) may be estimated as:

Pchiller,t = Pcool,t

(
1 +

1

COP

)
Next, this cooling load is passed on to the cooling tower. Assuming a cooling tower delta as a function
of temperature fct_delta(tdb), (21) the required cooling tower air flow rate is calculated as:

Vct,air,t =
Pchiller,t

Cair · ρair · fct_delta(tdb)

Finally, the Cooling Tower Load at a flow rate of Vct,air,t is calculated with respect to a reference air
flow rate Vct,air,REF and power consumption Pct,REF from the configuration object:

PCT,t = Pct,REF

(
Vct,air,t

Vct,air,REF

)3

Thus, the total HVAC load includes the cooling tower and chiller loads:

PHVAC,t = PCT,t + Pchiller,t

Based on these power values, the IT and HVAC Cooling energy consumptions can be represented as:

Ehvac,t = PHVAC,t × step size (9)
Eit,t = Pdatacenter,t × step size (10)

A.2.3 Actions (ADC)

The action space for AgentDC consists of discrete actions representing the adjustment of the CRAC
unit’s supply air temperature, limited to a range between 16°C to 23°C:

• Action 0: Decrease Temperature - The agent decreases the CRAC supply air temperature,
enhancing cooling performance but increasing energy consumption.

• Action 1: Maintain Temperature - The agent maintains the current CRAC supply air temper-
ature.

• Action 2: Increase Temperature - The agent increases the CRAC supply air temperature,
which can reduce cooling energy consumption but may increase the IT equipment tempera-
ture.
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A.2.4 Observations (SDC)

The state space observed by the RL agent consists of several features, including:

• Time of Day - Represented using sine and cosine transformations of the hour of the day to
capture cyclical patterns.

• Day of the Year - Represented using sine and cosine transformations to capture seasonal
variations.

• Ambient Weather - Includes current temperature and other relevant weather conditions.
• IT Room Temperature - Average temperature in the IT room.
• Energy Consumption - Previous step cooling and IT energy consumptions.
• Grid Carbon Intensity (CI) - Current and forecasted CI values.

The observation space provides a comprehensive view of the current state of the environment to the
agent.

A.2.5 Chiller Sizing

The chiller power consumption is calculated based on the load and operating conditions using the
following method:

Pchiller,t = calculate_chiller_power(max_cooling_cap, load, ambient_temp)

Calculation of Average CRAC Return Temperature

TCRACreturn,t = avg(∆Treturn,i + Toutlet,i,t)

Calculation of HVAC Power

Pcool,t = mcrac,fan · Cair · (TCRACreturn,t − TCRACsupply,t)

Pchiller,t = Pcool,t

(
1 +

1

COP

)
Vct,air,t =

Pchiller,t

Cair · ρair · fct_delta(tdb)

PCT,t = Pct,REF

(
Vct,air,t

Vct,air,REF

)3

PHVAC,t = PCT,t + Pchiller,t

A.2.6 Water Consumption Model

The water usage for the cooling tower is estimated using a model based on research findings from
several key sources. The model accounts for the water loss due to evaporation, drift, and blowdown.
The primary references used to develop this model include (22), (23), and guidelines from SPX
Cooling Technologies (24).

The water usage model is formulated as follows:

1. Range Temperature Calculation: The difference between the hot water temperature entering the
cooling tower and the cold water temperature leaving the cooling tower:

range_temp = hot_water_temp − cold_water_temp

where hot_water_temp is the TCRACreturn,t, and cold_water_temp is the current CRAC setpoint
TCRACsupply,t.

2. Normalized Water Usage: The baseline water usage per unit time, adjusted for the wet bulb
temperature of the ambient air. This accounts for the environmental conditions affecting the cooling
tower’s efficiency:

norm_water_usage = 0.044 · wet_bulb_temp + (0.35 · range_temp + 0.1)
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3. Total Water Usage: The normalized water usage is adjusted to ensure non-negativity and further
adjusted for drift losses, which are a small percentage of the total water circulated in the cooling
tower:

water_usage = max(0, norm_water_usage) + norm_water_usage · drift_rate

4. Water Usage Conversion: The total water usage is converted to liters per simulation timestep
interval for ease of reporting and consistency with other metrics. Given that we use N timesteps per
hour in our simulations, the conversion is as follows:

water_usage_liters_per_timestep =

(
water_usage · 1000

N

)
This model incorporates both theoretical and empirical insights, providing a comprehensive estimation
of the water consumption in a data center’s cooling tower. By considering the specific operational
parameters and environmental conditions, it ensures accurate and reliable water usage calculations,
critical for sustainable data center management.

