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ABSTRACT

Graph Neural Network (GNN) based node embedding methods are a promising
approach to learning node representations for downstream tasks such as link pre-
diction, node classification, and node clustering. GNN-based methods usually
work in an unsupervised or semi-supervised manner, learning node representa-
tions without or with limited label information. We empirically show, however,
that the performance of learned node embeddings on downstream tasks may be
heavily impacted by the GNN-method’s hyperparameter configuration. Unfortu-
nately, existing hyperparameter optimisation methods typically rely on labeled
data for evaluation, making them unsuitable for unsupervised scenarios. This
raises the question: how can we tune the hyperparameters of GNNs without us-
ing label information to obtain high quality node embeddings? To answer this,
we propose a framework for evaluating node embedding quality without rely-
ing on labels. Specifically, our framework consists of two steps: building prior
beliefs that characterize high-quality node embeddings, and quantifying the ex-
tent to which those prior beliefs are satisfied. More importantly, we instantiate
our framework from two different but complementary perspectives: spatial and
spectral information. First, we introduce the Consensus-based Space Occupancy
Rate (CSOR) method that evaluates node embedding quality from a spatial view.
It conducts pairwise comparisons of the spatial distances between node embed-
dings obtained from various hyperparameter configurations. Next, we present the
Spectral Space Occupancy Rate (SSOR) method, which takes a spectral perspec-
tive and evaluates the embedding quality by examining the singular values of the
node embedding matrices. Extensive experiments on seven GNN models with
four benchmark datasets demonstrate the effectiveness of both CSOR and SSOR.
Specifically, both methods consistently prioritize hyperparameter configurations
that yield high-quality node embeddings for downstream tasks.

1 INTRODUCTION

Graph-structured data is ubiquitous due to its strong expressive capability in representing relation-
ships between objects. Node embedding methods, including traditional approaches (Perozzi et al.,
2014; Grover & Leskovec, 2016; Cao et al., 2015; Wang et al., 2016) and Graph Neural Network
(GNN)-based methods (Kipf & Welling, 2016b; Pan et al., 2018; Hamilton et al., 2017a; Xu et al.,
2018; Velickovic et al., 2017), aim to learn node representations in an unsupervised manner, though
they can sometimes also be semi-supervised. These embeddings are then utilized for various down-
stream tasks such as link prediction (Zhang & Chen, 2018), node classification (Maurya et al., 2021),
and graph clustering (Tsitsulin et al., 2023b). Despite the impressive results achieved by these meth-
ods, some long-standing challenges remain underexplored. Particularly, we empirically show that
the performance of node embeddings in downstream tasks may heavily depend on the hyperparam-
eters (HPs) configurations (see Figures 4, 5,6, 7,8,9, and 10 in Appendix B for details). Therefore,
given a node embedding model, to achieve a robust performance on downstream tasks across differ-
ent datasets, the HPs should be carefully optimised.

However, we found that most existing HP optimisation methods are designed for supervised learning
settings (Feurer & Hutter, 2019; He et al., 2021; Bischl et al., 2023), making them unsuitable for
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unsupervised learning scenarios where labels are not available. This inevitably leads to a question:
how could we tune the hyperparameters of unsupervised representation learning methods? Broadly
speaking, this can be approached in two distinct ways: through a meta-learning-based strategy
(Hospedales et al., 2021) or an internal strategy (Ma et al., 2023). On the one hand, meta-learning
strategies compare the internal structure of the labeled dataset to the unlabeled dataset, transferring
learned biases to optimize performance on the same learning task. On the other hand, internal
strategies investigate the internal structure of the unlabeled dataset itself and the behavior of learning
model, using some “prior beliefs” (which will be elaborated later) to optimize performance. We
argue that the underlying logic of meta-learning strategies is very intuitive and thus well understood
for humans: given one new dataset, we employ the solution to one previously seen dataset that
is closest to the given new dataset. In contrast, the logics behind various internal strategies are
not uniform, and they are too complex to be condensed into a single explanation. Due to inherent
challenges, there is considerably less research available on internal strategies than on meta-learning
approaches.

In this paper, we focus on the so-called internal strategies for tuning unsupervised models, showing
how they can be unified using one single framework. Specifically, “internal” means that the evalu-
ation of embedding quality is performed without external information such as labels. While most
existing internal strategies are initially designed for unsupervised representation learning on images,
we extend them to unsupervised representation learning on graphs and focus on evaluating the qual-
ity of node embeddings obtained from unsupervised GNN models. After revisiting existing internal
strategies, including UDR (Duan et al., 2020), Incoherence (Tsitsulin et al., 2023a), Self Cluster
(Tsitsulin et al., 2023a), α-ReQ (Assran et al., 2022), RankMe (Garrido et al., 2023; Roy & Vetterli,
2007), NESum (He & Ozay, 2022), Condition Number (Ben-Israel, 1966; Tsitsulin et al., 2023a),
and Stable Rank (Tsitsulin et al., 2023a), we found that the design and development of internal
strategies can be distilled into two fundamental steps: 1) build prior beliefs, where involves build-
ing prior beliefs (namely imposing assumptions) on the characteristics that indicate high-quality
embeddings; and 2) quantify prior beliefs, which involves assessing the extent to which those prior
beliefs are satisfied. With this framework, all existing internal strategies can be analyzed from a
unified perspective (see Appendix C for details): using UDR (Duan et al., 2020) as an example, they
first build the prior belief that well-performing HP configurations generate stable, disentangled rep-
resentations across different random seeds. This is inspired by (Rolinek et al., 2019), which shows
that the reconstruction mechanism in VAEs (Kingma & Welling, 2014) induces local orthogonal-
ity that results in disentangled representations and only well-performing HP configurations enable
VAEs to exhibit this property. On this basis, they quantify the extent to which this prior belief is
satisfied by measuring the similarity of embeddings generated by the same HP configurations across
random seeds. Higher similarity indicates a higher degree of disentanglement.

When confining our attention to evaluating the quality of node embeddings obtained from unsu-
pervised GNN models, we further instantiate two novel internal strategies within this framework
(namely building prior beliefs and quantifying prior beliefs). Before introducing them, we first
present spatial and spectral GNNs. Specifically, GNNs can be divided into: 1) spatial-based ap-
proaches, which aggregate node information directly in the node (spatial) domain by passing mes-
sages within local neighborhoods, and 2) spectral-based approaches, which transform nodes into
the spectral domain using the graph Laplacian for aggregation before mapping back to the node
domain. Chen et al. (2023) reveal that spatial- and spectral-based GNNs, while analyzing from
different perspectives and employing different techniques, ultimately achieve the same objective.
Building on this, we instantiate our framework from a spatial perspective by proposing CSOR, while
developing SSOR from a spectral perspective.

Consensus-based spatial Space Occupancy Rate (CSOR). We begin by conducting extensive
experiments with various unsupervised GNN models on four benchmark graph datasets, aiming to
empirically draw inspirations from observations to build prior beliefs. Specifically, given a GNN
model on a specific graph, we empirically observe that: among all node embeddings generated with
different HP values, those that exhibit greater spatial separability from other embeddings tend to
perform better in downstream tasks. On this basis, we build the following prior belief: a given set of
HP configurations that makes node embeddings more distinct among all embeddings is preferable
(which will be explained later). Based on this prior belief, we propose CSOR, which quantifies
this prior belief by comparing the spatial distances between embeddings obtained with different HP
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configurations through pairwise comparisons. The process of quantifying the prior belief is actually
the process of assessing node embedding quality (or performing HP optimisation).

Spectral Space Occupancy Rate (SSOR). Node embeddings can also be analyzed from a spec-
tral perspective. By examining the singular values of the node embedding matrices, we can gain
insights into embedding quality, offering a complementary view to spatial-based evaluation. Based
on this, we propose SSOR, which shares the same prior belief as CSOR but quantifies it differently.
SSOR quantifies this belief by analyzing the singular values of the node embedding matrices, where
a higher sum of singular values (which are simultaneously distributed uniformly across different
dimensions as much as possible) indicates higher quality.

We conducted extensive experiments using seven unsupervised GNN models on four benchmark
datasets to demonstrate the effectiveness of CSOR and SSOR. Results show that both methods
consistently perform well for all GNN models across datasets. In several cases, they can even
select the optimal HP configurations. Specifically, for obtained node embeddings we calculate the
Spearman correlation coefficient (Zar, 2005) between the ranking scores provided by CSOR (or
SSOR) and the actual performance metrics on downstream tasks. The correlation coefficients are
often around 0.9 and never fall below 0.6, showing that CSOR and SSOR can effectively distinguish
between different HP configurations and identify those that produce high-quality node embeddings.

Overall, the contributions of this paper are summarized as follows: 1) We propose a framework for
developing internal strategies by establishing general principles: building prior beliefs and quan-
tifying prior beliefs; 2) More importantly, we instantiate our framework from two different but
complementary perspectives: CSOR from a spatial perspective and SSOR from a spectral perspec-
tive. We conduct extensive experiments to validate the effectiveness of both methods using seven
unsupervised GNN models on four benchmark datasets; 3) To facilitate future research, we establish
a generic testbed that allows researchers and practitioners to evaluate the effectiveness of our auto-
matic HPO methods (or their newly proposed methods) on various unsupervised node embedding
algorithms. The testbed is publicly available on Anonymous GitHub.

2 PROBLEM STATEMENT

Due to space limitations, the preliminaries and related work are deferred to Appendix E, and we
directly begin by problem statement as follows.

An attributed graph is defined as G = (V, E ,X), where V = {v1, ..., vN} represents the set of
nodes, E = {e1, ..., eM} denotes the set of edges, and X ∈ RN×Q is the node attribute matrix, with
N = |V| being the number of nodes and Q the dimensionality of the node attributes. Alternatively,
the graph can be represented as G = (A,X), where A is the adjacency matrix, with Aij = 1 if
there is an edge between node vi and vj , and Aij = 0 otherwise.

A (node-level) unsupervised graph representation learning function f(·) takes a graph G as input
and outputs a node embedding vector for each individual node. Formally, we define f : G → Z ∈
RN×D, where N is the number of nodes and D denotes the dimensionality of the learned node
embeddings. In this paper, we aim to address the following problem:

Problem (Hyperparameter Optimization for Unsupervised Graph Representation Learning ). Given
a graph G, an unsupervised graph representation learning algorithm f(·), and a set of HP configu-
rations H for f(·), we aim to develop a HP optimization (HPO) method that can select an optimal
HP configuration h∗ ∈ H without relying on labels, such that the node embeddings obtained using
fh∗(·) can achieve optimal performance (which will be defined later based on the specific down-
stream task).

The main challenge of solving this problem lies in the absence of ground truth labels in unsupervised
settings, rendering the evaluation of the HPO method inherently difficult. Furthermore, the unique
characteristics of graph-structured data, especially its non-i.i.d. nature in graph representation learn-
ing, make this problem even more challenging to tackle. To address this, we employ the so-called
internal strategy to evaluate the quality of graph embeddings without relying on labels.

Definition (Internal Strategy for Evaluating Node Embeddings). Given a graph G, an unsupervised
graph representation learning algorithm f(·), a set of HP configurations H, and the resulting node
embedding matrices {Z(h) | h ∈ H}, where Z(h) = fh(G), an internal strategy Q : RN×D → R
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is defined as a function that takes a node embedding matrix Z as input and outputs a ranking score
s ∈ R. Formally, we have s = Q(Z(h)).

Specifically, the internal strategy evaluates the quality of the node embeddings by assigning a rank-
ing score, which allows for the comparison of different HP configurations. This ranking can then be
used to select the optimal HP configuration that leads to the best node embeddings for downstream
tasks.

3 REVISITING UDR AND BEYOND

By revisiting Unsupervised Disentanglement Ranking (UDR) (Duan et al., 2020), we demonstrate
how the two fundamental steps in our proposed framework are motivated and performed: 1) building
prior beliefs about what constitutes a good embedding; and 2) quantifying these prior beliefs.

Inspiration. Rolinek et al. (2019) reveal that the disentangled properties of Variational Autoen-
coders (VAEs) arise from their inherent reconstruction mechanism. The decoder’s task in VAE
models shares similarities with Principal Component Analysis (PCA) (Maćkiewicz & Ratajczak,
1993; Jolliffe & Cadima, 2016), as both aim to capture and reconstruct the data’s key patterns
through independent components. This results in the decoder encouraging orthogonal and disen-
tangled latent variables from the encoder. Additionally, the imposition of a diagonal prior on the
latent space pushes the encoder to produce locally orthogonal representations, further enhancing
the disentangling effect. This interplay between the reconstruction objective and the diagonal prior
naturally leads to disentangled representations without the need for explicit design in the model.

Building and Quantifying Prior Beliefs. Based on the understanding of how VAEs achieve dis-
entanglement, UDR (Duan et al., 2020) is proposed to optimize HPs in unsupervised representation
learning on images. Specifically, they build the following prior belief: the reconstruction objective
in VAEs is unique, causing well-performing HP configurations to generate stable, disentangled hid-
den variables, as the decoder (due to its PCA-like behavior) pushes the encoder towards producing
robust, disentangled representations. UDR’s prior belief is rooted in the concept that “happy fam-
ilies are all alike; every unhappy family is unhappy in its own way” (Tolstoy, 2016), meaning that
high-quality HP configurations produce consistent, stable representations across different random
seeds, while poor HP configurations lead to diverse, unstable representations. UDR quantifies this
prior belief through a consensus-based method (see Appendix E for definition), measuring the sim-
ilarity of representations generated under different random seeds. By evaluating the consistency of
these representations, UDR identifies the most disentangled and effective HP configurations.

For completeness, UDR works as follows. They train H × S models, where H is the number of HP
configurations, and S is the number of seeds for initial model weights. For each HP configuration
h ∈ H,

1. they sample P random seeds {seed1, ..., seedP } with P ≤ S, and obtain embed-
dings {Z(h1), ...,Z(hP )} using the learning model configured with h under random seeds
{seed1, ..., seedP }, respectively;

2. they conduct
(
P
2

)
pairwise comparisons of embeddings {Z(h1), ...,Z(hP )} to obtain a list

of scores {UDRj
h|j ∈ {1, 2, ...,

(
P
2

)
}}; Without loss of generality, suppose the j-th pair is

(h1, h2), then UDRj
h = sim(Z(h1),Z(h2)) with sim(·) a similarity metric;

3. on this basis, they compute the median of this list as the final UDR score, namely
UDRh = median

{
UDRj

h | j = 1, . . . ,
(
P
2

)}
, where a higher UDR score indicates a better

HP configuration.

