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Abstract

Traditional language models(LMs) excel at next-
token prediction in text sequences but often strug-
gle with transduction tasks involving distinct sym-
bolic systems, particularly when parallel data is
scarce or nonexistent. This issue is even more pro-
nounced in domains dealing with complex, non-
natural language sequences, such as audio sig-
nals, protein structures, or biological sequences,
where the strengths of LMs in natural language do
not directly translate. To address this challenge,
we introduce symbolic autoencoding (ΣAE), a
self-supervised framework designed to exploit the
wealth of non-parallel data alongside limited par-
allel data. ΣAE integrates two generative mod-
els via a discrete bottleneck layer, optimizing the
entire system end-to-end by minimizing unsuper-
vised reconstruction loss for all data such that
the sequence generated at the discrete bottleneck
can be read out as the transduced input sequence,
and separately optimizing the two models with
supervised loss on the subset of labeled paral-
lel data. To allow optimization of the models in
the presence of discrete symbols, we use a fam-
ily of straight-through gradient estimators. We
demonstrate the effectiveness of ΣAE on four
sequence-to-sequence transduction tasks, show-
ing that it significantly outperforms strong base-
lines in weakly supervised settings.

1. Introduction and Preliminaries
The field of artificial intelligence has undergone a remark-
able transformation in recent years, propelled by the rise
of powerful language models. At the heart of this success
are sequence-to-sequence (seq2seq) transducers, a class of
models trained to infer the mapping M between two sym-
bolic systems X and Z such that Z = M(X). Recent large

*Equal contribution 1Department of Computer Science, EPFL,
Lausanne, Switzerland 2Mila, Quebec AI Institute and University
of Montreal, Montreal, Canada 3Univ. Grenoble Alpes, CNRS,
Grenoble INP, LIG. Correspondence to: Mohammad Hossein
Amani <mh.amani1998@gmail.com>.

Mzx

DBx

Mxz

DBz

Dx

Mzx

DBx

Mxz

DBz
^

Dz

Mzx

DBx

Mxz

DBz

Dxz

^ ^^

Parallel
Data

Unparallel Z Data Unparallel X Data

Figure 1. Illustration of the abstract flow of data in the symbolic au-
toencoding (ΣAE) framework, exemplified with the Rosetta Stone
problem. Two sequence-to-sequence models (Mxz and Mzx) are
trained with both parallel data (the Rosetta Stone) through next-
token prediction and unparallel data through connecting the models
with a discrete bottleneck layer (DBx and DBz) to autoencode
each language using the other as its hidden representation.

language models display striking emergent abilities to per-
form many such mappings after exposure to massive and
diverse textual data. However, they fail when one or both
language systems are scarce or nonexistent in the training
data, or when the mapping function deviates significantly
from patterns present during training (Magueresse et al.,
2020; Lample & Conneau, 2019; Joshi et al., 2020).

An epitome of such language systems is the ancient Egyp-
tian hieroglyphs, a system of writing used in ancient Egypt.
Although Egyptian hieroglyphs were abundant in ancient
Egyptian papyri, they remained a mystery until the discov-
ery of the Rosetta Stone in 1799, which provided the key
to unlocking the secrets of the hieroglyphs (Budge, 1913).
The stone slab bears the same text inscribed in three distinct
scripts: Egyptian hieroglyphs, Demotic script, and ancient
Greek. This limited parallel dataset, a mere 27 lines of text,
together with abundant unparallel text in the three scripts
was sufficient to guide researchers in understanding the full
translation M between ancient Egyptian hieroglyphs (X)
and ancient Greek (Z). The elegant solution to this historic
challenge leads us to pose the question: how can we train
models to automatically leverage the information in the
unparallel data in symbolic systems X and Z to help
with learning the mapping M between them?
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In this work, we address this question by introducing sym-
bolic autoencoding (ΣAE), a novel method that simulta-
neously learns the mapping Mxz from X to Z and the
mapping Mzx from Z to X , symmetrically, using both
parallel and unparallel data. This is achieved by orches-
trating several losses that reuse Mxz and Mzx with varying
inputs and outputs. First, two supervised losses are used
to tune Mxz and Mzx on the scarce parallel data. Given
the scarcity of parallel data, these alone are insufficient to
learn the mappings. Therefore, we introduce two additional
autoencoding losses. One autoencoder reconstructs z ∈ Z
after encoding it discretely into an unknown x ∈ X via
the path Z

Mzx−−−→ X
Mxz−−−→ Z, where Mzx is the encoder

and Mxz is the decoder. The connection between the two
models is implemented by a discrete bottleneck (DB), a dif-
ferentiable mechanism that binds two sequence-to-sequence
models into an end-to-end, fully differentiable sequence-
to-sequence-to-sequence model. The discrete bottleneck
serves as the differentiable glue between Mxz and Mzx by
allowing gradients to pass through the discrete latent space
using straight-through estimator (Bengio et al., 2013) and a
general family of sampling/quantization methods. Symmet-
rically, the second autoencoder reconstructs x after encoding
it into z. These two autoencoding losses utilize non-parallel
data, treating X as the hidden representation for the auto-
encoding of Z, and vice versa. The supervised losses further
ensure that the hidden symbolic systems are grounded in the
parallel data and not arbitrary languages.Fig. 1 illustrates
the abstract flow of data in the ΣAE framework.

We evaluate ΣAE on four sequence-to-sequence transduc-
tion tasks, demonstrating that it significantly outperforms
the three conventional strategies in weakly supervised set-
tings: fine-tuning a pre-trained language model using the
limited parallel data available, using in-context learning to
adapt the model to the new task, or the more direct approach
which is training a model from scratch only on supervised
data. Our main contributions are the following:

• We introduce ΣAE as a framework for connecting two
seq2seq models via DB and training them using gradient-
based optimization.

• We unify celebrated methods such as VQ-VAE and the
Gumbel-Softmax trick as different design choices for the
quantization function in DB and compare their perfor-
mances in our experiments.

• We empirically benchmark the performance of ΣAE over
traditional supervised baselines using both synthetic and
real-world data.

To facilitate further research, we open-source code and data.

