
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LABELS ARE NOT ALL YOU NEED: EVALUATING
NODE EMBEDDING QUALITY WITHOUT RELYING ON
LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Network (GNN) based node embedding methods are a promising
approach to learning node representations for downstream tasks such as link pre-
diction, node classification, and node clustering. GNN-based methods usually
work in an unsupervised or semi-supervised manner, learning node representa-
tions without or with limited label information. We empirically show, however,
that the performance of learned node embeddings on downstream tasks may be
heavily impacted by the GNN-method’s hyperparameter configuration. Unfortu-
nately, existing hyperparameter optimisation methods typically rely on labeled
data for evaluation, making them unsuitable for unsupervised scenarios. This
raises the question: how can we tune the hyperparameters of GNNs without us-
ing label information to obtain high quality node embeddings? To answer this,
we propose a framework for evaluating node embedding quality without rely-
ing on labels. Specifically, our framework consists of two steps: building prior
beliefs that characterize high-quality node embeddings, and quantifying the ex-
tent to which those prior beliefs are satisfied. More importantly, we instantiate
our framework from two different but complementary perspectives: spatial and
spectral information. First, we introduce the Consensus-based Space Occupancy
Rate (CSOR) method that evaluates node embedding quality from a spatial view.
It conducts pairwise comparisons of the spatial distances between node embed-
dings obtained from various hyperparameter configurations. Next, we present the
Spectral Space Occupancy Rate (SSOR) method, which takes a spectral perspec-
tive and evaluates the embedding quality by examining the singular values of the
node embedding matrices. Extensive experiments on seven GNN models with
four benchmark datasets demonstrate the effectiveness of both CSOR and SSOR.
Specifically, both methods consistently prioritize hyperparameter configurations
that yield high-quality node embeddings for downstream tasks.

1 INTRODUCTION

Graph-structured data is ubiquitous due to its strong expressive capability in representing relation-
ships between objects. Node embedding methods, including traditional approaches (Perozzi et al.,
2014; Grover & Leskovec, 2016; Cao et al., 2015; Wang et al., 2016) and Graph Neural Network
(GNN)-based methods (Kipf & Welling, 2016b; Pan et al., 2018; Hamilton et al., 2017a; Xu et al.,
2018; Velickovic et al., 2017), aim to learn node representations in an unsupervised manner, though
they can sometimes also be semi-supervised. These embeddings are then utilized for various down-
stream tasks such as link prediction (Zhang & Chen, 2018), node classification (Maurya et al., 2021),
and graph clustering (Tsitsulin et al., 2023b). Despite the impressive results achieved by these meth-
ods, some long-standing challenges remain underexplored. Particularly, we empirically show that
the performance of node embeddings in downstream tasks may heavily depend on the hyperparam-
eters (HPs) configurations (see Figures 4, 5,6, 7,8,9, and 10 in Appendix B for details). Therefore,
given a node embedding model, to achieve a robust performance on downstream tasks across differ-
ent datasets, the HPs should be carefully optimised.

However, we found that most existing HP optimisation methods are designed for supervised learning
settings (Feurer & Hutter, 2019; He et al., 2021; Bischl et al., 2023), making them unsuitable for

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

unsupervised learning scenarios where labels are not available. This inevitably leads to a question:
how could we tune the hyperparameters of unsupervised representation learning methods? Broadly
speaking, this can be approached in two distinct ways: through a meta-learning-based strategy
(Hospedales et al., 2021) or an internal strategy (Ma et al., 2023). On the one hand, meta-learning
strategies compare the internal structure of the labeled dataset to the unlabeled dataset, transferring
learned biases to optimize performance on the same learning task. On the other hand, internal
strategies investigate the internal structure of the unlabeled dataset itself and the behavior of learning
model, using some “prior beliefs” (which will be elaborated later) to optimize performance. We
argue that the underlying logic of meta-learning strategies is very intuitive and thus well understood
for humans: given one new dataset, we employ the solution to one previously seen dataset that
is closest to the given new dataset. In contrast, the logics behind various internal strategies are
not uniform, and they are too complex to be condensed into a single explanation. Due to inherent
challenges, there is considerably less research available on internal strategies than on meta-learning
approaches.

In this paper, we focus on the so-called internal strategies for tuning unsupervised models, showing
how they can be unified using one single framework. Specifically, “internal” means that the evalu-
ation of embedding quality is performed without external information such as labels. While most
existing internal strategies are initially designed for unsupervised representation learning on images,
we extend them to unsupervised representation learning on graphs and focus on evaluating the qual-
ity of node embeddings obtained from unsupervised GNN models. After revisiting existing internal
strategies, including UDR (Duan et al., 2020), Incoherence (Tsitsulin et al., 2023a), Self Cluster
(Tsitsulin et al., 2023a), α-ReQ (Assran et al., 2022), RankMe (Garrido et al., 2023; Roy & Vetterli,
2007), NESum (He & Ozay, 2022), Condition Number (Ben-Israel, 1966; Tsitsulin et al., 2023a),
and Stable Rank (Tsitsulin et al., 2023a), we found that the design and development of internal
strategies can be distilled into two fundamental steps: 1) build prior beliefs, where involves build-
ing prior beliefs (namely imposing assumptions) on the characteristics that indicate high-quality
embeddings; and 2) quantify prior beliefs, which involves assessing the extent to which those prior
beliefs are satisfied. With this framework, all existing internal strategies can be analyzed from a
unified perspective (see Appendix C for details): using UDR (Duan et al., 2020) as an example, they
first build the prior belief that well-performing HP configurations generate stable, disentangled rep-
resentations across different random seeds. This is inspired by (Rolinek et al., 2019), which shows
that the reconstruction mechanism in VAEs (Kingma & Welling, 2014) induces local orthogonal-
ity that results in disentangled representations and only well-performing HP configurations enable
VAEs to exhibit this property. On this basis, they quantify the extent to which this prior belief is
satisfied by measuring the similarity of embeddings generated by the same HP configurations across
random seeds. Higher similarity indicates a higher degree of disentanglement.

When confining our attention to evaluating the quality of node embeddings obtained from unsu-
pervised GNN models, we further instantiate two novel internal strategies within this framework
(namely building prior beliefs and quantifying prior beliefs). Before introducing them, we first
present spatial and spectral GNNs. Specifically, GNNs can be divided into: 1) spatial-based ap-
proaches, which aggregate node information directly in the node (spatial) domain by passing mes-
sages within local neighborhoods, and 2) spectral-based approaches, which transform nodes into
the spectral domain using the graph Laplacian for aggregation before mapping back to the node
domain. Chen et al. (2023) reveal that spatial- and spectral-based GNNs, while analyzing from
different perspectives and employing different techniques, ultimately achieve the same objective.
Building on this, we instantiate our framework from a spatial perspective by proposing CSOR, while
developing SSOR from a spectral perspective.

Consensus-based spatial Space Occupancy Rate (CSOR). We begin by conducting extensive
experiments with various unsupervised GNN models on four benchmark graph datasets, aiming to
empirically draw inspirations from observations to build prior beliefs. Specifically, given a GNN
model on a specific graph, we empirically observe that: among all node embeddings generated with
different HP values, those that exhibit greater spatial separability from other embeddings tend to
perform better in downstream tasks. On this basis, we build the following prior belief: a given set of
HP configurations that makes node embeddings more distinct among all embeddings is preferable
(which will be explained later). Based on this prior belief, we propose CSOR, which quantifies
this prior belief by comparing the spatial distances between embeddings obtained with different HP

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

configurations through pairwise comparisons. The process of quantifying the prior belief is actually
the process of assessing node embedding quality (or performing HP optimisation).

Spectral Space Occupancy Rate (SSOR). Node embeddings can also be analyzed from a spec-
tral perspective. By examining the singular values of the node embedding matrices, we can gain
insights into embedding quality, offering a complementary view to spatial-based evaluation. Based
on this, we propose SSOR, which shares the same prior belief as CSOR but quantifies it differently.
SSOR quantifies this belief by analyzing the singular values of the node embedding matrices, where
a higher sum of singular values (which are simultaneously distributed uniformly across different
dimensions as much as possible) indicates higher quality.

We conducted extensive experiments using seven unsupervised GNN models on four benchmark
datasets to demonstrate the effectiveness of CSOR and SSOR. Results show that both methods
consistently perform well for all GNN models across datasets. In several cases, they can even
select the optimal HP configurations. Specifically, for obtained node embeddings we calculate the
Spearman correlation coefficient (Zar, 2005) between the ranking scores provided by CSOR (or
SSOR) and the actual performance metrics on downstream tasks. The correlation coefficients are
often around 0.9 and never fall below 0.6, showing that CSOR and SSOR can effectively distinguish
between different HP configurations and identify those that produce high-quality node embeddings.

Overall, the contributions of this paper are summarized as follows: 1) We propose a framework for
developing internal strategies by establishing general principles: building prior beliefs and quan-
tifying prior beliefs; 2) More importantly, we instantiate our framework from two different but
complementary perspectives: CSOR from a spatial perspective and SSOR from a spectral perspec-
tive. We conduct extensive experiments to validate the effectiveness of both methods using seven
unsupervised GNN models on four benchmark datasets; 3) To facilitate future research, we establish
a generic testbed that allows researchers and practitioners to evaluate the effectiveness of our auto-
matic HPO methods (or their newly proposed methods) on various unsupervised node embedding
algorithms. The testbed is publicly available on Anonymous GitHub.

2 PROBLEM STATEMENT

Due to space limitations, the preliminaries and related work are deferred to Appendix E, and we
directly begin by problem statement as follows.

An attributed graph is defined as G = (V, E ,X), where V = {v1, ..., vN} represents the set of
nodes, E = {e1, ..., eM} denotes the set of edges, and X ∈ RN×Q is the node attribute matrix, with
N = |V| being the number of nodes and Q the dimensionality of the node attributes. Alternatively,
the graph can be represented as G = (A,X), where A is the adjacency matrix, with Aij = 1 if
there is an edge between node vi and vj , and Aij = 0 otherwise.

A (node-level) unsupervised graph representation learning function f(·) takes a graph G as input
and outputs a node embedding vector for each individual node. Formally, we define f : G → Z ∈
RN×D, where N is the number of nodes and D denotes the dimensionality of the learned node
embeddings. In this paper, we aim to address the following problem:

Problem (Hyperparameter Optimization for Unsupervised Graph Representation Learning). Given
a graph G, an unsupervised graph representation learning algorithm f(·), and a set of HP configu-
rations H for f(·), we aim to develop a HP optimization (HPO) method that can select an optimal
HP configuration h∗ ∈ H without relying on labels, such that the node embeddings obtained using
fh∗(·) can achieve optimal performance (which will be defined later based on the specific down-
stream task).

The main challenge of solving this problem lies in the absence of ground truth labels in unsupervised
settings, rendering the evaluation of the HPO method inherently difficult. Furthermore, the unique
characteristics of graph-structured data, especially its non-i.i.d. nature in graph representation learn-
ing, make this problem even more challenging to tackle. To address this, we employ the so-called
internal strategy to evaluate the quality of graph embeddings without relying on labels.

Definition (Internal Strategy for Evaluating Node Embeddings). Given a graph G, an unsupervised
graph representation learning algorithm f(·), a set of HP configurations H, and the resulting node
embedding matrices {Z(h) | h ∈ H}, where Z(h) = fh(G), an internal strategy Q : RN×D → R

3

https://anonymous.4open.science/r/Internal_Strategy_Developer-63E9/README.md

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

is defined as a function that takes a node embedding matrix Z as input and outputs a ranking score
s ∈ R. Formally, we have s = Q(Z(h)).

Specifically, the internal strategy evaluates the quality of the node embeddings by assigning a rank-
ing score, which allows for the comparison of different HP configurations. This ranking can then be
used to select the optimal HP configuration that leads to the best node embeddings for downstream
tasks.

3 REVISITING UDR AND BEYOND

By revisiting Unsupervised Disentanglement Ranking (UDR) (Duan et al., 2020), we demonstrate
how the two fundamental steps in our proposed framework are motivated and performed: 1) building
prior beliefs about what constitutes a good embedding; and 2) quantifying these prior beliefs.

Inspiration. Rolinek et al. (2019) reveal that the disentangled properties of Variational Autoen-
coders (VAEs) arise from their inherent reconstruction mechanism. The decoder’s task in VAE
models shares similarities with Principal Component Analysis (PCA) (Maćkiewicz & Ratajczak,
1993; Jolliffe & Cadima, 2016), as both aim to capture and reconstruct the data’s key patterns
through independent components. This results in the decoder encouraging orthogonal and disen-
tangled latent variables from the encoder. Additionally, the imposition of a diagonal prior on the
latent space pushes the encoder to produce locally orthogonal representations, further enhancing
the disentangling effect. This interplay between the reconstruction objective and the diagonal prior
naturally leads to disentangled representations without the need for explicit design in the model.

Building and Quantifying Prior Beliefs. Based on the understanding of how VAEs achieve dis-
entanglement, UDR (Duan et al., 2020) is proposed to optimize HPs in unsupervised representation
learning on images. Specifically, they build the following prior belief: the reconstruction objective
in VAEs is unique, causing well-performing HP configurations to generate stable, disentangled hid-
den variables, as the decoder (due to its PCA-like behavior) pushes the encoder towards producing
robust, disentangled representations. UDR’s prior belief is rooted in the concept that “happy fam-
ilies are all alike; every unhappy family is unhappy in its own way” (Tolstoy, 2016), meaning that
high-quality HP configurations produce consistent, stable representations across different random
seeds, while poor HP configurations lead to diverse, unstable representations. UDR quantifies this
prior belief through a consensus-based method (see Appendix E for definition), measuring the sim-
ilarity of representations generated under different random seeds. By evaluating the consistency of
these representations, UDR identifies the most disentangled and effective HP configurations.

For completeness, UDR works as follows. They train H × S models, where H is the number of HP
configurations, and S is the number of seeds for initial model weights. For each HP configuration
h ∈ H,

1. they sample P random seeds {seed1, ..., seedP } with P ≤ S, and obtain embed-
dings {Z(h1), ...,Z(hP)} using the learning model configured with h under random seeds
{seed1, ..., seedP }, respectively;

2. they conduct
(
P
2

)
pairwise comparisons of embeddings {Z(h1), ...,Z(hP)} to obtain a list

of scores {UDRj
h|j ∈ {1, 2, ...,

(
P
2

)
}}; Without loss of generality, suppose the j-th pair is

(h1, h2), then UDRj
h = sim(Z(h1),Z(h2)) with sim(·) a similarity metric;

3. on this basis, they compute the median of this list as the final UDR score, namely
UDRh = median

{
UDRj

h | j = 1, . . . ,
(
P
2

)}
, where a higher UDR score indicates a better

HP configuration.

Discussion. UDR’s development involves building prior beliefs (or drawing inspiration) from the
mechanism analysis of VAEs, which raises the question: Can or should we rely solely on analyzing
the mechanisms of representation learning models to build prior beliefs, or are there alternative ap-
proaches? To address this, we must consider two key points: 1) Given the inherent uncertainty and
complexity of neural networks (Lipton, 2016), it is not always feasible to analyze their mechanisms
from a mathematical perspective; 2) Despite the opacity of learning models, we can partially under-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

stand their internal workings by observing the relationships between inputs and outputs—a principle
underlying many post-hoc explainable AI (XAI) techniques (Arrieta et al., 2020).

In other words, while UDR was developed through the mechanism analysis of VAEs, we note that
the high level of disentanglement can be observed in the outputs of VAEs (e.g., image embeddings)
without directly studying their mechanisms. This suggests that it is not always necessary to analyze
the model’s internal mechanisms when dealing with complex models. Instead, we can relax this
requirement by using observation-driven methods to build prior beliefs.

4 CONSENSUS BASED SPATIAL SPACE OCCUPANCY RATE (CSOR): A
SPATIAL PERSPECTIVE

We now demonstrate how to leverage this observation-driven approach to draw inspirations and then
build prior beliefs, where we assume that the distribution of embeddings can encapsulate the charac-
teristics of the underlying mechanisms of GNN models. Next, we quantify these beliefs to evaluate
unsupervised node embedding quality, resulting in a novel internal strategy dubbed Consensus-based
spatial Space Occupancy Rate (CSOR).

Visualisation. Node embeddings from GNN models are typically high-dimensional (8 in our ex-
periments), making it difficult to directly observe their distribution. With the help of PCA, we can
visualize the distribution of node embeddings in a 3-dimensional space. PCA is used as it can effec-
tively reduce the dimensionality while preserving much of the original variance (Jolliffe, 2002).

Observations and Inspirations. To draw some inspirations from node embeddings distributions
and understand which characteristics lead to better performance in downstream tasks, we experi-
ment with 1280 sets of HP configurations (see Appendix F for setting details). We select four node
embeddings which are evenly sampled from the worst to the best performance on downstream node
classification task, and visualize them with PCA. From Figure 1 (and more figures in Appendix F.1),
we observe that when node classification performance is poor, the embeddings of nodes from differ-
ent classes are mixed together. As performance improves, the separability between embeddings of
nodes from different classes increases. Drawing inspirations from these observations, we propose
a hypothesis: node embeddings associated with a specific HP configuration become increasingly
dispersed as downstream performance improves, which we refer to as intra-embedding. Simultane-
ously, node embeddings from a specific well-performing HP configuration tend to diverge further
from those of poorly-performing configurations as its downstream performance improves, which we
refer to as inter-embedding. To validate this hypothesis, we use the worst-performing node em-
bedding matrix as a baseline and calculate the Manhattan distance (Krause & Golovin, 2014) from
all other embedding matrices to this baseline, effectively capturing aggregate differences across di-
mensions. As shown in Figure 42 (a) in Appendix F.2, we observe that node embedding matrices
(where a point corresponds to an embedding matrix) farther from the worst-performing one tend to
show better performance. This supports our hypothesis that the quality of node embedding matrices
improves as they become spatially more distant from the worst-performing embedding matrix.

2 0 2 4 6
8

PCA Dim 1 2
1
0

1
2

3
4

PC
A Dim

 2

2
0

2

4

6

PC
A

Di
m

 3

Acc: 0.3137

2 0 2 4 6
8

PCA Dim 1 2
1
0

1
2

3
4

PC
A Dim

 2

2
0

2

4

6

PC
A

Di
m

 3

Acc: 0.5191

2 0 2 4 6
8

PCA Dim 1 2
1
0

1
2

3
4

PC
A Dim

 2

2
0

2

4

6

PC
A

Di
m

 3

Acc: 0.6162

2 0 2 4 6
8

PCA Dim 1 2
1
0

1
2

3
4

PC
A Dim

 2

2
0

2

4

6

PC
A

Di
m

 3

Acc: 0.6974

Spatial visualisation of VGAE on Cora

Figure 1: Relationship between node embedding distribution and node classification accuracy.
Nodes are colored by labels to illustrate clustering. In this experiment on the Cora dataset using
the VGAE model, higher Accuracy values (indicating better performance) correspond to more dis-
persed embedding distributions. (Experiment settings and more figures are given in Appendix F).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Building and Quantifying Prior Beliefs. Based on above observations and analyses, we empiri-
cally validated that node embeddings spatially farther from the worst-performing one exhibit higher
qualities. We term this characteristic as distinctness, where a higher value means higher quality. On
this basis, we build the following prior belief: for node embeddings generated by message-passing-
based GNNs, greater spatial distinctness correlates with higher performance in downstream tasks.
To quantify prior belief, we define spatial distinctness as the degree to which a node embedding
matrix is spatially separated from other node embedding matrices. It is important to note that: due
to the lack of label information, it is impossible to know the worst-performing embedding matrix
on downstream task. Therefore, we compare each individual node embedding matrix to other node
embedding matrices (which are actually used as baseline) rather than the worst-performing one. In
this way, we are actually assuming that “poor-performing HP configurations are all alike” (e.g., the
embeddings of nodes from different classes are mixed). In other words, we employ the consensus
formed by all node embedding matrices as a baseline to quantify the prior belief. By comparing
Figure 42 (a) and (b) in Appendix F.2, we can see that spatial distinctness calculated based on this
consensus baseline (corresponding to Figure 42 (b)) shows a stronger correlation with performance
in downstream tasks compared to using the worst-performing embedding matrix as the baseline
(corresponding to Figure 42 (a)). This is because performing pairwise comparisons (corresponding
to the consensus baseline) can capture more distributional information about all node embedding
matrices.