Discussion. UDR’s development involves building prior beliefs (or drawing inspiration) from the
mechanism analysis of VAEs, which raises the question: Can or should we rely solely on analyzing
the mechanisms of representation learning models to build prior beliefs, or are there alternative ap-
proaches? To address this, we must consider two key points: 1) Given the inherent uncertainty and
complexity of neural networks (Lipton, 2016), it is not always feasible to analyze their mechanisms
from a mathematical perspective; 2) Despite the opacity of learning models, we can partially under-
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stand their internal workings by observing the relationships between inputs and outputs—a principle
underlying many post-hoc explainable AI (XAI) techniques (Arrieta et al., 2020).

In other words, while UDR was developed through the mechanism analysis of VAEs, we note that
the high level of disentanglement can be observed in the outputs of VAEs (e.g., image embeddings)
without directly studying their mechanisms. This suggests that it is not always necessary to analyze
the model’s internal mechanisms when dealing with complex models. Instead, we can relax this
requirement by using observation-driven methods to build prior beliefs.

4 CONSENSUS BASED SPATIAL SPACE OCCUPANCY RATE (CSOR): A
SPATIAL PERSPECTIVE

We now demonstrate how to leverage this observation-driven approach to draw inspirations and then
build prior beliefs, where we assume that the distribution of embeddings can encapsulate the charac-
teristics of the underlying mechanisms of GNN models. Next, we quantify these beliefs to evaluate
unsupervised node embedding quality, resulting in a novel internal strategy dubbed Consensus-based
spatial Space Occupancy Rate (CSOR).

Visualisation. Node embeddings from GNN models are typically high-dimensional (8 in our ex-
periments), making it difficult to directly observe their distribution. With the help of PCA, we can
visualize the distribution of node embeddings in a 3-dimensional space. PCA is used as it can effec-
tively reduce the dimensionality while preserving much of the original variance (Jolliffe, 2002).

Observations and Inspirations. To draw some inspirations from node embeddings distributions
and understand which characteristics lead to better performance in downstream tasks, we experi-
ment with 1280 sets of HP configurations (see Appendix F for setting details). We select four node
embeddings which are evenly sampled from the worst to the best performance on downstream node
classification task, and visualize them with PCA. From Figure 1 (and more figures in Appendix F.1),
we observe that when node classification performance is poor, the embeddings of nodes from differ-
ent classes are mixed together. As performance improves, the separability between embeddings of
nodes from different classes increases. Drawing inspirations from these observations, we propose
a hypothesis: node embeddings associated with a specific HP configuration become increasingly
dispersed as downstream performance improves, which we refer to as intra-embedding. Simultane-
ously, node embeddings from a specific well-performing HP configuration tend to diverge further
from those of poorly-performing configurations as its downstream performance improves, which we
refer to as inter-embedding. To validate this hypothesis, we use the worst-performing node em-
bedding matrix as a baseline and calculate the Manhattan distance (Krause & Golovin, 2014) from
all other embedding matrices to this baseline, effectively capturing aggregate differences across di-
mensions. As shown in Figure 42 (a) in Appendix F.2, we observe that node embedding matrices
(where a point corresponds to an embedding matrix) farther from the worst-performing one tend to
show better performance. This supports our hypothesis that the quality of node embedding matrices
improves as they become spatially more distant from the worst-performing embedding matrix.
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Spatial visualisation of VGAE on Cora

Figure 1: Relationship between node embedding distribution and node classification accuracy.
Nodes are colored by labels to illustrate clustering. In this experiment on the Cora dataset using
the VGAE model, higher Accuracy values (indicating better performance) correspond to more dis-
persed embedding distributions. (Experiment settings and more figures are given in Appendix F).
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Building and Quantifying Prior Beliefs. Based on above observations and analyses, we empiri-
cally validated that node embeddings spatially farther from the worst-performing one exhibit higher
qualities. We term this characteristic as distinctness, where a higher value means higher quality. On
this basis, we build the following prior belief: for node embeddings generated by message-passing-
based GNNs, greater spatial distinctness correlates with higher performance in downstream tasks.
To quantify prior belief, we define spatial distinctness as the degree to which a node embedding
matrix is spatially separated from other node embedding matrices. It is important to note that: due
to the lack of label information, it is impossible to know the worst-performing embedding matrix
on downstream task. Therefore, we compare each individual node embedding matrix to other node
embedding matrices (which are actually used as baseline) rather than the worst-performing one. In
this way, we are actually assuming that “poor-performing HP configurations are all alike” (e.g., the
embeddings of nodes from different classes are mixed). In other words, we employ the consensus
formed by all node embedding matrices as a baseline to quantify the prior belief. By comparing
Figure 42 (a) and (b) in Appendix F.2, we can see that spatial distinctness calculated based on this
consensus baseline (corresponding to Figure 42 (b)) shows a stronger correlation with performance
in downstream tasks compared to using the worst-performing embedding matrix as the baseline
(corresponding to Figure 42 (a)). This is because performing pairwise comparisons (corresponding
to the consensus baseline) can capture more distributional information about all node embedding
matrices.

Formalisation of CSOR. Given a graph representation learning model f(·) with a specific HP
configuration h ∈ H, denoted as fh(·), the model maps nodes of a graph G to an embedding matrix
Z(h), where Z(h) = fh(G). Using this notation, we propose an internal strategy for HPO in
unsupervised graph representation learning, called Consensus-based spatial Space Occupancy Rate
(CSOR), which maps the node embedding matrix Z(h) to a ranking score s ∈ R, quantifying the
quality of the embeddings. Specifically, CSOR is designed as follows:

• For each pair of HP configurations (hi, hj) with i ̸= j, we calculate the difference Di,j be-
tween the resulting embedding matrices Z(hi) and Z(hj), with Di,j = diff(Z(hi),Z(hj))
and diff(·, ·) is the Manhattan distance.

• Next, the CSOR score si of HP configuration hi is computed as
∑|H|

j=1,j ̸=i Di,j , where H is
the set of investigated HP configurations. Then the optimal HP configuration is determined
as: h∗ = argmaxhi∈H{si | i = 1, . . . , |H|}.

Specifically, the pseudocode for performing HPO with CSOR is given in Algorithm 1 and its com-
plexity analysis is given in Appendix G.

5 SPECTRAL SPACE OCCUPANCY RATE (SSOR): A SPECTRAL PERSPECTIVE

In CSOR, we built the following prior belief: for node embeddings generated by message-passing-
based GNNs, greater spatial distinctness correlates with higher performance in downstream tasks;
To quantify this prior belief, we defined and measured the spatial distinctness from a spatial per-
spective. Now, we approach this problem from a spectral-based perspective, and present a novel
internal strategy called Spectral Space Occupancy Rate (SSOR). To achieve this, we first build
a similar prior belief: for node embeddings generated by message-passing-based GNNs, greater
spectral distinctness correlates with higher performance in downstream tasks; To quantify this prior
belief, we need to define and measure the spectral distinctness. Before giving its formal definition,
we present the intuition and rational behind it.

Intuition and Rational behind Spectral Distinctness. Given a node embedding matrix, performing
Singular Value Decomposition (SVD) on it can yield singular values that represent the extent to
which the node embeddings are spreading across different dimensions in the latent space. We argue
that a singular value can capture the spread extent of node embeddings in some (virtual) dimension,
which does not necessarily correspond to a specific dimension in the latent space. Intuitively, by
simply summing all the singular values, we can obtain the total spread extent of node embeddings
across all dimensions in the latent space. Therefore, a higher value, indicating a larger total extent
of spread, is associated with better separability. From this perspective, it is intuitive to use the sum
of singular values to represent the distinctness of node embeddings in the spectral space, referred
to as spectral distinctness. However, simply maximizing the sum of singular values can lead to
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an undesirable effect known as dimensional collapse (Jing et al., 2021). This phenomenon occurs
when embeddings fail to capture the full variability of the data and collapse into a lower-dimensional
subspace, resulting in poor downstream performance. In this case, a high sum of singular values can
be misleading if dominated by a few large singular values while the others remain very small. To
mitigate this, we propose to maximise the sum of singular values while ensuring that the singular
values are uniformly distributed as much as possible. For instance, if we have three groups of
singular values (4, 0, 0, 0), (2, 2, 0, 0), (1, 1, 1, 1), the group (1, 1, 1, 1) is preferred. This leads to
Spectral Space Occupancy Rate (SSOR), which can effectively quantify the spectral distinctness
and thus the prior belief.

High-level Idea of SSOR and Empirical Evidence. Conceptually, give a node embedding matrix,
our proposed Spectral Space Occupancy Rate (SSOR) approach attempts to quantify the prior belief
by computing the area occupied in spectral space spanned by the normalized singular values. To
visually demonstrate this, we distribute all the normalized singular values (which will be formally
defined later) evenly across the 360 degrees in a 2-dimensional radar chart as shown in Figure 2. In
this way, each normalised singular value represents one (virtual) dimension, and its value indicates
the spread extent of the node embeddings in that dimension. By connecting these line segments,
we form an irregular polygon. The area of this polygon is analogous to the spatial distinctness in
CSOR, which is obtained by accumulating pairwise distances. From Figure 2 (and more figures in
Appendix F.3), we can observe that as the downstream performance (i.e., Accuracy) of the node
embedding matrix improves, the area of the irregular polygon formed by the singular values of
the node embedding matrix becomes larger. This empirically shows that quantifying the spectral
distinctness of node embeddings using the area is effective. Figure 77 and other figures in Appendix
F.4 give more empirical evidences.
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SVD Radar Charts for VGAE on Cora

Figure 2: Relationship between spectral space occupancy rate and downstream node classification
performance. We ran VGAE on the Cora dataset with 1280 HP configurations and selected 4 node
embedding matrices, ranging from the worst to the best performance (Accuracy). Detailed settings
and more figures are given in Appendix F.3.

Formalisation of SSOR. Given a node embedding matrix Z(h), we first perform the Singular Value
Decomposition (SVD) on it, namely Z(h) = UΣV T , where Σ is a diagonal matrix containing the
singular values σi. Next, we normalise the singular values as follows: σ̃i = σi/σmax, which are used
as vertices of a radar chart in Figure 2. Finally, the area of the radar chart, representing the spectral
space occupancy rate, is computed as follows:

SSOR(Z(h)) = 0.5 ∗

∣∣∣∣∣
r−1∑
i=1

σ̃i ˜σi+1 sin(θi+1 − θi)

∣∣∣∣∣ ,
where θi indicates the angle between vertex i (i.e., normalised singular value σ̃i) and vertex 1
(namely σ̃1) in polar coordinates. Given a node embedding matrix, the SSOR score considers both
the magnitude of singular values and the evenness of their distribution. A larger area implies higher
spectral space occupancy rate, suggesting more informative embeddings for downstream tasks. Due
to space limitations, the complexity analysis of SSOR is given in Appendix G.

6 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions:
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RQ1. Can CSOR and SSOR effectively rank HP configurations to identify those that can produce
well-performing node embeddings for downstream tasks?

RQ2. How do CSOR and SSOR compare to state-of-the-art internal strategies in selecting optimal
HP configurations for downstream tasks?

6.1 EXPERIMENTAL SETTINGS

Specifically, we consider four benchmark datasets, including Cora, Citeseer, Pubmed, and DBLP;
Moreover, we consider the following GNN models due to their superior performance in learning
node embeddings: GAE (Kipf & Welling, 2016b), VGAE (Kipf & Welling, 2016b), ARGA (Pan
et al., 2018), ARGVA (Pan et al., 2018), GraphSAGE (Hamilton et al., 2017a), GIN (Xu et al.,
2018), and GAT (Velickovic et al., 2017). For each GNN model, we generate a wide range of
HP configurations by varying the number of layers, hidden dimensions per layer, and the number of
maximal training epochs. In addition, we consider two typical downstream tasks, node classification
and link prediction. For node classification, performance is evaluated using accuracy, while link
prediction performance is measured by AUC-ROC.

Importantly, we consider a wide range of internal strategies as baselines, including Incoherence
(Tsitsulin et al., 2023a), Self Cluster (Tsitsulin et al., 2023a), α-ReQ (Assran et al., 2022), RankMe
(Garrido et al., 2023; Roy & Vetterli, 2007), NESum (He & Ozay, 2022), Condition Number (Ben-
Israel, 1966; Tsitsulin et al., 2023a), and Stable Rank (Tsitsulin et al., 2023a). To validate the
effectiveness of CSOR and SSOR and compare them with other baselines, we consider the following
evaluation metrics: 1) Spearman coefficients that assess the correlation between the ranking scores
given by an internal strategy and the actual downstream task performance (either Accuracy for node
classification or AUC-ROC for link prediction), 2) Actual downstream performance (in terms of
Accuracy or AUC-ROC) of the node embedding matrix resulted by selected HP configuration, and
the relative rankings of different internal strategies based on downstream performance. Due to
space constraints, more details about datasets, GNN models, HP configurations, downstream tasks,
and evaluation metrics are given in Appendix A.

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

VGAE

GAE

ARGA

ARGVA

GAT

GIN

GraphSAGE

Model Performances on node classification Using Cora

0.3 0.4 0.5 0.6 0.7
Accuracy

VGAE

GAE

ARGA

ARGVA

GAT

GIN

GraphSAGE

Model Performances on node classification Using Citeseer
CSOR
SSOR
RankMe
NESum
AlphaReQ
Incoherence
ConditionNumber
SelfCluster
StableRank

(a) Results on dataset Cora (b) Results on dataset Citeseer

Figure 3: Actual downstream performance results across 7 GNN node embedding models on Cora
and Citeseer (more results on Pubmed and DBLP are given in Figure 11 in Appendix D), with 1280
sets of different HP configurations for each combination of GNN model and dataset. These box plots
show the node classification performance (in terms of accuracy values) of node embedding matrices
resulted by selected HP configuration for different internal strategies. Particularly, we highlight
the performances corresponding to three internal strategies with colors: blue squares for CSOR, red
triangles for SSOR, and white diamonds for RankMe (which is the strongest baseline in most cases).
We see that the performance of CSOR and SSOR are usually comparable to RankMe, and they can
all effectively select well-performing HP configurations.