Related work. Our work intersects with several key areas
in unsupervised and weakly supervised learning through
discrete representations.

Baziotis et al. (2019) connected two encoder-decoder mod-
els via a hidden sequence layer, employing a reconstruction
loss and a language model prior loss for unsupervised text
compression. Kaiser & Bengio (2018) explored semantic
hashing (Salakhutdinov & Hinton, 2009) and the Gumbel-
Softmax trick (Jang et al., 2017) for generating interpretable,
discrete encodings. Similarly, Fortuin et al. (2019) investi-
gated training with discrete bottlenecks and examined the
use of continuous paths alongside discrete ones.
Zhu et al. (2017) and He et al. (2016) enforced consistency
across translation tasks, with Zhu et al. (2017) using adver-
sarial networks and He et al. (2016) employing reinforce-
ment learning to update the models. Our work introduces
a third approach, leveraging straight-through gradient esti-
mators to train models end-to-end. Furthermore, numerous
studies have focused on the discretization of elements and
representations in neural networks (Liu et al., 2022; 2021;
Tamkin et al., 2023; Peng et al., 2018; Maddison et al., 2016).
Our proposed solution also parallels the technique of back-
translation (Sennrich et al., 2015; Çaglar Gülçehre et al.,
2015; 2017), which typically involves training an intermedi-
ate system on parallel data to translate target monolingual
data into the source language, thereby generating synthetic
parallel corpora for further training (Edunov et al., 2018).
The ΣAE framework is akin to an online version of back-
translation, where the intermediate system is continuously
improving without storing synthetic sequences.

2. ΣAE Framework
2.1. Discrete Bottleneck

In our setup a DB provides two essential outputs:

• Probability vector s represents a discrete distribu-
tion over tokens, facilitating training with negative log-
likelihood loss when labels are available. (supervised
training)

• Quantized vector vq serves as input for subsequent mod-
els or layers, such as the decoder in reconstruction tasks
when labels are not available. (unsupervised training)

Thus, DB can be described as a function s,vq = DB(v),
where s ∈ [0, 1]∥V ∥ and

∑∥V ∥
i=1 si = 1 with |V | as the size

of the vocabulary. The discrete nature of the DB implies
that the quantized vector belongs to a finite discrete domain
vq ∈ D, like a dictionary of embeddings D = {D[i]}|V |

i=1.
This discrete computation within the DB introduces a point
of non-differentiability, necessitating the use of surrogate
gradients to enable gradient-based optimization.

2.1.1. DISCRETE BOTTLENECK IMPLEMENTATIONS

The DB allows us to see the celebrated methods such as
VQ-VAE and the Gumbel-Softmax reparameterization trick

2



Symbolic Autoencoding for Self-Supervised Sequence Learning

as different implementations of the same concept. We can
classify DBs into two categories: probability-based and
embedding-based.

Embedding based DB. Here the probability vector s is a
function of the dictionary embeddings, s = S(·;D). For
instance, this scoring function S can be the softmax function
of any distance metric between the input vector v and the
dictionary embeddings D[i], with the quantized vector vq

being the closest dictionary embedding to the input vector
v according to that metric:

l[i] = ∥v−D[i]∥, vq = D
[
argmin

i
l[i]

]
, s[i] = S(−l[i])

with l representing the vector of distances between v and
dictionary vectors D[i]. In backpropogation, gradients
are directly passed from vq to v using the assignment
vq ← vq + v − sg(v) in the computation graph, where
sg denotes the stop-gradient operation (van den Oord et al.,
2017; Bengio et al., 2013). In our experiments we focus
on the vector-quantized DB (VQ DB) similar to VQ-VAE,
with the distance metric being the Euclidean distance.

Probability-based DB. Here the score function does not de-
pend on the dictionary embeddings s = S(x), and the quan-
tized vector vq is computed by decoding/sampling from the
score vector vq = D[decode(s)]. Therefore, to concretely
implement a probability-based DB, we need to define a score
function S(·) and a sampling method. In this work we take
S to be a softmax function, and use maximum likelihood
decoding and categorical sampling for decoding:

• Softmax DB uses maximum likelihood decoding, i.e., the
quantized vector vq corresponds to the most likely token
in the dictionary:

s[i] =
exp(v[i])∑|V |
j=1 exp(v[j])

, vq = D
[
argmax

i
s[i]

]
• Gumbel DB uses categorical sampling for decoding:

s[i] =
exp(v[i] + gi)∑|V |

j=1 exp(v[j] + gj)
, vq = D

[
argmax

i
s[i]

]
Here gi is a sample from the Gumbel distribution, i.e.
gi = − log(− log(ui)) where ui ∼ Uniform(0, 1), using
the Gumbel reparameterization trick to translate the sam-
pling to taking the argmax of noisy probabilities (Jang
et al., 2017).

Crucially, during the backward pass, gradients are passed
to s as if vq was the soft average of dictionary embeddings.
This is expressed by assigning vq ← vq +

∑|V |
i=1 s[i]D[i]−

sg(
∑|V |

i=1 s[i]D[i]) in an automatic differentiation library.

2.2. Training Models with DB Head

We incorporate a DB layer into each seq2seq model: DBx

to Mzx and DBz to Mxz , enabling both separate and joint
training modes.

For parallel training data (x, z) ∈ Dxz we do a supervised
training step similar to common seq2seq training. Given
input sequence x and target sequence until step t, z<t, the
model Mxz predicts a probability vector stz for the t-th
token zt and recieves a loss (similarly for predicting the x
sequence):

stz,v
t
z = DBz(Mxz(x, z

<t)), Lxz = −
∑
t

log stz[z
t]

Given unlabeled data (x ∈ Dx or z ∈ Dz), the models
generate a latent sequence of quantized vectors (v<Tx

x =
{vt

x}
Tx
t=0):

stx,v
t
x = DBx(Mzx(z,v

<t
x ))

These vectors are then used to reconstruct the original input:

stz,v
t
z = DBz(Mxz(v

<Tx
x , z<t))

using as the reconstruction loss Lzxz = −
∑

t log s
t
z[z

t].
Similar steps are followed for the x sequence. We call these
X Reconstruction and Z Reconstruction modes, where we
use unparallel data, Dx or Dz , to minimize reconstruction
losses Lxzx or Lzxz .
To navigate this multi-objective optimization problem, we
propose three scheduling strategies: Joint Training involves
randomly selecting a batch from Dxz , Dx, or Dz at each
iteration and training in the corresponding mode. Unsuper-
vised Pretraining with Supervised Finetuning starts with
training on Dx and Dz until convergence, followed by fine-
tuning on Dxz . Conversely, Supervised Pretraining with
Unsupervised Finetuning trains on Dxz until convergence,
then shifts to fine-tuning on Dx and Dz .