A.3 Battery Environment (EnvBAT )

The Battery Environment (EnvBat) simulates the battery banks operations within the DC, enabling
the evaluation of RL algorithms aimed at optimizing auxiliary battery usage to reduce energy costs
and carbon footprint. This environment is a modified version of the battery model from (25).

A.3.1 Battery Model

The battery model represents the energy storage system, considering its capacity, charging and
discharging efficiency, and rate limits. The battery state of charge (SoC) evolves based on the actions
taken by the RL agent.

Let Ebat,t be the energy stored in the battery at time t. The battery can perform three actions: charge,
discharge, or remain idle. The maximum battery capacity is Cmax, and the current state of charge is
Ebat,t.

A.3.2 Actions (ABat)

The action space for AgentBat includes three discrete actions:

• Action 0: Charge - The battery is charged at a rate of rcharge, consuming Ebat,t Wh of
energy.

• Action 1: Idle - The battery do not consume energy.

• Action 2: Discharge - The battery discharges energy at a rate of rdischarge, supplying Ebat,t

Wh of energy.

A.3.3 Observations (SBat)

The state space observed by the RL agent consists of several features, including:

• Data Center Load - The current power consumption of the data center.

• Battery SoC - The current state of charge of the battery.

• Grid Carbon Intensity (CI) - Current and forecasted CI values.

• Time of Day and Year - Represented using sine and cosine transformations to capture
cyclical patterns.

The observation space is a combination of these features, providing the agent with a comprehensive
view of the current state of the environment.
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A.3.4 Mathematical Model

Battery Charging and Discharging The energy stored in the battery evolves based on the action
taken:

Ebat,t =


rcharge · ηcharge ·∆t if charging
0 if idle
rdischarge · ηdischarge ·∆t if discharging

where rcharge and rdischarge are the rates of charging and discharging the battery, respectively. These
rates determine the amount of energy added to or removed from the battery within a time step ∆t.

Charging Rate (rcharge) The charging rate rcharge is the rate at which energy is added to the
battery during the charging process. It is defined as:

rcharge = min

(
Cmax − Ebat,t

ηcharge ·∆t
, Pcharge,max

)
where Pcharge,max is the maximum allowable charging power. This rate ensures that the battery does
not exceed its maximum capacity Cmax and that charging occurs efficiently.

Discharging Rate (rdischarge) The discharging rate rdischarge is the rate at which energy is drawn
from the battery during the discharging process. It is defined as:

rdischarge = min

(
Ebat,t

ηdischarge ·∆t
, Pdischarge,max

)
where Pdischarge,max is the maximum allowable discharging power. This rate ensures that the battery
does not discharge below zero and that discharging occurs efficiently.

Energy Constraints The state of charge is bounded by the battery capacity:

0 ≤ Ebat,t ≤ Cmax

Battery Power Constraints The maximum power that the battery can charge or discharge is limited
by:

Pcharge,max = u · Pcharge + v

Pdischarge,max = u · Pdischarge + v

Simple Reward Calculation The goal of the three agents (AgentLS , AgentDC , and AgentBAT )
is to minimize the cumulative carbon footprint (CFP) over a given horizon N . The CFP at each time
step t is computed as:

CFPt = (Eit,t + Ehvac,t + Ebat,t) · CIt

where:

• Eit,t: Energy consumption by IT equipment due to B̂t

• Ehvac,t: Energy consumption by HVAC systems

• Ebat,t: Energy contribution from the battery (positive when discharging, negative when
charging)

• CIt: Grid carbon intensity at time t

The total reward is then:

R = −
N∑
t=0

CFPt

The reward could have other terms that may consider queue length, water usage, average task delay,
etc.
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Figure 7: Interconnection of environments and agent actions. The figure shows how the Workload
Environment (EnvLS) interacts with the Data Center Environment (EnvDC) by rescheduling work-
loads, and how the Data Center Environment impacts the Battery Environment (EnvBAT ) through
energy demands. Each agent observes the state of its respective environment and takes actions
to optimize operations, with the overall goal of minimizing the carbon footprint (CFP) through
coordinated efforts.