6.2 EXPERIMENT RESULTS AND ANALYSIS

Figures 3 and 11 (in Appendix D) illustrate the downstream performance of node embeddings pro-
duced by HP configurations selected through various internal strategies, with node classification
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Table 1: Experimental results for node classification: accuracy values (relative rankings) of various
internal strategies across 7 GNN models on the Cora and Citeseer datasets. Additional results for
Pubmed and DBLP are deferred to Table 5 in Appendix H due to space limitations.

Dataset Method VGAE GAE ARGA ARGVA GAT GIN GraphSAGE Avg. Rank

Cora

CSOR 0.79(1) 0.75(5) 0.72(3) 0.73(4) 0.78(1) 0.65(3) 0.69(2) 2.71
SSOR 0.79(1) 0.79(1) 0.74(1) 0.73(2) 0.77(3) 0.69(1) 0.69(2) 1.57
RankMe 0.79(1) 0.79(1) 0.71(4) 0.75(1) 0.77(3) 0.66(2) 0.69(2) 2.00
NESum 0.34(7) 0.50(7) 0.34(7) 0.53(7) 0.70(6) 0.57(5) 0.53(7) 6.57
AlphaReQ 0.61(5) 0.75(4) 0.53(5) 0.66(6) 0.55(7) 0.46(6) 0.53(6) 5.57
Incoherence 0.55(6) 0.35(9) 0.33(9) 0.68(5) 0.78(1) 0.34(7) 0.59(5) 6.00
ConditionNumber 0.34(8) 0.55(6) 0.50(6) 0.52(8) 0.55(7) 0.33(8) 0.53(7) 7.14
SelfCluster 0.34(8) 0.36(8) 0.34(7) 0.34(9) 0.47(9) 0.33(9) 0.43(9) 8.43
StableRank 0.79(1) 0.79(1) 0.74(1) 0.73(2) 0.77(3) 0.62(4) 0.74(1) 1.86

Citeseer

CSOR 0.57(4) 0.57(4) 0.45(4) 0.59(4) 0.62(3) 0.46(2) 0.48(1) 3.14
SSOR 0.67(1) 0.64(1) 0.47(1) 0.63(1) 0.63(1) 0.45(3) 0.47(3) 1.57
RankMe 0.65(3) 0.60(2) 0.47(1) 0.63(1) 0.62(4) 0.48(1) 0.48(1) 1.86
NESum 0.34(6) 0.53(6) 0.31(7) 0.34(7) 0.45(7) 0.32(6) 0.44(5) 6.29
AlphaReQ 0.46(5) 0.56(5) 0.38(5) 0.50(5) 0.55(5) 0.39(5) 0.39(6) 5.14
Incoherence 0.24(8) 0.34(8) 0.30(9) 0.49(6) 0.44(8) 0.26(7) 0.39(6) 7.43
ConditionNumber 0.24(8) 0.42(7) 0.31(8) 0.28(8) 0.46(6) 0.26(7) 0.39(6) 7.14
SelfCluster 0.32(7) 0.32(9) 0.31(6) 0.28(9) 0.36(9) 0.26(7) 0.34(9) 8.00
StableRank 0.67(1) 0.59(3) 0.47(1) 0.63(1) 0.63(1) 0.45(3) 0.47(3) 1.86

being the downstream task in this case. Additional results for link prediction are shown in Figure 12
and 13 in Appendix D. These figures display the performance distribution across different strategies.
To provide further detail and insights, Tables 1 and 5 (in Appendix H) present accuracy values and
rankings of each strategy for node classification, while Table 6 in Appendix H shows similar results
for AUC-ROC values and rankings in link prediction. Moreover, Tables 7 and 8 in Appendix H
present the Spearman correlation coefficients between the ranking scores produced by the internal
strategies and the actual downstream task performance—AUC-ROC for link prediction (Table 7)
and accuracy for node classification (Table 8). These results further validate the effectiveness of the
proposed methods. From these figures and tables, we can answer the research questions as follows.

Answer to RQ1 (Effectiveness of CSOR and SSOR in selecting HP configurations). We answer
this question from two aspects: 1) the actual downstream performance of the selected HP configura-
tions, and 2) the Spearman correlation between ranking scores and actual downstream performance.

• First, as shown in Figures 3 and 11, CSOR and SSOR often select HP configurations that yield
strong node classification performance, often outperforming 75% of configurations and, in some
cases, approaching the best possible performance. For example, in models like ARGVA, our
methods sometimes identify the optimal HP configurations, demonstrating their effectiveness in
the HPO task. Similar results can be observed for link prediction in Figure 12 and 13.

• Second, to assess whether CSOR and SSOR consistently prioritize well-performing HP configura-
tions (rather than selecting one by chance), we refer to the Spearman correlation results in Tables 7
(for link prediction) and 8 (for node classification). A high correlation between ranking scores and
actual downstream performance indicates that the internal strategy reliably assigns higher scores
to better-performing configurations, rather than relying on chance (as Figures 3, 11, 12and 13 only
show the results on best-performing configuration). Concretely, the strong correlation coefficients
in Tables 7 and 8 further validate the effectiveness of our methods. From Table 7, we can see that
across seven GNN models and four datasets, with 1280 HP configurations, the average Spearman
coefficient is 0.906 for CSOR, 0.969 for SSOR. These high values reflect a strong positive correla-
tion between our ranking scores and actual performance, reinforcing that our methods consistently
identify well-performing node embeddings across diverse experiments, rather than selecting them
by chance.

Answer to RQ2 (Comparison with SOTA internal strategies). Similar to answering RQ1, we
address this question from two perspectives:

• First, we consider the actual downstream performance and their relative rankings. From Figures
3, 11, 12 and 13, we observe that SSOR and CSOR often outperform weaker baselines such as
NESum, AlphaReQ, Incoherence, Condition Number, and SelfCluster, and are comparable to the
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strongest baselines, RankMe and StableRank. These results are further supported by the average
ranking results shown in Tables 1, 5, and 6. For the node classification task across 28 HPO
experiment settings (7 GNN models on 4 datasets), CSOR achieved the best performance 8 times
(average rank 2.79), and SSOR 15 times (average rank 1.75). In the link prediction task, CSOR
performed best 5 times (average rank 3.36), while SSOR excelled 18 times (average rank 1.39).
This demonstrates that CSOR, and especially SSOR, are competitive with existing state-of-the-art
internal strategies.

• Second, we consider the Spearman correlation between ranking scores and actual downstream
performance by investigating the results from Tables 7 and 8. It can be seen that CSOR, espe-
cially SSOR, often outperform weaker baselines by a large margin. Meanwhile, they are com-
parable to the strongest baselines RankMe and StableRank in terms of consistently prioritising
well-performing HP configurations.

7 DISCUSSIONS AND CONCLUSIONS

In this paper, we present a unified framework for developing internal strategies to evaluate the qual-
ity of node embeddings without the need for labels. Our approach is grounded in two fundamental
principles: building prior beliefs and quantifying these beliefs. Firstly, we identified that prior beliefs
about the quality of node embeddings can be built either through analyzing the mechanisms of repre-
sentation learning models or through an observation-driven approach. We introduced spatial-based
and spectral-based methods as two different but complementary ways of building these prior beliefs.
The spatial-based method, CSOR, derives prior beliefs from the spatial distribution characteristics of
the node embeddings. The spectral-based method, SSOR, observes the singular values of the embed-
ding matrices to form similar prior beliefs. Secondly, we developed methods to quantify these prior
beliefs. We demonstrated that quantification could be approached through consensus-based meth-
ods, which involve pairwise comparisons of embeddings generated with different hyperparameter
values, as exemplified by CSOR. Alternatively, a stand-alone approach can be used, as in the case
of SSOR, which leverages singular values directly for quantification without the need for compara-
tive analysis. Through extensive experiments involving seven GNN models across four benchmark
datasets, and 1280 sets of HP configurations for each combination of model and dataset, we vali-
dated the effectiveness of our proposed methods. The results consistently showed that both CSOR
and SSOR could reliably evaluate the quality of node embeddings and identify well-performing HP
configurations. Our methods exhibited strong correlations with actual performance metrics, indicat-
ing their high accuracy and stability.

Limitations and Future Work. In our experiments, we have only tested our internal strategies
on GNN models based on the message passing mechanism. It remains to be seen whether our
observations and conclusions hold for other types of node embedding models. Additionally, the four
datasets we used are all homogeneous. If we were to use heterogeneous datasets, would our internal
strategies still be effective? Regarding the downstream tasks to perform quantitative evaluations,
we used link prediction and node classification, where link prediction has less bias compared to
node classification but still cannot completely eliminate bias as unsupervised evaluation metrics do.
Furthermore, if we attempt to use deeper graph neural networks, the issue of oversmoothing may
arise. Can our internal strategies solve this problem? Therefore, future work should expand the
scope of experiments to include a wider variety of GNN models and datasets. This will help to
further validate the stability and generalizability of our methods.

Overall, our work not only introduces effective methods for unsupervised node embedding evalu-
ation but also provides a clear direction for future research in developing internal strategies. By
formalizing the building and quantifying of prior beliefs, we lay the groundwork for more sophisti-
cated and reliable evaluation methods in the field of machine learning.

Reproducibility Statement. To ensure reproducibility, we include detailed explanations of our
experimental setup in Appendix A, and complete experimental results in Appendix B, D, F, and H.
Our code is available on Anonymous GitHub.
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APPENDIX FOR “LABELS ARE NOT ALL YOU NEED: EVALUATING NODE
EMBEDDING QUALITY WITHOUT RELYING ON LABELS”
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J GNN Evaluator

A EXPERIMENTAL SETTINGS

To answer the research questions, we perform the following steps, which ensure a thorough eval-
uation of our proposed approaches and their ability to select optimal HP configurations for GNN
models.:

1. Datasets: We use four benchmark datasets: Cora, Citeseer, Pubmed, and DBLP (more
details see Appendix A.2).

2. GNN Models: We evaluate seven different GNN models: VGAE, GAE, GAT, ARGA,
ARGVA, GIN, and GraphSAGE (see Appendix A.3) .

3. Hyperparameter Configurations: For each GNN model, we generate multiple node embed-
dings using various hyperparameter configurations (see Appendix A.5).

4. Evaluation Metrics: We measure the performance of each hyperparameter configuration
using the AUC value for a downstream task, link prediction. Additionally, we calculate the
Spearman coefficient to assess the correlation between our ranking scores and the actual
performance (see Appendix A.6).
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5. Comparison with Baselines: We compare the performance of our proposed methods
(CSOR and SSOR) with the best-performing existing methods RankMe, as well as with
the median and top AUC values of all HP configurations, to determine their relative effec-
tiveness (see Section 6.2).

In the reminder of this section, we will introduce the experimental settings and the motivations for
choosing them, including the datasets, the GNN models used to generate graph embeddings, the
downstream task for evaluation, and the candidate HPs.

All experiments are implemented in Python 3.10 (using PyTorch v2.0.1 and TensorFlow v2.13.0)
and executed on a machine equipped with an AMD EPYC 9354 CPU (16 cores, 60.1 GB RAM), and
an Nvidia RTX 4090 GPU (25.2 GB video memory). The system operates with Docker v20.10.10
and a 751.6 GB SSD.

A.1 DOWNSTREAM TASK

In this work, we use two downstream tasks: node classification and link prediction. Node classifi-
cation focuses on predicting the label of a node based on its own features as well as the local graph
structure, placing emphasis on the node’s neighborhood information. In contrast, link prediction is
concerned with determining whether an edge exists between two nodes, focusing more on capturing
the overall structural relationships within the graph.

By using both tasks, we gain a more comprehensive evaluation of the quality of node embeddings.
Node classification assesses how well embeddings capture local neighborhood patterns, while link
prediction evaluates the model’s ability to represent global structural information. Together, these
tasks allow us to better assess whether the Internal Strategy can select hyperparameters that holisti-
cally evaluate the quality of node embeddings, rather than being biased toward a specific downstream
task.

A.2 DATASETS

Table 2: Citation datasets

Name #nodes #edges #features # classes

Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3
DBLP 17,716 105,734 1,639 4

The datasets Cora, Citeseer, and Pubmed come from Yang et al. (2016), while DBLP comes from
Bojchevski & Günnemann (2017). In all these datasets, nodes represent papers and edges represent
citation links. All four datasets belong to the category of citation networks. We chose these datasets
because they are well-established benchmarks in the field of graph neural networks and citation
networks, providing a diverse set of characteristics and challenges for evaluating node embeddings.
Details of the datasets are shown in Table 2.

A.3 GNN MODELS

We consider the following unsupervised graph embedding algorithms, which are all GNN-based
methods: GAE Kipf & Welling (2016b), VGAE Kipf & Welling (2016b), ARGA Pan et al. (2018),
ARGVA Pan et al. (2018), GraphSAGE Hamilton et al. (2017a), GIN Xu et al. (2018), GAT Velick-
ovic et al. (2017). Note that, to maintain consistency in the training strategy and simplicity
in the experimental framework, GAT, GIN, and GraphSAGE are all trained within the GAE
training framework.

These models were chosen because they have demonstrated strong performance in recent research
and represent a diverse set of methodologies in graph representation learning. GAE and VGAE
are foundational models in graph autoencoding, while ARGA and ARGVA introduce adversarial
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training for enhanced robustness. GraphSAGE is known for its inductive learning capability, making
it suitable for dynamic graphs. GIN provides a strong theoretical foundation for distinguishing
graph structures, and GAT incorporates attention mechanisms to focus on relevant graph parts. This
diversity allows us to test the generalizability of our Internal Strategy (IS) across different types of
GNNs.

A.4 BASELINE INTERNAL EVALUATION STRATEGY

Additionally, in other fields such as computer vision, singular values are also used to evaluate the
quality of embeddings, including Incoherence (Tsitsulin et al., 2023a), Self Cluster (Tsitsulin et al.,
2023a), α-ReQ (Assran et al., 2022), RankMe (Garrido et al., 2023; Roy & Vetterli, 2007), NESum
(He & Ozay, 2022), Condition Number (Tsitsulin et al., 2023a; Ben-Israel, 1966) and Stable Rank
(Tsitsulin et al., 2023a) (For details on these algorithms, see Appendix C). Among these methods,
RankMe has demonstrated the best performance when considering running time, robustness, and
effectiveness, making it the baseline for our experiments.