Formalisation of CSOR. Given a graph representation learning model f(·) with a specific HP
configuration h ∈ H, denoted as fh(·), the model maps nodes of a graph G to an embedding matrix
Z(h), where Z(h) = fh(G). Using this notation, we propose an internal strategy for HPO in
unsupervised graph representation learning, called Consensus-based spatial Space Occupancy Rate
(CSOR), which maps the node embedding matrix Z(h) to a ranking score s ∈ R, quantifying the
quality of the embeddings. Specifically, CSOR is designed as follows:

• For each pair of HP configurations (hi, hj) with i ̸= j, we calculate the difference Di,j be-
tween the resulting embedding matrices Z(hi) and Z(hj), with Di,j = diff(Z(hi),Z(hj))
and diff(·, ·) is the Manhattan distance.

• Next, the CSOR score si of HP configuration hi is computed as
∑|H|

j=1,j ̸=i Di,j , where H is
the set of investigated HP configurations. Then the optimal HP configuration is determined
as: h∗ = argmaxhi∈H{si | i = 1, . . . , |H|}.

Specifically, the pseudocode for performing HPO with CSOR is given in Algorithm 1 and its com-
plexity analysis is given in Appendix G.

5 SPECTRAL SPACE OCCUPANCY RATE (SSOR): A SPECTRAL PERSPECTIVE

In CSOR, we built the following prior belief: for node embeddings generated by message-passing-
based GNNs, greater spatial distinctness correlates with higher performance in downstream tasks;
To quantify this prior belief, we defined and measured the spatial distinctness from a spatial per-
spective. Now, we approach this problem from a spectral-based perspective, and present a novel
internal strategy called Spectral Space Occupancy Rate (SSOR). To achieve this, we first build
a similar prior belief: for node embeddings generated by message-passing-based GNNs, greater
spectral distinctness correlates with higher performance in downstream tasks; To quantify this prior
belief, we need to define and measure the spectral distinctness. Before giving its formal definition,
we present the intuition and rational behind it.

Intuition and Rational behind Spectral Distinctness. Given a node embedding matrix, performing
Singular Value Decomposition (SVD) on it can yield singular values that represent the extent to
which the node embeddings are spreading across different dimensions in the latent space. We argue
that a singular value can capture the spread extent of node embeddings in some (virtual) dimension,
which does not necessarily correspond to a specific dimension in the latent space. Intuitively, by
simply summing all the singular values, we can obtain the total spread extent of node embeddings
across all dimensions in the latent space. Therefore, a higher value, indicating a larger total extent
of spread, is associated with better separability. From this perspective, it is intuitive to use the sum
of singular values to represent the distinctness of node embeddings in the spectral space, referred
to as spectral distinctness. However, simply maximizing the sum of singular values can lead to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

an undesirable effect known as dimensional collapse (Jing et al., 2021). This phenomenon occurs
when embeddings fail to capture the full variability of the data and collapse into a lower-dimensional
subspace, resulting in poor downstream performance. In this case, a high sum of singular values can
be misleading if dominated by a few large singular values while the others remain very small. To
mitigate this, we propose to maximise the sum of singular values while ensuring that the singular
values are uniformly distributed as much as possible. For instance, if we have three groups of
singular values (4, 0, 0, 0), (2, 2, 0, 0), (1, 1, 1, 1), the group (1, 1, 1, 1) is preferred. This leads to
Spectral Space Occupancy Rate (SSOR), which can effectively quantify the spectral distinctness
and thus the prior belief.

High-level Idea of SSOR and Empirical Evidence. Conceptually, give a node embedding matrix,
our proposed Spectral Space Occupancy Rate (SSOR) approach attempts to quantify the prior belief
by computing the area occupied in spectral space spanned by the normalized singular values. To
visually demonstrate this, we distribute all the normalized singular values (which will be formally
defined later) evenly across the 360 degrees in a 2-dimensional radar chart as shown in Figure 2. In
this way, each normalised singular value represents one (virtual) dimension, and its value indicates
the spread extent of the node embeddings in that dimension. By connecting these line segments,
we form an irregular polygon. The area of this polygon is analogous to the spatial distinctness in
CSOR, which is obtained by accumulating pairwise distances. From Figure 2 (and more figures in
Appendix F.3), we can observe that as the downstream performance (i.e., Accuracy) of the node
embedding matrix improves, the area of the irregular polygon formed by the singular values of
the node embedding matrix becomes larger. This empirically shows that quantifying the spectral
distinctness of node embeddings using the area is effective. Figure 77 and other figures in Appendix
F.4 give more empirical evidences.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3137

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5191

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6162

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6974

SVD Radar Charts for VGAE on Cora

Figure 2: Relationship between spectral space occupancy rate and downstream node classification
performance. We ran VGAE on the Cora dataset with 1280 HP configurations and selected 4 node
embedding matrices, ranging from the worst to the best performance (Accuracy). Detailed settings
and more figures are given in Appendix F.3.

Formalisation of SSOR. Given a node embedding matrix Z(h), we first perform the Singular Value
Decomposition (SVD) on it, namely Z(h) = UΣV T , where Σ is a diagonal matrix containing the
singular values σi. Next, we normalise the singular values as follows: σ̃i = σi/σmax, which are used
as vertices of a radar chart in Figure 2. Finally, the area of the radar chart, representing the spectral
space occupancy rate, is computed as follows:

SSOR(Z(h)) = 0.5 ∗

∣∣∣∣∣
r−1∑
i=1

σ̃i ˜σi+1 sin(θi+1 − θi)

∣∣∣∣∣ ,
where θi indicates the angle between vertex i (i.e., normalised singular value σ̃i) and vertex 1
(namely σ̃1) in polar coordinates. Given a node embedding matrix, the SSOR score considers both
the magnitude of singular values and the evenness of their distribution. A larger area implies higher
spectral space occupancy rate, suggesting more informative embeddings for downstream tasks. Due
to space limitations, the complexity analysis of SSOR is given in Appendix G.

6 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

RQ1. Can CSOR and SSOR effectively rank HP configurations to identify those that can produce
well-performing node embeddings for downstream tasks?

RQ2. How do CSOR and SSOR compare to state-of-the-art internal strategies in selecting optimal
HP configurations for downstream tasks?

6.1 EXPERIMENTAL SETTINGS

Specifically, we consider four benchmark datasets, including Cora, Citeseer, Pubmed, and DBLP;
Moreover, we consider the following GNN models due to their superior performance in learning
node embeddings: GAE (Kipf & Welling, 2016b), VGAE (Kipf & Welling, 2016b), ARGA (Pan
et al., 2018), ARGVA (Pan et al., 2018), GraphSAGE (Hamilton et al., 2017a), GIN (Xu et al.,
2018), and GAT (Velickovic et al., 2017). For each GNN model, we generate a wide range of
HP configurations by varying the number of layers, hidden dimensions per layer, and the number of
maximal training epochs. In addition, we consider two typical downstream tasks, node classification
and link prediction. For node classification, performance is evaluated using accuracy, while link
prediction performance is measured by AUC-ROC.

Importantly, we consider a wide range of internal strategies as baselines, including Incoherence
(Tsitsulin et al., 2023a), Self Cluster (Tsitsulin et al., 2023a), α-ReQ (Assran et al., 2022), RankMe
(Garrido et al., 2023; Roy & Vetterli, 2007), NESum (He & Ozay, 2022), Condition Number (Ben-
Israel, 1966; Tsitsulin et al., 2023a), and Stable Rank (Tsitsulin et al., 2023a). To validate the
effectiveness of CSOR and SSOR and compare them with other baselines, we consider the following
evaluation metrics: 1) Spearman coefficients that assess the correlation between the ranking scores
given by an internal strategy and the actual downstream task performance (either Accuracy for node
classification or AUC-ROC for link prediction), 2) Actual downstream performance (in terms of
Accuracy or AUC-ROC) of the node embedding matrix resulted by selected HP configuration, and
the relative rankings of different internal strategies based on downstream performance. Due to
space constraints, more details about datasets, GNN models, HP configurations, downstream tasks,
and evaluation metrics are given in Appendix A.

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

VGAE

GAE

ARGA

ARGVA

GAT

GIN

GraphSAGE

Model Performances on node classification Using Cora

0.3 0.4 0.5 0.6 0.7
Accuracy

VGAE

GAE

ARGA

ARGVA

GAT

GIN

GraphSAGE

Model Performances on node classification Using Citeseer
CSOR
SSOR
RankMe
NESum
AlphaReQ
Incoherence
ConditionNumber
SelfCluster
StableRank

(a) Results on dataset Cora (b) Results on dataset Citeseer

Figure 3: Actual downstream performance results across 7 GNN node embedding models on Cora
and Citeseer (more results on Pubmed and DBLP are given in Figure 11 in Appendix D), with 1280
sets of different HP configurations for each combination of GNN model and dataset. These box plots
show the node classification performance (in terms of accuracy values) of node embedding matrices
resulted by selected HP configuration for different internal strategies. Particularly, we highlight
the performances corresponding to three internal strategies with colors: blue squares for CSOR, red
triangles for SSOR, and white diamonds for RankMe (which is the strongest baseline in most cases).
We see that the performance of CSOR and SSOR are usually comparable to RankMe, and they can
all effectively select well-performing HP configurations.

6.2 EXPERIMENT RESULTS AND ANALYSIS

Figures 3 and 11 (in Appendix D) illustrate the downstream performance of node embeddings pro-
duced by HP configurations selected through various internal strategies, with node classification

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Experimental results for node classification: accuracy values (relative rankings) of various
internal strategies across 7 GNN models on the Cora and Citeseer datasets. Additional results for
Pubmed and DBLP are deferred to Table 5 in Appendix H due to space limitations.

Dataset Method VGAE GAE ARGA ARGVA GAT GIN GraphSAGE Avg. Rank

Cora

CSOR 0.79(1) 0.75(5) 0.72(3) 0.73(4) 0.78(1) 0.65(3) 0.69(2) 2.71
SSOR 0.79(1) 0.79(1) 0.74(1) 0.73(2) 0.77(3) 0.69(1) 0.69(2) 1.57
RankMe 0.79(1) 0.79(1) 0.71(4) 0.75(1) 0.77(3) 0.66(2) 0.69(2) 2.00
NESum 0.34(7) 0.50(7) 0.34(7) 0.53(7) 0.70(6) 0.57(5) 0.53(7) 6.57
AlphaReQ 0.61(5) 0.75(4) 0.53(5) 0.66(6) 0.55(7) 0.46(6) 0.53(6) 5.57
Incoherence 0.55(6) 0.35(9) 0.33(9) 0.68(5) 0.78(1) 0.34(7) 0.59(5) 6.00
ConditionNumber 0.34(8) 0.55(6) 0.50(6) 0.52(8) 0.55(7) 0.33(8) 0.53(7) 7.14
SelfCluster 0.34(8) 0.36(8) 0.34(7) 0.34(9) 0.47(9) 0.33(9) 0.43(9) 8.43
StableRank 0.79(1) 0.79(1) 0.74(1) 0.73(2) 0.77(3) 0.62(4) 0.74(1) 1.86

Citeseer

CSOR 0.57(4) 0.57(4) 0.45(4) 0.59(4) 0.62(3) 0.46(2) 0.48(1) 3.14
SSOR 0.67(1) 0.64(1) 0.47(1) 0.63(1) 0.63(1) 0.45(3) 0.47(3) 1.57
RankMe 0.65(3) 0.60(2) 0.47(1) 0.63(1) 0.62(4) 0.48(1) 0.48(1) 1.86
NESum 0.34(6) 0.53(6) 0.31(7) 0.34(7) 0.45(7) 0.32(6) 0.44(5) 6.29
AlphaReQ 0.46(5) 0.56(5) 0.38(5) 0.50(5) 0.55(5) 0.39(5) 0.39(6) 5.14
Incoherence 0.24(8) 0.34(8) 0.30(9) 0.49(6) 0.44(8) 0.26(7) 0.39(6) 7.43
ConditionNumber 0.24(8) 0.42(7) 0.31(8) 0.28(8) 0.46(6) 0.26(7) 0.39(6) 7.14
SelfCluster 0.32(7) 0.32(9) 0.31(6) 0.28(9) 0.36(9) 0.26(7) 0.34(9) 8.00
StableRank 0.67(1) 0.59(3) 0.47(1) 0.63(1) 0.63(1) 0.45(3) 0.47(3) 1.86

being the downstream task in this case. Additional results for link prediction are shown in Figure 12
and 13 in Appendix D. These figures display the performance distribution across different strategies.
To provide further detail and insights, Tables 1 and 5 (in Appendix H) present accuracy values and
rankings of each strategy for node classification, while Table 6 in Appendix H shows similar results
for AUC-ROC values and rankings in link prediction. Moreover, Tables 7 and 8 in Appendix H
present the Spearman correlation coefficients between the ranking scores produced by the internal
strategies and the actual downstream task performance—AUC-ROC for link prediction (Table 7)
and accuracy for node classification (Table 8). These results further validate the effectiveness of the
proposed methods. From these figures and tables, we can answer the research questions as follows.

Answer to RQ1 (Effectiveness of CSOR and SSOR in selecting HP configurations). We answer
this question from two aspects: 1) the actual downstream performance of the selected HP configura-
tions, and 2) the Spearman correlation between ranking scores and actual downstream performance.

• First, as shown in Figures 3 and 11, CSOR and SSOR often select HP configurations that yield
strong node classification performance, often outperforming 75% of configurations and, in some
cases, approaching the best possible performance. For example, in models like ARGVA, our
methods sometimes identify the optimal HP configurations, demonstrating their effectiveness in
the HPO task. Similar results can be observed for link prediction in Figure 12 and 13.

• Second, to assess whether CSOR and SSOR consistently prioritize well-performing HP configura-
tions (rather than selecting one by chance), we refer to the Spearman correlation results in Tables 7
(for link prediction) and 8 (for node classification). A high correlation between ranking scores and
actual downstream performance indicates that the internal strategy reliably assigns higher scores
to better-performing configurations, rather than relying on chance (as Figures 3, 11, 12and 13 only
show the results on best-performing configuration). Concretely, the strong correlation coefficients
in Tables 7 and 8 further validate the effectiveness of our methods. From Table 7, we can see that
across seven GNN models and four datasets, with 1280 HP configurations, the average Spearman
coefficient is 0.906 for CSOR, 0.969 for SSOR. These high values reflect a strong positive correla-
tion between our ranking scores and actual performance, reinforcing that our methods consistently
identify well-performing node embeddings across diverse experiments, rather than selecting them
by chance.

Answer to RQ2 (Comparison with SOTA internal strategies). Similar to answering RQ1, we
address this question from two perspectives:

• First, we consider the actual downstream performance and their relative rankings. From Figures
3, 11, 12 and 13, we observe that SSOR and CSOR often outperform weaker baselines such as
NESum, AlphaReQ, Incoherence, Condition Number, and SelfCluster, and are comparable to the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

strongest baselines, RankMe and StableRank. These results are further supported by the average
ranking results shown in Tables 1, 5, and 6. For the node classification task across 28 HPO
experiment settings (7 GNN models on 4 datasets), CSOR achieved the best performance 8 times
(average rank 2.79), and SSOR 15 times (average rank 1.75). In the link prediction task, CSOR
performed best 5 times (average rank 3.36), while SSOR excelled 18 times (average rank 1.39).
This demonstrates that CSOR, and especially SSOR, are competitive with existing state-of-the-art
internal strategies.

• Second, we consider the Spearman correlation between ranking scores and actual downstream
performance by investigating the results from Tables 7 and 8. It can be seen that CSOR, espe-
cially SSOR, often outperform weaker baselines by a large margin. Meanwhile, they are com-
parable to the strongest baselines RankMe and StableRank in terms of consistently prioritising
well-performing HP configurations.

7 DISCUSSIONS AND CONCLUSIONS

In this paper, we present a unified framework for developing internal strategies to evaluate the qual-
ity of node embeddings without the need for labels. Our approach is grounded in two fundamental
principles: building prior beliefs and quantifying these beliefs. Firstly, we identified that prior beliefs
about the quality of node embeddings can be built either through analyzing the mechanisms of repre-
sentation learning models or through an observation-driven approach. We introduced spatial-based
and spectral-based methods as two different but complementary ways of building these prior beliefs.
The spatial-based method, CSOR, derives prior beliefs from the spatial distribution characteristics of
the node embeddings. The spectral-based method, SSOR, observes the singular values of the embed-
ding matrices to form similar prior beliefs. Secondly, we developed methods to quantify these prior
beliefs. We demonstrated that quantification could be approached through consensus-based meth-
ods, which involve pairwise comparisons of embeddings generated with different hyperparameter
values, as exemplified by CSOR. Alternatively, a stand-alone approach can be used, as in the case
of SSOR, which leverages singular values directly for quantification without the need for compara-
tive analysis. Through extensive experiments involving seven GNN models across four benchmark
datasets, and 1280 sets of HP configurations for each combination of model and dataset, we vali-
dated the effectiveness of our proposed methods. The results consistently showed that both CSOR
and SSOR could reliably evaluate the quality of node embeddings and identify well-performing HP
configurations. Our methods exhibited strong correlations with actual performance metrics, indicat-
ing their high accuracy and stability.

Limitations and Future Work. In our experiments, we have only tested our internal strategies
on GNN models based on the message passing mechanism. It remains to be seen whether our
observations and conclusions hold for other types of node embedding models. Additionally, the four
datasets we used are all homogeneous. If we were to use heterogeneous datasets, would our internal
strategies still be effective? Regarding the downstream tasks to perform quantitative evaluations,
we used link prediction and node classification, where link prediction has less bias compared to
node classification but still cannot completely eliminate bias as unsupervised evaluation metrics do.
Furthermore, if we attempt to use deeper graph neural networks, the issue of oversmoothing may
arise. Can our internal strategies solve this problem? Therefore, future work should expand the
scope of experiments to include a wider variety of GNN models and datasets. This will help to
further validate the stability and generalizability of our methods.

Overall, our work not only introduces effective methods for unsupervised node embedding evalu-
ation but also provides a clear direction for future research in developing internal strategies. By
formalizing the building and quantifying of prior beliefs, we lay the groundwork for more sophisti-
cated and reliable evaluation methods in the field of machine learning.