A.4 Interconnection of Environments and Agent Actions

Figure 7 illustrates the interconnection of the different environments (EnvLS , EnvDC , and EnvBAT )
and the actions of their respective RL agents. This diagram highlights how the decisions made by each
agent impact the overall DC operations and contribute to the optimization of energy consumption and
carbon footprint.

In the Workload Environment (EnvLS), the RL agent (AgentLS) reschedules flexible workloads to
optimize utilization. This action will influence the IT load, which directly impacts the Data Center
Environment (EnvDC ). The RL agent (AgentDC ) in the data center environment adjusts the CRAC
setpoints to optimize cooling and IT operations, thus affecting the HVAC cooling load and overall
energy consumption.

The Battery Environment (EnvBAT ) is influenced by the energy demands of the data center
environment. The RL agent (AgentBAT ) manages the charging and discharging of the battery
to optimize energy usage and reduce the carbon footprint. The interconnections between these
environments ensure that the agents work together to minimize the cumulative CFP by considering
the energy consumption of IT, HVAC, and battery systems.

By observing the current state and forecast data, each agent makes informed decisions that contribute
to the overall sustainability and efficiency of the data center operations. This coordinated approach
leverages the strengths of each environment to achieve significant reductions in energy consumption
and carbon emissions.

B Customization of dc_config.json

The customization of the DC is done through the dc_config.json file located in the utils folder.
This file allows users to specify every aspect of the DC environment design. We show here a
part of the configuration file to indicate the different configurable elements inside SustainDC. Ad-
ditional elements can be added to this config either under an existing section or a new section,
and utils/dc_config_reader.py will automatically import the new configurations. Inside the
"data_center_configuration" SustainDC allows the user to configure the dimensions of the data
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center arrangement, the compiled CFD supply and approach temperature delta values and the maxi-
mum allowable CPUs per rack. There is an extensive set of parameters that can be configured under
the "hvac_configuration" section including physical constants, parameters of the computer room
air-conditioning unit (CRAC), chiller, pumps and cooling towers. The "server_characteristics"
block allows the user to specify the properties of individual servers in the data center, including their
idle power, full load fan frequency and power.

{
"data_center_configuration" :
{

"NUM_ROWS" : 4,
"NUM_RACKS_PER_ROW" : 5,
"RACK_SUPPLY_APPROACH_TEMP_LIST" : [

5.3, 5.3, 5.3, 5.3,5.3,
5.0, 5.0, 5.0, 5.0,5.0,
5.0, 5.0, 5.0, 5.0,5.0,
5.3, 5.3, 5.3, 5.3, 5.3
],

"RACK_RETURN_APPROACH_TEMP_LIST" : [
-3.7, -3.7, -3.7, -3.7, -3.7,
-2.5, -2.5, -2.5, -2.5, -2.5,
-2.5, -2.5, -2.5, -2.5, -2.5,
-3.7, -3.7, -3.7, -3.7, -3.7
],

"CPUS_PER_RACK" : 200
},
"hvac_configuration" :
{

"C_AIR" : 1006,
"RHO_AIR" : 1.225,
"CRAC_SUPPLY_AIR_FLOW_RATE_pu" : 0.00005663,
"CRAC_REFRENCE_AIR_FLOW_RATE_pu" : 0.00009438,
"CRAC_FAN_REF_P" : 150,
"CHILLER_COP_BASE" : 5.0,
"CHILLER_COP_K" : 0.1,
"CHILLER_COP_T_NOMINAL" : 25.0,
"CT_FAN_REF_P" : 1000,
"CT_REFRENCE_AIR_FLOW_RATE" : 2.8315,
"CW_PRESSURE_DROP" : 300000,
"CW_WATER_FLOW_RATE" : 0.0011,
"CW_PUMP_EFFICIENCY" : 0.87,
"CT_PRESSURE_DROP" : 300000,
"CT_WATER_FLOW_RATE" : 0.0011,
"CT_PUMP_EFFICIENCY" : 0.87