A.5 CANDIDATE HYPERPARAMETERS (SEARCH SPACE) AND SEARCH STRATEGY

Table 3: Candidate Hyperparameters for GNN Models

Hyperparameter Values
Num of neurons (Hidden Layer 1) {8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128}
Num of neurons (Hidden Layer 2) {8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128}

Num of epochs {100, 150, 200, 250, 300}

In our experiments, we use a consistent set of candidate HPs across all seven GNN models. This
includes the network structure and the number of epochs, with details shown in Table 3. The search
strategy we employ is grid search, which involves trying all possible HP settings within the search
space.

The selection of these HP values is motivated by considerations of practicality and robustness:

• Number of Layers: In practical applications of GNNs, it is uncommon to use very deep
networks. A two-layer GNN is often sufficient to capture necessary information, while
deeper networks can suffer from the oversmoothing problem (Shi et al., 2022), where node
features become indistinguishable. Thus, we chose 2 layers as it strikes a balance between
performance and computational efficiency.

• Hidden Units per Layer: Pre-experimentation indicated that configurations with 32 or 64
hidden units per layer often yield the best performance. However, to ensure robustness and
to verify if these configurations can handle extreme situations, we explored a wide range
of values from 8 to 128 hidden units. This range allows us to validate the effectiveness
of the IS in identifying appropriate hyperparameters by detecting performance degradation
caused by extreme values.

• Epochs: The number of training epochs is a critical factor for model convergence. We
included 100 epochs to represent insufficient training and 300 epochs to represent well-
trained models. Intermediate values (150, 200, 250) were chosen to observe the progression
of model performance with increasing training time and to identify the optimal number of
epochs for each GNN model.

A.6 EVALUATION METRICS

To evaluate the performance of algorithms, we consider two aspects:

• Correlation Coefficient: Firstly, the correlation coefficient measures the relationship be-
tween the rankings produced by the algorithm and the performance of the embeddings in
downstream tasks. This metric is essential to determine if the IS method can reliably rank
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the embeddings in a manner that reflects their true performance. A high correlation coeffi-
cient indicates that the IS method can effectively distinguish between high and low-quality
embeddings, providing confidence in its use for hyperparameter tuning. Specifically, we
use the Spearman correlation coefficient, which is calculated as follows:

ρ = 1− 6
∑

d2i
n(n2 − 1)

where di is the difference between the ranks of each pair of observations, and n is the
number of observations. Here, the Spearman correlation coefficient assesses the correlation
between the ranking scores assigned by the IS method and the actual performance values
obtained in downstream tasks.

• Performance (AUC for link prediction, Accuracy for node classification) of the se-
lected embedding (with the highest ranking score): This metric evaluates the IS’s ability
to identify the best-performing embeddings across two key downstream tasks, link predic-
tion and node classification.

For node classification, Accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. Higher Accuracy val-
ues indicate better performance in correctly classifying nodes into their respective classes.

For link prediction, the AUC (Area Under the Curve) is defined as:

AUC =
1

N

N∑
i=1

(
rank(Si+)− rank(Si−)

|rank(Si+)− rank(Si−)|
+ 1

)

where Si+ represents the score of a correctly predicted link, Si− represents the score of an
incorrectly predicted link, and N is the total number of comparisons. Higher AUC values
indicate better performance in predicting the existence of links between nodes.

The meanings of these two metrics are different. The Correlation Coefficient indicates if the IS is
really correlated to the performance of the models, while the Performance of the selected embed-
ding is more important for practical applications where models are deployed.

Due to the unsupervised nature of the GNN models we are using, it is crucial to choose evaluation
metrics that do not bias towards any specific properties of the dataset. GNNs learn representa-
tions that are not tailored to any particular downstream task, and our IS is designed to select node
embeddings that perform well generally, not just for specific tasks. To this end, using both node
classification and link prediction allows us to better assess the overall quality of node embeddings
and ensure the selected hyperparameters can achieve good performance across different downstream
tasks.
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B SENSITIVITY ANALYSIS
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Performance of VGAE on node classification
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Cora

Citeseer

Pubmed
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Performance of VGAE on link prediction

(a) Results on node classification (b) Results on link prediction

Figure 4: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the VGAE model. We can observe
that the performance of the VGAE model on the node classification task varies significantly across
different hyperparameters. On the Cora dataset, the performance gap between good and poor hyper-
parameters can be as large as 0.5. While the difference in performance is less extreme in the link
prediction task, it is still substantial, with the AUC value on the Citeseer dataset differing by up to
0.3. This indicates that the VGAE model is highly sensitive to hyperparameter settings.

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

Cora
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Pubmed

DBLP

Performance of GAE on node classification
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AUC

Cora

Citeseer

Pubmed

DBLP

Performance of GAE on link prediction

(a) Results on node classification (b) Results on link prediction

Figure 5: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the GAE model. We can observe that
the performance of the GAE model on the node classification task shows significant variation across
different hyperparameters. In comparison, the variation is less pronounced in the link prediction
task, although GAE tends to achieve better results in link prediction. Overall, changes in hyperpa-
rameters have a substantial impact on the performance of the GAE model.
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(a) Results on node classification (b) Results on link prediction

Figure 6: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the ARGA model. We can observe
that the performance of the ARGA model varies significantly across different hyperparameters on
the node classification task. Its overall performance on the Citeseer dataset is quite poor, with even
the best hyperparameter configuration failing to reach 0.6, which could pose challenges for hyper-
parameter optimization (HPO). In the link prediction task, the ARGA model performs well overall
but still shows sensitivity to hyperparameters, with a performance range of nearly 0.2 between the
best and worst configurations.
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Accuracy

Cora
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Performance of ARGVA on node classification
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(a) Results on node classification (b) Results on link prediction

Figure 7: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the ARGVA model. We can observe
that the performance of the ARGVA model varies significantly across different hyperparameters
on the node classification task. Similar to ARGA, its overall performance on the Citeseer dataset
is quite poor, with the best hyperparameter configuration failing to reach 0.7, which could present
challenges for hyperparameter optimization (HPO). In the link prediction task, the ARGVA model
performs well overall but remains sensitive to hyperparameters, with a performance range of nearly
0.3 between the best and worst configurations.
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Figure 8: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the GAT model. We can observe that
the performance of the GAT model varies significantly across different hyperparameters in the node
classification task. However, compared to the previous three models, the GAT model appears less
sensitive to hyperparameters on the DBLP dataset. In the link prediction task, the model performs
well overall but still shows sensitivity to hyperparameters, with a performance range of 0.2 between
the best and worst configurations.
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Figure 9: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperparam-
eters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and link
prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing performance
metrics. This figure specifically highlights the performance of the GIN model. We can observe that
the performance of the GIN model varies significantly across different hyperparameters in the node
classification task, with particularly poor overall performance on the Citeseer dataset, only slightly
above 0.5. In the link prediction task, most candidate hyperparameters perform well, which presents
a challenge for HPO, as it requires selecting the best configuration from a set where the majority
already show strong performance.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

Cora

Citeseer

Pubmed

DBLP

Performance of GraphSAGE on node classification

0.825 0.850 0.875 0.900 0.925 0.950 0.975
AUC

Cora

Citeseer

Pubmed

DBLP

Performance of GraphSAGE on link prediction

(a) Results on node classification (b) Results on link prediction

Figure 10: These figures show the performance differences of seven GNN models (VGAE, GAE,
ARGA, etc.) across four datasets (Cora, Citeseer, Pubmed, and DBLP) under different hyperpa-
rameters (as listed in Table 3). Each model is evaluated on both node classification (Accuracy) and
link prediction (AUC) tasks, with the y-axis representing datasets and the x-axis showing perfor-
mance metrics. This figure specifically highlights the performance of the GraphSAGE model. We
can observe that the performance of the GraphSAGE model varies significantly across different hy-
perparameters in the node classification task, with notably poor overall performance on the Citeseer
dataset, where it falls below 0.6. Meanwhile, the differences are less pronounced on the DBLP
dataset. In the link prediction task, GraphSAGE performs well overall, but remains highly sensitive
to hyperparameters. Effective HPO can significantly enhance the model’s performance in link pre-
diction.

C REVISITING EXISTING INTERNAL STRATEGIES UNDER A UNIFIED
FRAMEWORK

C.1 INCOHERENCE

Incoherence (Tsitsulin et al., 2023a) shifted its approach by not attempting to hypothesize an ideal
distribution. Instead, it considers the initial distribution as the worst distribution, a concept similar
to our understanding in CSOR. However, the difference lies in its choice of the initial distribution
as the standard basis, which are the basis vectors for each dimension. For example, when the di-
mensionality of the embedding is 3, the basis vectors are (1,0,0), (0,1,0), and (0,0,1). The quality is
evaluated by calculating the degree of alignment between these basis vectors and the singular vec-
tors. Overall, the lower the similarity to the basis vectors, the higher the quality of the embedding is
deemed to be.

Incoherence score(h) =

{
1∑

|VT Id| if
∑∣∣VT Id

∣∣ > 0

∞ otherwise

Build prior belief: The prior belief is that there is an ideal distribution of embeddings, and the
closer an embedding is to this ideal distribution, the higher its quality.

Quantify prior belief: Since the unsupervised setting lacks labels, we assume that an embedding
composed of basis vectors is the worst. The quality of other embeddings is measured by comparing
their similarity to the basis vector embedding. The higher the similarity, the worse the quality, and
vice versa.

C.2 SELF CLUSTER

Self Cluster (Tsitsulin et al., 2023a) assess the quality of embeddings based on their clustering
characteristics in high-dimensional spaces. The prior belief of Self Cluster is that embeddings with
better structural quality and information richness are indicated by more effective clustering along
various dimensions.
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C.2.1 MEASURING CLUSTERING IN EMBEDDINGS

To evaluate the clustering tendency of embeddings, the pairwise dot products of the embedding vec-
tors are considered. This approach provides insights into how closely related or clustered the vectors
are in the embedding space. A higher aggregation of dot products indicates stronger clustering, sug-
gesting that the embeddings effectively capture meaningful relationships and structures within the
data.

C.2.2 ISOTROPIC RANDOM VECTORS

The concept of isotropic random vectors serves as a theoretical benchmark for comparison. In an
ideal scenario where vectors are isotropic and uniformly distributed over a high-dimensional sphere,
the embeddings would exhibit minimal bias towards any specific direction, resulting in a uniform
spread. This distribution acts as the “prior belief” against which actual embedding distributions are
measured. The expected dot product of such high-dimensional isotropic random vectors is typically
very low, approaching zero as the dimensionality increases, except when vectors are identical.

C.2.3 COMPONENTS OF THE SELF CLUSTER FORMULA

The Self Cluster metric incorporates three key components in its computation:

1. Dot Product Matrix Norm Q = ∥WWT ∥F : This term measures the sum of squared
pairwise dot products among all embedding vectors, quantifying the overall similarity and
potential clustering within the dataset. A higher norm suggests more pronounced cluster-
ing.

2. Expected Dot Product for Isotropic Vectors E[Q] = n + n(n−1)
2d : This component cal-

culates what the norm of the dot product matrix would be if the embeddings were isotropic
random vectors, providing a baseline for comparison. It helps determine if the actual em-
beddings are more clustered than would be expected by chance.

3. Normalization by n2: In the extreme case of dimension collapse, where all vectors become
identical, the dot product matrix turns into a matrix of ones, and its Frobenius norm reaches
its maximum possible value of n. To ensure the Self Cluster metric is bounded between
0 and 1, the norm of the dot product matrix is normalized by n2, which is the square of
the number of embeddings. This normalization makes the metric robust to the number of
embeddings and their dimensionality, facilitating comparisons across different datasets or
models.

The Self Cluster metric effectively evaluates the clustering of embeddings by comparing the ob-
served clustering level to that of a theoretical model of isotropic randomness. By understanding
the deviations from this model, we can infer the degree of structure and the quality of the embed-
dings. A higher Self Cluster value indicates that the embeddings are significantly more clustered
than expected under the isotropic model, suggesting richer structure and potentially higher quality
embeddings for downstream tasks. This metric provides a quantitative tool to assess the ability of
embedding algorithms to capture and preserve meaningful information in a high-dimensional space.

Build prior belief: The prior belief is that high-quality embeddings are more clustered than isotropic
random vectors, which represent the worst-case distribution.

Quantify prior belief: The method computes the dot product matrix of the embeddings and com-
pares it to the expected dot product of isotropic vectors. A higher clustering level, as indicated by
the Frobenius norm of the dot product matrix, signals higher quality.

C.3 NESUM

The principle of NESum (He & Ozay, 2022) is simple and straightforward. It involves normalizing
the eigenvalues obtained from SVD and then summing them up directly. This sum is used as the
ranking score s(h):

The first step is to normalize the eigenvalues by the largest eigenvalue:
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σ′
i =

σi

σmax

where σi is the i-th singular value from Σ, and σmax is the largest singular value.

The second step is to sum all the normalized eigenvalues to obtain the NESum score:

QNESum(Z(h)) =

r∑
i=1

σ′
i

Build prior belief: The prior belief is that the quality of embeddings can be reflected by the spread
of their singular values, with more evenly distributed singular values indicating higher quality.

Quantify prior belief: NESum normalizes the singular values of the embedding matrix and sums
them. A higher sum indicates higher embedding quality, as it reflects a more uniform distribution of
the embeddings.

C.4 RANKME

The normalization method used in RankMe (Garrido et al., 2023) involves using the sum of all
eigenvalues as the denominator. Then, the entropy of the normalized singular values is calculated.
The steps are as follows:

1. Normalize the eigenvalues by the sum of all eigenvalues:

σ′
i =

σi∑
j σj

2. Calculate the entropy of the normalized singular values and take it as the ranking score:

QRankMe(Z(h)) = −
∑
i

σ′
i log(σ

′
i)

The evaluation criterion of RankMe applies information entropy to measure uncertainty, which indi-
cates the amount of information that can be carried. This means that the more space the embedding
occupies in a multi-dimensional space and the more evenly it is distributed across dimensions, the
greater the amount of information it carries, thus being considered of better quality.