Reproducibility Statement. To ensure reproducibility, we include detailed explanations of our
experimental setup in Appendix A, and complete experimental results in Appendix B, D, F, and H.
Our code is available on Anonymous GitHub.

10

https://anonymous.4open.science/r/Internal_Strategy_Developer-63E9/README.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
Alberto Barbado, Salvador Garcı́a, Sergio Gil-López, Daniel Molina, Richard Benjamins, et al.
Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges to-
ward responsible ai. Information fusion, 58:82–115, 2020.

Mahmoud Assran, Randall Balestriero, Quentin Duval, Florian Bordes, Ishan Misra, Piotr Bo-
janowski, Pascal Vincent, Michael Rabbat, and Nicolas Ballas. The hidden uniform cluster prior
in self-supervised learning. arXiv preprint arXiv:2210.07277, 2022.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Proceedings of the
International Conference on Advances in Neural Information Processing Systems, pp. 1993–2001,
2016.

Adi Ben-Israel. On error bounds for generalized inverses. SIAM Journal on Numerical Analysis, 3
(4):585–592, 1966.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. arXiv preprint arXiv:1206.5538, 2013. doi: 10.48550/arXiv.1206.5538.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter opti-
mization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 13(2):e1484, 2023.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017. URL https:
//doi.org/10.48550/arXiv.1707.03815. Updated: ICLR 2018 camera-ready ver-
sion.

HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge and Data
Engineering, 30:1616–1637, 2018. doi: 10.1109/TKDE.2018.2807452.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM international on conference on informa-
tion and knowledge management, pp. 891–900, 2015.

Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Lingfei Wu,
Charu Aggarwal, and Chang-Tien Lu. Bridging the gap between spatial and spectral domains: A
unified framework for graph neural networks. ACM Computing Surveys, 56(5):42, 2023. doi:
10.1145/3610420. URL https://dl.acm.org/doi/10.1145/3610420. Published on
December 8, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2021.

S. Duan, L. Matthey, A. Saraiva, N. Watters, C. Burgess, A. Lerchner, and I. Higgins. Unsupervised
model selection for variational disentangled representation learning. In International Conference
on Learning Representations (ICLR). OpenReview.net, 2020.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, pp. 3–33, 2019.

Quentin Garrido, Randall Balestriero, Laurent Najman, and Yann Lecun. Rankme: Assessing the
downstream performance of pretrained self-supervised representations by their rank. In Interna-
tional Conference on Machine Learning, pp. 10929–10974. PMLR, 2023.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

11

https://doi.org/10.48550/arXiv.1707.03815
https://doi.org/10.48550/arXiv.1707.03815
https://dl.acm.org/doi/10.1145/3610420

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of
machine learning research, 3(Mar):1157–1182, 2003.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017a.

William L. Hamilton. Graph Representation Learning. Morgan & Claypool Publishers, 2020. This
book is a foundational guide to graph representation learning, including state-of-the art advances,
and introduces the highly successful graph neural network (GNN) formalism.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017b.

Bobby He and Mete Ozay. Exploring the gap between collapsed & whitened features in self-
supervised learning. In International Conference on Machine Learning, pp. 8613–8634. PMLR,
2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’16), pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622, 2021. doi: 10.1016/j.knosys.2020.106622. arXiv preprint
arXiv:1908.00709.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

Ian T Jolliffe. Principal Component Analysis. Springer, 2002.

Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 374(2065):20150202, 2016. doi: 10.1098/rsta.2015.0202.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR). ICLR, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a. URL https://doi.org/10.48550/
arXiv.1609.02907. Published as a conference paper at ICLR 2017.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Andreas Krause and Daniel Golovin. Submodular function maximization. In L. J. Bain (ed.),
Mathematical Optimization in Computer Science, pp. 71–104. Springer, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Proceedings of the 25th International Conference on Neural Infor-
mation Processing Systems (NIPS’12), pp. 1097–1105, 2012.

Zachary C. Lipton. The mythos of model interpretability. arXiv preprint arXiv:1606.03490, 2016.
URL https://doi.org/10.48550/arXiv.1606.03490. Presented at the 2016 ICML
Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NY.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422. IEEE, 2008.

12

https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1606.03490

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Martin Q Ma, Yue Zhao, Xiaorong Zhang, and Leman Akoglu. The need for unsupervised out-
lier model selection: A review and evaluation of internal evaluation strategies. ACM SIGKDD
Explorations Newsletter, 25(1), 2023.

Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng, Hui Xiong, and Le-
man Akoglu. A comprehensive survey on graph anomaly detection with deep learning. IEEE
Transactions on Knowledge and Data Engineering, 2021. doi: 10.1109/TKDE.2021.3118815.
https://doi.org/10.1109/TKDE.2021.3118815.

Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). Computers &
Geosciences, 19(3):303–342, 1993. doi: 10.1016/0098-3004(93)90090-R.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classification in
graph neural networks. arXiv preprint arXiv:2111.06748, 2021. URL https://arxiv.org/
abs/2111.06748. arXiv admin note: substantial text overlap with arXiv:2105.07634.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language
models. In Proceedings of the International Conference on Learning Representations (ICLR’18),
2018. URL https://iclr.cc.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M.
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–
5124, 2017.

Feiping Nie, Wei Zhu, and Xuelong Li. Unsupervised large graph embedding. In AAAI, pp. 2422–
2428, 2017.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407, 2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM
Computing Surveys, 54(4):76, 2021. doi: 10.1145/3447582. Publication date: May 2021.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International Conference on Machine Learning
(ICML), pp. 1278–1286. ICML, 2014.

Michal Rolinek, Dominik Zietlow, and Georg Martius. Variational autoencoders pursue pca direc-
tions (by accident). In CVPR, 2019.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European signal processing conference, pp. 606–610. IEEE, 2007.

Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen M.S. Lee, and
James T. Kwok. Revisiting over-smoothing in bert from the perspective of graph. arXiv preprint
arXiv:2202.08625, 2022. URL https://doi.org/10.48550/arXiv.2202.08625.
Accepted by ICLR 2022 (Spotlight).

N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D. Goodman,
Pushmeet Kohli, Frank Wood, and Philip H.S. Torr. Learning disentangled representations
with semi-supervised deep generative models. arXiv preprint arXiv:1706.00400, 2017. URL
https://doi.org/10.48550/arXiv.1706.00400. Accepted for publication at NIPS
2017.

Jasper Snoek, Hugo Larochelle, and Ryan Adams. Practical bayesian optimization of machine
learning algorithms. In Peter L. Bartlett, Fernando C.N. Pereira, Chris J.C. Burges, Léon Bottou,
and Kilian Q. Weinberger (eds.), Proceedings of the 25th International Conference on Neural
Information Processing Systems (NIPS’12), pp. 2960–2968. Curran Associates Inc., 2012.

13

https://doi.org/10.1109/TKDE.2021.3118815
https://arxiv.org/abs/2111.06748
https://arxiv.org/abs/2111.06748
https://iclr.cc
https://doi.org/10.48550/arXiv.2202.08625
https://doi.org/10.48550/arXiv.1706.00400

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Leo Tolstoy. Anna karenina. Lulu. com, 2016.

Anton Tsitsulin, Marina Munkhoeva, and Bryan Perozzi. Unsupervised embedding quality evalua-
tion. In Topological, Algebraic and Geometric Learning Workshops 2023, pp. 169–188. PMLR,
2023a.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with
graph neural networks. Journal of Machine Learning Research, 24:1–21, 2023b. URL http://
jmlr.org/papers/v24/21-0885.html. Submitted 9/20; Revised 4/23; Published 5/23.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems (NIPS’17), pp. 6000–6010,
2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
1225–1234, 2016.

Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community preserving
network embedding. In AAAI, pp. 203–209, 2017.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. arXiv preprint arXiv:1603.08861, Mar 2016. URL https://doi.
org/10.48550/arXiv.1603.08861. ICML 2016.

Jerrold H Zar. Spearman rank correlation. Wiley Online Library, 2005.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. arXiv preprint
arXiv:1802.09691, Feb 2018. doi: 10.48550/arXiv.1802.09691. URL https://doi.org/
10.48550/arXiv.1802.09691. Accepted by NIPS 2018.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. arXiv preprint
arXiv:1812.04202, 2018.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. arXiv preprint
arXiv:1812.04202, 2020. doi: 10.48550/arXiv.1812.04202.

Ziwei Zhang, Xin Wang, and Wenwu Zhu. Automated machine learning on graphs: A survey. arXiv
preprint arXiv:2103.00742, 2021. URL https://doi.org/10.48550/arXiv.2103.
00742. IJCAI 2021 Survey Track.

Xin Zheng, Miao Zhang, Chunyang Chen, Soheila Molaei, Chuan Zhou, and Shirui Pan. Gn-
nevaluator: Evaluating gnn performance on unseen graphs without labels. arXiv preprint
arXiv:2310.14586, 2023. doi: 10.48550/arXiv.2310.14586. URL https://arxiv.org/
abs/2310.14586. Accepted by NeurIPS 2023.

14

http://jmlr.org/papers/v24/21-0885.html
http://jmlr.org/papers/v24/21-0885.html
https://doi.org/10.48550/arXiv.1603.08861
https://doi.org/10.48550/arXiv.1603.08861
https://doi.org/10.48550/arXiv.1802.09691
https://doi.org/10.48550/arXiv.1802.09691
https://doi.org/10.48550/arXiv.2103.00742
https://doi.org/10.48550/arXiv.2103.00742
https://arxiv.org/abs/2310.14586
https://arxiv.org/abs/2310.14586

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI Open, 1:57–81, 2020.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX FOR “LABELS ARE NOT ALL YOU NEED: EVALUATING NODE
EMBEDDING QUALITY WITHOUT RELYING ON LABELS”

TABLE OF CONTENTS

A Experimental Settings

A.1 Downstream Task
A.2 Datasets
A.3 GNN Models
A.4 Baseline Internal Evaluation Strategy
A.5 Candidate Hyperparameters (Search Space) and Search Strategy
A.6 Evaluation Metrics

B Sensitivity Analysis

C Revisiting Existing Internal Strategies under A Unified Framework

C.1 Incoherence
C.2 Self Cluster
C.3 NESum
C.4 RankMe
C.5 Stable Rank
C.6 α-ReQ
C.7 Condition Number

D More Experiment Results for HPO

E Preliminaries and Related Work

F Experimental Settings and Additional Results of the Visualization Experiments

F.1 Spatial Distribution for CSOR
F.2 Validate Hypothesis from Spatial Perspective for CSOR
F.3 Spectral Distribution for SSOR
F.4 Validate Hypothesis from Spectral Perspective for SSOR

G Complexity Analysis on CSOR and SSOR

H Complete Experimental Results

I Comparison of Spatial-based and Spectral-based Methods in Node Aggregation

J GNN Evaluator

A EXPERIMENTAL SETTINGS

To answer the research questions, we perform the following steps, which ensure a thorough eval-
uation of our proposed approaches and their ability to select optimal HP configurations for GNN
models.:

1. Datasets: We use four benchmark datasets: Cora, Citeseer, Pubmed, and DBLP (more
details see Appendix A.2).

2. GNN Models: We evaluate seven different GNN models: VGAE, GAE, GAT, ARGA,
ARGVA, GIN, and GraphSAGE (see Appendix A.3) .

3. Hyperparameter Configurations: For each GNN model, we generate multiple node embed-
dings using various hyperparameter configurations (see Appendix A.5).

4. Evaluation Metrics: We measure the performance of each hyperparameter configuration
using the AUC value for a downstream task, link prediction. Additionally, we calculate the
Spearman coefficient to assess the correlation between our ranking scores and the actual
performance (see Appendix A.6).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

5. Comparison with Baselines: We compare the performance of our proposed methods
(CSOR and SSOR) with the best-performing existing methods RankMe, as well as with
the median and top AUC values of all HP configurations, to determine their relative effec-
tiveness (see Section 6.2).

In the reminder of this section, we will introduce the experimental settings and the motivations for
choosing them, including the datasets, the GNN models used to generate graph embeddings, the
downstream task for evaluation, and the candidate HPs.

All experiments are implemented in Python 3.10 (using PyTorch v2.0.1 and TensorFlow v2.13.0)
and executed on a machine equipped with an AMD EPYC 9354 CPU (16 cores, 60.1 GB RAM), and
an Nvidia RTX 4090 GPU (25.2 GB video memory). The system operates with Docker v20.10.10
and a 751.6 GB SSD.

A.1 DOWNSTREAM TASK

In this work, we use two downstream tasks: node classification and link prediction. Node classifi-
cation focuses on predicting the label of a node based on its own features as well as the local graph
structure, placing emphasis on the node’s neighborhood information. In contrast, link prediction is
concerned with determining whether an edge exists between two nodes, focusing more on capturing
the overall structural relationships within the graph.

By using both tasks, we gain a more comprehensive evaluation of the quality of node embeddings.
Node classification assesses how well embeddings capture local neighborhood patterns, while link
prediction evaluates the model’s ability to represent global structural information. Together, these
tasks allow us to better assess whether the Internal Strategy can select hyperparameters that holisti-
cally evaluate the quality of node embeddings, rather than being biased toward a specific downstream
task.

A.2 DATASETS

Table 2: Citation datasets

Name #nodes #edges #features # classes

Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3
DBLP 17,716 105,734 1,639 4

The datasets Cora, Citeseer, and Pubmed come from Yang et al. (2016), while DBLP comes from
Bojchevski & Günnemann (2017). In all these datasets, nodes represent papers and edges represent
citation links. All four datasets belong to the category of citation networks. We chose these datasets
because they are well-established benchmarks in the field of graph neural networks and citation
networks, providing a diverse set of characteristics and challenges for evaluating node embeddings.
Details of the datasets are shown in Table 2.

A.3 GNN MODELS

We consider the following unsupervised graph embedding algorithms, which are all GNN-based
methods: GAE Kipf & Welling (2016b), VGAE Kipf & Welling (2016b), ARGA Pan et al. (2018),
ARGVA Pan et al. (2018), GraphSAGE Hamilton et al. (2017a), GIN Xu et al. (2018), GAT Velick-
ovic et al. (2017). Note that, to maintain consistency in the training strategy and simplicity
in the experimental framework, GAT, GIN, and GraphSAGE are all trained within the GAE
training framework.

These models were chosen because they have demonstrated strong performance in recent research
and represent a diverse set of methodologies in graph representation learning. GAE and VGAE
are foundational models in graph autoencoding, while ARGA and ARGVA introduce adversarial

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

training for enhanced robustness. GraphSAGE is known for its inductive learning capability, making
it suitable for dynamic graphs. GIN provides a strong theoretical foundation for distinguishing
graph structures, and GAT incorporates attention mechanisms to focus on relevant graph parts. This
diversity allows us to test the generalizability of our Internal Strategy (IS) across different types of
GNNs.

A.4 BASELINE INTERNAL EVALUATION STRATEGY

Additionally, in other fields such as computer vision, singular values are also used to evaluate the
quality of embeddings, including Incoherence (Tsitsulin et al., 2023a), Self Cluster (Tsitsulin et al.,
2023a), α-ReQ (Assran et al., 2022), RankMe (Garrido et al., 2023; Roy & Vetterli, 2007), NESum
(He & Ozay, 2022), Condition Number (Tsitsulin et al., 2023a; Ben-Israel, 1966) and Stable Rank
(Tsitsulin et al., 2023a) (For details on these algorithms, see Appendix C). Among these methods,
RankMe has demonstrated the best performance when considering running time, robustness, and
effectiveness, making it the baseline for our experiments.

A.5 CANDIDATE HYPERPARAMETERS (SEARCH SPACE) AND SEARCH STRATEGY

Table 3: Candidate Hyperparameters for GNN Models

Hyperparameter Values
Num of neurons (Hidden Layer 1) {8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128}
Num of neurons (Hidden Layer 2) {8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128}

Num of epochs {100, 150, 200, 250, 300}

In our experiments, we use a consistent set of candidate HPs across all seven GNN models. This
includes the network structure and the number of epochs, with details shown in Table 3. The search
strategy we employ is grid search, which involves trying all possible HP settings within the search
space.

The selection of these HP values is motivated by considerations of practicality and robustness:

• Number of Layers: In practical applications of GNNs, it is uncommon to use very deep
networks. A two-layer GNN is often sufficient to capture necessary information, while
deeper networks can suffer from the oversmoothing problem (Shi et al., 2022), where node
features become indistinguishable. Thus, we chose 2 layers as it strikes a balance between
performance and computational efficiency.

• Hidden Units per Layer: Pre-experimentation indicated that configurations with 32 or 64
hidden units per layer often yield the best performance. However, to ensure robustness and
to verify if these configurations can handle extreme situations, we explored a wide range
of values from 8 to 128 hidden units. This range allows us to validate the effectiveness
of the IS in identifying appropriate hyperparameters by detecting performance degradation
caused by extreme values.

• Epochs: The number of training epochs is a critical factor for model convergence. We
included 100 epochs to represent insufficient training and 300 epochs to represent well-
trained models. Intermediate values (150, 200, 250) were chosen to observe the progression
of model performance with increasing training time and to identify the optimal number of
epochs for each GNN model.

A.6 EVALUATION METRICS

To evaluate the performance of algorithms, we consider two aspects:

• Correlation Coefficient: Firstly, the correlation coefficient measures the relationship be-
tween the rankings produced by the algorithm and the performance of the embeddings in
downstream tasks. This metric is essential to determine if the IS method can reliably rank

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

the embeddings in a manner that reflects their true performance. A high correlation coeffi-
cient indicates that the IS method can effectively distinguish between high and low-quality
embeddings, providing confidence in its use for hyperparameter tuning. Specifically, we
use the Spearman correlation coefficient, which is calculated as follows:

ρ = 1− 6
∑

d2i
n(n2 − 1)

where di is the difference between the ranks of each pair of observations, and n is the
number of observations. Here, the Spearman correlation coefficient assesses the correlation
between the ranking scores assigned by the IS method and the actual performance values
obtained in downstream tasks.

• Performance (AUC for link prediction, Accuracy for node classification) of the se-
lected embedding (with the highest ranking score): This metric evaluates the IS’s ability
to identify the best-performing embeddings across two key downstream tasks, link predic-
tion and node classification.

For node classification, Accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. Higher Accuracy val-
ues indicate better performance in correctly classifying nodes into their respective classes.

For link prediction, the AUC (Area Under the Curve) is defined as:

AUC =
1

N

N∑
i=1

(
rank(Si+)− rank(Si−)

|rank(Si+)− rank(Si−)|
+ 1

)

where Si+ represents the score of a correctly predicted link, Si− represents the score of an
incorrectly predicted link, and N is the total number of comparisons. Higher AUC values
indicate better performance in predicting the existence of links between nodes.

The meanings of these two metrics are different. The Correlation Coefficient indicates if the IS is
really correlated to the performance of the models, while the Performance of the selected embed-
ding is more important for practical applications where models are deployed.