},
"server_characteristics" :
{

"CPU_POWER_RATIO_LB" : [0.01, 1.00],
"CPU_POWER_RATIO_UB" : [0.03, 1.02],
"IT_FAN_AIRFLOW_RATIO_LB" : [0.01, 0.225],
"IT_FAN_AIRFLOW_RATIO_UB" : [0.225, 1.0],
"IT_FAN_FULL_LOAD_V" : 0.051,
"ITFAN_REF_V_RATIO" : 1.0,
"ITFAN_REF_P" : 10.0,
"INLET_TEMP_RANGE" : [16, 28],
"DEFAULT_SERVER_POWER_CHARACTERISTICS":[[170, 20],

[120, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[170, 10],
[130, 10],
[130, 10],
[110, 10],
[170, 10],
[170, 10],
[170, 10]],

"HP_PROLIANT" : [110,170]
}

}
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C Performance of RL agents on Evaluation Metrics

In this section, we provide the numerical results we obtained from the main paper. The results are
shown in Tables 2 (advantage of multiagent vs single agent), 3 (effects of reward sharing across
agents), 4, 5, 6 and 7 (ablation across geographical locations with different weather, grid carbon
intensity and server load pattern). We observed that there is not a single algorithm that works well
across different metrics and geographical locations, and this is visually appreciated in the main paper.

Table 2: Performance with respect to evaluation metrics on single and multiple RL agent baselines.
A∗ : RL agent B∗ : non−RL baseline agent

Evaluation Metric →
Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

1:ALS + BDC + BBAT 167.61 391.6 1033.8 0.52 10433.46
2:BLS + ADC + BBAT 153.56 372.9 944.5 0.0 10930.77
3:BLS + BDC + ABAT 168.22 390.3 1029.8 0.0 10493.95
4: ALS + ADC + BBAT 155.97 374.9 941.3 0.48 10883.73
5:ALS + BDC + ABAT 168.64 391.1 1030.9 0.56 10470.43
6:BLS + ADC + ABAT 155.44 374.8 942.5 0 10883.73
7:ALS + ADC + ABAT 155.23 371.8 937.4 0.45 10826.61

Table 3: IPPO evaluated on SustainDC with different values of collaborative reward coefficient α
(Average result over 12 runs)

Evaluation Metric →

Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

IPPO(α = 1.0) 176.3 415.2 932.8 12.5 445.6
IPPO(α = 0.8) 176.2 414.6 932.8 9.5 445.8
IPPO(α = 0.1) 176.4 415.3 932.9 15.7 446.2

Table 4: Multiagent RL framework evaluated on SustainDC for a data center located in New York
(Average result over 5 runs)

Evaluation Metric →
Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

IPPO 179.6 417.1 945.9 20.9 446.2
MAPPO 176.4 417.0 932.7 19.6 446.2
HAPPO 177.3 414.8 930.9 12.8 441.9
HAA2C 177.5 419.0 934.8 25.2 14977.1

HAD3QN 178.4 420.5 940.4 28.0 14950.9
HASAC 181.7 424.2 960.8 79.7 14842.4

D Agents/Env behavior

D.1 Battery

The battery environment demonstrates how the battery’s state of charge (SoC) and actions evolve
over time under random behaviors. These figures illustrate two different examples generated using
distinct random seeds.

Figure 8 shows the battery’s SoC and the actions taken (Charge, Discharge, Idle) over simulated days
for two different random behaviors.
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Table 5: Multiagent RL framework evaluated on SustainDC for a data center located in Georgia
(Average result over 5 runs)

Evaluation Metric →
Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

IPPO 265.4 376.7 935.4 6.8 31773.5
MAPPO 263.4 370.3 935.9 0.35 31949.9
HAPPO 264.1 370.4 929.0 0.47 31890.7
HAA2C 262.7 367.1 928.3 6.6 32071.5

HAD3QN 262.8 370.7 935.1 0.0 31952.2
HASAC 263.0 367.4 932.4 0.0 32135.7

Table 6: Multiagent RL framework evaluated on SustainDC for a data center located in California
(Average result over 5 runs)

Evaluation Metric →
Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

IPPO 170.0 384.3 933.8 12.9 28141.4
MAPPO 159.3 388.2 936.1 19.5 33289.3
HAPPO 159.1 376.3 935.8 74.9 30141.8
HAA2C 158.7 381.7 933.5 54.1 30135.4

HAD3QN 161.5 378.4 929.6 25.8 30017.4
HASAC 172.9 434.4 1027.0 43.8 29277.5

Figure 9 compares the energy consumption with and without the battery over simulated days for two
different random behaviors. This comparison illustrates the impact of battery usage on the overall
energy consumption of the data center.