Build prior belief: The prior belief is that high-quality embeddings exhibit more uniform distribu-
tion across dimensions, which reduces uncertainty and increases information content.

Quantify prior belief: RankMe calculates the entropy of the normalized singular values of the em-
bedding matrix. Lower entropy suggests that the embeddings are more uniformly spread, indicating
higher quality.

C.5 STABLE RANK

Stable rank (Tsitsulin et al., 2023a) is a measure used to evaluate the quality of embeddings by
considering the distribution of singular values. The stable rank is defined as the squared Frobenius
norm of the matrix divided by the squared largest singular value. This metric provides insight into
the effective dimensionality of the embedding space.

Given an embedding matrix M , we can calculate the stable rank as follows:

1. Compute the singular values σi of the embedding matrix M .

2. Calculate the squared Frobenius norm of the matrix, which is the sum of the squares of all singular
values:

∥M∥2F =
∑
i

σ2
i
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3. Identify the largest singular value σmax and calculate its square:

σ2
max

4. Compute the stable rank:

StableRank =
∥M∥2F
σ2
max

Stable Rank is essentially the same as RankMe in that both measure the extent and uniformity of
the graph embedding distribution across different dimensions. However, Stable Rank does not use
entropy; instead, it directly uses the largest singular value σmax as the denominator. This means that
for a constant sum of singular values ∥M∥2F , a smaller σmax is considered to indicate better quality
embedding because a smaller σmax represents a more uniform distribution.

Build prior belief: The prior belief is that a higher stable rank reflects a more uniform distribution
of embeddings across dimensions, which is indicative of higher quality.

Quantify prior belief: StableRank computes the ratio of the squared Frobenius norm of the embed-
ding matrix to the square of its largest singular value. A higher stable rank indicates a more evenly
distributed embedding, suggesting higher quality.

C.6 α-REQ

The α-ReQ (Assran et al., 2022) algorithm essentially considers the power-law distribution as the
“ideal distribution.” Therefore, evaluating the graph embedding quality is transformed into assessing
the similarity between the distribution of graph embeddings in the multi-dimensional space and the
power-law distribution. The key lies in projecting both distributions into a comparable space. The
specific steps are as follows:

1. Power-law Distribution Characteristics: - The power-law distribution has the property that
it becomes linear when subjected to a logarithmic transformation. Mathematically, a power-law
distribution can be expressed as:

λi ∝ i−α

Taking the logarithm of both sides, we get:

log(λi) = −α log(i) + log(C)

where λi is the i-th eigenvalue, α is the power-law exponent, and C is a constant.

2. Log Transformation of Eigenvalues: - Given the eigenvalues λi obtained from the graph em-
bedding’s covariance matrix, we apply the logarithmic transformation to these eigenvalues:

log eigenvalues = log(λi)

Additionally, we take the logarithm of their indices:

log indices = log(i)

This transformation allows the power-law relationship to be represented as a linear relationship in
the log-log space.

3. Linear Regression to Estimate Alpha: - By performing linear regression on the transformed
singular valuess and their indices, we can estimate the decay coefficient α. The linear regression
model can be expressed as:

log(λi) = β1 log(i) + β0

where β1 is the regression slope and β0 is the intercept. The power-law exponent α is the negative
of the slope:

α = −β1

Thus, the similarity between the graph embedding distribution and the power-law distribution is
quantified by the estimated α.
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In summary, the Alpha-ReQ algorithm projects both the graph embedding distribution and the
power-law distribution into a log-log space where they can be directly compared. By estimating
the slope of the transformed singular values, the algorithm quantifies how closely the graph embed-
ding follows the ideal power-law distribution.

Build prior belief: The prior belief is that the ideal distribution of embeddings follows a power-law
distribution, with a specific decay pattern.

Quantify prior belief: α-ReQ estimates the similarity between the embedding distribution and the
power-law distribution by performing linear regression on the log-transformed singular values. The
closer the decay pattern matches the power-law, the higher the quality of the embeddings.

C.7 CONDITION NUMBER

The ideal distribution in the prior belief of Condition Number Ben-Israel (1966); Tsitsulin et al.
(2023a) is that the high-quality embedding is evenly distributed across multiple dimensions. The
metric it uses to evaluate the degree of distribution is the condition number, denoted as k2, which is
the ratio of the largest singular value to the smallest singular value.

Given an embedding matrix M , we can calculate the condition number k2 as follows:

1. Identify the largest singular value σmax and the smallest singular value σmin from the diagonal
elements of Σ.

2. Compute the condition number:

k2 =
σmax

σmin

A smaller condition number k2 indicates a more uniformly distributed embedding, which is consid-
ered to be of higher quality. In contrast, a larger condition number suggests that the embedding is
unevenly distributed across dimensions, indicating lower quality.

Build prior belief: The prior belief is that a more uniformly distributed embedding across dimen-
sions, indicated by a smaller condition number, represents higher quality.

Quantify prior belief: ConditionNumber is calculated as the ratio between the largest and small-
est singular values. A smaller condition number indicates that the embeddings are more evenly
distributed, suggesting higher quality.

D MORE EXPERIMENT RESULTS FOR HPO
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(a) Results on dataset Pubmed (b) Results on dataset DBLP

Figure 11: Node classification performance results on 7 GNN node embedding models on Pubmed
and DBLP
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Figure 12: Link prediction performance results on 7 GNN node embedding models on Cora and
Citeseer
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Figure 13: Link prediction performance results on 7 GNN node embedding models on Pubmed and
DBLP

E PRELIMINARIES AND RELATED WORK

This paper, at a high conceptual level, attempts to apply Automated Machine Learning (AutoML)
techniques to unsupervised learning. More specifically, it focuses on Neural Architecture Search
(NAS), a subfield of AutoML, as applied to node embedding models within unsupervised Graph
Representation Learning (GRL). However, in the unsupervised learning scenario, the absence of
labels makes direct evaluation of the model difficult, and this is a necessary step in AutoML. To un-
derstand the context of this problem, the following sections will introduce some background knowl-
edge related to AutoML and GRL. In the latter part of this section, we introduce some related work,
including the general categorization of Internal Strategies (IS) into consensus-based and stand-alone
approaches.

E.1 AUTOMATED MACHINE LEARNING(AUTOML)

Automated Machine Learning (AutoML). AutoML (He et al., 2021) aims to reduce the need for
manual effort to optimize model performance by automatically setting HP values (Melis et al., 2018;
Snoek et al., 2012). This is particularly crucial for deep learning models, where the architecture
of the neural network significantly impacts performance compared to traditional machine learning
models. Simultaneously, with the boom in Graph Machine Learning, AutoML on Graphs (Zhang
et al., 2021) has also garnered considerable attention.

Automatic hyperparameter optimization (HPO) encounters a main challenge: the computation is
expensive. This challenge manifests itself in two ways: individual model evaluations can be very
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costly when the training process requires substantial computing resources, and the candidate hyper-
parameter space is vast, necessitating numerous trials to find the optimal combination. This issue
is present in both supervised and unsupervised learning. However, if we want to extend AutoML
techniques to unsupervised learning scenarios, we encounter an additional challenge: evaluating
the quality of the model output without labels. Extending AutoML techniques to unsupervised
learning scenarios is the main motivation and focus of this paper.

Neural Architecture Search(NAS). Neural networks have achieved breakthroughs in many
fields, with recent focus primarily on computer vision (CV) (Krizhevsky et al., 2012; He et al.,
2016; Dosovitskiy et al., 2021) and natural language processing (NLP) (Hochreiter & Schmidhu-
ber, 1997; Vaswani et al., 2017). Many of these great works are due to the design of new neural
architectures, but this largely relies on experts’ understanding of specific domains. Neural Architec-
ture Search (NAS) aims to automatically search for well-performing neural architectures to address
varying application scenarios and different datasets.

Neural architecture is crucial to the performance of a deep learning model, and Neural Architecture
Search (NAS), as a subfield of AutoML, has received much attention in recent years (Ren et al.,
2021). In the context of NAS, there are three main components: search space, search strategy, and
performance evaluation. The search space defines the candidate neural architectures, for example,
by specifying the number of network layers and the number of neurons in each layer. Search strat-
egy concerns how to explore the search space, which is about how to construct candidate neural
architectures. The most classic approach is grid search, which looks for all possible neural archi-
tectures within the defined search space. Performance evaluation assesses how well these candidate
neural architectures perform. In supervised representation learning, this usually involves evaluating
the model-generated representations on specific downstream tasks (e.g., classification tasks) with la-
bels. For unsupervised embedding, however, the challenge is to assess the quality of the embeddings
without relying on labeled data, requiring alternative evaluation metrics.

E.2 GRAPH EMBEDDING

As one of the primary contexts for the problem studied in this paper, it is essential to understand
graph embedding. Graph embedding is a technique that converts graph data into low-dimensional
real-numbered vectors. Below, we introduce some key terms related to graph embedding and pro-
vide relevant background knowledge.

Representation Learning. Most machine learning tasks heavily rely on the quality of features
builded by experts, a process known as feature engineering (Guyon & Elisseeff, 2003). Conse-
quently, the performance of models is highly dependent on the experts’ domain knowledge of the
target datasets. Representation learning (Bengio et al., 2013) can be viewed as an automated ap-
proach to feature engineering. It involves learning representations (i.e., features or embeddings)
from datasets that can be utilized for specific machine learning tasks, such as classification or pre-
diction.

Graph Representation Learning (GRL) and Graph Embedding. Please note that in current
research, the terms graph embedding and graph representation learning are often used interchange-
ably. Therefore, they will not be distinguished in this paper and we will refer to both as graph
embedding.

Graph Representation Learning (GRL) (Hamilton, 2020) is a specialized subset of representation
learning where the input data is structured as graphs. It focuses on learning representations from
graph data, capturing the relationships and structures inherent in graphs. GRL can be approached
in three main ways: 1) traditional statistical methods based on graph theory; 2) node embedding
methods based on random walk mechanisms; and 3) Graph Neural Networks (GNNs). Recently,
GNNs have demonstrated dominant performance in the GRL field, making them the focus of this
paper.

Graph Embedding (Cai et al., 2018), a technique within GRL, maps graph data into low-dimensional
vectors of real numbers. This process primarily focuses on leveraging the structural information
of the graph, and in the case of GNN-based methods, it also incorporates node feature informa-
tion. Through graph embedding, the learned representations (embeddings) are optimized for various
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downstream tasks such as node classification, link prediction, and clustering (Zhou et al., 2020; Wu
et al., 2021; Zhang et al., 2020).

Graph Embeddings at Different Levels. Depending on specific application requirements (Cai
et al., 2018), graph embeddings can be obtained at a node-level or graph-level. Node-level embed-
ding involves generating representations for individual nodes, utilizing the structural information,
node features, and/or edge weights of the graph. In contrast, graph-level embeddings are generated
for the entire graph, summarizing its overall structure and properties. In this paper, all mentioned
graph embeddings are at the node level. Therefore, the terms “node embedding” and “graph embed-
ding” are used interchangeably and both refer to node embeddings.

Node information aggregation. Node information aggregation (Kipf & Welling, 2016a; Hamil-
ton et al., 2017a; Veličković et al., 2018) is a key step in Graph Neural Networks (GNNs) that
involves the message passing mechanism. In this process, each node collects information from its
neighbors, aggregates this information using functions such as mean, sum, or max, and updates its
own representation based on the aggregated information. This step is crucial for capturing the local
graph structure and node features, and it is essential for understanding the relationships between
spatial- and spectral-based GNNs discussed in section E.3.

Different downstream tasks. Node embeddings can be used for various downstream tasks, in-
cluding node classification (Wang et al., 2017), node clustering (Nie et al., 2017), link prediction
(Zhang & Chen, 2018), anomaly detection (Ma et al., 2021), etc. These downstream tasks represent
practical applications of node representation learning and provide a means to assess the quality of
learned node embeddings. While node classification is commonly used to evaluate embeddings, this
paper employs link prediction as the downstream task because it provides a more direct measure of
the embeddings’ ability to capture the underlying graph structure. Link prediction is particularly
useful for evaluating the quality of node embeddings in unsupervised settings, as it does not rely on
node labels and focuses on the structural properties of the graph, aligning better with our focus on
embedding quality.

Graph GNNs Embedding IS Ranking

HPs

Internal Strategy

AutoML

Graph Representation Learning

Figure 14: The figure illustrates the entire process of performing HPO tasks. AutoML is a broader
concept than HPO, with its fundamental task being the HPO task. GRL is the process of converting
a graph into graph embeddings using GRL models (in this paper, GNNs). IS is a process that
takes embeddings as input, ranks the embeddings generated by all HP configurations, and outputs a
ranking score. The intersection of IS and GRL is the embedding. IS is the focus of this paper, and
this figure shows the relationships among AutoML, GRL, and IS.
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E.3 FROM SPATIAL-BASED GNNS TO SPECTRAL-BASED GNNS

Graph Neural Networks (GNNs) have developed along two primary routes: spatial-based and
spectral-based approaches. These two methods fundamentally differ in how they aggregate node
information during the embedding process.

Spatial-based (Hamilton et al., 2017a; Atwood & Towsley, 2016; Veličković et al., 2018) methods
aggregate information directly from the neighboring nodes in the graph. They operate on the graph’s
structure by iteratively combining the features of a node with those of its neighbors. This process is
intuitive and straightforward, as it directly reflects the graph’s topology.

Spectral-based (Monti et al., 2017; Hamilton et al., 2017b; Zhang et al., 2018; Zhou et al., 2018; Wu
et al., 2019) methods take a different approach by utilizing the graph’s spectral properties. These
methods rely on the eigenvalues and eigenvectors of graph-related matrices (such as the Laplacian
matrix) to perform convolution operations in the frequency domain. Spectral methods transform
the graph into a spectral space, apply filters to the eigenvalues of the graph Laplacian matrix, and
then transform it back, effectively aggregating information across the entire graph in a way that is
analogous to applying a global filter. This approach is mathematically elegant and leverages the
powerful tools of spectral graph theory.