Due to the unsupervised nature of the GNN models we are using, it is crucial to choose evaluation
metrics that do not bias towards any specific properties of the dataset. GNNs learn representa-
tions that are not tailored to any particular downstream task, and our IS is designed to select node
embeddings that perform well generally, not just for specific tasks. To this end, using both node
classification and link prediction allows us to better assess the overall quality of node embeddings
and ensure the selected hyperparameters can achieve good performance across different downstream
tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B SENSITIVITY ANALYSIS

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

Cora

Citeseer

Pubmed

DBLP

Performance of VGAE on node classification

0.70 0.75 0.80 0.85 0.90 0.95
AUC

Cora

Citeseer

Pubmed

DBLP

Performance of VGAE on link prediction

(a) Results on node classification (b) Results on link prediction

Figure 4: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the VGAE model. We can observe
that the performance of the VGAE model on the node classification task varies significantly across
different hyperparameters. On the Cora dataset, the performance gap between good and poor hyper-
parameters can be as large as 0.5. While the difference in performance is less extreme in the link
prediction task, it is still substantial, with the AUC value on the Citeseer dataset differing by up to
0.3. This indicates that the VGAE model is highly sensitive to hyperparameter settings.

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

Cora

Citeseer

Pubmed

DBLP

Performance of GAE on node classification

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
AUC

Cora

Citeseer

Pubmed

DBLP

Performance of GAE on link prediction

(a) Results on node classification (b) Results on link prediction

Figure 5: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the GAE model. We can observe that
the performance of the GAE model on the node classification task shows significant variation across
different hyperparameters. In comparison, the variation is less pronounced in the link prediction
task, although GAE tends to achieve better results in link prediction. Overall, changes in hyperpa-
rameters have a substantial impact on the performance of the GAE model.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

Cora

Citeseer

Pubmed

DBLP

Performance of ARGA on node classification

0.825 0.850 0.875 0.900 0.925 0.950 0.975
AUC

Cora

Citeseer

Pubmed

DBLP

Performance of ARGA on link prediction

(a) Results on node classification (b) Results on link prediction

Figure 6: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the ARGA model. We can observe
that the performance of the ARGA model varies significantly across different hyperparameters on
the node classification task. Its overall performance on the Citeseer dataset is quite poor, with even
the best hyperparameter configuration failing to reach 0.6, which could pose challenges for hyper-
parameter optimization (HPO). In the link prediction task, the ARGA model performs well overall
but still shows sensitivity to hyperparameters, with a performance range of nearly 0.2 between the
best and worst configurations.

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

Cora

Citeseer

Pubmed

DBLP

Performance of ARGVA on node classification

0.80 0.85 0.90 0.95
AUC

Cora

Citeseer

Pubmed

DBLP

Performance of ARGVA on link prediction

(a) Results on node classification (b) Results on link prediction

Figure 7: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the ARGVA model. We can observe
that the performance of the ARGVA model varies significantly across different hyperparameters
on the node classification task. Similar to ARGA, its overall performance on the Citeseer dataset
is quite poor, with the best hyperparameter configuration failing to reach 0.7, which could present
challenges for hyperparameter optimization (HPO). In the link prediction task, the ARGVA model
performs well overall but remains sensitive to hyperparameters, with a performance range of nearly
0.3 between the best and worst configurations.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

Cora

Citeseer

Pubmed

DBLP

Performance of GAT on node classification

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
AUC

Cora

Citeseer

Pubmed

DBLP

Performance of GAT on link prediction

(a) Results on node classification (b) Results on link prediction

Figure 8: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the GAT model. We can observe that
the performance of the GAT model varies significantly across different hyperparameters in the node
classification task. However, compared to the previous three models, the GAT model appears less
sensitive to hyperparameters on the DBLP dataset. In the link prediction task, the model performs
well overall but still shows sensitivity to hyperparameters, with a performance range of 0.2 between
the best and worst configurations.

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

Cora

Citeseer

Pubmed

DBLP

Performance of GIN on node classification

0.75 0.80 0.85 0.90 0.95
AUC

Cora

Citeseer

Pubmed

DBLP

Performance of GIN on link prediction

(a) Results on node classification (b) Results on link prediction

Figure 9: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the GIN model. We can observe that
the performance of the GIN model varies significantly across different hyperparameters in the node
classification task, with particularly poor overall performance on the Citeseer dataset, only slightly
above 0.5. In the link prediction task, most candidate hyperparameters perform well, which presents
a challenge for HPO, as it requires selecting the best configuration from a set where the majority
already show strong performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

Cora

Citeseer

Pubmed

DBLP

Performance of GraphSAGE on node classification

0.825 0.850 0.875 0.900 0.925 0.950 0.975
AUC

Cora

Citeseer

Pubmed

DBLP

Performance of GraphSAGE on link prediction

(a) Results on node classification (b) Results on link prediction

Figure 10: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperpa-
rameters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and
link prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing perfor-
mance metrics. This figure specifically highlights the performance of the GraphSAGE model. We
can observe that the performance of the GraphSAGE model varies significantly across different hy-
perparameters in the node classification task, with notably poor overall performance on the Citeseer
dataset, where it falls below 0.6. Meanwhile, the differences are less pronounced on the DBLP
dataset. In the link prediction task, GraphSAGE performs well overall, but remains highly sensitive
to hyperparameters. Effective HPO can significantly enhance the model’s performance in link pre-
diction.

C REVISITING EXISTING INTERNAL STRATEGIES UNDER A UNIFIED
FRAMEWORK

C.1 INCOHERENCE

Incoherence (Tsitsulin et al., 2023a) shifted its approach by not attempting to hypothesize an ideal
distribution. Instead, it considers the initial distribution as the worst distribution, a concept similar
to our understanding in CSOR. However, the difference lies in its choice of the initial distribution
as the standard basis, which are the basis vectors for each dimension. For example, when the di-
mensionality of the embedding is 3, the basis vectors are (1,0,0), (0,1,0), and (0,0,1). The quality is
evaluated by calculating the degree of alignment between these basis vectors and the singular vec-
tors. Overall, the lower the similarity to the basis vectors, the higher the quality of the embedding is
deemed to be.

Incoherence score(h) =

{
1∑

|VT Id| if
∑∣∣VT Id

∣∣ > 0

∞ otherwise

Build prior belief: The prior belief is that there is an ideal distribution of embeddings, and the
closer an embedding is to this ideal distribution, the higher its quality.

Quantify prior belief: Since the unsupervised setting lacks labels, we assume that an embedding
composed of basis vectors is the worst. The quality of other embeddings is measured by comparing
their similarity to the basis vector embedding. The higher the similarity, the worse the quality, and
vice versa.

C.2 SELF CLUSTER

Self Cluster (Tsitsulin et al., 2023a) assess the quality of embeddings based on their clustering
characteristics in high-dimensional spaces. The prior belief of Self Cluster is that embeddings with
better structural quality and information richness are indicated by more effective clustering along
various dimensions.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.2.1 MEASURING CLUSTERING IN EMBEDDINGS

To evaluate the clustering tendency of embeddings, the pairwise dot products of the embedding vec-
tors are considered. This approach provides insights into how closely related or clustered the vectors
are in the embedding space. A higher aggregation of dot products indicates stronger clustering, sug-
gesting that the embeddings effectively capture meaningful relationships and structures within the
data.

C.2.2 ISOTROPIC RANDOM VECTORS

The concept of isotropic random vectors serves as a theoretical benchmark for comparison. In an
ideal scenario where vectors are isotropic and uniformly distributed over a high-dimensional sphere,
the embeddings would exhibit minimal bias towards any specific direction, resulting in a uniform
spread. This distribution acts as the “prior belief” against which actual embedding distributions are
measured. The expected dot product of such high-dimensional isotropic random vectors is typically
very low, approaching zero as the dimensionality increases, except when vectors are identical.

C.2.3 COMPONENTS OF THE SELF CLUSTER FORMULA

The Self Cluster metric incorporates three key components in its computation:

1. Dot Product Matrix Norm Q = ∥WWT ∥F : This term measures the sum of squared
pairwise dot products among all embedding vectors, quantifying the overall similarity and
potential clustering within the dataset. A higher norm suggests more pronounced cluster-
ing.

2. Expected Dot Product for Isotropic Vectors E[Q] = n + n(n−1)
2d : This component cal-

culates what the norm of the dot product matrix would be if the embeddings were isotropic
random vectors, providing a baseline for comparison. It helps determine if the actual em-
beddings are more clustered than would be expected by chance.

3. Normalization by n2: In the extreme case of dimension collapse, where all vectors become
identical, the dot product matrix turns into a matrix of ones, and its Frobenius norm reaches
its maximum possible value of n. To ensure the Self Cluster metric is bounded between
0 and 1, the norm of the dot product matrix is normalized by n2, which is the square of
the number of embeddings. This normalization makes the metric robust to the number of
embeddings and their dimensionality, facilitating comparisons across different datasets or
models.

The Self Cluster metric effectively evaluates the clustering of embeddings by comparing the ob-
served clustering level to that of a theoretical model of isotropic randomness. By understanding
the deviations from this model, we can infer the degree of structure and the quality of the embed-
dings. A higher Self Cluster value indicates that the embeddings are significantly more clustered
than expected under the isotropic model, suggesting richer structure and potentially higher quality
embeddings for downstream tasks. This metric provides a quantitative tool to assess the ability of
embedding algorithms to capture and preserve meaningful information in a high-dimensional space.

Build prior belief: The prior belief is that high-quality embeddings are more clustered than isotropic
random vectors, which represent the worst-case distribution.

Quantify prior belief: The method computes the dot product matrix of the embeddings and com-
pares it to the expected dot product of isotropic vectors. A higher clustering level, as indicated by
the Frobenius norm of the dot product matrix, signals higher quality.

C.3 NESUM

The principle of NESum (He & Ozay, 2022) is simple and straightforward. It involves normalizing
the eigenvalues obtained from SVD and then summing them up directly. This sum is used as the
ranking score s(h):

The first step is to normalize the eigenvalues by the largest eigenvalue:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

σ′
i =

σi

σmax

where σi is the i-th singular value from Σ, and σmax is the largest singular value.

The second step is to sum all the normalized eigenvalues to obtain the NESum score:

QNESum(Z(h)) =

r∑
i=1

σ′
i

Build prior belief: The prior belief is that the quality of embeddings can be reflected by the spread
of their singular values, with more evenly distributed singular values indicating higher quality.

Quantify prior belief: NESum normalizes the singular values of the embedding matrix and sums
them. A higher sum indicates higher embedding quality, as it reflects a more uniform distribution of
the embeddings.

C.4 RANKME

The normalization method used in RankMe (Garrido et al., 2023) involves using the sum of all
eigenvalues as the denominator. Then, the entropy of the normalized singular values is calculated.
The steps are as follows:

1. Normalize the eigenvalues by the sum of all eigenvalues:

σ′
i =

σi∑
j σj

2. Calculate the entropy of the normalized singular values and take it as the ranking score:

QRankMe(Z(h)) = −
∑
i

σ′
i log(σ

′
i)

The evaluation criterion of RankMe applies information entropy to measure uncertainty, which indi-
cates the amount of information that can be carried. This means that the more space the embedding
occupies in a multi-dimensional space and the more evenly it is distributed across dimensions, the
greater the amount of information it carries, thus being considered of better quality.

Build prior belief: The prior belief is that high-quality embeddings exhibit more uniform distribu-
tion across dimensions, which reduces uncertainty and increases information content.

Quantify prior belief: RankMe calculates the entropy of the normalized singular values of the em-
bedding matrix. Lower entropy suggests that the embeddings are more uniformly spread, indicating
higher quality.

C.5 STABLE RANK

Stable rank (Tsitsulin et al., 2023a) is a measure used to evaluate the quality of embeddings by
considering the distribution of singular values. The stable rank is defined as the squared Frobenius
norm of the matrix divided by the squared largest singular value. This metric provides insight into
the effective dimensionality of the embedding space.

Given an embedding matrix M , we can calculate the stable rank as follows:

1. Compute the singular values σi of the embedding matrix M .

2. Calculate the squared Frobenius norm of the matrix, which is the sum of the squares of all singular
values:

∥M∥2F =
∑
i

σ2
i

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

3. Identify the largest singular value σmax and calculate its square:

σ2
max

4. Compute the stable rank:

StableRank =
∥M∥2F
σ2
max

Stable Rank is essentially the same as RankMe in that both measure the extent and uniformity of
the graph embedding distribution across different dimensions. However, Stable Rank does not use
entropy; instead, it directly uses the largest singular value σmax as the denominator. This means that
for a constant sum of singular values ∥M∥2F , a smaller σmax is considered to indicate better quality
embedding because a smaller σmax represents a more uniform distribution.

Build prior belief: The prior belief is that a higher stable rank reflects a more uniform distribution
of embeddings across dimensions, which is indicative of higher quality.

Quantify prior belief: StableRank computes the ratio of the squared Frobenius norm of the embed-
ding matrix to the square of its largest singular value. A higher stable rank indicates a more evenly
distributed embedding, suggesting higher quality.

C.6 α-REQ

The α-ReQ (Assran et al., 2022) algorithm essentially considers the power-law distribution as the
“ideal distribution.” Therefore, evaluating the graph embedding quality is transformed into assessing
the similarity between the distribution of graph embeddings in the multi-dimensional space and the
power-law distribution. The key lies in projecting both distributions into a comparable space. The
specific steps are as follows:

1. Power-law Distribution Characteristics: - The power-law distribution has the property that
it becomes linear when subjected to a logarithmic transformation. Mathematically, a power-law
distribution can be expressed as:

λi ∝ i−α

Taking the logarithm of both sides, we get:

log(λi) = −α log(i) + log(C)

where λi is the i-th eigenvalue, α is the power-law exponent, and C is a constant.

2. Log Transformation of Eigenvalues: - Given the eigenvalues λi obtained from the graph em-
bedding’s covariance matrix, we apply the logarithmic transformation to these eigenvalues:

log eigenvalues = log(λi)

Additionally, we take the logarithm of their indices:

log indices = log(i)

This transformation allows the power-law relationship to be represented as a linear relationship in
the log-log space.

3. Linear Regression to Estimate Alpha: - By performing linear regression on the transformed
singular valuess and their indices, we can estimate the decay coefficient α. The linear regression
model can be expressed as:

log(λi) = β1 log(i) + β0

where β1 is the regression slope and β0 is the intercept. The power-law exponent α is the negative
of the slope:

α = −β1

Thus, the similarity between the graph embedding distribution and the power-law distribution is
quantified by the estimated α.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

In summary, the Alpha-ReQ algorithm projects both the graph embedding distribution and the
power-law distribution into a log-log space where they can be directly compared. By estimating
the slope of the transformed singular values, the algorithm quantifies how closely the graph embed-
ding follows the ideal power-law distribution.

Build prior belief: The prior belief is that the ideal distribution of embeddings follows a power-law
distribution, with a specific decay pattern.

Quantify prior belief: α-ReQ estimates the similarity between the embedding distribution and the
power-law distribution by performing linear regression on the log-transformed singular values. The
closer the decay pattern matches the power-law, the higher the quality of the embeddings.

C.7 CONDITION NUMBER

The ideal distribution in the prior belief of Condition Number Ben-Israel (1966); Tsitsulin et al.
(2023a) is that the high-quality embedding is evenly distributed across multiple dimensions. The
metric it uses to evaluate the degree of distribution is the condition number, denoted as k2, which is
the ratio of the largest singular value to the smallest singular value.

Given an embedding matrix M , we can calculate the condition number k2 as follows:

1. Identify the largest singular value σmax and the smallest singular value σmin from the diagonal
elements of Σ.

2. Compute the condition number:

k2 =
σmax

σmin

A smaller condition number k2 indicates a more uniformly distributed embedding, which is consid-
ered to be of higher quality. In contrast, a larger condition number suggests that the embedding is
unevenly distributed across dimensions, indicating lower quality.

Build prior belief: The prior belief is that a more uniformly distributed embedding across dimen-
sions, indicated by a smaller condition number, represents higher quality.

Quantify prior belief: ConditionNumber is calculated as the ratio between the largest and small-
est singular values. A smaller condition number indicates that the embeddings are more evenly
distributed, suggesting higher quality.

D MORE EXPERIMENT RESULTS FOR HPO

0.4 0.5 0.6 0.7 0.8
Accuracy

VGAE

GAE

ARGA

ARGVA

GAT

GIN

GraphSAGE

Model Performances on node classification Using Pubmed

CSOR
SSOR
RankMe
NESum
AlphaReQ
Incoherence
ConditionNumber
SelfCluster
StableRank

0.60 0.65 0.70 0.75 0.80
Accuracy

VGAE

GAE

ARGA

ARGVA

GAT

GIN

GraphSAGE

Model Performances on node classification Using DBLP

CSOR
SSOR
RankMe
NESum
AlphaReQ
Incoherence
ConditionNumber
SelfCluster
StableRank

(a) Results on dataset Pubmed (b) Results on dataset DBLP

Figure 11: Node classification performance results on 7 GNN node embedding models on Pubmed
and DBLP

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.75 0.80 0.85 0.90 0.95
AUC Values

VGAE

GAE

ARGA

ARGVA

GAT

GIN

GraphSAGE

Model Performances on link prediction Using Cora

0.70 0.75 0.80 0.85 0.90 0.95
AUC Values

VGAE

GAE

ARGA

ARGVA

GAT

GIN

GraphSAGE

Model Performances on link prediction Using Citeseer
CSOR
SSOR
RankMe
NESum
AlphaReQ
Incoherence
ConditionNumber
SelfCluster
StableRank

(a) Results on dataset Cora (b) Results on dataset Citeseer

Figure 12: Link prediction performance results on 7 GNN node embedding models on Cora and
Citeseer

0.80 0.85 0.90 0.95
AUC Values

VGAE

GAE

ARGA

ARGVA

GAT

GIN

GraphSAGE

Model Performances on link prediction Using Pubmed

CSOR
SSOR
RankMe
NESum
AlphaReQ
Incoherence
ConditionNumber
SelfCluster
StableRank

0.86 0.88 0.90 0.92 0.94 0.96 0.98
AUC Values

VGAE

GAE

ARGA

ARGVA

GAT

GIN

GraphSAGE

Model Performances on link prediction Using DBLP

CSOR
SSOR
RankMe
NESum
AlphaReQ
Incoherence
ConditionNumber
SelfCluster
StableRank

(a) Results on dataset Pubmed (b) Results on dataset DBLP

Figure 13: Link prediction performance results on 7 GNN node embedding models on Pubmed and
DBLP

E PRELIMINARIES AND RELATED WORK

This paper, at a high conceptual level, attempts to apply Automated Machine Learning (AutoML)
techniques to unsupervised learning. More specifically, it focuses on Neural Architecture Search
(NAS), a subfield of AutoML, as applied to node embedding models within unsupervised Graph
Representation Learning (GRL). However, in the unsupervised learning scenario, the absence of
labels makes direct evaluation of the model difficult, and this is a necessary step in AutoML. To un-
derstand the context of this problem, the following sections will introduce some background knowl-
edge related to AutoML and GRL. In the latter part of this section, we introduce some related work,
including the general categorization of Internal Strategies (IS) into consensus-based and stand-alone
approaches.

E.1 AUTOMATED MACHINE LEARNING(AUTOML)

Automated Machine Learning (AutoML). AutoML (He et al., 2021) aims to reduce the need for
manual effort to optimize model performance by automatically setting HP values (Melis et al., 2018;
Snoek et al., 2012). This is particularly crucial for deep learning models, where the architecture
of the neural network significantly impacts performance compared to traditional machine learning
models. Simultaneously, with the boom in Graph Machine Learning, AutoML on Graphs (Zhang
et al., 2021) has also garnered considerable attention.

