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Abstract

We present Q-ViD, a simple approach for001
video question answering (video QA), that un-002
like prior methods, which are based on com-003
plex architectures, computationally expensive004
pipelines or use closed models like GPTs, Q-005
ViD relies on a single instruction-aware open006
vision-language model (InstructBLIP) to tackle007
videoQA using frame descriptions. Specifi-008
cally, we create captioning instruction prompts009
that rely on the target questions about the010
videos and leverage InstructBLIP to obtain011
video frame captions that are useful to the012
task at hand. Subsequently, we form descrip-013
tions of the whole video using the question-014
dependent frame captions, and feed that in-015
formation, along with a question-answering016
prompt, to a large language model (LLM).017
The LLM is our reasoning module, and per-018
forms the final step of multiple-choice QA.019
Our simple Q-ViD framework achieves com-020
petitive or even higher performances than cur-021
rent state of the art models on a diverse range022
of videoQA benchmarks, including NExT-QA,023
STAR, How2QA, TVQA and IntentQA. Our024
code will be publicly available at:025

1 Introduction026

Recently, Vision-Language models have shown027

remarkable performances in image question-028

answering tasks (Goyal et al., 2017; Marino et al.,029

2019; Schwenk et al., 2022), with models such030

as Flamingo (Alayrac et al., 2022), BLIP-2 (Li031

et al., 2023b), InstructBlip (Dai et al., 2023) and032

mPLUG-Owl (Ye et al., 2023) showing strong rea-033

soning capabilities in the vision-language space.034

Image captioning (Vinyals et al., 2015; Ghandi035

et al., 2023) is one of the capabilities in which036

these models truly excel, as they can generate de-037

tailed linguistic descriptions from images. Differ-038

ent works have leveraged this capability in many039

ways for zero-shot image-question answering, such040

as giving linguistic context to images (Hu et al.,041

2022; Ghosal et al., 2023), addressing underspeci- 042

fication problems in questions (Prasad et al., 2023), 043

coordination of multiple image captions to com- 044

plement information (Chen et al., 2023b), or by 045

combining captions with other type of linguistic 046

information from the image (Berrios et al., 2023). 047

In this manner, the reasoning capabilities of LLMs 048

can be directly used to reason about the linguistic 049

image descriptions and generate an answer for the 050

given visual question. 051

This approach has been successful for images, 052

but in the case of video-question answering tasks 053

(Lei et al., 2018; Li et al., 2020b; Xiao et al., 2021; 054

Wu et al., 2021; Li et al., 2023a) this is more chal- 055

lenging. Video possesses multiple image frames 056

that have relationships between each other and in- 057

volve the recognition of objects, actions, as well 058

as the inference about semantic, temporal, causal 059

reasoning and much more (Zhong et al., 2022). 060

Thus, some works (Chen et al., 2023a; Wang et al., 061

2023) have focused on using powerful LLMs like 062

ChatGPT to either ask visual questions to image- 063

language models like BLIP-2 or to respond and 064

retrieve useful information from large datasets with 065

detailed information from the video. Similarly, 066

Zhang et al., (2023a) have leveraged the reason- 067

ing capabilities of GPT-3.5 to create textual sum- 068

maries from the video, and later perform video 069

QA using only textual information. While others 070

(Wang et al., 2022b; Zeng et al., 2022) combine 071

linguistic information from multiple sources such 072

as captions, visual tokenization or even subtitles 073

of input speech. In summary, current methods for 074

video QA rely on any combination of closed LLMs, 075

expensive training regimes, and complex architec- 076

tures with multiple modules (Yang et al., 2022; Ko 077

et al., 2023; Yu et al., 2023; Momeni et al., 2023; 078

Li et al., 2023c; Zhang et al., 2023a). In contrast, 079

we introduce Q-ViD a simple Question-Instructed 080

Visual Descriptions for video QA approach that re- 081

lies on an instruction-aware vision-language model, 082
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InstructBLIP (Dai et al., 2023), to automatically083