Chen et al. (2023) provide a comprehensive analysis of spatial-based and spectral-based approaches
in GNNs, proposing a unified framework that links them. The authors demonstrate that both spatial
and spectral methods aim to achieve similar goals—effective information aggregation and node
representation—through different mechanisms. Spatial methods can be interpreted as a form of
spectral filtering in the node domain by setting the step size of message passing, while spectral
methods approximate the aggregation process by filtering in the frequency domain. This unified
perspective reveals that the distinction between the two methods lies more in their implementation
techniques rather than their fundamental objectives (more details can be found in Appendix I).

E.4 INTERNAL STRATEGY (IS)

Internal Strategies refer to the specific type of evaluation algorithms that can assess the quality
of embeddings without relying on any external evaluation methods. In this paper, IS specifically
represents the type of algorithm we are introducing. The location of IS in the context of AutoML
and GRL can be seen in Figure 14.

Definition of Internal Strategy. An Internal Strategy (IS) is an unsupervised model evaluation
method that assesses model performance without using labels. More specifically, in this paper, IS
takes graph representations as input and outputs a corresponding ranking score, representing the
quality of the graph representations.

To avoid ambiguity, we clarify the target of IS: In this paper, IS directly works on graph embeddings.
However, since each graph embedding is generated using specific HP values, it can also be said
that IS evaluates the performance of these HP values. Furthermore, since hyperparameters are an
essential part of the model, when we refer to the evaluation of GNN models, it pertains to the same
concept.

The term Internal signifies that IS evaluates by leveraging information from within the models and
data, rather than relying on external information (e.g. labels) or human intelligence. This domain
remains largely unexplored due to the challenges posed by the absence of labels. Currently, there
is no existing work specifically focused on evaluating the quality of node embeddings, except for
a meta-learning approach (more details in Appendix J) and some internal strategies (IS) from the
computer vision (CV) community (Appendix C).

Stand-alone and Consensus-based IS. However, we can draw some ideas from other fields such
as Computer Vision (Garrido et al., 2023; Duan et al., 2020) and Anomaly Detection (Ma et al.,
2023). Existing approaches in these fields fall into two categories: stand-alone and consensus-based.
Stand-alone approaches evaluate a hyperparameter (HP) setting independently, whereas consensus-
based approaches require information from multiple HP settings. Stand-alone methods only need a
single HP setting, while consensus-based methods depend on a pool of candidate HP settings .

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Stand-alone Internal Strategy. In Ma et al. (2023), seven Internal Strategy (IS) methods were
evaluated for the unsupervised outlier model selection challenge, including four stand-alone and
three consensus-based approaches. The findings indicated that none of the IS methods outperformed
the leading iForest detector (Liu et al., 2008), but consensus-based methods showed more promise
than stand-alone approaches.

Consensus-based Internal Strategy. In Duan et al. (2020), the Unsupervised Disentanglement
Ranking (UDR) was introduced as a consensus-based method aimed at hyperparameter tuning for
unsupervised disentangled representation learning models. UDR’s objective is to identify HP values
of models that offer the highest degree of disentanglement. Disentanglement (Siddharth et al., 2017)
refers to the ability of a model to separate distinct, interpretable factors of variation in the data, such
that each factor corresponds to a different dimension in the latent space. This means that changes
in one latent variable should correspond to changes in only one aspect of the data, allowing for
more interpretable and manipulable representations. This approach was evaluated on six leading
Variational Autoencoder (VAE)-based models (Kingma & Welling, 2014; Rezende et al., 2014) for
unsupervised disentangled representation learning. The findings demonstrated a correlation between
UDR and four supervised disentanglement metrics, indicating its potential for identifying models
with highly disentangled representations without the need for labeled data.

F EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS OF THE
VISUALIZATION EXPERIMENTS

This section provides a detailed description of all visualization experiments and hypothesis valida-
tion experiments. The HPs used in the visualization of the node embedding distribution experiments
are shown in Table 3, and those used in the hypothesis validation experiments are shown in Table 4.
Section F.1 and F.3 contains additional results of node embedding distribution visualizations. Sec-
tion F.2 and F.4 present further experimental results demonstrating the quantification of distinctness
from spatial and spectral perspective.

Table 4: HP configurations for validating hypothesis

Hyperparameter Values
Num of neurons (Hidden Layer 1) {8, 16, 32, 48, 64}
Num of neurons (Hidden Layer 2) {8, 16, 32, 48, 64}

Num of epochs {100, 200, 300}

F.1 SPATIAL DISTRIBUTION FOR CSOR
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Spatial visualisation of VGAE on Citeseer

Figure 15: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The VGAE model is run on the Citeseer dataset, with candidate HP settings provided in
Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate better
performance. We can observe that as Acc increases, the node embeddings become more dispersed.
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Spatial visualisation of VGAE on Pubmed

Figure 16: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The VGAE model is run on the Pubmed dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.
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Spatial visualisation of VGAE on DBLP

Figure 17: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The VGAE model is run on the DBLP dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.
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Spatial visualisation of GAE on Cora

Figure 18: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAE model is run on the Cora dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate
better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.
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Spatial visualisation of GAE on Citeseer

Figure 19: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAE model is run on the Citeseer dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate
better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.
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Spatial visualisation of GAE on Pubmed

Figure 20: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAE model is run on the Pubmed dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.
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Spatial visualisation of GAE on DBLP

Figure 21: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAE model is run on the DBLP dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate bet-
ter performance. We can observe that as Acc increases, the node embeddings appear more dispersed.
However, due to the large number of nodes in this dataset, the visualization becomes cluttered. De-
spite this, based on the increasing Acc values and the patterns at the edges, we can infer that the
node embeddings are likely becoming more dispersed, although they overlap on the 2D plane.
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Spatial visualisation of ARGA on Cora

Figure 22: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGA model is run on the Cora dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate
better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.
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Spatial visualisation of ARGA on Citeseer

Figure 23: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGA model is run on the Citeseer dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings become
more dispersed.
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Spatial visualisation of ARGA on Pubmed

Figure 24: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGA model is run on the Pubmed dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization becomes
cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we can
infer that the node embeddings are likely becoming more dispersed, although they overlap on the
2D plane.
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Spatial visualisation of ARGA on DBLP

Figure 25: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGA model is run on the DBLP dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.
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Spatial visualisation of ARGVA on Cora

Figure 26: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGVA model is run on the Cora dataset, with candidate hyperparameter settings pro-
vided in Appendix 3.“Acc” at the top of the images represents Accuracy, where higher values indi-
cate better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.
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Spatial visualisation of ARGVA on Citeseer

Figure 27: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGVA model is run on the Citeseer dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings become
more dispersed.
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Spatial visualisation of ARGVA on Pubmed

Figure 28: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGVA model is run on the Pubmed dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization becomes
cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we can
infer that the node embeddings are likely becoming more dispersed, although they overlap on the
2D plane.
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Spatial visualisation of ARGVA on DBLP

Figure 29: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The ARGVA model is run on the DBLP dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.
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Spatial visualisation of GAT on Cora

Figure 30: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAT model is run on the Cora dataset, with candidate hyperparameter settings provided in
Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate better
performance. We can observe that as Acc increases, the node embeddings become more dispersed.
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Spatial visualisation of GAT on Citeseer

Figure 31: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAT model is run on the Citeseer dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate
better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.
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Spatial visualisation of GAT on Pubmed

Figure 32: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAT model is run on the Pubmed dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.
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Spatial visualisation of GAT on DBLP

Figure 33: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GAT model is run on the DBLP dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate bet-
ter performance. We can observe that as Acc increases, the node embeddings appear more dispersed.
However, due to the large number of nodes in this dataset, the visualization becomes cluttered. De-
spite this, based on the increasing Acc values and the patterns at the edges, we can infer that the
node embeddings are likely becoming more dispersed, although they overlap on the 2D plane.
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Spatial visualisation of GIN on Cora

Figure 34: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GIN model is run on the Cora dataset, with candidate hyperparameter settings provided in
Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate better
performance. We can observe that as Acc increases, the node embeddings become more dispersed.
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Spatial visualisation of GIN on Citeseer

Figure 35: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GIN model is run on the Citeseer dataset, with candidate hyperparameter settings provided
in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate
better performance. We can observe that as Acc increases, the node embeddings become more
dispersed.
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Spatial visualisation of GIN on Pubmed

Figure 36: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GIN model is run on the Pubmed dataset, with candidate hyperparameter settings pro-
vided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization be-
comes cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we
can infer that the node embeddings are likely becoming more dispersed, although they overlap on
the 2D plane.
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Spatial visualisation of GIN on DBLP

Figure 37: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GIN model is run on the DBLP dataset, with candidate hyperparameter settings provided in
Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values indicate better
performance. We can observe that as Acc increases, the node embeddings appear more dispersed.
However, due to the large number of nodes in this dataset, the visualization becomes cluttered.
Despite this, based on the increasing Acc values and the patterns at the edges, we can infer that the
node embeddings are likely becoming more dispersed, although they overlap on the 2D plane..
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Spatial visualisation of GraphSAGE on Cora

Figure 38: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GraphSAGE model is run on the Cora dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings become
more dispersed.
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Spatial visualisation of GraphSAGE on Citeseer

Figure 39: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GraphSAGE model is run on the Citeseer dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings become
more dispersed.
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Spatial visualisation of GraphSAGE on Pubmed

Figure 40: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GraphSAGE model is run on the Pubmed dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization becomes
cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we can
infer that the node embeddings are likely becoming more dispersed, although they overlap on the
2D plane.
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Spatial visualisation of GraphSAGE on DBLP

Figure 41: These four images are intended to demonstrate the relationship between the distribution
characteristics of node embeddings and their performance on the downstream node classification
task. The GraphSAGE model is run on the DBLP dataset, with candidate hyperparameter settings
provided in Appendix 3. “Acc” at the top of the images represents Accuracy, where higher values
indicate better performance. We can observe that as Acc increases, the node embeddings appear
more dispersed. However, due to the large number of nodes in this dataset, the visualization becomes
cluttered. Despite this, based on the increasing Acc values and the patterns at the edges, we can
infer that the node embeddings are likely becoming more dispersed, although they overlap on the
2D plane.
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F.2 VALIDATE HYPOTHESIS FROM SPATIAL PERSPECTIVE FOR CSOR
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(a) (b)

Figure 42: This figure demonstrates the hypothesis that “higher quality node embeddings tend to
be farther away from lower quality node embeddings across each dimension. In other words, as the
quality improves, the spatial distance from other node embeddings increases.” We use the Manhattan
distance to calculate the spatial distance between two node embeddings, using the worst-performing
node embedding (the one with the lowest AUC value in downstream tasks) as the baseline. In plot
(a), the distances of all other node embeddings from this baseline are calculated. In plot (b), the
distances are derived from pairwise comparisons of all node embeddings and then summed. The
x-axis represents the Manhattan distance, and the y-axis represents the AUC value corresponding to
each node embedding. The ρ character represents the Spearman correlation coefficient between the
AUC values and the Manhattan distances. These plots represent the results of running the VGAE
model on the Cora dataset. Each dataset is evaluated using 75 sets of HP values.
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Figure 43: Complete results for VGAE. The interpretations are similar to those given in Figure 42.
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Figure 44: Complete results for GAE. The interpretations are similar to those given in Figure 42.
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Figure 45: Complete results for GraphSAGE. The interpretations are similar to those given in Fig-
ure 42.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

5000 6000 7000 8000 9000 10000 11000
Manhattan Distance

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

AU
C 

Va
lu

e

ARGA on Cora  = 0.69

4000 6000 8000 10000 12000 14000
Manhattan Distance

0.74

0.76

0.78

0.80

0.82

0.84

0.86

AU
C 

Va
lu

e

ARGA on Citeseer  = 0.36

40000 50000 60000 70000 80000
Manhattan Distance

0.86

0.88

0.90

0.92

0.94

0.96

AU
C 

Va
lu

e

ARGA on Pubmed  = 0.34

45000 50000 55000 60000 65000 70000 75000
Manhattan Distance

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

AU
C 

Va
lu

e

ARGA on DBLP  = 0.37

Figure 46: Complete results for ARGA. The interpretations are similar to those given in Figure 42.
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Figure 47: Complete results for ARGVA. The interpretations are similar to those given in Figure 42.
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Figure 48: Complete results for GAT. The interpretations are similar to those given in Figure 42.

F.3 SPECTRAL DISTRIBUTION FOR SSOR
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Figure 49: This figure illustrates that node embedding performance is correlated with the spatial
occupancy of the embeddings when observed from a spectral-based perspective. We ran VGAE on
the Cora dataset with 1280 different sets of hyperparameter values to obtain 1280 node embeddings.
From these, we uniformly selected 4 embeddings from the worst to the best performance (AUC
values) to observe the performance variation. For each of these 4 node embeddings, SVD was
performed to obtain the singular values. Each singular value was then placed on its respective axis,
evenly distributed over 360 degrees. This approach aligns with our observation objective in CSOR,
suggesting that the area of radar can represent the space occupancy rate of the node embeddings.
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Figure 50: VGAE on Citeseer. The interpretations are similar to those given in Figure 49.
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Figure 51: VGAE on Pubmed. The interpretations are similar to those given in Figure 49.
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Figure 52: VGAE on DBLP. The interpretations are similar to those given in Figure 49.
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Figure 53: GAE on Cora. The interpretations are similar to those given in Figure 49.
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Figure 54: GAE on Citeseer. The interpretations are similar to those given in Figure 49.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4846

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6787

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7023

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7404

SVD Radar Charts for GAE on Pubmed

Figure 55: GAE on Pubmed. The interpretations are similar to those given in Figure 49.
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Figure 56: GAE on DBLP. The interpretations are similar to those given in Figure 49.
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Figure 57: ARGA on Cora. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3023

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3233

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.3814

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.4354

SVD Radar Charts for ARGA on Citeseer

Figure 58: ARGA on Citeseer. The interpretations are similar to those given in Figure 49.
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Figure 59: ARGA on Pubmed. The interpretations are similar to those given in Figure 49.
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Figure 60: ARGA on DBLP. The interpretations are similar to those given in Figure 49.
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Figure 61: ARGVA on Cora. The interpretations are similar to those given in Figure 49.
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Figure 62: ARGVA on Citeseer. The interpretations are similar to those given in Figure 49.
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Figure 63: ARGVA on Pubmed. The interpretations are similar to those given in Figure 49.
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Figure 64: ARGVA on DBLP. The interpretations are similar to those given in Figure 49.
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Figure 65: GAT on Cora. The interpretations are similar to those given in Figure 49.
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Figure 66: GAT on Citeseer. The interpretations are similar to those given in Figure 49.
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Figure 67: GAT on Pubmed. The interpretations are similar to those given in Figure 49.