Automatic hyperparameter optimization (HPO) encounters a main challenge: the computation is
expensive. This challenge manifests itself in two ways: individual model evaluations can be very

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

costly when the training process requires substantial computing resources, and the candidate hyper-
parameter space is vast, necessitating numerous trials to find the optimal combination. This issue
is present in both supervised and unsupervised learning. However, if we want to extend AutoML
techniques to unsupervised learning scenarios, we encounter an additional challenge: evaluating
the quality of the model output without labels. Extending AutoML techniques to unsupervised
learning scenarios is the main motivation and focus of this paper.

Neural Architecture Search(NAS). Neural networks have achieved breakthroughs in many
fields, with recent focus primarily on computer vision (CV) (Krizhevsky et al., 2012; He et al.,
2016; Dosovitskiy et al., 2021) and natural language processing (NLP) (Hochreiter & Schmidhu-
ber, 1997; Vaswani et al., 2017). Many of these great works are due to the design of new neural
architectures, but this largely relies on experts’ understanding of specific domains. Neural Architec-
ture Search (NAS) aims to automatically search for well-performing neural architectures to address
varying application scenarios and different datasets.

Neural architecture is crucial to the performance of a deep learning model, and Neural Architecture
Search (NAS), as a subfield of AutoML, has received much attention in recent years (Ren et al.,
2021). In the context of NAS, there are three main components: search space, search strategy, and
performance evaluation. The search space defines the candidate neural architectures, for example,
by specifying the number of network layers and the number of neurons in each layer. Search strat-
egy concerns how to explore the search space, which is about how to construct candidate neural
architectures. The most classic approach is grid search, which looks for all possible neural archi-
tectures within the defined search space. Performance evaluation assesses how well these candidate
neural architectures perform. In supervised representation learning, this usually involves evaluating
the model-generated representations on specific downstream tasks (e.g., classification tasks) with la-
bels. For unsupervised embedding, however, the challenge is to assess the quality of the embeddings
without relying on labeled data, requiring alternative evaluation metrics.

E.2 GRAPH EMBEDDING

As one of the primary contexts for the problem studied in this paper, it is essential to understand
graph embedding. Graph embedding is a technique that converts graph data into low-dimensional
real-numbered vectors. Below, we introduce some key terms related to graph embedding and pro-
vide relevant background knowledge.

Representation Learning. Most machine learning tasks heavily rely on the quality of features
builded by experts, a process known as feature engineering (Guyon & Elisseeff, 2003). Conse-
quently, the performance of models is highly dependent on the experts’ domain knowledge of the
target datasets. Representation learning (Bengio et al., 2013) can be viewed as an automated ap-
proach to feature engineering. It involves learning representations (i.e., features or embeddings)
from datasets that can be utilized for specific machine learning tasks, such as classification or pre-
diction.

Graph Representation Learning (GRL) and Graph Embedding. Please note that in current
research, the terms graph embedding and graph representation learning are often used interchange-
ably. Therefore, they will not be distinguished in this paper and we will refer to both as graph
embedding.

Graph Representation Learning (GRL) (Hamilton, 2020) is a specialized subset of representation
learning where the input data is structured as graphs. It focuses on learning representations from
graph data, capturing the relationships and structures inherent in graphs. GRL can be approached
in three main ways: 1) traditional statistical methods based on graph theory; 2) node embedding
methods based on random walk mechanisms; and 3) Graph Neural Networks (GNNs). Recently,
GNNs have demonstrated dominant performance in the GRL field, making them the focus of this
paper.

Graph Embedding (Cai et al., 2018), a technique within GRL, maps graph data into low-dimensional
vectors of real numbers. This process primarily focuses on leveraging the structural information
of the graph, and in the case of GNN-based methods, it also incorporates node feature informa-
tion. Through graph embedding, the learned representations (embeddings) are optimized for various

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

downstream tasks such as node classification, link prediction, and clustering (Zhou et al., 2020; Wu
et al., 2021; Zhang et al., 2020).

Graph Embeddings at Different Levels. Depending on specific application requirements (Cai
et al., 2018), graph embeddings can be obtained at a node-level or graph-level. Node-level embed-
ding involves generating representations for individual nodes, utilizing the structural information,
node features, and/or edge weights of the graph. In contrast, graph-level embeddings are generated
for the entire graph, summarizing its overall structure and properties. In this paper, all mentioned
graph embeddings are at the node level. Therefore, the terms “node embedding” and “graph embed-
ding” are used interchangeably and both refer to node embeddings.

Node information aggregation. Node information aggregation (Kipf & Welling, 2016a; Hamil-
ton et al., 2017a; Veličković et al., 2018) is a key step in Graph Neural Networks (GNNs) that
involves the message passing mechanism. In this process, each node collects information from its
neighbors, aggregates this information using functions such as mean, sum, or max, and updates its
own representation based on the aggregated information. This step is crucial for capturing the local
graph structure and node features, and it is essential for understanding the relationships between
spatial- and spectral-based GNNs discussed in section E.3.

Different downstream tasks. Node embeddings can be used for various downstream tasks, in-
cluding node classification (Wang et al., 2017), node clustering (Nie et al., 2017), link prediction
(Zhang & Chen, 2018), anomaly detection (Ma et al., 2021), etc. These downstream tasks represent
practical applications of node representation learning and provide a means to assess the quality of
learned node embeddings. While node classification is commonly used to evaluate embeddings, this
paper employs link prediction as the downstream task because it provides a more direct measure of
the embeddings’ ability to capture the underlying graph structure. Link prediction is particularly
useful for evaluating the quality of node embeddings in unsupervised settings, as it does not rely on
node labels and focuses on the structural properties of the graph, aligning better with our focus on
embedding quality.

Graph GNNs Embedding IS Ranking

HPs

Internal Strategy

AutoML

Graph Representation Learning

Figure 14: The figure illustrates the entire process of performing HPO tasks. AutoML is a broader
concept than HPO, with its fundamental task being the HPO task. GRL is the process of converting
a graph into graph embeddings using GRL models (in this paper, GNNs). IS is a process that
takes embeddings as input, ranks the embeddings generated by all HP configurations, and outputs a
ranking score. The intersection of IS and GRL is the embedding. IS is the focus of this paper, and
this figure shows the relationships among AutoML, GRL, and IS.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

E.3 FROM SPATIAL-BASED GNNS TO SPECTRAL-BASED GNNS

Graph Neural Networks (GNNs) have developed along two primary routes: spatial-based and
spectral-based approaches. These two methods fundamentally differ in how they aggregate node
information during the embedding process.

Spatial-based (Hamilton et al., 2017a; Atwood & Towsley, 2016; Veličković et al., 2018) methods
aggregate information directly from the neighboring nodes in the graph. They operate on the graph’s
structure by iteratively combining the features of a node with those of its neighbors. This process is
intuitive and straightforward, as it directly reflects the graph’s topology.

Spectral-based (Monti et al., 2017; Hamilton et al., 2017b; Zhang et al., 2018; Zhou et al., 2018; Wu
et al., 2019) methods take a different approach by utilizing the graph’s spectral properties. These
methods rely on the eigenvalues and eigenvectors of graph-related matrices (such as the Laplacian
matrix) to perform convolution operations in the frequency domain. Spectral methods transform
the graph into a spectral space, apply filters to the eigenvalues of the graph Laplacian matrix, and
then transform it back, effectively aggregating information across the entire graph in a way that is
analogous to applying a global filter. This approach is mathematically elegant and leverages the
powerful tools of spectral graph theory.

Chen et al. (2023) provide a comprehensive analysis of spatial-based and spectral-based approaches
in GNNs, proposing a unified framework that links them. The authors demonstrate that both spatial
and spectral methods aim to achieve similar goals—effective information aggregation and node
representation—through different mechanisms. Spatial methods can be interpreted as a form of
spectral filtering in the node domain by setting the step size of message passing, while spectral
methods approximate the aggregation process by filtering in the frequency domain. This unified
perspective reveals that the distinction between the two methods lies more in their implementation
techniques rather than their fundamental objectives (more details can be found in Appendix I).

E.4 INTERNAL STRATEGY (IS)

Internal Strategies refer to the specific type of evaluation algorithms that can assess the quality
of embeddings without relying on any external evaluation methods. In this paper, IS specifically
represents the type of algorithm we are introducing. The location of IS in the context of AutoML
and GRL can be seen in Figure 14.

Definition of Internal Strategy. An Internal Strategy (IS) is an unsupervised model evaluation
method that assesses model performance without using labels. More specifically, in this paper, IS
takes graph representations as input and outputs a corresponding ranking score, representing the
quality of the graph representations.

To avoid ambiguity, we clarify the target of IS: In this paper, IS directly works on graph embeddings.
However, since each graph embedding is generated using specific HP values, it can also be said
that IS evaluates the performance of these HP values. Furthermore, since hyperparameters are an
essential part of the model, when we refer to the evaluation of GNN models, it pertains to the same
concept.

The term Internal signifies that IS evaluates by leveraging information from within the models and
data, rather than relying on external information (e.g. labels) or human intelligence. This domain
remains largely unexplored due to the challenges posed by the absence of labels. Currently, there
is no existing work specifically focused on evaluating the quality of node embeddings, except for
a meta-learning approach (more details in Appendix J) and some internal strategies (IS) from the
computer vision (CV) community (Appendix C).

Stand-alone and Consensus-based IS. However, we can draw some ideas from other fields such
as Computer Vision (Garrido et al., 2023; Duan et al., 2020) and Anomaly Detection (Ma et al.,
2023). Existing approaches in these fields fall into two categories: stand-alone and consensus-based.
Stand-alone approaches evaluate a hyperparameter (HP) setting independently, whereas consensus-
based approaches require information from multiple HP settings. Stand-alone methods only need a
single HP setting, while consensus-based methods depend on a pool of candidate HP settings .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Stand-alone Internal Strategy. In Ma et al. (2023), seven Internal Strategy (IS) methods were
evaluated for the unsupervised outlier model selection challenge, including four stand-alone and
three consensus-based approaches. The findings indicated that none of the IS methods outperformed
the leading iForest detector (Liu et al., 2008), but consensus-based methods showed more promise
than stand-alone approaches.

Consensus-based Internal Strategy. In Duan et al. (2020), the Unsupervised Disentanglement
Ranking (UDR) was introduced as a consensus-based method aimed at hyperparameter tuning for
unsupervised disentangled representation learning models. UDR’s objective is to identify HP values
of models that offer the highest degree of disentanglement. Disentanglement (Siddharth et al., 2017)
refers to the ability of a model to separate distinct, interpretable factors of variation in the data, such
that each factor corresponds to a different dimension in the latent space. This means that changes
in one latent variable should correspond to changes in only one aspect of the data, allowing for
more interpretable and manipulable representations. This approach was evaluated on six leading
Variational Autoencoder (VAE)-based models (Kingma & Welling, 2014; Rezende et al., 2014) for
unsupervised disentangled representation learning. The findings demonstrated a correlation between
UDR and four supervised disentanglement metrics, indicating its potential for identifying models
with highly disentangled representations without the need for labeled data.

F EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS OF THE
VISUALIZATION EXPERIMENTS

This section provides a detailed description of all visualization experiments and hypothesis valida-
tion experiments. The HPs used in the visualization of the node embedding distribution experiments
are shown in Table 3, and those used in the hypothesis validation experiments are shown in Table 4.
Section F.1 and F.3 contains additional results of node embedding distribution visualizations. Sec-
tion F.2 and F.4 present further experimental results demonstrating the quantification of distinctness
from spatial and spectral perspective.

Table 4: HP configurations for validating hypothesis

Hyperparameter Values
Num of neurons (Hidden Layer 1) {8, 16, 32, 48, 64}
Num of neurons (Hidden Layer 2) {8, 16, 32, 48, 64}

Num of epochs {100, 200, 300}

F.1 SPATIAL DISTRIBUTION FOR CSOR

2 1 0 1 2 3 4 5
PCA Dim 1 0.4

0.2
0.0

0.2
0.4

0.6
0.8

1.0

PC
A Dim

 2

0.2
0.0
0.2
0.4
0.6

PC
A

Di
m

 3

Acc: 0.2402

2 1 0 1 2 3 4 5
PCA Dim 1 0.4

0.2
0.0

0.2
0.4

0.6
0.8

1.0

PC
A Dim

 2

0.2
0.0
0.2
0.4
0.6

PC
A

Di
m

 3

Acc: 0.3604

2 1 0 1 2 3 4 5
PCA Dim 1 0.4

0.2
0.0

0.2
0.4

0.6
0.8

1.0

PC
A Dim

 2

0.2
0.0
0.2
0.4
0.6

PC
A

Di
m

 3

Acc: 0.4474

2 1 0 1 2 3 4 5
PCA Dim 1 0.4

0.2
0.0

0.2
0.4

0.6
0.8

1.0

PC
A Dim

 2

0.2
0.0
0.2
0.4
0.6

PC
A

Di
m

 3

Acc: 0.5165

Spatial visualisation of VGAE on Citeseer

Figure 15: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The VGAE model is run on the Citeseer dataset, with candidate HP settings provided in
Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate better
performance. We can observe that as Acc increases, the node embeddings become more dispersed.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

4 2 0 2 4 6
PCA Dim 1

2
0

2
4

PC
A Dim

 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0

PC
A

Di
m

 3

Acc: 0.4527

4 2 0 2 4 6
PCA Dim 1

2
0

2
4

PC
A Dim

 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0

PC
A

Di
m

 3

Acc: 0.6809

4 2 0 2 4 6
PCA Dim 1

2
0

2
4

PC
A Dim

 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0

PC
A

Di
m

 3

Acc: 0.7150

4 2 0 2 4 6
PCA Dim 1

2
0

2
4

PC
A Dim

 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0

PC
A

Di
m

 3

Acc: 0.7520

Spatial visualisation of VGAE on Pubmed

Figure 16: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The VGAE model is run on the Pubmed dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.

4
2

0
2

4
6

PCA Dim 1 2
0

2
4

6

PC
A Dim

 2

2
1

0
1
2
3

PC
A

Di
m

 3

Acc: 0.6420

4
2

0
2

4
6

PCA Dim 1 2
0

2
4

6

PC
A Dim

 2

2
1

0
1
2
3

PC
A

Di
m

 3

Acc: 0.7123

4
2

0
2

4
6

PCA Dim 1 2
0

2
4

6

PC
A Dim

 2

2
1

0
1
2
3

PC
A

Di
m

 3

Acc: 0.7251

4
2

0
2

4
6

PCA Dim 1 2
0

2
4

6

PC
A Dim

 2

2
1

0
1
2
3

PC
A

Di
m

 3

Acc: 0.7545

Spatial visualisation of VGAE on DBLP

Figure 17: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The VGAE model is run on the DBLP dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.

2 0
2

4
6

8
PCA Dim 1

2
1

0
1

2
3

PC
A Dim

 2

2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.3469

2 0
2

4
6

8
PCA Dim 1

2
1

0
1

2
3

PC
A Dim

 2

2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.5609

2 0
2

4
6

8
PCA Dim 1

2
1

0
1

2
3

PC
A Dim

 2

2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.6556

2 0
2

4
6

8
PCA Dim 1

2
1

0
1

2
3

PC
A Dim

 2

2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.7257

Spatial visualisation of GAE on Cora

Figure 18: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAE model is run on the Cora dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate
better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

2
0

2
4

PCA Dim 1 2
1

0
1

2
3

4

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.3003

2
0

2
4

PCA Dim 1 2
1

0
1

2
3

4

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.3904

2
0

2
4

PCA Dim 1 2
1

0
1

2
3

4

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.4745

2
0

2
4

PCA Dim 1 2
1

0
1

2
3

4

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.5295

Spatial visualisation of GAE on Citeseer

Figure 19: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAE model is run on the Citeseer dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate
better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.

4 2 0 2 4 6
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

3
2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.4846

4 2 0 2 4 6
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

3
2
1

0
1
2
3
4

PC
A

Di
m

 3
Acc: 0.6787

4 2 0 2 4 6
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

3
2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.7023

4 2 0 2 4 6
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

3
2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.7404

Spatial visualisation of GAE on Pubmed

Figure 20: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAE model is run on the Pubmed dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.

4
2

0
2

4
PCA Dim 1 2

0
2

4
6

PC
A Dim

 2

4
2
0
2
4

PC
A

Di
m

 3

Acc: 0.6839

4
2

0
2

4
PCA Dim 1 2

0
2

4
6

PC
A Dim

 2

4
2
0
2
4

PC
A

Di
m

 3

Acc: 0.7200

4
2

0
2

4
PCA Dim 1 2

0
2

4
6

PC
A Dim

 2

4
2
0
2
4

PC
A

Di
m

 3

Acc: 0.7296

4
2

0
2

4
PCA Dim 1 2

0
2

4
6

PC
A Dim

 2

4
2
0
2
4

PC
A

Di
m

 3

Acc: 0.7533

Spatial visualisation of GAE on DBLP

Figure 21: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAE model is run on the DBLP dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate bet-
ter performance. We can observe that as Acc increases, the node embeddings appear more dispersed.
However, due to the large number of nodes in this dataset, the visualization becomes cluttered. De-
spite this, based on the increasing Acc values and the patterns at the edges, we can infer that the
node embeddings are likely becoming more dispersed, although they overlap on the 2D plane.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

2 0 2 4
6

8
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

1
0
1
2
3
4
5
6

PC
A

Di
m

 3

Acc: 0.3161

2 0 2 4
6

8
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

1
0
1
2
3
4
5
6

PC
A

Di
m

 3

Acc: 0.3776

2 0 2 4
6

8
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

1
0
1
2
3
4
5
6

PC
A

Di
m

 3

Acc: 0.5105

2 0 2 4
6

8
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

1
0
1
2
3
4
5
6

PC
A

Di
m

 3

Acc: 0.5904

Spatial visualisation of ARGA on Cora

Figure 22: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGA model is run on the Cora dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate
better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.

2
0

2
4

6
PCA Dim 1

1
0

1
2

3
4

PC
A Dim

 2

0.0

0.2

0.4

0.6

PC
A

Di
m

 3

Acc: 0.3023

2
0

2
4

6
PCA Dim 1

1
0

1
2

3
4

PC
A Dim

 2

0.0

0.2

0.4

0.6

PC
A

Di
m

 3

Acc: 0.3233

2
0

2
4

6
PCA Dim 1

1
0

1
2

3
4

PC
A Dim

 2

0.0

0.2

0.4

0.6

PC
A

Di
m

 3

Acc: 0.3814

2
0

2
4

6
PCA Dim 1

1
0

1
2

3
4

PC
A Dim

 2

0.0

0.2

0.4

0.6

PC
A

Di
m

 3

Acc: 0.4354

Spatial visualisation of ARGA on Citeseer

Figure 23: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGA model is run on the Citeseer dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings become
more dispersed.

4
2

0
2

4
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

3
2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.4302

4
2

0
2

4
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

3
2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.6734

4
2

0
2

4
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

3
2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.6951

4
2

0
2

4
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

3
2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.7250

Spatial visualisation of ARGA on Pubmed

Figure 24: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGA model is run on the Pubmed dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization becomes
cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we can
infer that the node embeddings are likely becoming more dispersed, although they overlap on the
2D plane.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

4
2

0
2

4
PCA Dim 1 2

0
2

4
6

8

PC
A Dim

 2

4

2

0

2

4

PC
A

Di
m

 3

Acc: 0.6818

4
2

0
2

4
PCA Dim 1 2

0
2

4
6

8

PC
A Dim

 2

4

2

0

2

4

PC
A

Di
m

 3

Acc: 0.7136

4
2

0
2

4
PCA Dim 1 2

0
2

4
6

8

PC
A Dim

 2

4

2

0

2

4

PC
A

Di
m

 3

Acc: 0.7242

4
2

0
2

4
PCA Dim 1 2

0
2

4
6

8

PC
A Dim

 2

4

2

0

2

4

PC
A

Di
m

 3

Acc: 0.7317

Spatial visualisation of ARGA on DBLP

Figure 25: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGA model is run on the DBLP dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.