generate rich captions from the frames. In this084

manner, we effectively turn the vQA task into a085

text QA task. More specifically, given an input086

video V we sample n number of frames, then, we087

generate question-specific instructions to prompt088

the multimodal instruction tuned model to gener-089

ate captions for each frame. Afterwards, we form090

a video description by concatenating all the gen-091

erated question-dependent captions from Instruct-092

BLIP, and use it along with the question, options093

and an instruction prompt as input to the LLM-094

based reasoning module that generates an answer095

to the multiple-choice question about the video.096

We demonstrate the effectiveness of Q-ViD on five097

challenging multiple choice video question answer-098

ing tasks (NExT-QA, STAR, How2QA, TVQA,099

IntentQA), showing that this simple framework100

can achieve strong performances comparable with101

more complex pipelines. Our contributions are102

summarized as follows:103

• We propose Q-ViD, a simple gradient-free ap-104

proach for zero-shot video QA that relies on105

an open instruction-tuned multimodal model106

to extract question-specific descriptions of107

frames to transform the video QA task into a108

text QA one.109

• Our approach achieves strong zero-shot per-110

formance that is competitive or even superior111

to more complex architectures such as SeViLa,112

Internvideo, and Flamingo. It even compares113

favorably with recent solutions that include114

GPT APIs, like LloVi and ViperGPT.115

2 Related Work116

2.1 Multimodal Pretraining for Video QA117

The strong reasoning capabilities of LLMs (Chung118

et al., 2022; Touvron et al., 2023; Brown et al.,119

2020; Hoffmann et al., 2022) in natural language120

processing tasks has motivated to apply these mod-121

els for visual understanding. Currently, LLMs have122

been successfully adapted to understand images (Li123

et al., 2023b; Ye et al., 2023; Chen et al., 2023c),124

but applying the same principles for video is more125

challenging. Approaches for VideoQA rely on126

image-language models, and adapt those to pro-127

cess video by using fixed amounts of video frames128

as input (Alayrac et al., 2022; Yu et al., 2023; Yang129

et al., 2022), or by selecting key-frames from the130

initial sequence (Yu et al., 2023; Li et al., 2023c).131

Figure 1: Overview of Q-ViD. We propose relying on a
instructed-tuned multimodal model to generate question-
dependent frame captions to perform video QA using
text. This simple approach achieves competitive results
with more complex architectures or GPT-based methods

Commonly, these works use frozen visual and 132

language models and focus only on modality align- 133

ment. Models like Flamingo (Alayrac et al., 2022) 134

uses a fixed amount of video frames as input and 135

bridges modalities by training a perceiver resam- 136

pler and gated attention layers between Chinchilla 137

LLMs (Hoffmann et al., 2022). While others, like 138

SeViLa (Yu et al., 2023) relies on BLIP-2 (Li et al., 139

2023b) for modality alignment, using an interme- 140

diate pretrained module called Q-former. SeViLa, 141

first perform key-frame localization and then video 142

QA with Flan-T5 LLMs (Chung et al., 2022). On 143

the other hand, other works apart from using frozen 144

vision models, adapt the LLM to visual inputs using 145

adapter tokens (Zhang et al., 2023b) or intermedi- 146

ate trainable modules (Houlsby et al., 2019). Mod- 147

els like Flipped-VQA (Ko et al., 2023) focuses on 148

adapting LLaMa (Touvron et al., 2023) to video QA 149

by using adapter tokens along with different train- 150

ing objectives to leverage the temporal and causal 151

reasoning abilities of LLMs. Similarly, Frozen- 152
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Bilm (Yang et al., 2022) exploit the strong zero-153