2.3. Hidden Sequence Collapse in Seq2Seq Models

In symbolic autoencoding, the encoder seq2seq model au-
toregressively generates hidden tokens until an End-of-
Sequence (EOS) token or a maximum length is reached.
This process involves a discrete decision about when to halt
generation, for which the model never receives gradient
feedback. Specifically, in unsupervised training, the loss
gradient doesn’t directly inform the model that mistakenly
assigning a high likelihood to EOS has a penalty beyond
the negative log likelihood loss: it can prematurely stop the
entire sequence generation. In our early autoencoder train-
ings we empirically observed that the models tended to rely
excessively on the first token of the hidden representation,
leading to underutilization of subsequent tokens. This led
us to develop the following solution.
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Figure 2. Results for Softmax Discrete Bottleneck – Z Autoregressive Sentence Accuracy per Supervision Ratio (η). At least one training
method with the ΣAE framework consistently outperforms the pretrained and in-context learning baselines except on the CFQ dataset at
8% supervision ratio.

EOS Soft-Masking – Gradient Approximation for Halt-
ing the Generation. In unsupervised training mode, hid-
den sequences in a batch can have varying halting points
as the generation typically continues until the maximum
length is reached or all samples have produce an EOS to-
ken. Tokens generated after the EOS are masked out us-
ing a binary mask m of size T (the number of tokens),
where each m[i] is 1 if the EOS token has not been gen-
erated and 0 otherwise. Applying the mask to the quan-
tized vectors v<T

q during the forward pass enforces a halt-
ing mechanism by setting vectors post-EOS to a padding
embedding, vq ← vq ⊙ m + D[<PAD>] ⊙ (1 − m),
thereby terminating the sequence generation. The chal-
lenge arises during the backward pass, as this mask is a
non-differentiable output of the forward computation. To
address this, we propose a gradient approximation for m
that allows the model to learn the EOS effect through a
feedback mechanism. To mitigate autoregressive collapse,
we pass the gradients through m to P(Ok = <EOS>) as
if E[m[i]] =

∏i−1
k=1 (1− P(Ok = <EOS>)) had been the

masking matrix in the forward computation. This approxi-
mation provides direct feedback on the EOS effect by simply
assigning m←m+ E[m]− sg(E[m]). The derivation of
this approximation is detailed in Appendix A.2.

3. Experiments
Datasets. For our experiments, we utilized four seq2seq
datasets: SCAN (Lake & Baroni, 2017), PCFG SET (Hup-
kes et al., 2019), CFQ (Keysers et al., 2019), and COGS
(Kim & Linzen, 2020), chosen for their compositional com-
plexity, controlled environments, and precise accuracy mea-
sures. We evaluated the framework on the aforementioned
datasets, focusing on sentence accuracy (SA) and token ac-
curacy (TA). Additional performance metrics are discussed
in the appendix in Section A.5. More details on the datasets
are provided in Section A.3.

Baselines. In our experiments, we compare the perfor-
mance of the ΣAE framework against the following base-
lines: (1) Supervised Fine-tuning of a Pretrained Model

(T5 large), where a pretrained T5 model is fine-tuned on the
available parallel data; (2) In-context Learning (ICL) with
a Large Language Model (GPT-3.5), which utilizes GPT-
3.5 to perform tasks based on given context without explicit
fine-tuning; and (3) Supervised Training from Scratch,
where a model is trained from scratch on the available par-
allel data. Further details on the tasks, model architecture,
and hyperparameters are provided in Section A.4

Experimental Results. To show the feasibility of sym-
bolic autoencoding with straight-through gradients updates
we performed an unsupervised autoencoding reconstruc-
tion experiment for each dataset and DB and observed that
the models successfully learned a compression of the input
sequences, as shown in Table 2. The results are further
detailed in Sec. A.7.1.
In the weakly supervised task, we simulated a Rosetta Stone-
like scenario with a mix of parallel and unparallel data, vary-
ing the ratio of parallel data (η) to assess the framework’s
ability to balance and integrate supervised and unsupervised
losses. Notably, the unsupervised task is a special case of
the weakly supervised task where η = 0. Results for the
Softmax DB are detailed in Figure 2.
Our experiments demonstrated that the ΣAE framework can
efficiently utilize small amounts of parallel data to improve
performance on larger unparallel datasets. At each supervi-
sion ratio η, one of our scheduling methods from Section
2.1 consistently outperformed the supervised baselines. As
expected, model accuracy improved with increased super-
vised data, narrowing the performance gap as accuracies
converged to their maxima. An exception was observed
in the CFQ dataset at an 8% supervision ratio, where fine-
tuning the T5-large model outperformed our methods. This
is likely due to the CFQ dataset’s closer resemblance to
natural language question answering tasks, benefiting the
T5 model, which is pretrained on similar tasks. Additional
remarks on training dynamics and learning behavior are
provided in Section A.6. A detailed analysis of the results
and the full set of performance metrics, including other DBs,
are presented in Section A.7.2.
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A. Appendix
A.1. Remarks on ΣAE framework

For all our straight-through gradient estimations, as training progresses, models become more confident in their predictions,
resulting in more polarized score distributions. This polarization helps the models identify the most likely token with
increasing certainty, making the scores sparser and improving the accuracy of gradient approximations.

While we only use symbolic autoencoding in reconstruction setups, the framework is adaptable to additional models and
data sources. For instance, one could imagine models Mzy,Myx, etc., each with their own supervised and reconstruction
losses (e.g., Lzy,Lyxz,Lxyx, etc.) to be optimized. Unlike some multi-task scenarios where individual tasks may appear
independent or unrelated, in the ΣAE framework, improvement in one task can directly benefit others, creating a synergy
that enhances overall performance.