2
0

2
4

6
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.3198

2
0

2
4

6
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.4969

2
0

2
4

6
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.5916

2
0

2
4

6
PCA Dim 1 4

2
0

2
4

PC
A Dim

 2

2
1

0
1
2
3
4

PC
A

Di
m

 3

Acc: 0.6753

Spatial visualisation of ARGVA on Cora

Figure 26: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGVA model is run on the Cora dataset, with candidate hyperparameter settings pro-
vided in Appendix 3.“Acc” at the top of the images represents Accuracy, where higher values indi-
cate better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.

2 0
2

4
6

8
PCA Dim 1 2

1
0

1
2

3
4

5

PC
A Dim

 2

0.25
0.00
0.25
0.50
0.75
1.00
1.25

PC
A

Di
m

 3

Acc: 0.2633

2 0
2

4
6

8
PCA Dim 1 2

1
0

1
2

3
4

5

PC
A Dim

 2

0.25
0.00
0.25
0.50
0.75
1.00
1.25

PC
A

Di
m

 3

Acc: 0.3564

2 0
2

4
6

8
PCA Dim 1 2

1
0

1
2

3
4

5

PC
A Dim

 2

0.25
0.00
0.25
0.50
0.75
1.00
1.25

PC
A

Di
m

 3

Acc: 0.4384

2 0
2

4
6

8
PCA Dim 1 2

1
0

1
2

3
4

5

PC
A Dim

 2

0.25
0.00
0.25
0.50
0.75
1.00
1.25

PC
A

Di
m

 3

Acc: 0.4995

Spatial visualisation of ARGVA on Citeseer

Figure 27: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGVA model is run on the Citeseer dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings become
more dispersed.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

4 2 0 2 4 6
PCA Dim 1

2
0

2
4

6

PC
A Dim

 2

1
0
1
2
3

PC
A

Di
m

 3

Acc: 0.4300

4 2 0 2 4 6
PCA Dim 1

2
0

2
4

6

PC
A Dim

 2

1
0
1
2
3

PC
A

Di
m

 3

Acc: 0.6629

4 2 0 2 4 6
PCA Dim 1

2
0

2
4

6

PC
A Dim

 2

1
0
1
2
3

PC
A

Di
m

 3

Acc: 0.7022

4 2 0 2 4 6
PCA Dim 1

2
0

2
4

6

PC
A Dim

 2

1
0
1
2
3

PC
A

Di
m

 3

Acc: 0.7415

Spatial visualisation of ARGVA on Pubmed

Figure 28: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGVA model is run on the Pubmed dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization becomes
cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we can
infer that the node embeddings are likely becoming more dispersed, although they overlap on the
2D plane.

4
2

0
2

4
6

PCA Dim 1
2

0
2

4
6

8

PC
A Dim

 2

3
2
1

0
1
2
3

PC
A

Di
m

 3

Acc: 0.6199

4
2

0
2

4
6

PCA Dim 1
2

0
2

4
6

8

PC
A Dim

 2

3
2
1

0
1
2
3

PC
A

Di
m

 3

Acc: 0.7140

4
2

0
2

4
6

PCA Dim 1
2

0
2

4
6

8

PC
A Dim

 2
3
2
1

0
1
2
3

PC
A

Di
m

 3

Acc: 0.7251

4
2

0
2

4
6

PCA Dim 1
2

0
2

4
6

8

PC
A Dim

 2

3
2
1

0
1
2
3

PC
A

Di
m

 3

Acc: 0.7468

Spatial visualisation of ARGVA on DBLP

Figure 29: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGVA model is run on the DBLP dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.

1.5 1.0 0.50.0 0.5 1.0 1.5 2.0
PCA Dim 1 1.5

1.0
0.5

0.0
0.5

1.0
1.5

PC
A Dim

 2

1.0
0.5

0.0
0.5
1.0
1.5

PC
A

Di
m

 3

Acc: 0.4453

1.5 1.0 0.50.0 0.5 1.0 1.5 2.0
PCA Dim 1 1.5

1.0
0.5

0.0
0.5

1.0
1.5

PC
A Dim

 2

1.0
0.5

0.0
0.5
1.0
1.5

PC
A

Di
m

 3

Acc: 0.7023

1.5 1.0 0.50.0 0.5 1.0 1.5 2.0
PCA Dim 1 1.5

1.0
0.5

0.0
0.5

1.0
1.5

PC
A Dim

 2

1.0
0.5

0.0
0.5
1.0
1.5

PC
A

Di
m

 3

Acc: 0.7355

1.5 1.0 0.50.0 0.5 1.0 1.5 2.0
PCA Dim 1 1.5

1.0
0.5

0.0
0.5

1.0
1.5

PC
A Dim

 2

1.0
0.5

0.0
0.5
1.0
1.5

PC
A

Di
m

 3

Acc: 0.7589

Spatial visualisation of GAT on Cora

Figure 30: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAT model is run on the Cora dataset, with candidate hyperparameter settings provided in
Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate better
performance. We can observe that as Acc increases, the node embeddings become more dispersed.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

1
0

1
2

PCA Dim 1 1.0
0.5

0.0
0.5

1.0
1.5

2.0

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.3103

1
0

1
2

PCA Dim 1 1.0
0.5

0.0
0.5

1.0
1.5

2.0

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.4945

1
0

1
2

PCA Dim 1 1.0
0.5

0.0
0.5

1.0
1.5

2.0

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.5465

1
0

1
2

PCA Dim 1 1.0
0.5

0.0
0.5

1.0
1.5

2.0

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.5866

Spatial visualisation of GAT on Citeseer

Figure 31: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAT model is run on the Citeseer dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate
better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.

1.5 1.0 0.50.0 0.5 1.0 1.5
PCA Dim 1 1.5

1.0
0.5
0.0

0.5
1.0

1.5
2.0

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.5240

1.5 1.0 0.50.0 0.5 1.0 1.5
PCA Dim 1 1.5

1.0
0.5
0.0

0.5
1.0

1.5
2.0

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3
Acc: 0.7260

1.5 1.0 0.50.0 0.5 1.0 1.5
PCA Dim 1 1.5

1.0
0.5
0.0

0.5
1.0

1.5
2.0

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.7684

1.5 1.0 0.50.0 0.5 1.0 1.5
PCA Dim 1 1.5

1.0
0.5
0.0

0.5
1.0

1.5
2.0

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.7884

Spatial visualisation of GAT on Pubmed

Figure 32: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAT model is run on the Pubmed dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.

2
1

0
1

2
3

PCA Dim 1
1

0
1

2

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.6568

2
1

0
1

2
3

PCA Dim 1
1

0
1

2

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.7212

2
1

0
1

2
3

PCA Dim 1
1

0
1

2

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.7372

2
1

0
1

2
3

PCA Dim 1
1

0
1

2

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.7661

Spatial visualisation of GAT on DBLP

Figure 33: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAT model is run on the DBLP dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate bet-
ter performance. We can observe that as Acc increases, the node embeddings appear more dispersed.
However, due to the large number of nodes in this dataset, the visualization becomes cluttered. De-
spite this, based on the increasing Acc values and the patterns at the edges, we can infer that the
node embeddings are likely becoming more dispersed, although they overlap on the 2D plane.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

5
0

5
10

15
PCA Dim 1

2
0

2
4

6

PC
A Dim

 2

2

0

2

4

6

PC
A

Di
m

 3

Acc: 0.3284

5
0

5
10

15
PCA Dim 1

2
0

2
4

6

PC
A Dim

 2

2

0

2

4

6

PC
A

Di
m

 3

Acc: 0.4576

5
0

5
10

15
PCA Dim 1

2
0

2
4

6

PC
A Dim

 2

2

0

2

4

6

PC
A

Di
m

 3

Acc: 0.5129

5
0

5
10

15
PCA Dim 1

2
0

2
4

6

PC
A Dim

 2

2

0

2

4

6

PC
A

Di
m

 3

Acc: 0.5683

Spatial visualisation of GIN on Cora

Figure 34: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GIN model is run on the Cora dataset, with candidate hyperparameter settings provided in
Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate better
performance. We can observe that as Acc increases, the node embeddings become more dispersed.

4 2 0 2 4 6 8
PCA Dim 1 5.0

2.5
0.0

2.5
5.0

7.5
10.0

PC
A Dim

 2

4
2

0
2
4
6

PC
A

Di
m

 3

Acc: 0.2472

4 2 0 2 4 6 8
PCA Dim 1 5.0

2.5
0.0

2.5
5.0

7.5
10.0

PC
A Dim

 2

4
2

0
2
4
6

PC
A

Di
m

 3

Acc: 0.3804

4 2 0 2 4 6 8
PCA Dim 1 5.0

2.5
0.0

2.5
5.0

7.5
10.0

PC
A Dim

 2

4
2

0
2
4
6

PC
A

Di
m

 3

Acc: 0.4154

4 2 0 2 4 6 8
PCA Dim 1 5.0

2.5
0.0

2.5
5.0

7.5
10.0

PC
A Dim

 2

4
2

0
2
4
6

PC
A

Di
m

 3

Acc: 0.4394

Spatial visualisation of GIN on Citeseer

Figure 35: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GIN model is run on the Citeseer dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate
better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.

0
10

20
30

PCA Dim 1
2.5

0.0
2.5

5.0
7.5

10.0
12.5

PC
A Dim

 2

4
2

0
2
4
6
8
10

PC
A

Di
m

 3

Acc: 0.3937

0
10

20
30

PCA Dim 1
2.5

0.0
2.5

5.0
7.5

10.0
12.5

PC
A Dim

 2

4
2

0
2
4
6
8
10

PC
A

Di
m

 3

Acc: 0.6537

0
10

20
30

PCA Dim 1
2.5

0.0
2.5

5.0
7.5

10.0
12.5

PC
A Dim

 2

4
2

0
2
4
6
8
10

PC
A

Di
m

 3

Acc: 0.6842

0
10

20
30

PCA Dim 1
2.5

0.0
2.5

5.0
7.5

10.0
12.5

PC
A Dim

 2

4
2

0
2
4
6
8
10

PC
A

Di
m

 3

Acc: 0.7066

Spatial visualisation of GIN on Pubmed

Figure 36: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GIN model is run on the Pubmed dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

5
0

5
10

15
PCA Dim 1

0
5

10
15

PC
A Dim

 2

4
2

0
2
4
6
8
10

PC
A

Di
m

 3

Acc: 0.5697

5
0

5
10

15
PCA Dim 1

0
5

10
15

PC
A Dim

 2

4
2

0
2
4
6
8
10

PC
A

Di
m

 3

Acc: 0.6990

5
0

5
10

15
PCA Dim 1

0
5

10
15

PC
A Dim

 2

4
2

0
2
4
6
8
10

PC
A

Di
m

 3

Acc: 0.7089

5
0

5
10

15
PCA Dim 1

0
5

10
15

PC
A Dim

 2

4
2

0
2
4
6
8
10

PC
A

Di
m

 3

Acc: 0.7163

Spatial visualisation of GIN on DBLP

Figure 37: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GIN model is run on the DBLP dataset, with candidate hyperparameter settings provided in
Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate better
performance. We can observe that as Acc increases, the node embeddings appear more dispersed.
However, due to the large number of nodes in this dataset, the visualization becomes cluttered.
Despite this, based on the increasing Acc values and the patterns at the edges, we can infer that the
node embeddings are likely becoming more dispersed, although they overlap on the 2D plane..

4
2

0
2

4
PCA Dim 1 2

1
0

1
2

3
4

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.4096

4
2

0
2

4
PCA Dim 1 2

1
0

1
2

3
4

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.5203

4
2

0
2

4
PCA Dim 1 2

1
0

1
2

3
4

PC
A Dim

 2
1

0

1

2

PC
A

Di
m

 3

Acc: 0.5978

4
2

0
2

4
PCA Dim 1 2

1
0

1
2

3
4

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.6568

Spatial visualisation of GraphSAGE on Cora

Figure 38: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GraphSAGE model is run on the Cora dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings become
more dispersed.

2 1 0 1 2 3
PCA Dim 1

1
0

1
2

3

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.3053

2 1 0 1 2 3
PCA Dim 1

1
0

1
2

3

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.3664

2 1 0 1 2 3
PCA Dim 1

1
0

1
2

3

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.4144

2 1 0 1 2 3
PCA Dim 1

1
0

1
2

3

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.4555

Spatial visualisation of GraphSAGE on Citeseer

Figure 39: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GraphSAGE model is run on the Citeseer dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings become
more dispersed.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

3 2 1 0 1 2 3
PCA Dim 1 2

1
0

1
2

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.5090

3 2 1 0 1 2 3
PCA Dim 1 2

1
0

1
2

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.6070

3 2 1 0 1 2 3
PCA Dim 1 2

1
0

1
2

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.6655

3 2 1 0 1 2 3
PCA Dim 1 2

1
0

1
2

PC
A Dim

 2

1

0

1

2

PC
A

Di
m

 3

Acc: 0.7231

Spatial visualisation of GraphSAGE on Pubmed

Figure 40: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GraphSAGE model is run on the Pubmed dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization becomes
cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we can
infer that the node embeddings are likely becoming more dispersed, although they overlap on the
2D plane.

2 1 0 1 2 3
PCA Dim 1

1
0

1
2

PC
A Dim

 2

1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

PC
A

Di
m

 3

Acc: 0.6630

2 1 0 1 2 3
PCA Dim 1

1
0

1
2

PC
A Dim

 2

1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

PC
A

Di
m

 3

Acc: 0.6990

2 1 0 1 2 3
PCA Dim 1

1
0

1
2

PC
A Dim

 2

1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

PC
A

Di
m

 3

Acc: 0.7138

2 1 0 1 2 3
PCA Dim 1

1
0

1
2

PC
A Dim

 2

1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

PC
A

Di
m

 3

Acc: 0.7257

Spatial visualisation of GraphSAGE on DBLP

Figure 41: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GraphSAGE model is run on the DBLP dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization becomes
cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we can
infer that the node embeddings are likely becoming more dispersed, although they overlap on the
2D plane.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

F.2 VALIDATE HYPOTHESIS FROM SPATIAL PERSPECTIVE FOR CSOR

4000 5000 6000 7000 8000 9000
Manhattan Distance

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

Va
lu

e

VGAE on Cora = 0.83

550000 600000 650000 700000 750000
Sum of Pairwise Manhattan Distances

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

Va
lu

e

VGAE on Cora = 0.93

(a) (b)

Figure 42: This figure demonstrates the hypothesis that “higher quality node embeddings tend to
be farther away from lower quality node embeddings across each dimension. In other words, as the
quality improves, the spatial distance from other node embeddings increases.” We use the Manhattan
distance to calculate the spatial distance between two node embeddings, using the worst-performing
node embedding (the one with the lowest AUC value in downstream tasks) as the baseline. In plot
(a), the distances of all other node embeddings from this baseline are calculated. In plot (b), the
distances are derived from pairwise comparisons of all node embeddings and then summed. The
x-axis represents the Manhattan distance, and the y-axis represents the AUC value corresponding to
each node embedding. The ρ character represents the Spearman correlation coefficient between the
AUC values and the Manhattan distances. These plots represent the results of running the VGAE
model on the Cora dataset. Each dataset is evaluated using 75 sets of HP values.

4000 5000 6000 7000 8000 9000
Manhattan Distance

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

Va
lu

e

VGAE on Cora = 0.83

6000 7000 8000 9000 10000
Manhattan Distance

0.74

0.76

0.78

0.80

0.82

0.84

0.86

AU
C

Va
lu

e

VGAE on Citeseer = 0.28

30000 35000 40000 45000 50000 55000 60000
Manhattan Distance

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

AU
C

Va
lu

e

VGAE on Pubmed = 0.76

35000 40000 45000 50000 55000 60000 65000 70000
Manhattan Distance

0.84

0.86

0.88

0.90

0.92

0.94

AU
C

Va
lu

e

VGAE on DBLP = 0.47

Figure 43: Complete results for VGAE. The interpretations are similar to those given in Figure 42.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

4000 6000 8000 10000 12000
Manhattan Distance

0.70

0.75

0.80

0.85

0.90

AU
C

Va
lu

e

GAE on Cora = 0.52

7000 8000 9000 10000 11000 12000 13000 14000
Manhattan Distance

0.76

0.78

0.80

0.82

0.84

0.86

AU
C

Va
lu

e

GAE on Citeseer = 0.38

30000 40000 50000 60000 70000 80000
Manhattan Distance

0.86

0.88

0.90

0.92

0.94

0.96

AU
C

Va
lu

e

GAE on Pubmed = 0.42

40000 50000 60000 70000 80000
Manhattan Distance

0.86

0.88

0.90

0.92

0.94

AU
C

Va
lu

e

GAE on DBLP = 0.36

Figure 44: Complete results for GAE. The interpretations are similar to those given in Figure 42.

7000 8000 9000 10000 11000
Manhattan Distance

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

AU
C

Va
lu

e

GraphSAGE on Cora = 0.71

7500 8000 8500 9000 9500 10000 10500 11000
Manhattan Distance

0.74

0.76

0.78

0.80

0.82

0.84

AU
C

Va
lu

e

GraphSAGE on Citeseer = 0.75

50000 60000 70000 80000 90000
Manhattan Distance

0.74

0.76

0.78

0.80

0.82

0.84

0.86

AU
C

Va
lu

e

GraphSAGE on Pubmed = 0.51

45000 50000 55000 60000 65000 70000 75000 80000
Manhattan Distance

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

AU
C

Va
lu

e

GraphSAGE on DBLP = 0.51

Figure 45: Complete results for GraphSAGE. The interpretations are similar to those given in Fig-
ure 42.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

5000 6000 7000 8000 9000 10000 11000
Manhattan Distance

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

AU
C

Va
lu

e

ARGA on Cora = 0.69

4000 6000 8000 10000 12000 14000
Manhattan Distance

0.74

0.76

0.78

0.80

0.82

0.84

0.86

AU
C

Va
lu

e

ARGA on Citeseer = 0.36

40000 50000 60000 70000 80000
Manhattan Distance

0.86

0.88

0.90

0.92

0.94

0.96

AU
C

Va
lu

e

ARGA on Pubmed = 0.34

45000 50000 55000 60000 65000 70000 75000
Manhattan Distance

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

AU
C

Va
lu

e

ARGA on DBLP = 0.37

Figure 46: Complete results for ARGA. The interpretations are similar to those given in Figure 42.