shot performance of BILM, a frozen bidirectional154

language model that is adapted to video QA by155

using lightweight trainable modules. Despite the156

success of all these models, they require complex157

architectures and training regimes, unlike these158

works we build a simple, gradient-free, approach159

for zero-shot video QA.160

2.2 Image Captions for Video Understanding161

One of the core strengths of image-language mod-162

els (Alayrac et al., 2022; Li et al., 2023b; Dai et al.,163

2023) is the generation of image captions, thus164

due to the current strong zero-shot capabilities165

of LLMs, captions can be directly use to reason166

about visual content. This has been successfully167

leveraged in the image-language space for image168

question-answering with approaches such as Lens169

(Berrios et al., 2023), Img2LLM (Guo et al., 2023)170

and PromptCat (Hu et al., 2022) that gather image171

captions and other type of linguistic information to172

answer a visual question. While similar approaches173

have been taken for videos, the use of large mod-174

els like GPTs is very common, with models such175

as ChatCaptioner (Chen et al., 2023a), ViperGPT176

(Surís et al., 2023) , ChatVideo (Wang et al., 2023),177

VidIL (Wang et al., 2022b), Socratic Models (Zeng178

et al., 2022), and LLoVi (Zhang et al., 2023a) have179

been applied for video-language tasks, common180

methods use GPTs to either interact with image-181

language models to get visual descriptions, or to182

make summaries from captions and other type of183

information such as visual tokenization, subtitles of184

speech and more. Unlike these approaches, we do185

not use GPTs or multiple computationally expen-186

sive modules in any part of our pipeline to achieve187

strong zero-shot performance on video QA.188

3 Method189

Recently, vision-language models trained with in-190

struction tuning (Dai et al., 2023; Zhu et al., 2023;191

Liu et al., 2023) have shown impressive capabilities192

to faithfully follow instructions and extract visual193

representations adapted to the task at hand. Thus,194

with Q-ViD (Fig. 2), we propose to leverage these195

capabilities for multiple-choice video QA, and turn196

this task into textual QA using InstructBLIP (Dai197

et al., 2023). We use a question-dependent cap-198

tioning prompt as the input instruction, to guide199

InstructBLIP to generate video frame descriptions200

that are more relevant for the given question. Af-201

terwards, we reuse the LLM from InstructBLIP 202

and use it as our reasoning module. This LLM 203

(Flan-T5) takes a question-answering prompt as 204

input, that consists of a video description formed 205

by the concatenation of all the question-dependent 206

frame captions, the question, options and a task 207

instruction. Considering that Flan-T5 is also origi- 208

nally trained with instructions, we aim to leverage 209

its reasoning capabilities to correctly answer the 210

question given only the text we just described as in- 211

put. Our simple approach does not rely on complex 212

pipelines or closed GPT models, which makes it 213

easy, cheaper and straight forward to use for zero- 214

shot video QA. On the other hand, Q-ViD is flexible 215

and model agnostic, which means we can use any 216

multimodal models available. This section presents 217

our approach in detail. First, we introduce some 218

preliminary information on InstructBLIP, which 219

serves as the foundation of our work, and then we 220

provide a detailed overview for all components 221

from our Q-ViD framework. 222

3.1 Preliminaries: InstructBLIP 223

We rely on InstructBLIP (Dai et al., 2023) as the 224

foundational architecture of Q-ViD. InstructBLIP 225

is a vision-language instruction tuning framework 226

based on a Query Transformer (Q-former) and 227

frozen vision and language models. Unlike BLIP-2 228

(Li et al., 2023b), which is based on an instruction- 229

agnostic approach, InstructBLIP can obtain visual 230

features depending on specific instructions of the 231

task at hand using an instruction-aware Q-former, 232

which in addition to query embeddings, uses in- 233

struction tokens to guide the Q-former in extract- 234

ing specific image features. Subsequently, a LLM 235

(Flan-T5) uses these features to generate visual de- 236

scriptions depending on the input instructions. In 237

our approach we adopt this model to obtain frame 238

captions that are dependant on the video questions, 239

thus, we aim to gather the most important infor- 240

mation from each part of the video and use it as 241

input for our reasoning module to answer the given 242

question. Because of our Q-ViD framework is a 243

zero-shot approach, we do not train any part of 244

InstructBLIP, and keep all of its parts frozen. 245

3.2 Q-ViD: Generating Frame Descriptions 246

for Video QA 247

We focus on automatically generating meaning- 248

ful captions that can provide enough information 249

about what is happening in the video to the LLM. 250

We assume that if captions for the frames con- 251
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Figure 2: Our pipeline for Zero-shot Video QA. Q-ViD prompts InstructBLIP, to obtain video frame descriptions
that are tailored to the question needing answer.