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.6568

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7212

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7372

Dim 1

Dim 2Dim 3

Dim 4

Dim 5 Dim 6

Acc: 0.7661

SVD Radar Charts for GAT on DBLP

Figure 68: GAT on DBLP. The interpretations are similar to those given in Figure 49.
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Figure 69: GIN on Cora. The interpretations are similar to those given in Figure 49.
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Figure 70: GIN on Citeseer. The interpretations are similar to those given in Figure 49.
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Figure 71: GIN on Pubmed. The interpretations are similar to those given in Figure 49.
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Figure 72: GIN on DBLP. The interpretations are similar to those given in Figure 49.
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Figure 73: GraphSAGE on Cora. The interpretations are similar to those given in Figure 49.
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Figure 74: GraphSAGE on Citeseer. The interpretations are similar to those given in Figure 49.
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Figure 75: GraphSAGE on Pubmed. The interpretations are similar to those given in Figure 49.
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Figure 76: GraphSAGE on DBLP. The interpretations are similar to those given in Figure 49.

F.4 VALIDATE HYPOTHESIS FROM SPECTRAL PERSPECTIVE FOR SSOR
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Figure 77: This figure is designed to prove our hypothesis that “quantifying the distinctness of
node embeddings using the sum of singular values can achieve similar effects as CSOR, which
utilizes accumulating pairwise distances.” Using VGAE with 75 different hyperparameter values
on the DBLP dataset, corresponding node embeddings were generated. The x-axis represents the
sum of singular values of the node embeddings, while the y-axis represents the performance (AUC
values) of the node embeddings in the downstream task of link prediction. The results show a high
correlation between the sum of singular values and AUC values, supporting our hypothesis.
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Figure 78: Complete results for VGAE. The interpretations are similar to those given in Figure 77.
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Figure 79: Complete results for GAE. The interpretations are similar to those given in Figure 77.
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Figure 80: Complete results for GAT. The interpretations are similar to those given in Figure 77.
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Figure 81: Complete results for ARGVA. The interpretations are similar to those given in Figure 77.
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Figure 82: Complete results for ARGA. The interpretations are similar to those given in Figure 77.
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Figure 83: Complete results for GraphSAGE. The interpretations are similar to those given in Fig-
ure 77.
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Figure 84: Complete results for GIN. The interpretations are similar to those given in Figure 77.

G COMPLEXITY ANALYSIS ON CSOR AND SSOR

We perform the time and space complexity on CSOR and SSOR. The following symbols are used
in our analysis: k represents the number of hyperparameter settings, N is the number of samples
(nodes) in each embedding, and D is the number of dimensions in each embedding.

Algorithm 1 HPO for unsupervised node embedding using CSOR

Input: A graph G and a set of HP configurations H for UGRL function f(·).
Output: Optimal HP configuration h∗ and the corresponding graph embeddings fh∗(G).
for each h ∈ H do

Generate graph embeddings Z(h) = fh(G) ∈ RN×D using f(·) with configuration h.
end for
for i = 1 to |H| do

for j = 1 to |H|, j ̸= i do
Calculate the difference (distance) Di,j = diff(Z(hi),Z(hj)).

end for
Calculate the sum of differences si =

∑|H|
j=1,j ̸=i Di,j for hi.

end for
Select h∗ as h∗ = argmaxhi∈H{si | i = 1, . . . , |H|}.
return h∗ and fh∗(G).

G.1 TIME COMPLEXITY ANALYSIS

CSOR For CSOR, we quantify the distinctness of node embeddings by accumulating the distances
of a given node embedding compared to all others. This pairwise comparison operation can capture
more distributional information about all node embeddings. Given a graph G with N nodes and an
embedding dimensionality of D, and considering k hyperparameter configurations, the total time
complexity for CSOR is influenced by the number of hyperparameter configurations (k) and the
dimensionality of the embeddings (D). Specifically, the time complexity is O(k2 ·N ·D), as each
pairwise distance calculation involves O(N ·D) operations, and there are

(
k
2

)
pairs.

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

SSOR For SSOR, the distinctness of node embeddings is measured by summing the singular val-
ues of the embedding matrix obtained through Singular Value Decomposition (SVD). The compu-
tation involves converting embeddings to a suitable format, calculating the covariance matrix, and
performing SVD. Given N nodes, D dimensions, and k hyperparameter configurations, the total
time complexity for SSOR is determined by O(k · (D2 ·N +D3)), where D2 ·N accounts for the
covariance matrix calculation and D3 accounts for the SVD.

G.2 SPACE COMPLEXITY ANALYSIS

CSOR Each embedding requires space proportional to the number of nodes (N ) and the dimen-
sionality of the embeddings (D). For k embeddings, the space complexity is O(k·N ·D). Temporary
storage for distance calculations requires O(N ·D), which does not significantly impact the overall
space complexity. Thus, the total space complexity for CSOR is O(k ·N ·D).

SSOR Each embedding also requires space proportional to N and D. For k embeddings, the space
complexity is O(k · N · D). Storing the covariance matrix requires O(D2) space, and storing the
singular values requires O(D) space. Thus, the total space complexity for SSOR is O(k·N ·D+D2).

G.3 COMPARISON OF SPACE AND TIME COMPLEXITY

Time Complexity:

• CSOR: O(k2 ·N ·D)

• SSOR: O(k · (D2 ·N +D3))

CSOR has a quadratic dependency on the number of hyperparameter settings (k), while SSOR has
a cubic dependency on the number of dimensions (D) but is linear with respect to k.

Space Complexity:

• CSOR: O(k ·N ·D)

• SSOR: O(k ·N ·D +D2)

Both methods primarily depend on k, N , and D, but spectral-based methods also include an addi-
tional D2 term due to the covariance matrix.

The CSOR method, a spatial-based approach, is characterized by its quadratic time complexity with
respect to the number of hyperparameter settings (k) and its linear space complexity with respect
to the product of the number of samples (N ) and the number of dimensions (D). CSOR has better
scalability with respect to graph size, making it more suitable for handling larger graph embeddings.
However, its performance significantly slows down when the number of candidate hyperparameter
settings is very large.

In contrast, SSOR and any other IS relying on singular values, while linear in the number of hyper-
parameter settings (k), exhibit higher time complexity due to their cubic dependence on the number
of dimensions (D). These methods also require additional space to store the covariance matrix, re-
sulting in a space complexity of O(k · N · D + D2). Due to the presence of the SVD operation,
spectral-based methods are not as scalable for very large graph embeddings but can handle a larger
number of candidate hyperparameter settings more efficiently compared to CSOR.

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

H COMPLETE EXPERIMENTAL RESULTS

Table 5: Experimental results on node classification: accuracy values (relative rankings) of various
internal strategies across 7 GNN models on datasets Pubmed and DBLP.

Dataset Method VGAE GAE ARGA ARGVA GAT GIN GraphSAGE Avg. Rank

Pubmed

CSOR 0.78(2) 0.80(3) 0.82(1) 0.75(5) 0.80(1) 0.75(4) 0.75(1) 2.43
SSOR 0.77(3) 0.82(1) 0.79(3) 0.80(1) 0.80(2) 0.76(1) 0.74(3) 2.00
RankMe 0.81(1) 0.80(4) 0.79(3) 0.80(1) 0.80(2) 0.76(1) 0.74(2) 2.00
NESum 0.52(7) 0.70(7) 0.48(8) 0.78(4) 0.79(5) 0.58(5) 0.71(5) 5.86
AlphaReQ 0.69(6) 0.79(5) 0.77(5) 0.71(6) 0.70(7) 0.51(7) 0.65(6) 6.00
Incoherence 0.72(5) 0.63(8) 0.74(6) 0.48(8) 0.76(6) 0.41(9) 0.55(8) 7.14
ConditionNumber 0.50(8) 0.72(6) 0.67(7) 0.61(7) 0.53(9) 0.50(8) 0.57(7) 7.43
SelfCluster 0.48(9) 0.57(9) 0.47(9) 0.44(9) 0.66(8) 0.52(6) 0.54(9) 8.43
StableRank 0.77(3) 0.82(1) 0.81(2) 0.80(1) 0.79(4) 0.76(1) 0.74(3) 2.14

DBLP

CSOR 0.78(2) 0.77(3) 0.77(1) 0.78(4) 0.76(5) 0.73(1) 0.72(4) 2.86
SSOR 0.77(3) 0.78(1) 0.75(2) 0.79(1) 0.77(2) 0.72(3) 0.74(1) 1.86
RankMe 0.78(1) 0.75(4) 0.75(4) 0.79(1) 0.77(2) 0.72(3) 0.74(1) 2.29
NESum 0.69(8) 0.71(7) 0.70(6) 0.72(6) 0.78(1) 0.72(2) 0.71(6) 5.14
AlphaReQ 0.71(6) 0.74(5) 0.72(5) 0.73(5) 0.71(8) 0.69(6) 0.70(7) 6.00
Incoherence 0.72(5) 0.72(6) 0.69(8) 0.72(7) 0.71(7) 0.58(9) 0.71(5) 6.71
ConditionNumber 0.66(9) 0.70(8) 0.70(7) 0.70(8) 0.71(6) 0.61(7) 0.69(8) 7.57
SelfCluster 0.69(7) 0.68(9) 0.69(8) 0.63(9) 0.68(9) 0.61(7) 0.68(9) 8.29
StableRank 0.77(3) 0.78(1) 0.75(2) 0.79(1) 0.77(2) 0.72(3) 0.74(1) 1.86

Table 6: Experimental results on link prediction: AUC-ROC values and the relative rankings of
various internal strategies on 7 GNN models across 4 benchmark datasets.

Dataset Method VGAE GAE ARGA ARGVA GAT GIN GraphSAGE Avg. Rank

Cora

CSOR 0.98(1) 0.98(4) 0.97(4) 0.97(4) 0.97(1) 0.97(3) 0.97(4) 3.00
SSOR 0.98(1) 0.98(1) 0.97(1) 0.97(2) 0.97(2) 0.98(2) 0.98(1) 1.43
RankMe 0.98(1) 0.98(1) 0.97(3) 0.98(1) 0.97(2) 0.98(1) 0.98(1) 1.43
NESum 0.83(7) 0.85(7) 0.82(8) 0.92(7) 0.92(6) 0.96(5) 0.83(7) 6.71
AlphaReQ 0.92(5) 0.97(5) 0.95(5) 0.95(6) 0.81(7) 0.93(6) 0.95(5) 5.57
Incoherence 0.89(6) 0.84(8) 0.83(7) 0.95(5) 0.96(5) 0.75(9) 0.93(6) 6.57
ConditionNumber 0.76(8) 0.89(6) 0.90(6) 0.91(8) 0.81(7) 0.82(7) 0.83(7) 7.00
SelfCluster 0.76(8) 0.84(9) 0.82(8) 0.78(9) 0.81(9) 0.79(8) 0.81(9) 8.57
StableRank 0.98(1) 0.98(1) 0.97(1) 0.97(2) 0.97(2) 0.97(4) 0.98(3) 2.00

Citeseer

CSOR 0.97(4) 0.98(4) 0.95(4) 0.97(4) 0.98(4) 0.97(4) 0.98(1) 3.57
SSOR 0.97(1) 0.98(2) 0.97(1) 0.98(1) 0.98(1) 0.98(1) 0.97(3) 1.43
RankMe 0.97(3) 0.98(3) 0.97(1) 0.98(1) 0.98(3) 0.98(3) 0.98(1) 2.14
NESum 0.86(7) 0.96(6) 0.87(9) 0.87(7) 0.93(6) 0.91(6) 0.95(5) 6.57
AlphaReQ 0.95(5) 0.97(5) 0.94(5) 0.96(5) 0.95(5) 0.92(5) 0.90(6) 5.14
Incoherence 0.69(8) 0.87(8) 0.87(8) 0.95(6) 0.93(7) 0.76(9) 0.90(6) 7.43
ConditionNumber 0.69(8) 0.89(7) 0.87(7) 0.87(9) 0.89(8) 0.77(7) 0.90(6) 7.43
SelfCluster 0.88(6) 0.87(9) 0.88(6) 0.87(8) 0.86(9) 0.77(8) 0.87(9) 7.86
StableRank 0.97(1) 0.98(1) 0.97(1) 0.98(1) 0.98(1) 0.98(1) 0.97(3) 1.29

Pubmed

CSOR 0.98(2) 0.99(4) 0.98(4) 0.98(4) 0.96(4) 0.99(1) 0.96(4) 3.29
SSOR 0.98(3) 0.99(1) 0.98(1) 0.98(1) 0.97(1) 0.98(2) 0.98(1) 1.43
RankMe 0.98(1) 0.99(3) 0.98(1) 0.98(1) 0.97(1) 0.98(2) 0.98(3) 1.71
NESum 0.90(7) 0.96(7) 0.86(8) 0.97(5) 0.93(6) 0.93(5) 0.93(6) 6.29
AlphaReQ 0.95(5) 0.98(5) 0.97(6) 0.97(6) 0.93(7) 0.89(7) 0.95(5) 5.86
Incoherence 0.93(6) 0.87(9) 0.98(5) 0.91(8) 0.93(5) 0.79(9) 0.82(9) 7.29
ConditionNumber 0.89(9) 0.96(6) 0.96(7) 0.94(7) 0.84(8) 0.89(6) 0.86(7) 7.14
SelfCluster 0.90(8) 0.90(8) 0.86(9) 0.88(9) 0.82(9) 0.89(8) 0.82(8) 8.43
StableRank 0.98(3) 0.99(1) 0.98(3) 0.98(1) 0.96(3) 0.98(2) 0.98(1) 2.00

DBLP

CSOR 0.98(4) 0.98(4) 0.98(4) 0.98(4) 0.97(4) 0.98(1) 0.97(4) 3.57
SSOR 0.98(1) 0.98(2) 0.98(1) 0.98(1) 0.98(1) 0.98(2) 0.98(1) 1.29
RankMe 0.98(3) 0.99(1) 0.98(3) 0.98(1) 0.98(1) 0.98(2) 0.98(1) 1.71
NESum 0.90(7) 0.96(7) 0.88(6) 0.96(5) 0.97(5) 0.98(5) 0.94(7) 6.00
AlphaReQ 0.96(5) 0.97(6) 0.97(5) 0.96(6) 0.94(6) 0.94(6) 0.96(6) 5.71
Incoherence 0.95(6) 0.97(5) 0.86(8) 0.95(7) 0.93(7) 0.86(9) 0.97(5) 6.71
ConditionNumber 0.87(9) 0.91(8) 0.87(7) 0.94(8) 0.86(8) 0.88(7) 0.92(8) 7.86
SelfCluster 0.88(8) 0.89(9) 0.86(8) 0.87(9) 0.85(9) 0.88(7) 0.88(9) 8.43
StableRank 0.98(1) 0.98(2) 0.98(1) 0.98(1) 0.98(1) 0.98(2) 0.98(1) 1.29
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Table 7: Experimental results on link prediction: Spearman coefficients between ranking scores
given by internal strategies and AUC ROC values.