5000 5500 6000 6500 7000 7500 8000 8500 9000
Manhattan Distance

0.65

0.70

0.75

0.80

0.85

AU
C

Va
lu

e

ARGVA on Cora = 0.73

5000 6000 7000 8000 9000
Manhattan Distance

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

AU
C

Va
lu

e

ARGVA on Citeseer = 0.36

20000 30000 40000 50000 60000
Manhattan Distance

0.82

0.84

0.86

0.88

0.90

0.92

0.94

AU
C

Va
lu

e

ARGVA on Pubmed = 0.77

35000 40000 45000 50000 55000 60000 65000 70000 75000
Manhattan Distance

0.84

0.86

0.88

0.90

0.92

0.94

AU
C

Va
lu

e

ARGVA on DBLP = 0.45

Figure 47: Complete results for ARGVA. The interpretations are similar to those given in Figure 42.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

5000 5500 6000 6500 7000 7500 8000 8500
Manhattan Distance

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

Va
lu

e

GAT on Cora = 0.65

4000 5000 6000 7000 8000 9000
Manhattan Distance

0.78

0.80

0.82

0.84

0.86

0.88

AU
C

Va
lu

e

GAT on Citeseer = 0.51

25000 30000 35000 40000 45000 50000 55000 60000 65000
Manhattan Distance

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

Va
lu

e

GAT on Pubmed = 0.43

30000 35000 40000 45000 50000 55000
Manhattan Distance

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

Va
lu

e

GAT on DBLP = 0.37

Figure 48: Complete results for GAT. The interpretations are similar to those given in Figure 42.

F.3 SPECTRAL DISTRIBUTION FOR SSOR

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3137

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5191

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6162

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6974

SVD Radar Charts for VGAE on Cora

Figure 49: This figure illustrates that node embedding performance is correlated with the spatial
occupancy of the embeddings when observed from a spectral-based perspective. We ran VGAE on
the Cora dataset with 1280 different sets of hyperparameter values to obtain 1280 node embeddings.
From these, we uniformly selected 4 embeddings from the worst to the best performance (AUC
values) to observe the performance variation. For each of these 4 node embeddings, SVD was
performed to obtain the singular values. Each singular value was then placed on its respective axis,
evenly distributed over 360 degrees. This approach aligns with our observation objective in CSOR,
suggesting that the area of radar can represent the space occupancy rate of the node embeddings.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.2402

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3604

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4474

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5165

SVD Radar Charts for VGAE on Citeseer

Figure 50: VGAE on Citeseer. The interpretations are similar to those given in Figure 49.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4527

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6809

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7150

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7520

SVD Radar Charts for VGAE on Pubmed

Figure 51: VGAE on Pubmed. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6420

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7123

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7251

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7545

SVD Radar Charts for VGAE on DBLP

Figure 52: VGAE on DBLP. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3469

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5609

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6556

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7257

SVD Radar Charts for GAE on Cora

Figure 53: GAE on Cora. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3003

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3904

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4745

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5295

SVD Radar Charts for GAE on Citeseer

Figure 54: GAE on Citeseer. The interpretations are similar to those given in Figure 49.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4846

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6787

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7023

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7404

SVD Radar Charts for GAE on Pubmed

Figure 55: GAE on Pubmed. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6839

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7200

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7296

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7533

SVD Radar Charts for GAE on DBLP

Figure 56: GAE on DBLP. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3161

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3776

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5105

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5904

SVD Radar Charts for ARGA on Cora

Figure 57: ARGA on Cora. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3023

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3233

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3814

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4354

SVD Radar Charts for ARGA on Citeseer

Figure 58: ARGA on Citeseer. The interpretations are similar to those given in Figure 49.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4302

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6734

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6951

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7250

SVD Radar Charts for ARGA on Pubmed

Figure 59: ARGA on Pubmed. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6818

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7136

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7242

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7317

SVD Radar Charts for ARGA on DBLP

Figure 60: ARGA on DBLP. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3198

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4969

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5916

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6753

SVD Radar Charts for ARGVA on Cora

Figure 61: ARGVA on Cora. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.2633

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3564

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4384

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4995

SVD Radar Charts for ARGVA on Citeseer

Figure 62: ARGVA on Citeseer. The interpretations are similar to those given in Figure 49.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4300

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6629

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7022

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7415

SVD Radar Charts for ARGVA on Pubmed

Figure 63: ARGVA on Pubmed. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6199

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7140

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7251

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7468

SVD Radar Charts for ARGVA on DBLP

Figure 64: ARGVA on DBLP. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4453

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7023

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7355

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7589

SVD Radar Charts for GAT on Cora

Figure 65: GAT on Cora. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3103

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4945

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5465

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5866

SVD Radar Charts for GAT on Citeseer

Figure 66: GAT on Citeseer. The interpretations are similar to those given in Figure 49.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5240

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7260

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7684

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7884

SVD Radar Charts for GAT on Pubmed

Figure 67: GAT on Pubmed. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6568

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7212

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7372

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7661

SVD Radar Charts for GAT on DBLP

Figure 68: GAT on DBLP. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3284

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4576

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5129

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5683

SVD Radar Charts for GIN on Cora

Figure 69: GIN on Cora. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.2472

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3804

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4154

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4394

SVD Radar Charts for GIN on Citeseer

Figure 70: GIN on Citeseer. The interpretations are similar to those given in Figure 49.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3937

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6537

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6842

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7066

SVD Radar Charts for GIN on Pubmed

Figure 71: GIN on Pubmed. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5697

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6990

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7089

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7163

SVD Radar Charts for GIN on DBLP

Figure 72: GIN on DBLP. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4096

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5203

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5978

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6568

SVD Radar Charts for GraphSAGE on Cora

Figure 73: GraphSAGE on Cora. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3053

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3664

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4144

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4555

SVD Radar Charts for GraphSAGE on Citeseer

Figure 74: GraphSAGE on Citeseer. The interpretations are similar to those given in Figure 49.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.5090

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6070

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6655

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7231

SVD Radar Charts for GraphSAGE on Pubmed

Figure 75: GraphSAGE on Pubmed. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6630

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6990

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7138

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7257

SVD Radar Charts for GraphSAGE on DBLP

Figure 76: GraphSAGE on DBLP. The interpretations are similar to those given in Figure 49.

F.4 VALIDATE HYPOTHESIS FROM SPECTRAL PERSPECTIVE FOR SSOR

150 200 250 300 350 400 450
Sum of Singular Values

0.84

0.86

0.88

0.90

0.92

0.94

0.96

AU
C

Va
lu

e

VGAE on DBLP = 0.91

Figure 77: This figure is designed to prove our hypothesis that “quantifying the distinctness of
node embeddings using the sum of singular values can achieve similar effects as CSOR, which
utilizes accumulating pairwise distances.” Using VGAE with 75 different hyperparameter values
on the DBLP dataset, corresponding node embeddings were generated. The x-axis represents the
sum of singular values of the node embeddings, while the y-axis represents the performance (AUC
values) of the node embeddings in the downstream task of link prediction. The results show a high
correlation between the sum of singular values and AUC values, supporting our hypothesis.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

40 60 80 100 120 140
Sum of Singular Values

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

Va
lu

e

VGAE on Cora = 0.96

40 60 80 100 120
Sum of Singular Values

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

AU
C

Va
lu

e

VGAE on Citeseer = 0.50

100 150 200 250 300 350 400
Sum of Singular Values

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

AU
C

Va
lu

e

VGAE on Pubmed = 0.90

150 200 250 300 350 400 450
Sum of Singular Values

0.84

0.86

0.88

0.90

0.92

0.94

0.96

AU
C

Va
lu

e

VGAE on DBLP = 0.91

Figure 78: Complete results for VGAE. The interpretations are similar to those given in Figure 77.

60 80 100 120 140 160 180
Sum of Singular Values

0.70

0.75

0.80

0.85

0.90

0.95

AU
C

Va
lu

e

GAE on Cora = 0.91

60 80 100 120 140 160 180 200
Sum of Singular Values

0.76

0.78

0.80

0.82

0.84

0.86

0.88

AU
C

Va
lu

e

GAE on Citeseer = 0.79

150 200 250 300 350 400 450 500
Sum of Singular Values

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

AU
C

Va
lu

e

GAE on Pubmed = 0.86

200 300 400 500
Sum of Singular Values

0.86

0.88

0.90

0.92

0.94

0.96

AU
C

Va
lu

e

GAE on DBLP = 0.90

Figure 79: Complete results for GAE. The interpretations are similar to those given in Figure 77.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

60 80 100 120 140
Sum of Singular Values

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

Va
lu

e

GAT on Cora = 0.90

40 60 80 100 120 140
Sum of Singular Values

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

Va
lu

e

GAT on Citeseer = 0.85

100 150 200 250 300
Sum of Singular Values

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

AU
C

Va
lu

e

GAT on Pubmed = 0.92

100 150 200 250 300
Sum of Singular Values

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

AU
C

Va
lu

e

GAT on Pubmed = 0.92

Figure 80: Complete results for GAT. The interpretations are similar to those given in Figure 77.

40 60 80 100 120 140
Sum of Singular Values

0.65

0.70

0.75

0.80

0.85

0.90

0.95

AU
C

Va
lu

e

ARGVA on Cora = 0.90

40 50 60 70 80 90 100 110
Sum of Singular Values

0.65

0.70

0.75

0.80

0.85

AU
C

Va
lu

e

ARGVA on Citeseer = 0.50

100 150 200 250 300 350
Sum of Singular Values

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

AU
C

Va
lu

e

ARGVA on Pubmed = 0.86

150 200 250 300 350 400 450
Sum of Singular Values

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

AU
C

Va
lu

e

ARGVA on DBLP = 0.94

Figure 81: Complete results for ARGVA. The interpretations are similar to those given in Figure 77.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

60 80 100 120 140 160 180
Sum of Singular Values

0.70

0.75

0.80

0.85

0.90

0.95

AU
C

Va
lu

e

ARGA on Cora = 0.89

60 80 100 120 140 160 180
Sum of Singular Values

0.74

0.76

0.78

0.80

0.82

0.84

0.86

AU
C

Va
lu

e

ARGA on Citeseer = 0.82

150 200 250 300 350 400 450 500 550
Sum of Singular Values

0.86

0.88

0.90

0.92

0.94

0.96

0.98

AU
C

Va
lu

e

ARGA on Pubmed = 0.85

150 200 250 300 350 400 450 500
Sum of Singular Values

0.86

0.88

0.90

0.92

0.94

AU
C

Va
lu

e

ARGA on DBLP = 0.89

Figure 82: Complete results for ARGA. The interpretations are similar to those given in Figure 77.

25 50 75 100 125 150 175 200
Sum of Singular Values

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

AU
C

Va
lu

e

GraphSAGE on Cora = 0.89

0 25 50 75 100 125 150 175 200
Sum of Singular Values

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

Va
lu

e

GraphSAGE on Citeseer = 0.78

150 200 250 300 350 400 450 500 550
Sum of Singular Values

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

AU
C

Va
lu

e

GraphSAGE on Pubmed = 0.75

200 250 300 350 400 450 500 550
Sum of Singular Values

0.86

0.88

0.90

0.92

AU
C

Va
lu

e

GraphSAGE on DBLP = 0.93

Figure 83: Complete results for GraphSAGE. The interpretations are similar to those given in Fig-
ure 77.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

0 50 100 150 200
Sum of Singular Values

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

Va
lu

e

GIN on Cora = 0.63

60 80 100 120 140 160 180 200
Sum of Singular Values

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

AU
C

Va
lu

e

GIN on Citeseer = 0.62

100 200 300 400
Sum of Singular Values

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

Va
lu

e

GIN on Pubmed = 0.62

0 100 200 300 400
Sum of Singular Values

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Va
lu

e

GIN on DBLP = 0.88

Figure 84: Complete results for GIN. The interpretations are similar to those given in Figure 77.

G COMPLEXITY ANALYSIS ON CSOR AND SSOR

We perform the time and space complexity on CSOR and SSOR. The following symbols are used
in our analysis: k represents the number of hyperparameter settings, N is the number of samples
(nodes) in each embedding, and D is the number of dimensions in each embedding.

Algorithm 1 HPO for unsupervised node embedding using CSOR

Input: A graph G and a set of HP configurations H for UGRL function f(·).
Output: Optimal HP configuration h∗ and the corresponding graph embeddings fh∗(G).
for each h ∈ H do

Generate graph embeddings Z(h) = fh(G) ∈ RN×D using f(·) with configuration h.
end for
for i = 1 to |H| do

for j = 1 to |H|, j ̸= i do
Calculate the difference (distance) Di,j = diff(Z(hi),Z(hj)).

end for
Calculate the sum of differences si =

∑|H|
j=1,j ̸=i Di,j for hi.

end for
Select h∗ as h∗ = argmaxhi∈H{si | i = 1, . . . , |H|}.
return h∗ and fh∗(G).

G.1 TIME COMPLEXITY ANALYSIS

CSOR For CSOR, we quantify the distinctness of node embeddings by accumulating the distances
of a given node embedding compared to all others. This pairwise comparison operation can capture
more distributional information about all node embeddings. Given a graph G with N nodes and an
embedding dimensionality of D, and considering k hyperparameter configurations, the total time
complexity for CSOR is influenced by the number of hyperparameter configurations (k) and the
dimensionality of the embeddings (D). Specifically, the time complexity is O(k2 ·N ·D), as each
pairwise distance calculation involves O(N ·D) operations, and there are

(
k
2

)
pairs.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

SSOR For SSOR, the distinctness of node embeddings is measured by summing the singular val-
ues of the embedding matrix obtained through Singular Value Decomposition (SVD). The compu-
tation involves converting embeddings to a suitable format, calculating the covariance matrix, and
performing SVD. Given N nodes, D dimensions, and k hyperparameter configurations, the total
time complexity for SSOR is determined by O(k · (D2 ·N +D3)), where D2 ·N accounts for the
covariance matrix calculation and D3 accounts for the SVD.

G.2 SPACE COMPLEXITY ANALYSIS

CSOR Each embedding requires space proportional to the number of nodes (N) and the dimen-
sionality of the embeddings (D). For k embeddings, the space complexity is O(k·N ·D). Temporary
storage for distance calculations requires O(N ·D), which does not significantly impact the overall
space complexity. Thus, the total space complexity for CSOR is O(k ·N ·D).

SSOR Each embedding also requires space proportional to N and D. For k embeddings, the space
complexity is O(k · N · D). Storing the covariance matrix requires O(D2) space, and storing the
singular values requires O(D) space. Thus, the total space complexity for SSOR is O(k·N ·D+D2).

G.3 COMPARISON OF SPACE AND TIME COMPLEXITY

Time Complexity:

• CSOR: O(k2 ·N ·D)

• SSOR: O(k · (D2 ·N +D3))

CSOR has a quadratic dependency on the number of hyperparameter settings (k), while SSOR has
a cubic dependency on the number of dimensions (D) but is linear with respect to k.

Space Complexity:

• CSOR: O(k ·N ·D)

• SSOR: O(k ·N ·D +D2)

Both methods primarily depend on k, N , and D, but spectral-based methods also include an addi-
tional D2 term due to the covariance matrix.

The CSOR method, a spatial-based approach, is characterized by its quadratic time complexity with
respect to the number of hyperparameter settings (k) and its linear space complexity with respect
to the product of the number of samples (N) and the number of dimensions (D). CSOR has better
scalability with respect to graph size, making it more suitable for handling larger graph embeddings.
However, its performance significantly slows down when the number of candidate hyperparameter
settings is very large.

In contrast, SSOR and any other IS relying on singular values, while linear in the number of hyper-
parameter settings (k), exhibit higher time complexity due to their cubic dependence on the number
of dimensions (D). These methods also require additional space to store the covariance matrix, re-
sulting in a space complexity of O(k · N · D + D2). Due to the presence of the SVD operation,
spectral-based methods are not as scalable for very large graph embeddings but can handle a larger
number of candidate hyperparameter settings more efficiently compared to CSOR.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

H COMPLETE EXPERIMENTAL RESULTS

Table 5: Experimental results on node classification: accuracy values (relative rankings) of various
internal strategies across 7 GNN models on datasets Pubmed and DBLP.

Dataset Method VGAE GAE ARGA ARGVA GAT GIN GraphSAGE Avg. Rank

Pubmed

CSOR 0.78(2) 0.80(3) 0.82(1) 0.75(5) 0.80(1) 0.75(4) 0.75(1) 2.43
SSOR 0.77(3) 0.82(1) 0.79(3) 0.80(1) 0.80(2) 0.76(1) 0.74(3) 2.00
RankMe 0.81(1) 0.80(4) 0.79(3) 0.80(1) 0.80(2) 0.76(1) 0.74(2) 2.00
NESum 0.52(7) 0.70(7) 0.48(8) 0.78(4) 0.79(5) 0.58(5) 0.71(5) 5.86
AlphaReQ 0.69(6) 0.79(5) 0.77(5) 0.71(6) 0.70(7) 0.51(7) 0.65(6) 6.00
Incoherence 0.72(5) 0.63(8) 0.74(6) 0.48(8) 0.76(6) 0.41(9) 0.55(8) 7.14
ConditionNumber 0.50(8) 0.72(6) 0.67(7) 0.61(7) 0.53(9) 0.50(8) 0.57(7) 7.43
SelfCluster 0.48(9) 0.57(9) 0.47(9) 0.44(9) 0.66(8) 0.52(6) 0.54(9) 8.43
StableRank 0.77(3) 0.82(1) 0.81(2) 0.80(1) 0.79(4) 0.76(1) 0.74(3) 2.14

DBLP

CSOR 0.78(2) 0.77(3) 0.77(1) 0.78(4) 0.76(5) 0.73(1) 0.72(4) 2.86
SSOR 0.77(3) 0.78(1) 0.75(2) 0.79(1) 0.77(2) 0.72(3) 0.74(1) 1.86
RankMe 0.78(1) 0.75(4) 0.75(4) 0.79(1) 0.77(2) 0.72(3) 0.74(1) 2.29
NESum 0.69(8) 0.71(7) 0.70(6) 0.72(6) 0.78(1) 0.72(2) 0.71(6) 5.14
AlphaReQ 0.71(6) 0.74(5) 0.72(5) 0.73(5) 0.71(8) 0.69(6) 0.70(7) 6.00
Incoherence 0.72(5) 0.72(6) 0.69(8) 0.72(7) 0.71(7) 0.58(9) 0.71(5) 6.71
ConditionNumber 0.66(9) 0.70(8) 0.70(7) 0.70(8) 0.71(6) 0.61(7) 0.69(8) 7.57
SelfCluster 0.69(7) 0.68(9) 0.69(8) 0.63(9) 0.68(9) 0.61(7) 0.68(9) 8.29
StableRank 0.77(3) 0.78(1) 0.75(2) 0.79(1) 0.77(2) 0.72(3) 0.74(1) 1.86

Table 6: Experimental results on link prediction: AUC-ROC values and the relative rankings of
various internal strategies on 7 GNN models across 4 benchmark datasets.