tain relevant information related to the question252

needing answer, then an LLM should be able to253

answer the question correctly without additional254

need for frame/video input. As shown in Fig. 2,255

given an input video V , we use a uniform sam-256

pling strategy and extract a set of n video frames257

{f1, f2, ..., fn}. We then use InstructBLIP, refered258

as Ib, to obtain instruction-aware visual captions ci259

for each frame fi, as follows ci = Ib(fi, E), where260

E represents the question-dependent captioning261

instruction. Q-ViD automatically generates E by262

concatenating a request for a caption, referred as263

B (e.g "Provide a detailed description of the im-264

age related to the question:") and a question, re-265

ferred as Q (e.g "Why did the man in white held266

tightly to the boy in white?"), represented as fol-267

lows E = concat(B,Q). Specifically, E is used268

as input to Q-former and to the LLM of Instruct-269

BLIP to obtain specific visual representations and270

frame descriptions respectively. Thus, we represent271

the input video V as a set of question-dependent272

frame captions c = (c1, c2, ..., cn), where each273

caption is conformed by a sequence of wm words274

ci = (w1, w2, ..., wm). In this way, we extract tex-275

tual information from V , the captions, that is going276

to be useful for the question answering task. Next,277

we describe the reasoning module of Q-ViD and278

how these question-dependent captions are used to279

perform video QA.280

3.3 Q-ViD: Reasoning Module281

We reuse the frozen LLM (Flan-T5) from Instruct-282

BLIP and implement it as the reasoning module of283

Q-ViD. In order to perform video QA using lan- 284

guage, we first concatenate the question-dependent 285

frame captions C = [c1, c2, ..., cn] in the same 286

order they appear in the video. Then, we cre- 287

ate a question-answering instruction L as follows: 288

L = concat(C,Q,A, T ). In other words, we con- 289

catenate in L the list of captions C, question Q, 290

possible answers A and a task description T (e.g 291

"Considering the information presented in the cap- 292

tions, select the correct answer in one letter (A,B,C) 293

from the options."). Our goal is to leverage the 294

LLM reasoning linguistic capabilities by providing 295

a set of captions that were tailored to be relevant 296

for the specific question Q. Our experiments in 297

Section 4, show that this simple approach works 298

surprisingly well, showing to be competitive, and 299

even superior in some cases, in comparison with 300

more complex pipelines. Next, we describe in more 301

detail the prompts used for question-dependent cap- 302

tioning and video QA. 303

3.4 Q-ViD: Prompt Design 304

First, to get question-dependent captions for each 305

frame, given the question Q we prompt Instruct- 306

BLIP with a question-dependent captioning instruc- 307

tion: "Provide a detailed description of the im- 308

age related to the question: {Q}". This instruc- 309

tion is used along with queries as input to the 310

frozen Q-Former and LLM modules of Instruct- 311

BLIP to extract specific visual features and gener- 312

ate question-dependent descriptions. Afterwards, 313

to perform QA with the reasoning module, given 314

the list of captions C and the list of possible an- 315
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swers A = [a1, ..., am] with m being the number316