A.2. EOS Gradient Approximation

The EOS collapse phenomena can be explained by the model’s lack of understanding of the EOS token’s impact. Without
explicit feedback, the model does not learn the importance of distributing information across the entire sequence. Instead, it
packs all information into the first token to ensure it reaches the decoder robustly. This behavior is akin to how models learn
more robust representations under dropout conditions (Srivastava et al., 2014), where information is concentrated into fewer
units.

In the ΣAE framework, we inform the model of the halting effect of the EOS token by approximating a gradient for the
mask m, which masks the tokens appearing after the first EOS token. This approximation is crucial for the model to learn
the halting effect of the EOS token, essential for generating accurate sequences.

The m is 1 if the EOS token has not been generated and 0 otherwise:

m[i] =

{
1 if m[i− 1] = 1 and Oi−1 ̸= <EOS>
0 otherwise

(1)

Where O represents the output sequence generated by the model, whether in X or Z.

Hence, the binary random vector m is defined as:

P (m[i] = 1) =
(
1− P(O(i−1) = <EOS>)

)
P(m[i − 1] = 1) =

i−1∏
k=1

(1− P(Ok = <EOS>)) . (2)

Therefore the expected value of m is:

E[m[i]] =

i−1∏
k=1

(1− P(Ok = <EOS>)) (3)

Our ablation studies showed that unsupervised training often failed due to hidden state collapse when this approximation
was not used. Without this gradient approximation, the model struggled to learn effectively, highlighting the importance of
this technique for successful training.

As training progresses, models become more confident in correctly predicting the EOS token, leading to more polarized
probabilities. This makes the expected mask E[m] a better approximate the true mask, thereby improving the accuracy of
our approximation.

A.3. Dataset Description and Examples

We evaluated the ΣAE framework on four diverse datasets: SCAN, PCFG SET, CFQ, and COGS.

• SCAN (Lake & Baroni, 2017) is a simple language-driven navigation instruction task designed to evaluate the ability
of neural models to learn compositional commands.
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Table 1. Example of Samples from Different Datasets
Dataset Sample Train set size Parallel portion

SCAN
X: look right thrice after run left
Z: I TURN LEFT I RUN I TURN RIGHT I LOOK
I TURN RIGHT I LOOK I TURN RIGHT I LOOK

13382 1% to 8%

PCFG SET
X: echo append append E18 C13 ,
L18 M17 , R1 L1 Y1 T18 J18
Z: E18 C13 L18 M17 R1 L1 Y1 T18 J18 J18

65734 4% to 32%

CFQ

X: Who influenced M1 ’s cinematographer , writer , and editor
Z: SELECT DISTINCT ?x0 WHERE
?x0 a ns:people.person.
?x0 ns:influence.influence node.influenced ?x1.
?x1 ns:film.cinematographer.film M1.
?x1 ns:film.editor.film M1.
?x1 ns:film.writer.film M1.

76594 2% to 16%

COGS
X: Olivia rolled Liam.
Z: roll . agent ( x 1 , Olivia ) AND roll . theme ( x 1 , Liam ) 24155 1% to 8%

• PCFG SET (Hupkes et al., 2019) is a synthetic dataset generated using probabilistic context-free grammars, aimed at
testing the systematic generalization of models.

• CFQ (Keysers et al., 2019) is a large-scale dataset of complex natural language questions and their corresponding
SPARQL query against the Freebase knowledge base designed to measure the compositional generalization capabilities
of semantic parsing models, with questions constructed to reflect the compositional structure of Freebase.

• COGS (Kim & Linzen, 2020): COGS is a dataset for evaluating the generalization of semantic parsing models to novel
linguistic structures, emphasizing the model’s ability to generalize from given sentences to new sentences that have
similar syntactic structures but different lexical items or phrasal constructions.

These datasets were chosen for their controlled environments and precise accuracy measures, making them ideal for
evaluating the framework’s performance. Examples of samples from each dataset are provided in Table 1.

The selection of these datasets ensures a comprehensive and nuanced evaluation of the ΣAE framework. They facilitate
direct evaluation of our approach, avoiding reliance on proxy metrics often used with larger datasets. Here, the mapping
from X to Z is unique and non-reversible, with Z typically being the longer sequence, serving as a reliable ground truth
for X . Our study diverges from the typical use of these datasets for compositional generalization. Instead of focusing on
out-of-distribution testing, we emphasize in-distribution performance assessment. We also conduct a bidirectional evaluation
of both Mxz and Mzx models, reflecting realistic seq2seq model applications where translation in both directions holds
equal significance, in line with the suggestions of (Bastings et al., 2018).

A.4. Details on Tasks, Model Architecture, and Hyperparameters

We conducted two sets of experiments on each dataset:

• Unsupervised Training: In this scenario, we only have access to unparallel data. The primary goal is to reconstruct Z
from a hidden discrete sequence. The framework matches the dictionary size and the maximum sequence length of the
hidden representation to those of X . This setup evaluates the ΣAE framework’s ability to compress the input sequence
into a shorter sequence and accurately reconstruct it.

• Weakly-supervised Training: This scenario simulates the Rosetta Stone problem, where a small portion of the data
is parallel, and the rest is unparallel. The objective is to leverage both parallel and unparallel data by minimizing
unsupervised losses (Lzxz and Lxzx) and supervised losses (Lzx and Lxz). We conduct experiments for each dataset
and DB implementation, varying the supervision ratio η = |Dxz|

|Dxz|+|Dx|+|Dz| . This allows us to assess how effectively
the framework uses limited parallel data to improve performance on larger unparallel datasets.

In our experiments with the ΣAE framework, we adopted a standardized model architecture and hyperparameter setting
across all tasks to maintain consistency and focus on the framework’s effectiveness. We utilized a six-layer transformer
encoder–decoder model for Mxz and Mzx, with 8 attention heads and a hidden size of 512. The model was trained using the
Adam optimizer with learning rate reduction on loss plateau. We used greedy decoding consistently for all tasks, simplifying
the decoding process and ensuring uniformity across experiments.
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Model learning rates were manually chosen on the order of 10−3 or 10−4, to ensure a decrease in loss during the early
stages of training. Hyperparameters were not extensively tuned. For each task, the same hyperparameters were used across
different supervision ratios which are available in our configuration files in the code. This uniform approach underscores
the framework’s robustness, although we acknowledge that more nuanced tuning and regularization might yield higher
performance.