Dataset Method VGAE GAE ARGA ARGVA GAT GIN GraphSAGE Avg. Rank

Cora

CSOR 0.98(1) 0.98(4) 0.97(4) 0.97(4) 0.97(1) 0.97(3) 0.97(4) 3.00
SSOR 0.98(1) 0.98(1) 0.97(1) 0.97(2) 0.97(2) 0.98(2) 0.98(1) 1.43
RankMe 0.98(1) 0.98(1) 0.97(3) 0.98(1) 0.97(2) 0.98(1) 0.98(1) 1.43
NESum 0.83(7) 0.85(7) 0.82(8) 0.92(7) 0.92(6) 0.96(5) 0.83(7) 6.71
AlphaReQ 0.92(5) 0.97(5) 0.95(5) 0.95(6) 0.81(7) 0.93(6) 0.95(5) 5.57
Incoherence 0.89(6) 0.84(8) 0.83(7) 0.95(5) 0.96(5) 0.75(9) 0.93(6) 6.57
ConditionNumber 0.76(8) 0.89(6) 0.90(6) 0.91(8) 0.81(7) 0.82(7) 0.83(7) 7.00
SelfCluster 0.76(8) 0.84(9) 0.82(8) 0.78(9) 0.81(9) 0.79(8) 0.81(9) 8.57
StableRank 0.98(1) 0.98(1) 0.97(1) 0.97(2) 0.97(2) 0.97(4) 0.98(3) 2.00

Citeseer

CSOR 0.97(4) 0.98(4) 0.95(4) 0.97(4) 0.98(4) 0.97(4) 0.98(1) 3.57
SSOR 0.97(1) 0.98(2) 0.97(1) 0.98(1) 0.98(1) 0.98(1) 0.97(3) 1.43
RankMe 0.97(3) 0.98(3) 0.97(1) 0.98(1) 0.98(3) 0.98(3) 0.98(1) 2.14
NESum 0.86(7) 0.96(6) 0.87(9) 0.87(7) 0.93(6) 0.91(6) 0.95(5) 6.57
AlphaReQ 0.95(5) 0.97(5) 0.94(5) 0.96(5) 0.95(5) 0.92(5) 0.90(6) 5.14
Incoherence 0.69(8) 0.87(8) 0.87(8) 0.95(6) 0.93(7) 0.76(9) 0.90(6) 7.43
ConditionNumber 0.69(8) 0.89(7) 0.87(7) 0.87(9) 0.89(8) 0.77(7) 0.90(6) 7.43
SelfCluster 0.88(6) 0.87(9) 0.88(6) 0.87(8) 0.86(9) 0.77(8) 0.87(9) 7.86
StableRank 0.97(1) 0.98(1) 0.97(1) 0.98(1) 0.98(1) 0.98(1) 0.97(3) 1.29

Pubmed

CSOR 0.98(2) 0.99(4) 0.98(4) 0.98(4) 0.96(4) 0.99(1) 0.96(4) 3.29
SSOR 0.98(3) 0.99(1) 0.98(1) 0.98(1) 0.97(1) 0.98(2) 0.98(1) 1.43
RankMe 0.98(1) 0.99(3) 0.98(1) 0.98(1) 0.97(1) 0.98(2) 0.98(3) 1.71
NESum 0.90(7) 0.96(7) 0.86(8) 0.97(5) 0.93(6) 0.93(5) 0.93(6) 6.29
AlphaReQ 0.95(5) 0.98(5) 0.97(6) 0.97(6) 0.93(7) 0.89(7) 0.95(5) 5.86
Incoherence 0.93(6) 0.87(9) 0.98(5) 0.91(8) 0.93(5) 0.79(9) 0.82(9) 7.29
ConditionNumber 0.89(9) 0.96(6) 0.96(7) 0.94(7) 0.84(8) 0.89(6) 0.86(7) 7.14
SelfCluster 0.90(8) 0.90(8) 0.86(9) 0.88(9) 0.82(9) 0.89(8) 0.82(8) 8.43
StableRank 0.98(3) 0.99(1) 0.98(3) 0.98(1) 0.96(3) 0.98(2) 0.98(1) 2.00

DBLP

CSOR 0.98(4) 0.98(4) 0.98(4) 0.98(4) 0.97(4) 0.98(1) 0.97(4) 3.57
SSOR 0.98(1) 0.98(2) 0.98(1) 0.98(1) 0.98(1) 0.98(2) 0.98(1) 1.29
RankMe 0.98(3) 0.99(1) 0.98(3) 0.98(1) 0.98(1) 0.98(2) 0.98(1) 1.71
NESum 0.90(7) 0.96(7) 0.88(6) 0.96(5) 0.97(5) 0.98(5) 0.94(7) 6.00
AlphaReQ 0.96(5) 0.97(6) 0.97(5) 0.96(6) 0.94(6) 0.94(6) 0.96(6) 5.71
Incoherence 0.95(6) 0.97(5) 0.86(8) 0.95(7) 0.93(7) 0.86(9) 0.97(5) 6.71
ConditionNumber 0.87(9) 0.91(8) 0.87(7) 0.94(8) 0.86(8) 0.88(7) 0.92(8) 7.86
SelfCluster 0.88(8) 0.89(9) 0.86(8) 0.87(9) 0.85(9) 0.88(7) 0.88(9) 8.43
StableRank 0.98(1) 0.98(2) 0.98(1) 0.98(1) 0.98(1) 0.98(2) 0.98(1) 1.29

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

Table 7: Experimental results on link prediction: Spearman coefficients between ranking scores
given by internal strategies and AUC ROC values.

Dataset Method VGAE GAE ARGA ARGVA GAT GIN GraphSAGE Average

Cora

CSOR 0.90 0.93 0.92 0.95 0.96 0.94 0.92 0.932
SSOR 0.97 0.98 0.97 0.98 0.98 0.96 0.98 0.972
RankMe 0.95 0.97 0.96 0.96 0.97 0.97 0.97 0.964
NESum -0.01 -0.01 -0.02 0.03 -0.08 0.04 0.01 -0.004
AlphaReQ -0.30 -0.46 -0.27 -0.51 -0.88 -0.88 -0.15 -0.493
Incoherence 0.03 0.03 -0.11 -0.00 -0.03 -0.16 0.00 -0.035
ConditionNumber -0.81 -0.83 -0.76 -0.80 -0.89 -0.89 -0.86 -0.837
SelfCluster -0.97 -0.98 -0.96 -0.97 -0.98 -0.98 -0.98 -0.977
StableRank 0.97 0.99 0.97 0.98 0.98 0.95 0.98 0.974

Citeseer

CSOR 0.85 0.92 0.84 0.90 0.96 0.90 0.82 0.888
SSOR 0.93 0.99 0.94 0.93 0.99 0.98 0.98 0.963
RankMe 0.93 0.98 0.94 0.93 0.98 0.98 0.97 0.958
NESum -0.01 0.03 0.04 0.02 0.04 0.00 0.00 0.017
AlphaReQ 0.01 -0.65 -0.24 -0.20 -0.88 -0.88 -0.17 -0.391
Incoherence 0.04 -0.06 -0.35 -0.02 -0.04 -0.33 -0.03 -0.114
ConditionNumber -0.73 -0.86 -0.80 -0.74 -0.92 -0.92 -0.88 -0.836
SelfCluster -0.94 -0.99 -0.92 -0.89 -0.99 -0.99 -0.98 -0.957
StableRank 0.94 0.98 0.94 0.93 0.99 0.98 0.98 0.949

Pubmed

CSOR 0.87 0.86 0.91 0.94 0.95 0.92 0.71 0.882
SSOR 0.95 0.95 0.96 0.97 0.98 0.97 0.93 0.961
RankMe 0.94 0.94 0.96 0.96 0.98 0.94 0.93 0.936
NESum -0.00 0.01 0.01 0.02 0.02 -0.02 0.02 0.001
AlphaReQ -0.40 -0.59 -0.48 -0.47 -0.89 -0.85 -0.09 -0.538
Incoherence -0.07 -0.09 -0.05 -0.06 -0.01 -0.35 0.01 -0.089
ConditionNumber -0.75 -0.76 -0.79 -0.79 -0.90 -0.87 -0.84 -0.810
SelfCluster -0.94 -0.95 -0.97 -0.96 -0.99 -0.97 -0.94 -0.960
StableRank 0.96 0.95 0.96 0.97 0.98 0.97 0.92 0.960

DBLP

CSOR 0.85 0.92 0.95 0.92 0.94 0.92 0.85 0.921
SSOR 0.97 0.99 0.99 0.98 0.99 0.98 0.98 0.981
RankMe 0.95 0.99 0.97 0.96 0.98 0.96 0.97 0.971
NESum -0.00 -0.02 0.02 0.03 0.01 0.01 -0.01 0.002
AlphaReQ -0.54 -0.86 -0.76 -0.67 -0.91 -0.93 -0.76 -0.781
Incoherence 0.00 0.00 -0.10 -0.07 0.04 -0.25 -0.01 -0.057
ConditionNumber -0.81 -0.90 -0.86 -0.83 -0.91 -0.93 -0.92 -0.882
SelfCluster -0.97 -0.99 -0.98 -0.97 -0.99 -0.98 -0.98 -0.981
StableRank 0.97 0.99 0.99 0.98 0.99 0.98 0.98 0.981

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

Table 8: Experimental results on node classification: Spearman coefficients between ranking scores
given by internal strategies and accuracy values.

Dataset Method VGAE GAE ARGA ARGVA GAT GIN GraphSAGE Average

Cora

CSOR 0.81 0.85 0.83 0.86 0.75 0.81 0.85 0.823
SSOR 0.90 0.92 0.88 0.91 0.77 0.86 0.92 0.880
RankMe 0.92 0.92 0.91 0.92 0.77 0.88 0.92 0.891
NESum -0.02 -0.03 -0.02 0.03 -0.07 0.04 0.02 - 0.157
AlphaReQ -0.36 -0.47 -0.3 -0.53 -0.73 -0.8 -0.13 -0.332
Incoherence 0.03 0.02 -0.07 -0.02 -0.02 -0.18 0.02 -0.031
ConditionNumber -0.81 -0.82 -0.74 -0.78 -0.74 -0.82 -0.84 -0.793
SelfCluster -0.90 -0.92 -0.89 -0.91 -0.76 -0.88 -0.92 -0.883
StableRank 0.89 0.92 0.88 0.91 0.77 0.85 0.92 0.877

Citeseer

CSOR 0.71 0.76 0.71 0.79 0.69 0.76 0.77 0.741
SSOR 0.83 0.82 0.80 0.85 0.72 0.82 0.84 0.811
RankMe 0.88 0.85 0.82 0.91 0.73 0.82 0.84 0.836
NESum -0.02 0.02 0.01 0.04 0.04 -0.02 0.03 0.014
AlphaReQ -0.10 -0.56 -0.17 -0.25 -0.69 -0.71 -0.11 -0.370
Incoherence 0.06 -0.05 -0.17 -0.03 -0.04 -0.32 0.02 -0.076
ConditionNumber -0.72 -0.71 -0.61 -0.72 -0.71 -0.75 -0.73 -0.707
SelfCluster -0.85 -0.83 -0.82 -0.85 -0.72 -0.83 -0.85 -0.821
StableRank 0.82 0.81 0.80 0.84 0.71 0.82 0.84 0.806

Pubmed

CSOR 0.63 0.83 0.79 0.75 0.87 0.74 0.79 0.771
SSOR 0.74 0.88 0.86 0.80 0.87 0.82 0.91 0.840
RankMe 0.81 0.90 0.89 0.86 0.86 0.79 0.90 0.859
NESum -0.01 0.0 0.01 0.02 0.03 0.0 -0.01 0.001
AlphaReQ -0.42 -0.62 -0.48 -0.46 -0.78 -0.73 0.01 -0.497
Incoherence -0.07 -0.09 -0.02 -0.05 0.0 -0.35 0.05 -0.076
ConditionNumber -0.67 -0.75 -0.74 -0.70 -0.78 -0.74 -0.74 -0.731
SelfCluster -0.74 -0.89 -0.85 -0.78 -0.87 -0.81 -0.91 -0.836
StableRank 0.71 0.87 0.85 0.78 0.87 0.82 0.91 0.830

DBLP

CSOR 0.66 0.74 0.68 0.71 0.73 0.71 0.74 0.710
SSOR 0.74 0.77 0.71 0.78 0.77 0.77 0.83 0.767
RankMe 0.79 0.80 0.74 0.81 0.76 0.76 0.83 0.784
NESum 0.00 -0.03 0.05 0.01 -0.01 0.00 -0.04 -0.003
AlphaReQ -0.54 -0.70 -0.63 -0.67 -0.73 -0.72 -0.63 -0.660
Incoherence -0.01 -0.02 -0.10 -0.06 -0.01 -0.24 -0.01 -0.064
ConditionNumber -0.73 -0.73 -0.68 -0.76 -0.74 -0.71 -0.79 -0.736
SelfCluster -0.75 -0.78 -0.71 -0.78 -0.76 -0.75 -0.83 -0.765
StableRank 0.73 0.76 0.70 0.77 0.77 0.77 0.82 0.761

I COMPARISON OF SPATIAL-BASED AND SPECTRAL-BASED METHODS IN
NODE AGGREGATION

Both spatial-based and spectral-based methods in Graph Neural Networks (GNNs) share a common
objective: to effectively aggregate node information to produce meaningful node embeddings. How-
ever, they achieve this goal through different mechanisms. This appendix elucidates the relationship
between these two approaches in their realization of node aggregation.

SPATIAL-BASED METHODS

Spatial-based methods operate directly in the node domain. They use the adjacency matrix A to
represent the graph structure and perform node aggregation through message passing among neigh-
boring nodes. Each node updates its embedding by aggregating information from its immediate
neighbors using predefined aggregation functions such as mean, sum, or max.

Key Characteristics:

• Graph Representation: Uses the adjacency matrix A.

• Node Domain Operations: Aggregation is performed directly on nodes and their neigh-
bors.

• Message Passing: Nodes receive and aggregate information from their neighboring nodes.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

• Examples: Graph Convolutional Networks (GCN), GraphSAGE, Graph Attention Net-
works (GAT).

In GCN, for instance, the aggregation operation can be expressed as:

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W (l))

where Ã = A+ I is the adjacency matrix with added self-loops, D̃ is the degree matrix, H(l) is the
node embedding at layer l, W (l) is the learnable weight matrix, and σ is an activation function.

SPECTRAL-BASED METHODS

Spectral-based methods, on the other hand, operate in the frequency domain. They leverage the
graph Laplacian matrix L = D − A and perform node aggregation through spectral filtering. The
graph Laplacian is decomposed into its eigenvalues and eigenvectors, transforming the node features
into the spectral domain. Aggregation is performed by filtering these spectral components, and the
result is then transformed back to the node domain.

Key Characteristics:

• Graph Representation: Uses the Laplacian matrix L.
• Frequency Domain Operations: Aggregation is performed by filtering in the spectral

domain.
• Eigen Decomposition: The Laplacian matrix is decomposed into eigenvalues and eigen-

vectors.
• Examples: Spectral CNN, ChebNet.

A typical spectral-based aggregation can be described as:

H = Ug(Λ)UTX

where U and Λ are the eigenvectors and eigenvalues of the Laplacian matrix L, respectively, X is
the node feature matrix, and g(Λ) is a spectral filter applied to the eigenvalues.

CONNECTING THE TWO APPROACHES

Despite their different mechanisms, both spatial-based and spectral-based methods aim to aggre-
gate node information to produce effective node embeddings. The connection between these two
approaches can be understood through their respective domains of operation:

• Spatial-based methods perform aggregation directly in the node domain by iteratively
combining information from neighboring nodes.

• Spectral-based methods perform aggregation in the frequency domain by applying filters
to the eigenvalues of the Laplacian matrix, capturing global graph properties.

Spatial-based methods can be viewed as a localized approximation of spectral methods. The direct
message passing and aggregation in the node domain approximate the spectral filtering operations
performed in the frequency domain. Both methods can be considered complementary, offering
different perspectives and advantages for graph representation learning.

In summary, while spatial-based and spectral-based methods differ in their implementation, they
share the fundamental goal of node information aggregation. Understanding the relationship be-
tween these methods provides a unified perspective on the diverse approaches used in GNNs for
node embedding generation.

J GNN EVALUATOR

Existing work on evaluating graph embeddings without labels is limited. The GNN Evaluator
(Zheng et al., 2023), which comes closest to this task, assesses the generalization ability of trained

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

GNNs on new datasets. In contrast, we aim to evaluate the quality of graph embeddings. While both
methods share similar goals, they are not identical.

Let’s examine the GNN Evaluator and discuss why it is not suitable for our needs.

Given a training graph G0 and a well-trained GNN model f , we obtain the corresponding graph
embedding Z0 = f(G0).

The GNN Evaluator follows two steps:

J.1 CONSTRUCT A DISCGRAPH SET

1. Simulate unseen meta-graphs using data augmentation:

Gmeta = fda(G0)

where Gmeta represents generated meta-graphs by the data augmentation function fda.
2. Input Gmeta to the trained GNN model to obtain graph embeddings and evaluate them to

get AUC values:
Zmeta = f(Gmeta)

aucmeta = fdt(Zmeta)

where Zmeta are the graph embeddings of Gmeta, and aucmeta represents their performance
on downstream tasks.

3. Calculate DiscGraph, which is the spatial distance between Zmeta and Z0:

Zdisc = D(Zmeta, Z0)

4. Form the training data for the GNN Evaluator as:

{(Z1
disc, auc1meta), . . . , (Z

i
disc, aucimeta)}

J.2 TRAIN THE GNN EVALUATOR

The GNN Evaluator is a deep learning model that takes DiscGraph as input and outputs the cor-
responding performance (e.g., AUC value). It predicts a GNN model’s performance on an unseen
dataset by measuring the difference between the unseen dataset and the training dataset and mapping
that difference to the AUC value.

However, the GNN Evaluator is not suitable for Hyperparameter Optimization (HPO) because it
still requires labels for training data. We want to directly evaluate the performance of a given model
on the training data without needing labels. The GNN Evaluator is designed for inductive learning,
while our focus is on transductive learning.

J.3 SUMMARY

• GNN Evaluator: Assesses GNN generalization on new datasets; requires labels for initial
training.

• Our Goal: Evaluate graph embedding quality without labels; for unsupervised learning
which is no labels during the whole process.

62

	Introduction
	Problem Statement
	Revisiting UDR and Beyond
	Consensus based Spatial Space Occupancy Rate (CSOR): A Spatial Perspective
	Spectral Space Occupancy Rate (SSOR): A Spectral Perspective
	Experiments
	Experimental Settings
	Experiment Results and Analysis

	Discussions and Conclusions
	Experimental Settings
	Downstream Task
	Datasets
	GNN models
	Baseline Internal Evaluation Strategy
	Candidate Hyperparameters (search space) and search strategy
	Evaluation Metrics

	Sensitivity Analysis
	Revisiting Existing Internal Strategies under A Unified Framework
	Incoherence
	Self Cluster
	Measuring Clustering in Embeddings
	Isotropic Random Vectors
	Components of the Self Cluster Formula

	NESum
	RankMe
	Stable Rank
	-ReQ
	Condition Number

	More Experiment Results for HPO
	Preliminaries and Related Work
	Automated Machine Learning(AutoML)
	Graph Embedding
	From Spatial-based GNNs to Spectral-based GNNs
	Internal Strategy (IS)

	Experimental Settings and Additional Results of the Visualization Experiments
	Spatial distribution for CSOR
	Validate hypothesis from spatial perspective for CSOR
	Spectral distribution for SSOR
	Validate hypothesis from spectral perspective for SSOR

	Complexity Analysis on CSOR and SSOR
	Time Complexity Analysis
	Space Complexity Analysis
	Comparison of Space and Time Complexity

	Complete Experimental Results
	Comparison of Spatial-based and Spectral-based Methods in Node Aggregation
	GNN Evaluator
	Construct a DiscGraph Set
	Train the GNN Evaluator
	Summary