of options provided in each dataset, we prompt the317

language model as follows: "Captions: {C} Ques-318

tion: {Q}. Option A: a1 Option B: a2 Option C: a3.319

Considering the information presented in the cap-320

tions, select the correct answer in one letter from321

the options (A,B,C)". In this prompt, in addition to322

C , Q and A, we added a small instruction at the323

end to specify in detail that a single letter is needed324

as output.325

4 Experiments326

In this section, we present our experiments for zero-327

shot video QA. First, we describe the datasets we328

used and the implementation details. Then, we329

evaluate our approach, compare Q-ViD with other330

state of the art models for video QA and provide331

a comprehensive analysis of the model’s perfor-332

mance. Lastly, we conduct some ablation studies333

of Q-ViD regarding the instructions prompt design.334

4.1 Datasets335

To test our approach, we conduct experiments on336

the following multiple-choice video QA bench-337

marks. To make comparisons with prior work338

we use the validation set in NExT-QA, STAR,339

How2QA and TVQA, meanwhile in IntentQA we340

use the test set. More details are shown below:341

• NExT-QA (Xiao et al., 2021): A benchmark342

focused on Temporal, Causal and Descriptive343

reasoning type of questions. Contains 5,440344

videos and 48K multiple-choice questions in345

total. We perform our experiments using the346

validation set that is conformed by 570 videos347

and 5K multi-choice questions.348

• STAR (Wu et al., 2021): A benchmark that349

evaluates situated reasoning in real-world350

videos, is focused on interaction, sequence,351

prediction and feasibility type of questions. It352

contains 22K situation video clips and 60K353

questions. We perform evaluations on the val-354

idation set with 7K multiple-choice questions.355

• HOW2QA (Li et al., 2020a): A dataset that356

consists on 44K question-answering pairs for357

22 thousand 60-second clips selected from358

9035 videos. We perform experiments on the359

validation set with 2.8K questions.360

• TVQA (Lei et al., 2018): A large scale video361

QA dataset based on six popular TV shows. It362

has 152K multiple-choice questions and 21K363

video clips. For our zero-shot evaluations we364

use the validation set with 15K video-question 365

pairs. 366

• IntentQA (Li et al., 2023a): A dataset fo- 367

cused on video intent reasoning. It contains 368

4K videos and 16K multiple-choice question- 369

answer samples. In this case, we use the test 370

set for our zero-shot evaluations which con- 371

tains 2K video-question answering samples. 372

4.2 Implementation Details 373

For Q-ViD we adopt InstructBLIP-Flan-T5XXL 374

with 12.1B parameters, as a default vision encoder 375

it uses VIT-g/14 (Fang et al., 2023), and as lan- 376

guage model FlanT5XXL (Chung et al., 2022). We 377

extract 64 frames per video, as in preliminary exper- 378

iments this number worked well. For frame caption- 379

ing, we use a maximum number of 30 tokens per 380

description and top-p sampling with topp = 0.7 to 381

get varied captions. Regarding our reasoning mod- 382

ule, we reuse and adopt the corresponding Flan-T5 383

language model from InstructBLIP. In this case 384

we do not use top-p sampling. Our experiments 385

were conducted using 4 NVIDIA A100 (40GB) 386

GPUs using the Language-Vision Intelligence li- 387

brary LAVIS (Li et al., 2022) and the released code 388

from SeViLa (Yu et al., 2023) . 389

4.3 Overall Performance 390

Table 1 provides a detailed overview on the perfor- 391

mance of Q-ViD on the validation set of NExT-QA, 392

STAR, HOW2QA and TVQA. We compare our 393

approach with current state of the art methods such 394

as SeViLa (Yu et al., 2023), FrozenBILM (Yang 395

et al., 2022) and VideoChat2 (Li et al., 2024), as 396

well as, with GPT-based models like ViperGPT 397

(Surís et al., 2023) and LloVi (Zhang et al., 2023a). 398

The results obtained from our experiments demon- 399

strate the surprisingly competitive nature of Q-ViD, 400

outperforming or being competitive with previous 401

methods with more complex architectural pipelines 402

such as SeViLa, VideoChat2 and LLoVi. For fair 403

comparisons, we gray out methods that use GPTs. 404

Specifically, on NExT-QA, Q-ViD outperforms 405

SeViLa by 2.7% of average accuracy, and achieves 406

almost the same state of the art results of Llovi, 407

a framework based of GPT-3.5. Notably, Q-ViD 408

is the best-performing model on causal questions, 409

temporal questions, and overall average perfor- 410

mance among methods that are not based on GPTs, 411

showing the ability of this approach to perform 412

action reasoning, which is the target of NExT- 413

QA. With STAR, Q-ViD achieves the second 414
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Models NExT-QA STAR How2QA TVQA
Tem. Cau. Des. Avg. Int. Seq. Pre. Fea. Avg.