In both unsupervised and supervised finetuning after pretraining approaches, a gradual curriculum shift is employed rather
than an abrupt change. This involves slowly altering the probability distribution of the ‘three-sided coin’ used for batch
selection in joint training, to transition smoothly from the initial training phase to the subsequent finetuning phase.

A.5. Evaluation Metrics

In assessing the performance of the ΣAE framework, we measured two distinct metrics: sentence accuracy (SA) and
token accuracy (TA). These metrics are designed to provide both a holistic and a detailed view of the model’s capabilities.
Sentence accuracy (SA) for a sample is counted as 1 if the entire sentence is correctly generated. Token accuracy (TA) is a
more granular measure, where correctness of each predicted token in all sentences are measured separately. This metric
allows for partial credit within a sentence, providing a finer understanding of the model’s performance at the token level.

The token accuracy can be measured with two methods: We can teacher-force the correct previous tokens (as per the ground
truth) to the model and measure its accuracy in predicting the next token. Alternatively, the model’s previous outputs (which
may or may not be correct) can be used as inputs for generating subsequent tokens. This autoregressive approach is generally
more challenging than teacher-forcing.

Each X has a unique corresponding Z, simplifying the assessment of accuracy in this direction, therefore, evaluating Mxz

performance is simply done by examining the Autoregressive Z TA/SA, directly measuring the model’s capability to generate
accurate Z sequences. For a given Z, however, there could be multiple valid X sequences. Therefore, to evaluate Mzx, we
utilize the Teacher-forced X TA, which restricts the range of correct X sequences for end tokens. Another approach is the
Reconstruction Z TA/SA, where a model Mxz maps a generated sequence x̂ back to Z, and the accuracy of this reconstructed
sequence serves as a proxy for the correctness of x̂.

A.6. Remarks on Experimental Results

We note that the VQ DB faced a peculiar issue of numerical instability on the SCAN dataset after extended training periods
(+500 epochs). This instability was addressed through weight clipping, suggesting that while ΣAE offers substantial benefits,
optimizing stability and accuracy across different data representations and tasks may require tailored adjustments. These
insights into performance variations across X and Z spaces not only highlight the framework’s broad applicability but also
pinpoint areas for future refinement to maximize the ΣAE framework’s effectiveness.

A.7. Experiment Results

A.7.1. UNSUPERVISED TRAINING RESULTS

In the unsupervised task, we trained the discrete autoencoder to compress and reconstruct Z sequences without any
supervised signal, evaluating the learnability of the discrete bottleneck using straight-through gradients. The results,
summarized in Table 2, show that the Softmax DB achieved over 98% token accuracy on the SCAN, CFQ, and COGS
datasets. Both the Gumbel and VQ DBs demonstrated similar effectiveness, indicating robustness in discrete autoencoding
with straight-through gradients for sequence learning tasks. An exception to the high performance was the PCFG SET
reconstruction task, where model performances were notably lower. This variation may be attributed to the unique symbolic
nature of variables within the PCFG SET task, where basic tokenization assigns distinct representations to symbolically
equivalent variables, leading to observed performance discrepancies.

A.7.2. WEAKLY SUPERVISED TRAINING RESULTS

In the Z space, the Softmax DB consistently surpassed supervised baselines, significantly enhancing token and sentence
accuracy across all datasets. For instance, with only 8% supervision on the PCFG SET dataset, token accuracy improved
from below 15% to above 80%. While the Gumbel DB generally showed noisier training and slightly weaker performance,
it still outperformed supervised baselines in most scenarios, except for a minor shortfall in the COGS dataset at a 16%
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Table 2. Table of Test Autoregressive token accuracy (Z) (top) and Sentence Accuracy (Z) (bottom) on the unsupervised autoencoding
task (Z reconstruction). A high accuracy is achieved across all datasets, showing the feasibility of learning discrete representations with
gradient-based methods.

SCAN PCFG COGS CFQ

Softmax DB 1.00 0.74 0.98 0.99
0.96 0.31 0.55 0.69

Gumbel DB 0.98 0.75 0.98 0.99
0.74 0.36 0.51 0.43

VQ DB 1.00 0.44 0.94 0.90
0.93 0.00 0.03 0.00

supervision ratio. The VQ DB, despite showing a slight weaker performance in supervised baselines, improved the training
similar to the Softmax and Gumbel DBs, achieving over 20% token accuracy on CFQ dataset at 2% supervision ratio.

While no single Discrete Bottleneck or scheduling method universally outperforms others across all datasets and supervision
ratios, for every dataset and η value, at least one of our scheduling methods consistently surpasses the baseline performance.
In other words, training within the ΣAE paradigm always enhances performance, though the optimal choice of the scheduling
strategy depends on the task.

The ΣAE framework’s impact extends into the X space, where the Softmax, Gumbel, and VQ DBs exhibit performance
boosts. Notably, the exception to this trend occurs with teacher-forced token accuracy in the SCAN dataset for the Softmax
DB, indicating a unique challenge in this specific setting.

For all our experiments, we computed 95% confidence intervals via bootstrapped resampling of the test set, however they
are too small to be visible on the plots. This performance analysis underscores the ΣAE framework’s versatility and its
capacity to leverage both unsupervised and weakly supervised data to enhance model training and performance across
diverse seq2seq tasks.

We only measure the ICL and supervised finetuning of T5 baselines for Autoregressive Z TA and SA, as the teacher-forced
X TA is not applicable to these baselines. The ICL baseline is a flat line with a fixed number of in-context samples (20) and
the supervised finetuning of T5 is a single point at 100% supervision ratio.