Figure 10 shows the energy added to and removed from the battery over simulated days for two
different random behaviors. These figures demonstrate how the battery charges and discharges energy,
providing insights into its operational patterns.

E External variables

E.1 Workload

The Workload external variable in SustainDC represents the computational demand placed on
the data center. Workload traces are provided in the form of FLOPs (floating-point operations)
required by various jobs. By default, SustainDC includes a collection of open-source workload
traces from Alibaba (10) and Google (11) data centers. Users can customize this component by

Table 7: Multiagent RL framework evaluated on SustainDC for a data center located in Arizona
(Average result over 5 runs)

Evaluation Metric →

Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

IPPO 408.7 380.8 934.8 0.60 30251.6
MAPPO 410.8 383.3 947.5 502.4 31289.6
HAPPO 405.5 381.9 936.6 0.26 30983.7
HAA2C 407.1 385.0 929.9 7.54 32706.3

HAD3QN 405.6 386.4 1094.0 0.0051 30377.3
HASAC 404.6 380.8 936.7 0.54 30878.7
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(a) Battery behavior example 1
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(b) Battery behavior example 2

Figure 8: Battery State of Charge (SoC) and actions taken over time under two different random
behaviors. The actions are labeled as Charge, Discharge, and Idle.
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(b) Battery behavior example 2

Figure 9: Energy consumption with and without the battery over time under two different random
behaviors. The comparison illustrates the effect of battery usage on overall energy consumption.
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(b) Battery behavior example 2

Figure 10: Energy added to and removed from the battery over time under two different random
behaviors. The figures show how the battery charges and discharges energy throughout the simulated
period.
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adding new workload traces to the data/Workload folder or specifying a path to existing traces in the
sustaindc_env.py file under the workload_file configuration. Below is an example of modifying
the workload configuration:

class EnvConfig(dict):

DEFAULT_CONFIG = {
"workload_file": "data/Workload/Alibaba_CPU_Data_Hourly_1.csv",
...

}

The workload file should contain one year of data with an hourly periodicity (365*24=8760 rows).
The file structure should have two columns, where the first column does not have a name, and the
second column should be named cpu_load. Below is an example of the file structure:

,cpu_load
1,0.380
2,0.434
3,0.402
4,0.485
...

Figure 11 shows examples of different workload traces from Alibaba (v2017) and Google (v2011)
data centers. Figure 12 provides a comparison between two workload traces of Alibaba (v2017) and
Google (v2011).

E.2 Weather

The Weather external variable in SustainDC captures the ambient environmental conditions impacting
the data center’s cooling requirements. By default, SustainDC includes weather data files in the
.epw format from https://energyplus.net/weather for various locations where data centers
are commonly situated. These locations include Arizona, California, Georgia, Illinois, New York,
Texas, Virginia, and Washington. Users can customize this component by adding new weather files to
the data/Weather folder or specifying a path to existing weather files in the sustaindc_env.py file under
the weather_file configuration. Below is an example of modifying the weather configuration:

class EnvConfig(dict):

DEFAULT_CONFIG = {
’weather_file’: ’data/Weather/USA_NY_New.York-Kennedy.epw’,
...

}

Each .epw file contains hourly data for various weather parameters, but for our purposes, we focus on
the ambient temperature. Figure 13 shows the typical average ambient temperature across different
locations over one year. Figure 14 provides a comparison of external temperatures across the different
selected locations.

E.3 Carbon Intensity

The Carbon Intensity (CI) external variable in SustainDC represents the carbon emissions associated
with electricity consumption. By default, SustainDC includes CI data files for various locations:
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Figure 11: Examples of different workload traces from Alibaba and Google data centers.
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Figure 12: Comparison between two workload traces of Alibaba trace (2017) and Google (2011).
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Figure 13: Typical average ambient temperature across different locations across one year.
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Figure 14: Comparison between external temperature of the different selected locations.

Arizona, California, Georgia, Illinois, New York, Texas, Virginia, and Washington. These files are
located in the data/CarbonIntensity folder and are extracted from https://api.eia.gov/bulk/
EBA.zip. Users can customize this component by adding new CI files to the data/CarbonIntensity
folder or specifying a path to existing files in the sustaindc_env.py file under the cintensity_file
configuration. Below is an example of modifying the CI configuration:

class EnvConfig(dict):

DEFAULT_CONFIG = {
’cintensity_file’: ’data/CarbonIntensity/NY_NG_&_avgCI.csv’,
...