GPT-Based Models
ViperGPT (Surís et al., 2023) - - - 60.0 - - - - -
LLoVi (Zhang et al., 2023a) 61.0 69.5 75.6 67.7 - - - - -
Flamingo-9B (Alayrac et al., 2022) - - - - - - - - 41.8
Flamingo-80B (Alayrac et al., 2022) - - - - - - - - 39.7
FrozenBILM (Yang et al., 2022) - - - - - - - - - 41.9 29.7
VFC (Momeni et al., 2023) 51.6 45.4 64.1 51.6 - - - - -
InternVideo (Wang et al., 2022a) 48.0 43.4 65.1 49.1 43.8 43.2 42.3 37.4 41.6 62.2 35.9
BLIP-2voting (Yu et al., 2023) 59.1 61.3 74.9 62.7 41.8 39.7 40.2 39.5 40.3 69.8 35.7
BLIP-2concat (Yu et al., 2023) 59.7 60.8 73.8 62.4 45.4 41.8 41.8 40.0 42.2 70.8 36.6
SeViLa (Yu et al., 2023) 61.3 61.5 75.6 63.6 48.3 45.0 44.4 40.8 44.6 72.3 38.2
VideoChat2 (Li et al., 2024) 57.4 61.9 69.9 61.7 58.4 60.9 55.3 53.1 59.0 - 40.6

Q-ViD (Ours) 61.6 67.6 72.2 66.3 48.2 47.2 43.9 43.4 45.7 71.4 41.0

Table 1: Zero-shot results on video question answering. For fair comparison we gray out methods that rely on
closed GPTs. We bold the best results, and underline the second-best results. QIViD shows to be competitive and
even outperform some more complex framworks for zero-shot video QA.

best average accuracy behind VideoChat2, outper-415

forming all other methods like SeViLa by 1.1%,416

BLIP-2concat by 3.5%, InternVideo by 4.1% and417

Flamingo-80B by 6%. Also note that Q-ViD418

achieves the second best performances on sequence419

and feasibility type of question of STAR. Lastly, on420

How2QA we achieve the second best performance421

behind SeViLa, and achieves the best overall perfor-422

mance for TVQA with an improvement of 0.4% to423

the previous best-performing method VideoChat2.424

On the other hand, in Table 2 we evaluate our425

approach on IntentQA, we use the test set of this426

benchmark in order to compare with prior works.427

We take the same comparison made from (Zhang428

et al., 2023a), and divide the table in two cate-429

gories, Supervised and Zero-shot approaches. Q-430

ViD continues showing strong results, greatly out-431

performing all supervised methods and the SeViLa432

zero-shot performance by 2.7%. Interestingly, Q-433

ViD almost achieves the best overall performance434

from the GPT-based method Llovi. These results435

demonstrate that our approach can be used among436

different video QA tasks and be able to achieve437

strong zero-shot performances.438

4.4 Ablation Studies439

In this section, we perform some ablation studies440

related to the instruction prompt selection for Q-441

ViD. For these experiments, we chose NExT-QA442

and STAR as our benchmarks, and report results443

on the validation sets on each dataset. Specifically,444

we test two model variations, using InstructBLIP-445

FlanT5XL (Q-ViDXL) and the one used to report446

our main results, using InstructBLIP-FlanT5XXL447

(Q-ViDXXL), we test different prompts to analyze448

Models Acc.(%)
Supervised
HQGA (Surís et al., 2023) 47.7
VGT (Alayrac et al., 2022) 51.3
BlindGPT (Alayrac et al., 2022) 51.6
CaVIR (Alayrac et al., 2022) 57.6
Zero-shot
SeViLA (Yu et al., 2023) 60.9
LLoVi (Zhang et al., 2023a) 64.0
Q-ViD (Ours) 63.6

Table 2: Performance on IntentQA. Q-ViD shows
to outperform supervised approaches, strong zero-shot
baselines like SeViLa and obtain almost the same per-
formance from the GPT-based model LLoVi.