We present the results of our experiments in the following tables. For Softmax discrete bottleneck, we present the results in
the following tables:

• Table 3 Shows the performance of the Softmax DB on Autoregressive Z token accuracy, from test inputs
• Table 4 Shows the performance of the Softmax DB on Autoregressive Z sentence accuracy, from test inputs
• Table 5 shows the performance of the Softmax DB on the Autoregressive Z reconstruction token accuracy, after

mapping to a hidden X
• Table 6 shows the performance of the Softmax DB on the Autoregressive Z reconstruction sentence accuracy, after

mapping to a hidden X
• Table 7 shows the performance of the Softmax DB on the X token accuracy when teacher-forcing the previous inputs

For Gumbel discrete bottleneck, we present the results in the following tables:

• Table 8 Shows the performance of the Gumbel DB on Autoregressive Z token accuracy, from test inputs
• Table 9 Shows the performance of the Gumbel DB on Autoregressive Z sentence accuracy, from test inputs
• Table 10 shows the performance of the Gumbel DB on the Autoregressive Z reconstruction token accuracy, after

mapping to a hidden X
• Table 11 shows the performance of the Gumbel DB on the Autoregressive Z reconstruction sentence accuracy, after

mapping to a hidden X
• Table 12 shows the performance of the Gumbel DB on the X token accuracy when teacher-forcing the previous inputs

For VQ discrete bottleneck, we present the results in the following tables:

• Table 13 Shows the performance of the VQ DB on Autoregressive Z token accuracy, from test inputs
• Table 14 Shows the performance of the VQ DB on Autoregressive Z sentence accuracy, from test inputs
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Table 3. Softmax DB – Autoregressive Z Token Accuracy. ∗ These baselines are not concerned with the discretizer type and are not
trained with our proposed discrete bottleneck. They will appear in all tables for comparison.

SCAN η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5)∗ – – – – 0.54
T5 Finetuning∗ 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.78 0.92 0.98 1.00 1.00
Joint training 0.76 0.89 0.98 0.99 —

Supervised Pretraining 0.84 0.96 0.99 1.00 —
Unsupervised Pretraining 0.79 0.91 0.97 0.99 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.17
T5 Finetuning 0.50 0.74 0.85 0.93 –

Supervised Baseline 0.17 0.30 0.78 0.93 0.97
Joint training 0.56 0.77 0.94 0.91 —

Supervised Pretraining 0.47 0.73 0.91 0.95 —
Unsupervised Pretraining 0.58 0.82 0.87 0.91 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.25
T5 Finetuning 0.35 0.72 0.95 0.99 –

Supervised Baseline 0.87 0.94 0.98 0.99 1.00
Joint training 0.94 0.97 0.99 1.00 —

Supervised Pretraining 0.94 0.93 0.98 1.00 —
Unsupervised Pretraining 0.95 0.98 0.99 1.00 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.26
T5 Finetuning 0.45 0.63 0.86 0.96 –

Supervised Baseline 0.62 0.70 0.78 0.82 0.86
Joint training 0.69 0.75 0.84 0.88 —

Supervised Pretraining 0.73 0.80 0.84 0.88 —
Unsupervised Pretraining 0.71 0.79 0.82 0.85 —

• Table 15 shows the performance of the VQ DB on the Autoregressive Z reconstruction token accuracy, after mapping
to a hidden X

• Table 16 shows the performance of the VQ DB on the Autoregressive Z reconstruction sentence accuracy, after mapping
to a hidden X

• Table 17 shows the performance of the VQ DB on the X token accuracy when teacher-forcing the previous inputs
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Table 4. Softmax DB – Autoregressive Z Sentence Accuracy
SCAN η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.18 0.52 0.87 0.97 1.00
Joint training 0.24 0.50 0.87 0.95 —

Supervised Pretraining 0.29 0.71 0.91 0.98 —
Unsupervised Pretraining 0.25 0.61 0.85 0.95 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.01
T5 Finetuning 0.39 0.61 0.82 0.91 –

Supervised Baseline 0.01 0.11 0.75 0.94 0.97
Joint training 0.45 0.73 0.94 0.92 —

Supervised Pretraining 0.32 0.70 0.92 0.96 —
Unsupervised Pretraining 0.47 0.81 0.87 0.91 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.09
T5 Finetuning 0.03 0.45 0.70 0.87 –

Supervised Baseline 0.48 0.71 0.89 0.95 1.00
Joint training 0.63 0.82 0.95 0.97 —

Supervised Pretraining 0.60 0.83 0.94 0.97 —
Unsupervised Pretraining 0.66 0.84 0.95 0.97 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.01
T5 Finetuning 0.01 0.13 0.55 0.83 –

Supervised Baseline 0.25 0.40 0.53 0.61 0.69
Joint training 0.43 0.50 0.65 0.73 —

Supervised Pretraining 0.49 0.59 0.66 0.73 —
Unsupervised Pretraining 0.47 0.60 0.64 0.69 —
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Table 5. Softmax DB – Reconstruction Z TA
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.74 0.81 0.89 0.92 0.96
Joint training 0.99 0.98 0.98 0.97 —

Supervised Pretraining 0.99 0.99 0.99 0.97 —
Unsupervised Pretraining 0.98 0.83 0.93 0.97 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.37 0.50 0.74 0.78 0.83
Joint training 0.71 0.80 0.86 0.91 —

Supervised Pretraining 0.68 0.75 0.86 0.89 —
Unsupervised Pretraining 0.76 0.79 0.88 0.87 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.92 0.95 0.97 0.98 0.99
Joint training 0.98 0.99 1.00 1.00 —

Supervised Pretraining 0.98 0.97 0.99 1.00 —
Unsupervised Pretraining 0.99 0.99 1.00 1.00 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.94 0.96 0.97 0.98 0.99
Joint training 0.97 0.97 0.98 0.99 —

Supervised Pretraining 0.98 0.98 0.99 0.99 —
Unsupervised Pretraining 0.98 0.99 0.99 0.99 —

Table 6. Softmax DB – Reconstruction Z SA
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.05 0.11 0.24 0.28 0.46
Joint training 0.82 0.76 0.72 0.65 —

Supervised Pretraining 0.90 0.81 0.91 0.66 —
Unsupervised Pretraining 0.84 0.18 0.41 0.66 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.01 0.09 0.20 0.28 0.35
Joint training 0.21 0.29 0.44 0.63 —