}

The CI file should contain one year of data with an hourly periodicity (365*24=8760 rows). The file
structure should have the following columns: timestamp, WND, SUN, WAT, OIL, NG, COL, NUC, OTH,
and avg_CI. WND, SUN, WAT, OIL, NG, COL, NUC, and OTH represent the energy sources contributing
to the carbon intensity. These sources include wind, solar, water, oil, natural gas, coal, nuclear, and
other types of energy, respectively. Below is an example of the file structure:

timestamp,WND,SUN,WAT,OIL,NG,COL,NUC,OTH,avg_CI
2022-01-01 00:00:00+00:00,1251,0,3209,0,15117,2365,4992,337,367.450
2022-01-01 01:00:00+00:00,1270,0,3022,0,15035,2013,4993,311,363.434
2022-01-01 02:00:00+00:00,1315,0,2636,0,14304,2129,4990,312,367.225
2022-01-01 03:00:00+00:00,1349,0,2325,0,13840,2334,4986,320,373.228
...

In Figure 15, the average daily carbon intensity for each selected location is shown, highlighting the
variations in carbon emissions associated with electricity consumption across different regions.

In Figure 16, a comparison of carbon intensity across all the selected locations is presented, providing
a comprehensive overview of how carbon emissions vary between these areas.

In Figure 17, we show the average daily carbon intensity against the average daily coefficient of
variation (CV) for various locations. This figure highlights an important perspective on the variability
and magnitude of carbon intensity values across different regions. Locations with a high CV indicate
greater fluctuation in carbon intensity, offering more "room to play" for DRL agents to effectively
reduce carbon emissions through dynamic actions. Additionally, locations with a high average carbon
intensity value present greater opportunities for achieving significant carbon emission reductions.
The selected locations are highlighted, while other U.S. locations are also plotted for comparison.
Regions with both high CV and high average carbon intensity are identified as prime targets for DRL
agents to maximize their impact on reducing carbon emissions.

In the table bellow (8) is the summarizing the selected locations, typical weather values, and carbon
emissions characteristics:
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Figure 15: Typical average carbon intensity across different locations over one year.

Location Typical Weather Carbon Emissions
Arizona Hot, dry summers; mild winters High avg CI, High variation

California Mild, Mediterranean climate Medium avg CI, Medium variation
Georgia Hot, humid summers; mild winters High avg CI, Medium variation
Illinois Cold winters; hot, humid summers High avg CI, Medium variation

New York Cold winters; hot, humid summers Medium avg CI, Medium variation
Texas Hot summers; mild winters Medium avg CI, High variation

Virginia Mild climate, seasonal variations Medium avg CI, Medium variation
Washington Mild, temperate climate; wet winters Low avg CI, Low variation

Table 8: Summary of Selected Locations with Typical Weather and Carbon Emissions Characteristics
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Figure 16: Comparison of carbon intensity across the different selected locations.
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Figure 17: Average daily carbon intensity versus average daily coefficient of variation (CV) for the
grid energy provided from US. Selected locations are remarked. High CV indicates more fluctuation,
providing more opportunities for DRL agents to reduce carbon emissions. High average carbon
intensity values offer greater potential gains for DRL agents.
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State Data Centers
California 254
Virginia 250
Texas 239

New York 128
Illinois 122
Florida 120
Ohio 98

Washington 84
Georgia 75

New Jersey 69
Table 9: Summary of U.S. States with the Most Data Centers (ref: (26))

Considering the data from (26), the U.S. states with the highest number of data centers are summarized
in Table 9. The states with the most significant number of data centers tend to be Virginia, Texas,
California, and New York. Virginia, especially, is a major hub due to its proximity to Washington
D.C. and the abundance of fiber optic cable networks. Texas and California are also prominent due to
their size, economic output, and significant tech industries. New York, particularly around New York
City, hosts numerous data centers that serve the financial sector and other industries.

The selection of these locations is justified by their significant number of data centers, which
emphasizes the potential impact of DRL agents in these regions. By targeting areas with both high
data center density and favorable carbon intensity characteristics, DRL agents can maximize their
effectiveness in reducing carbon emissions.