and compare the use of question-dependent and 449

general descriptive captions. Additionally, we also 450

make some ablation experiments for the question- 451

answering instruction prompt that is used by the 452

reasoning module to perform multi-choice QA. We 453

discuss our findings in detail below. 454

4.4.1 Prompt Analysis 455

We focus on analyzing the impact on performance 456

of the Captioning and QA templates of Q-ViD. 457

First, for captioning templates (Fig.3) we compare 458

two variants: (1) General prompts and (2) Question- 459

dependent prompts. With general prompts we fo- 460

cus on obtaining general descriptions of the images 461

(frames) and with question-dependent prompts on 462

information related to the question of the task at 463

hand. In order to leverage as much as possible the 464

instruction-based capabilities of InstructBLIP we 465

create these prompts based on similar templates to 466
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the ones used by InstructBLIP in its original train-467

ing setup. For these experiments we use the Base468

Question-Answering prompt that is used as input469

of the reasoning module to perform multi-choice470

QA.471

Figure 3: Variation of captioning templates. We focus
on comparing general and question-dependent caption-
ing prompts (Top). For both cases we use the same Base
QA instruction prompt (Bottom).

Table 3 compares the performance of Q-ViDXL472

and Q-ViDXXL using the general, and question-473

dependent captioning prompts. It can be seen that474

performance varies between both models, Q-ViDXL475

achieves better performances by using general de-476

scriptive prompts. When comparing its best vari-477

ants using the (2)General and (1)Dependent tem-478

plates, the former further increases the average479

accuracy by +1.4% on NExT-QA and +3.1% on480

STAR. On the other hand, the same behaviour is not481

shown using a bigger model, Q-ViDXXL achieves482

significant improvements in average performance483

by using question-dependent prompts, when com-484

paring the best variants using the (2)General and485

(2)Dependent templates, the latter obtains improve-486

ments of +3.5% on NExT-QA and +4.2% on STAR.487

Unsurprisingly, Q-ViDXXL provides significant per-488

formance boosts when compared to its smaller ver-489

sion Q-ViDXL achieving better performances on all490

type of questions in both datasets, showing a better491

capability to follow instructions, however, this also492

demonstrates that using question-dependent frame493

captions to obtain specific information for the task494

at hand, performs better than general visual de-495

scriptions for zero-shot Video QA.496

Next, in Table 4 we investigate the impact on per-497

formance of the Question-Answering Instruction498

Prompt. We propose two variations that are shown499

Figure 4: Variation of QA prompt templates. We
focus on exploring two more complex and detailed vari-
ations for the Question Answering instruction prompt
(Bottom). We use the best captioning templates (Top)
for Q-ViDXL (General) and Q-ViDXXL (Dependent).

in Fig. 4 in addition to the Base QA prompt (Fig. 500

3). We these new templates we aim to give more 501

details to our reasoning module based on Flan-T5, 502

because of this LLM is also a model trained with 503

instructions, we explore if using more complex and 504

detailed QA prompts we can achieve better perfor- 505

mances. For this comparison we take the best vari- 506

ants (Table 3) of Q-ViDXL and Q-ViDXXL using the 507

(2)General and (2)Dependent captioning prompts 508

respectively for each model, and explore their per- 509

formances with different QA instruction templates. 510

As shown in Table 4 using more complex variants 511

of the initial Base Question-Answering Instruction 512

prompt does not have a big impact on performance 513

of any of the models, it even slightly affects re- 514

sults in some cases, showing that the simplest base 515

prompt was enough for the LLM to understand the 516

task. With this ablation study we can highlight 517

the fact that the input instructions used to obtain 518

dedicated frame descriptions are far more impor- 519

tant than elaborated question-answering instruction 520

prompts for zero-shot video QA. 521

5 Conclusion 522

In this paper, we introduce Q-ViD, a simple, 523

gradient-free approach for zero-shot video QA. Q- 524

ViD turns video QA into textual QA using frame 525

captions, for this it relies on an instruction-aware vi- 526

sual language model and uses question-dependent 527

captioning instructions to obtain specific frame de- 528

scriptions useful for the task at hand. This infor- 529

mation is later used by a reasoning module with a 530

question-answering instruction prompt to perform 531
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Method NExT-QA STAR
Tem. Cau. Des. Avg. Int. Seq. Pre. Fea. Avg.