Dataset Method VGAE GAE ARGA ARGVA GAT GIN GraphSAGE Average

Cora

CSOR 0.90 0.93 0.92 0.95 0.96 0.94 0.92 0.932
SSOR 0.97 0.98 0.97 0.98 0.98 0.96 0.98 0.972
RankMe 0.95 0.97 0.96 0.96 0.97 0.97 0.97 0.964
NESum -0.01 -0.01 -0.02 0.03 -0.08 0.04 0.01 -0.004
AlphaReQ -0.30 -0.46 -0.27 -0.51 -0.88 -0.88 -0.15 -0.493
Incoherence 0.03 0.03 -0.11 -0.00 -0.03 -0.16 0.00 -0.035
ConditionNumber -0.81 -0.83 -0.76 -0.80 -0.89 -0.89 -0.86 -0.837
SelfCluster -0.97 -0.98 -0.96 -0.97 -0.98 -0.98 -0.98 -0.977
StableRank 0.97 0.99 0.97 0.98 0.98 0.95 0.98 0.974

Citeseer

CSOR 0.85 0.92 0.84 0.90 0.96 0.90 0.82 0.888
SSOR 0.93 0.99 0.94 0.93 0.99 0.98 0.98 0.963
RankMe 0.93 0.98 0.94 0.93 0.98 0.98 0.97 0.958
NESum -0.01 0.03 0.04 0.02 0.04 0.00 0.00 0.017
AlphaReQ 0.01 -0.65 -0.24 -0.20 -0.88 -0.88 -0.17 -0.391
Incoherence 0.04 -0.06 -0.35 -0.02 -0.04 -0.33 -0.03 -0.114
ConditionNumber -0.73 -0.86 -0.80 -0.74 -0.92 -0.92 -0.88 -0.836
SelfCluster -0.94 -0.99 -0.92 -0.89 -0.99 -0.99 -0.98 -0.957
StableRank 0.94 0.98 0.94 0.93 0.99 0.98 0.98 0.949

Pubmed

CSOR 0.87 0.86 0.91 0.94 0.95 0.92 0.71 0.882
SSOR 0.95 0.95 0.96 0.97 0.98 0.97 0.93 0.961
RankMe 0.94 0.94 0.96 0.96 0.98 0.94 0.93 0.936
NESum -0.00 0.01 0.01 0.02 0.02 -0.02 0.02 0.001
AlphaReQ -0.40 -0.59 -0.48 -0.47 -0.89 -0.85 -0.09 -0.538
Incoherence -0.07 -0.09 -0.05 -0.06 -0.01 -0.35 0.01 -0.089
ConditionNumber -0.75 -0.76 -0.79 -0.79 -0.90 -0.87 -0.84 -0.810
SelfCluster -0.94 -0.95 -0.97 -0.96 -0.99 -0.97 -0.94 -0.960
StableRank 0.96 0.95 0.96 0.97 0.98 0.97 0.92 0.960

DBLP

CSOR 0.85 0.92 0.95 0.92 0.94 0.92 0.85 0.921
SSOR 0.97 0.99 0.99 0.98 0.99 0.98 0.98 0.981
RankMe 0.95 0.99 0.97 0.96 0.98 0.96 0.97 0.971
NESum -0.00 -0.02 0.02 0.03 0.01 0.01 -0.01 0.002
AlphaReQ -0.54 -0.86 -0.76 -0.67 -0.91 -0.93 -0.76 -0.781
Incoherence 0.00 0.00 -0.10 -0.07 0.04 -0.25 -0.01 -0.057
ConditionNumber -0.81 -0.90 -0.86 -0.83 -0.91 -0.93 -0.92 -0.882
SelfCluster -0.97 -0.99 -0.98 -0.97 -0.99 -0.98 -0.98 -0.981
StableRank 0.97 0.99 0.99 0.98 0.99 0.98 0.98 0.981
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Table 8: Experimental results on node classification: Spearman coefficients between ranking scores
given by internal strategies and accuracy values.

Dataset Method VGAE GAE ARGA ARGVA GAT GIN GraphSAGE Average

Cora

CSOR 0.81 0.85 0.83 0.86 0.75 0.81 0.85 0.823
SSOR 0.90 0.92 0.88 0.91 0.77 0.86 0.92 0.880
RankMe 0.92 0.92 0.91 0.92 0.77 0.88 0.92 0.891
NESum -0.02 -0.03 -0.02 0.03 -0.07 0.04 0.02 - 0.157
AlphaReQ -0.36 -0.47 -0.3 -0.53 -0.73 -0.8 -0.13 -0.332
Incoherence 0.03 0.02 -0.07 -0.02 -0.02 -0.18 0.02 -0.031
ConditionNumber -0.81 -0.82 -0.74 -0.78 -0.74 -0.82 -0.84 -0.793
SelfCluster -0.90 -0.92 -0.89 -0.91 -0.76 -0.88 -0.92 -0.883
StableRank 0.89 0.92 0.88 0.91 0.77 0.85 0.92 0.877

Citeseer

CSOR 0.71 0.76 0.71 0.79 0.69 0.76 0.77 0.741
SSOR 0.83 0.82 0.80 0.85 0.72 0.82 0.84 0.811
RankMe 0.88 0.85 0.82 0.91 0.73 0.82 0.84 0.836
NESum -0.02 0.02 0.01 0.04 0.04 -0.02 0.03 0.014
AlphaReQ -0.10 -0.56 -0.17 -0.25 -0.69 -0.71 -0.11 -0.370
Incoherence 0.06 -0.05 -0.17 -0.03 -0.04 -0.32 0.02 -0.076
ConditionNumber -0.72 -0.71 -0.61 -0.72 -0.71 -0.75 -0.73 -0.707
SelfCluster -0.85 -0.83 -0.82 -0.85 -0.72 -0.83 -0.85 -0.821
StableRank 0.82 0.81 0.80 0.84 0.71 0.82 0.84 0.806

Pubmed

CSOR 0.63 0.83 0.79 0.75 0.87 0.74 0.79 0.771
SSOR 0.74 0.88 0.86 0.80 0.87 0.82 0.91 0.840
RankMe 0.81 0.90 0.89 0.86 0.86 0.79 0.90 0.859
NESum -0.01 0.0 0.01 0.02 0.03 0.0 -0.01 0.001
AlphaReQ -0.42 -0.62 -0.48 -0.46 -0.78 -0.73 0.01 -0.497
Incoherence -0.07 -0.09 -0.02 -0.05 0.0 -0.35 0.05 -0.076
ConditionNumber -0.67 -0.75 -0.74 -0.70 -0.78 -0.74 -0.74 -0.731
SelfCluster -0.74 -0.89 -0.85 -0.78 -0.87 -0.81 -0.91 -0.836
StableRank 0.71 0.87 0.85 0.78 0.87 0.82 0.91 0.830

DBLP

CSOR 0.66 0.74 0.68 0.71 0.73 0.71 0.74 0.710
SSOR 0.74 0.77 0.71 0.78 0.77 0.77 0.83 0.767
RankMe 0.79 0.80 0.74 0.81 0.76 0.76 0.83 0.784
NESum 0.00 -0.03 0.05 0.01 -0.01 0.00 -0.04 -0.003
AlphaReQ -0.54 -0.70 -0.63 -0.67 -0.73 -0.72 -0.63 -0.660
Incoherence -0.01 -0.02 -0.10 -0.06 -0.01 -0.24 -0.01 -0.064
ConditionNumber -0.73 -0.73 -0.68 -0.76 -0.74 -0.71 -0.79 -0.736
SelfCluster -0.75 -0.78 -0.71 -0.78 -0.76 -0.75 -0.83 -0.765
StableRank 0.73 0.76 0.70 0.77 0.77 0.77 0.82 0.761

I COMPARISON OF SPATIAL-BASED AND SPECTRAL-BASED METHODS IN
NODE AGGREGATION

Both spatial-based and spectral-based methods in Graph Neural Networks (GNNs) share a common
objective: to effectively aggregate node information to produce meaningful node embeddings. How-
ever, they achieve this goal through different mechanisms. This appendix elucidates the relationship
between these two approaches in their realization of node aggregation.

SPATIAL-BASED METHODS

Spatial-based methods operate directly in the node domain. They use the adjacency matrix A to
represent the graph structure and perform node aggregation through message passing among neigh-
boring nodes. Each node updates its embedding by aggregating information from its immediate
neighbors using predefined aggregation functions such as mean, sum, or max.

Key Characteristics:

• Graph Representation: Uses the adjacency matrix A.

• Node Domain Operations: Aggregation is performed directly on nodes and their neigh-
bors.

• Message Passing: Nodes receive and aggregate information from their neighboring nodes.
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• Examples: Graph Convolutional Networks (GCN), GraphSAGE, Graph Attention Net-
works (GAT).

In GCN, for instance, the aggregation operation can be expressed as:

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W (l))

where Ã = A+ I is the adjacency matrix with added self-loops, D̃ is the degree matrix, H(l) is the
node embedding at layer l, W (l) is the learnable weight matrix, and σ is an activation function.

SPECTRAL-BASED METHODS

Spectral-based methods, on the other hand, operate in the frequency domain. They leverage the
graph Laplacian matrix L = D − A and perform node aggregation through spectral filtering. The
graph Laplacian is decomposed into its eigenvalues and eigenvectors, transforming the node features
into the spectral domain. Aggregation is performed by filtering these spectral components, and the
result is then transformed back to the node domain.

Key Characteristics:

• Graph Representation: Uses the Laplacian matrix L.
• Frequency Domain Operations: Aggregation is performed by filtering in the spectral

domain.
• Eigen Decomposition: The Laplacian matrix is decomposed into eigenvalues and eigen-

vectors.
• Examples: Spectral CNN, ChebNet.

A typical spectral-based aggregation can be described as:

H = Ug(Λ)UTX

where U and Λ are the eigenvectors and eigenvalues of the Laplacian matrix L, respectively, X is
the node feature matrix, and g(Λ) is a spectral filter applied to the eigenvalues.

CONNECTING THE TWO APPROACHES

Despite their different mechanisms, both spatial-based and spectral-based methods aim to aggre-
gate node information to produce effective node embeddings. The connection between these two
approaches can be understood through their respective domains of operation:

• Spatial-based methods perform aggregation directly in the node domain by iteratively
combining information from neighboring nodes.

• Spectral-based methods perform aggregation in the frequency domain by applying filters
to the eigenvalues of the Laplacian matrix, capturing global graph properties.

Spatial-based methods can be viewed as a localized approximation of spectral methods. The direct
message passing and aggregation in the node domain approximate the spectral filtering operations
performed in the frequency domain. Both methods can be considered complementary, offering
different perspectives and advantages for graph representation learning.

In summary, while spatial-based and spectral-based methods differ in their implementation, they
share the fundamental goal of node information aggregation. Understanding the relationship be-
tween these methods provides a unified perspective on the diverse approaches used in GNNs for
node embedding generation.

J GNN EVALUATOR

Existing work on evaluating graph embeddings without labels is limited. The GNN Evaluator
(Zheng et al., 2023), which comes closest to this task, assesses the generalization ability of trained
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GNNs on new datasets. In contrast, we aim to evaluate the quality of graph embeddings. While both
methods share similar goals, they are not identical.

Let’s examine the GNN Evaluator and discuss why it is not suitable for our needs.

Given a training graph G0 and a well-trained GNN model f , we obtain the corresponding graph
embedding Z0 = f(G0).

The GNN Evaluator follows two steps:

J.1 CONSTRUCT A DISCGRAPH SET

1. Simulate unseen meta-graphs using data augmentation:

Gmeta = fda(G0)

where Gmeta represents generated meta-graphs by the data augmentation function fda.
2. Input Gmeta to the trained GNN model to obtain graph embeddings and evaluate them to

get AUC values:
Zmeta = f(Gmeta)

aucmeta = fdt(Zmeta)

where Zmeta are the graph embeddings of Gmeta, and aucmeta represents their performance
on downstream tasks.

3. Calculate DiscGraph, which is the spatial distance between Zmeta and Z0:

Zdisc = D(Zmeta, Z0)

4. Form the training data for the GNN Evaluator as:

{(Z1
disc, auc1meta), . . . , (Z

i
disc, aucimeta)}

J.2 TRAIN THE GNN EVALUATOR

The GNN Evaluator is a deep learning model that takes DiscGraph as input and outputs the cor-
responding performance (e.g., AUC value). It predicts a GNN model’s performance on an unseen
dataset by measuring the difference between the unseen dataset and the training dataset and mapping
that difference to the AUC value.

However, the GNN Evaluator is not suitable for Hyperparameter Optimization (HPO) because it
still requires labels for training data. We want to directly evaluate the performance of a given model
on the training data without needing labels. The GNN Evaluator is designed for inductive learning,
while our focus is on transductive learning.

J.3 SUMMARY

• GNN Evaluator: Assesses GNN generalization on new datasets; requires labels for initial
training.

• Our Goal: Evaluate graph embedding quality without labels; for unsupervised learning
which is no labels during the whole process.
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