F Reward Evaluation and Customization

F.1 Load Shifting Penalty (LSPenalty)

The Load Shifting Penalty (LSPenalty) is applied to the Load Shifting Agent (AgentLS) in the
Workload Environment (EnvLS) if it fails to reschedule flexible workloads within the same day. If
Dt (the amount of rescheduled workload left) is positive at the end of the day, penalty_tasks_queue
is assigned. Additionally, we included a function that progressively increases the penalty as the hour
of the day approaches 24h. This means the penalty increases linearly from hour 23h to hour 24h.

Furthermore, there is a penalty for tasks that were dropped due to queue limits
(penalty_dropped_tasks). This penalty is added to discourage the agent from dropping tasks
and ensure that workloads are managed efficiently.

Therefore, the LSPenalty is composed of penalty_tasks_queue and penalty_dropped_tasks. Re-
lated work in this area include (27; 28; 29; 30; 31; 32; 33).

F.2 Default Reward Function

The default reward function used in SustainDC for the Load Shifting Agent is implemented as
follows:

def default_ls_reward(params: dict) -> float:
"""
Calculate the reward value based on normalized load shifting
and energy consumption.

Parameters:
params (dict): Dictionary containing parameters:

- bat_total_energy_with_battery_KWh (float):
Total energy consumption with battery.

- norm_CI (float): Normalized carbon intensity.
- bat_dcload_min (float): Minimum data center load.
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- bat_dcload_max (float): Maximum data center load.
- ls_tasks_dropped (int): Number of tasks dropped due to queue limit.
- ls_tasks_in_queue (int): Number of tasks currently in queue.
- ls_current_hour (int): Current hour in the simulation.

Returns:
float: Calculated reward value.

"""
# Energy part of the reward
total_energy_with_battery = params[’bat_total_energy_with_battery_KWh’]
norm_CI = params[’norm_CI’]
dcload_min = params[’bat_dcload_min’]
dcload_max = params[’bat_dcload_max’]

# Calculate the reward associated with the energy consumption
norm_net_dc_load = (total_energy_with_battery - dcload_min) /

(dcload_max - dcload_min)
footprint = -1.0 * norm_CI * norm_net_dc_load

# Penalize the agent for each task that was dropped due to queue limit
penalty_per_dropped_task = -10 # Define the penalty value per dropped task
tasks_dropped = params[’ls_tasks_dropped’]
penalty_dropped_tasks = tasks_dropped * penalty_per_dropped_task

tasks_in_queue = params[’ls_tasks_in_queue’]
current_step = params[’ls_current_hour’]
penalty_tasks_queue = 0

if current_step % (24*4) >= (23*4): # Penalty for queued tasks at the
end of the day

factor_hour = (current_step % (24*4)) / 96 # min = 0.95833, max = 0.98953
factor_hour = (factor_hour - 0.95833) / (0.98935 - 0.95833)
penalty_tasks_queue = -1.0 * factor_hour * tasks_in_queue / 10 # Penalty

for each task left in the queue

LS_penalty = penalty_dropped_tasks + penalty_tasks_queue

reward = footprint + LS_penalty

return reward

F.3 Customization of Reward Formulations

Users can choose to use any other reward formulation by defining custom reward functions inside
utils/reward_creator.py. To create a custom reward function, you can define it as follows:

def custom_reward(params: dict) -> float:
# Custom reward calculation logic
pass

Replace the logic inside the custom_reward function with your custom reward logic.

For more examples of custom reward functions, users can check the file utils/reward_creator.py.

To use the custom reward function, you need to include it in the utils/reward_creator.py as follows:

# Other reward methods can be added here.

REWARD_METHOD_MAP = {
’default_dc_reward’ : default_dc_reward,
’default_bat_reward’: default_bat_reward,
’default_ls_reward’ : default_ls_reward,
# Add custom reward methods here
’custom_reward’ : custom_reward,

}

Additionally, you need to specify the reward function in harl/configs/envs_cfgs/dcrl.yaml:

agents:
...
ls_reward: default_ls_reward
dc_reward: default_dc_reward
bat_reward: default_bat_reward
...
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This flexibility ensures that SustainDC can be adapted to a wide range of research and operational
needs in sustainable data center management.
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