Supervised Pretraining 0.15 0.22 0.33 0.47 —
Unsupervised Pretraining 0.19 0.26 0.44 0.41 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.02 0.04 0.35 0.48 0.57
Joint training 0.51 0.76 0.93 0.97 —

Supervised Pretraining 0.55 0.48 0.68 0.96 —
Unsupervised Pretraining 0.75 0.81 0.90 0.95 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.11 0.23 0.36 0.48 0.53
Joint training 0.29 0.36 0.50 0.61 —

Supervised Pretraining 0.36 0.44 0.54 0.62 —
Unsupervised Pretraining 0.40 0.51 0.52 0.60 —
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Table 7. Softmax DB – Teacher-forced X TA
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.66 0.77 0.84 0.88 0.88
Joint training 0.57 0.66 0.78 0.84 —

Supervised Pretraining 0.39 0.58 0.70 0.82 —
Unsupervised Pretraining 0.50 0.45 0.69 0.81 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.41 0.50 0.53 0.57 0.65
Joint training 0.50 0.54 0.57 0.61 —

Supervised Pretraining 0.47 0.50 0.54 0.57 —
Unsupervised Pretraining 0.48 0.50 0.61 0.63 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.87 0.95 0.98 0.99 1.00
Joint training 0.90 0.96 0.99 1.00 —

Supervised Pretraining 0.00 0.88 0.95 0.99 —
Unsupervised Pretraining 0.88 0.96 0.98 0.99 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.74 0.79 0.82 0.85 0.88
Joint training 0.77 0.80 0.83 0.85 —

Supervised Pretraining 0.73 0.80 0.83 0.85 —
Unsupervised Pretraining 0.71 0.78 0.82 0.84 —
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Table 8. Gumbel DB – Autoregressive Z Token Accuracy
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.75 0.89 0.95 0.97 0.97
Joint training 0.76 0.88 0.95 0.96 —

Supervised Pretraining 0.80 0.93 0.96 0.97 —
Unsupervised Pretraining 0.79 0.90 0.96 0.96 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.16 0.25 0.70 0.82 0.89
Joint training 0.25 0.66 0.81 0.86 —

Supervised Pretraining 0.44 0.62 0.85 0.88 —
Unsupervised Pretraining 0.56 0.64 0.81 0.87 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.74 0.80 0.84 0.85 0.86
Joint training 0.76 0.79 0.82 0.84 —

Supervised Pretraining 0.78 0.81 0.84 0.84 —
Unsupervised Pretraining 0.75 0.81 0.83 0.84 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.52 0.57 0.63 0.65 0.65
Joint training 0.56 0.62 0.65 0.69 —

Supervised Pretraining 0.55 0.61 0.65 0.68 —
Unsupervised Pretraining 0.60 0.66 0.68 0.71 —
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Table 9. Gumbel DB – Autoregressive Z Sentence Accuracy
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.13 0.46 0.79 0.86 0.89
Joint training 0.22 0.48 0.78 0.85 —

Supervised Pretraining 0.23 0.56 0.80 0.86 —
Unsupervised Pretraining 0.21 0.55 0.81 0.86 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.01 0.08 0.62 0.76 0.84
Joint training 0.06 0.57 0.74 0.80 —

Supervised Pretraining 0.26 0.51 0.78 0.81 —
Unsupervised Pretraining 0.45 0.55 0.75 0.81 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.30 0.48 0.62 0.70 0.73
Joint training 0.41 0.56 0.64 0.68 —

Supervised Pretraining 0.38 0.53 0.63 0.66 —
Unsupervised Pretraining 0.32 0.53 0.63 0.66 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.14 0.23 0.30 0.33 0.34
Joint training 0.21 0.29 0.34 0.40 —

Supervised Pretraining 0.21 0.29 0.35 0.39 —
Unsupervised Pretraining 0.29 0.37 0.41 0.45 —
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Table 10. Gumbel DB – Reconstruction Z TA
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.74 0.78 0.86 0.90 0.94
Joint training 0.96 0.94 0.96 0.95 —

Supervised Pretraining 0.97 0.98 0.97 0.97 —
Unsupervised Pretraining 0.81 0.88 0.90 0.94 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.33 0.46 0.70 0.75 0.79
Joint training 0.32 0.58 0.73 0.83 —

Supervised Pretraining 0.56 0.63 0.72 0.81 —
Unsupervised Pretraining 0.57 0.75 0.82 0.85 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.90 0.93 0.96 0.97 0.98
Joint training 0.96 0.98 0.98 0.99 —

Supervised Pretraining 0.96 0.97 0.98 0.99 —
Unsupervised Pretraining 0.97 0.98 0.99 0.99 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.92 0.94 0.95 0.96 0.97
Joint training 0.95 0.96 0.96 0.97 —

Supervised Pretraining 0.94 0.95 0.96 0.97 —
Unsupervised Pretraining 0.98 0.98 0.98 0.98 —

Table 11. Gumbel DB – Reconstruction Z SA
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.05 0.08 0.17 0.27 0.30
Joint training 0.60 0.43 0.54 0.54 —

Supervised Pretraining 0.65 0.71 0.68 0.62 —
Unsupervised Pretraining 0.11 0.18 0.39 0.55 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.01 0.06 0.20 0.25 0.21
Joint training 0.01 0.11 0.19 0.38 —

Supervised Pretraining 0.07 0.11 0.15 0.25 —
Unsupervised Pretraining 0.05 0.21 0.32 0.42 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.02 0.02 0.20 0.27 0.34
Joint training 0.29 0.48 0.59 0.61 —

Supervised Pretraining 0.24 0.42 0.56 0.60 —
Unsupervised Pretraining 0.30 0.46 0.59 0.63 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.05 0.10 0.17 0.21 0.21
Joint training 0.10 0.14 0.21 0.25 —

Supervised Pretraining 0.07 0.13 0.19 0.27 —
Unsupervised Pretraining 0.26 0.27 0.31 0.34 —
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Table 12. Gumbel DB – Teacher-forced X TA
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.66 0.76 0.84 0.87 0.88
Joint training 0.60 0.70 0.78 0.85 —