Q-ViDXL

(1) General 57.3 60.3 62.0 60.5 47.0 45.2 42.7 42.2 44.3
(2) General 57.8 60.1 60.8 60.1 47.4 44.8 44.7 42.8 44.9

(1) Dependent 55.9 59.8 57.5 59.1 45.0 41.7 40.5 40.2 41.8
(2) Dependent 56.6 58.8 61.1 59.0 45.8 40.6 40.2 39.5 41.5

Q-ViDXXL

(1) General 57.5 64.6 67.4 62.7 44.7 39.5 42.6 36.3 40.8
(2) General 57.1 64.8 68.0 62.8 44.6 39.5 43.1 38.7 41.5

(1) Dependent 62.0 66.5 71.2 65.8 47.8 44.2 42.1 41.8 44.0
(2) Dependent 61.6 67.6 72.2 66.3 48.2 47.2 43.9 43.4 45.7

Table 3: Comparing the impact on performance using different captioning templates. Base: Refer to the
base captioning template (1) General: More detailed templates for general frame descriptions and (2) Dependent:
templates for frame descriptions depending on a question. All experiments use the base QA instruction prompt.

Model Templates NExT-QA STAR
Captioning QA Tem. Cau. Des. Avg. Int. Seq. Pre. Fea. Avg.

Base 57.8 60.1 60.8 60.1 47.4 44.8 44.7 42.8 44.9
Q-ViDXL (2)General (1)QA 56.4 60.6 58.4 60.2 47.7 44.9 43.5 41.0 44.3

(2)QA 56.8 60.9 57.5 60.1 47.0 44.1 43.1 40.6 43.7
Base 61.6 67.6 72.2 66.3 48.2 47.2 43.9 43.4 45.7

Q-ViDXXL (2)Dependent (1)QA 61.7 65.8 73.7 65.5 48.9 46.8 43.5 43.8 45.8
(2)QA 61.5 65.6 73.9 65.5 49.1 45.9 42.9 42.6 45.1

Table 4: Performance using different variants for the QA template. Base: Refer to the base QA instruction
prompt. For the captioning prompts all models use their best variants, Q-ViDXL with (2)General and Q-ViDXXL with
(2)Dependent. These results suggest that there is no improvements using more complex and detailed QA instruction
prompts for the reasoning module, achieving more consistent performances with the simpler base template.

multiple-choice video QA. Our simple approach532

achieves competitive or even higher performances533

than more complex architectures and methods that534

rely on closed models like GPT’s. In our ablation535

studies we show that using dedicated instructions to536

get question-dependent captions work better than537

common prompts to get general descriptions from538

frames to perform video QA using captions.539

Limitations540

Even though, Q-ViD has shown to achieve strong541

performances for zero-shot video question answer-542

ing, our approach suffers from some limitations.543

While the adopted instruction-aware multimodal544

model, InstructBlip, shows to successfully follow545

instructions from the question and extract meaning-546

ful information that can help the reasoning mod-547

ule to come up with the right answer, we have548

seen that in some cases the model tends to show549

hallucinations in the captions, or generate direct550

short one-word answers instead of a detailed and551

question-specific description of the image. On 552

the other hand, even though experiments with re- 553

ally long videos are not in the scope of this paper, 554

our approach would no be recommended in those 555

cases, due to the high memory usage that comes 556

with saving detailed frame captions to create an 557

entire video description, which would also affect 558

the LLM-based reasoning module because of lim- 559

ited amount of tokens allowed as input or due to 560

memory constrains to process the entire video de- 561

scription. 562
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• Q-ViD (Ours): Available soon under the BSD 845

Style license. 846

B Use of Artifacts 847

In this work we adopt a open multimodal model, 848

InstructBLIP (Dai et al., 2023), its application in 849

our approach is consistent with its original intended 850

use. For Q-ViD we will release our code and we 851

hope will be useful for future works. 852
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