Supervised Pretraining 0.40 0.63 0.76 0.84 —
Unsupervised Pretraining 0.36 0.64 0.62 0.76 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.39 0.48 0.51 0.55 0.57
Joint training 0.38 0.49 0.55 0.58 —

Supervised Pretraining 0.45 0.50 0.52 0.56 —
Unsupervised Pretraining 0.43 0.53 0.55 0.57 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.84 0.93 0.97 0.98 0.99
Joint training 0.88 0.95 0.98 0.99 —

Supervised Pretraining 0.86 0.93 0.97 0.98 —
Unsupervised Pretraining 0.85 0.94 0.98 0.99 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.71 0.77 0.80 0.83 0.85
Joint training 0.75 0.79 0.81 0.84 —

Supervised Pretraining 0.72 0.78 0.81 0.84 —
Unsupervised Pretraining 0.69 0.77 0.81 0.84 —
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Table 13. VQ DB – Autoregressive Z Token Accuracy
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.73 0.89 0.98 1.00 1.00
Joint training 0.67 0.88 0.95 0.97 —

Supervised Pretraining 0.84 0.95 0.99 1.00 —
Unsupervised Pretraining 0.75 0.91 0.97 0.99 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.23 0.86 0.87 0.93 0.93
Joint training 0.31 0.66 0.90 0.89 —

Supervised Pretraining 0.41 0.86 0.90 0.93 —
Unsupervised Pretraining 0.12 0.13 0.13 0.13 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.86 0.95 0.99 1.00 1.00
Joint training 0.92 0.97 0.99 0.99 —

Supervised Pretraining 0.91 0.97 0.99 1.00 —
Unsupervised Pretraining 0.94 0.97 0.98 0.98 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.49 0.77 0.91 0.95 0.84
Joint training 0.71 0.81 0.91 0.96 —

Supervised Pretraining 0.69 0.83 0.94 0.96 —
Unsupervised Pretraining 0.44 0.54 0.52 0.61 —
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Table 14. VQ DB – Autoregressive Z Sentence Accuracy
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.10 0.41 0.85 0.98 1.00
Joint training 0.12 0.44 0.70 0.87 —

Supervised Pretraining 0.29 0.64 0.91 0.98 —
Unsupervised Pretraining 0.15 0.54 0.84 0.93 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.04 0.86 0.87 0.94 0.91
Joint training 0.14 0.59 0.91 0.89 —

Supervised Pretraining 0.23 0.86 0.90 0.94 —
Unsupervised Pretraining 0.00 0.00 0.00 0.00 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.47 0.74 0.92 0.97 0.84
Joint training 0.51 0.81 0.93 0.97 —

Supervised Pretraining 0.59 0.82 0.94 0.97 —
Unsupervised Pretraining 0.51 0.63 0.62 0.59 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.01 0.53 0.79 0.87 0.25
Joint training 0.69 0.78 0.92 0.96 —

Supervised Pretraining 0.41 0.66 0.85 0.91 —
Unsupervised Pretraining 0.01 0.02 0.07 0.05 —
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Table 15. VQ DB – Reconstruction Z TA
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.73 0.77 0.83 0.91 0.99
Joint training 0.95 0.95 0.95 0.96 —

Supervised Pretraining 0.99 0.98 0.98 0.97 —
Unsupervised Pretraining 0.86 0.97 0.99 0.99 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.35 0.67 0.77 0.81 0.53
Joint training 0.59 0.77 0.91 0.93 —

Supervised Pretraining 0.68 0.81 0.83 0.89 —
Unsupervised Pretraining 0.32 0.38 0.32 0.32 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.93 0.98 0.99 1.00 0.98
Joint training 0.97 0.99 0.99 1.00 —

Supervised Pretraining 0.97 0.98 0.99 1.00 —
Unsupervised Pretraining 0.98 0.99 0.98 0.98 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.89 0.95 0.98 0.98 0.98
Joint training 0.97 0.98 0.99 0.99 —

Supervised Pretraining 0.97 0.98 0.99 0.99 —
Unsupervised Pretraining 0.94 0.94 0.94 0.94 —

Table 16. VQ DB – Reconstruction Z SA
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.05 0.12 0.29 0.61 0.91
Joint training 0.40 0.38 0.39 0.52 —

Supervised Pretraining 0.89 0.76 0.71 0.66 —
Unsupervised Pretraining 0.17 0.67 0.90 0.85 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.02 0.18 0.19 0.25 0.12
Joint training 0.10 0.30 0.64 0.75 —

Supervised Pretraining 0.13 0.33 0.39 0.56 —
Unsupervised Pretraining 0.00 0.00 0.00 0.00 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.32 0.68 0.78 0.95 0.39
Joint training 0.41 0.68 0.86 0.93 —

Supervised Pretraining 0.35 0.69 0.88 0.96 —
Unsupervised Pretraining 0.44 0.57 0.52 0.53 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.01 0.19 0.51 0.52 0.22
Joint training 0.27 0.40 0.57 0.67 —

Supervised Pretraining 0.19 0.41 0.56 0.71 —
Unsupervised Pretraining 0.00 0.01 0.00 0.00 —
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Table 17. VQ DB – Teacher-forced X TA
SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.65 0.73 0.81 0.86 0.88
Joint training 0.56 0.67 0.74 0.84 —

Supervised Pretraining 0.41 0.62 0.71 0.78 —
Unsupervised Pretraining 0.27 0.61 0.57 0.79 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.32 0.52 0.55 0.58 0.62
Joint training 0.43 0.54 0.59 0.65 —

Supervised Pretraining 0.48 0.53 0.55 0.58 —
Unsupervised Pretraining 0.33 0.34 0.33 0.33 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.85 0.96 0.99 0.99 0.97
Joint training 0.88 0.95 0.98 0.99 —

Supervised Pretraining 0.85 0.93 0.98 0.99 —
Unsupervised Pretraining 0.88 0.93 0.93 0.93 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.60 0.77 0.83 0.86 0.88
Joint training 0.74 0.78 0.83 0.86 —

Supervised Pretraining 0.68 0.78 0.84 0.86 —
Unsupervised Pretraining 0.49 0.55 0.53 0.53 —
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