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ABSTRACT

We present Frequency-Aware Dynamic Gaussian Splatting (FAGS), a novel
approach to mitigating motion blur in 4D reconstruction, particularly under novel
viewpoints. This blur stems from a fundamental spectral conflict in existing
methods, which struggle to balance high-frequency rendering details with high-
frequency motion. FAGS addresses this challenge with two key innovations. First,
we introduce a frequency-differentiated Gaussian kernel that refines the alpha-
blending process of 3D Gaussian Splatting. By adaptively classifying Gaussians
into two types—a slowly varying kernel for smooth, low-frequency regions and a
sharp-transitioning kernel for high-frequency boundaries—our method explicitly
separates representation responsibilities, preserving fine details without sacrificing
continuity. Second, we propose a Fourier-Deformation Network that enhances
motion expressiveness. This network employs high-frequency Fourier embed-
dings to capture diverse motion patterns by learning amplitudes across frequency
components. To further improve accuracy, we integrate a frequency-aware gate
in fusion module, which predicts and regulates the relative deformation of each
Gaussian. Extensive experiments on both synthetic and real-world 4D benchmarks
demonstrate that FAGS significantly reduces motion blur and enhances structural
details, achieving state-of-the-art performance.

1 INTRODUCTION

Recent advances in deformation-field-driven 3D Gaussian Splatting (3DGS) have achieved impres-
sive results in 4D reconstruction |Yang et al.| (2024); Wu et al.| (2024a); [Zhou et al.| (2024); Huang
et al.| (2024);|Lin et al.| (2024)); |L1 et al.| (2024)); Xie et al.| (2024)); Kratimenos et al. (2023)); |You &
Hou|(2024); Lu et al.| (2024)); Luiten et al.|(2023)); \Guo et al.|(2024). Despite this progress, dynamic
reconstructions often suffer from pronounced motion blur, especially under novel viewpoints. These
existing approaches attempt to alleviate this issue by refining deformation fields to better align
dynamic content across frames. However, a core limitation lies in balancing high-frequency
rendering details and high-frequency motion.

We analyze the balancing problem between Gaussians and Deformation Network. As illustrated in
Fig. 1(a), vanilla 3DGS adopts a fixed opacity profile for each Gaussian—opaque at the center and
gradually transparent toward the boundary. While this design works well for static scenes by relying
on overlapping Gaussians, it severely limits expressiveness in dynamic settings. The fixed profile
forces the deformation network to handle two contradictory tasks simultaneously: on one hand, it
must orchestrate dense Gaussian stacking to recover high-frequency appearance at individual time
steps; on the other hand, it must drive these Gaussians coherently across multiple frames to model
high-frequency motion without causing scattering. This dual burden often biases the network toward
uniform low-frequency motion as a compromise, which ultimately results in severe motion blur under
novel views. As shown in Fig. 1(b), a more effective solution is to enhance Gaussian expressiveness
for high-frequency details and to empower the deformation network with frequency-aware flexibility,
thereby separating the responsibilities of representation and motion modeling.

In this work, we tackle this problem from a frequency perspective, introducing Frequency-Aware
Dynamic Gaussian Splatting (FAGS) model. Our approach explicitly decouples high-frequency
detail representation from high-frequency motion modeling through two key components. First, the
Frequency-Differentiated Gaussian Kernel employs a learnable alpha modulation function that
adaptively adjusts each Gaussian’s projection. This allows Gaussians to specialize as either (a) sharp
high-frequency kernels for detail boundaries or (b) smooth low-frequency kernels for uniform regions,
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Figure 1: Analysis of high-frequency details and motion. (a) Baseline: Standard Gaussian kernels
require dense overlapping to capture high-frequency details, which complicates deformation control
and biases the network toward smooth, low-frequency trajectories, resulting in motion blur. (b) Our
method: Gaussians in high- and low-frequency regions are differentiated, enabling the deformation
network to capture high-frequency motion on top of global low-frequency deformations, allowing
each Gaussian to follow its own fine-grained dynamics.

thereby reducing reliance on dense Gaussian stacking. Second, the Fourier-Deformation Network
models motion trajectories as a superposition of periodic movements at multiple frequencies. By
learning the amplitude distribution of high- and low-frequency components, it enables precise motion
estimation—capturing rapid, high-frequency displacements over short intervals while maintaining
stable, low-frequency trends globally. Our main contributions are as follows:

* We identify motion blur in 4D reconstruction as arising from a fundamental spectral conflict
between balancing high-frequency rendering details and high-frequency motion.

* We propose the Frequency-Differentiated Gaussian Kernel, which uses adaptive alpha
modulation to allow Gaussians to specialize as high- or low-frequency kernels, separating
the modeling of high-frequency details from smooth low-frequency regions.

* We design the Fourier-Deformation Network, incorporating high-frequency Fourier fea-
tures and a frequency-aware gate to simultaneously capture high-frequency local deforma-
tions while suppressing unnecessary motion in low-frequency points.

» Extensive experiments on synthetic and real-world 4D benchmarks show that FAGS effec-
tively reduces motion blur and sharpens structural details.

2 RELATED WORKS

Dynamic Neural Radiance Fields. Neural Radiance Fields (NeRF) have emerged as a powerful
paradigm for representing scenes as continuous volumetric functions. Early extensions to dynamic
settings aimed to reconstruct 4D scenes. Neural 3D Video |Li et al.| (2022), for example, introduces
temporal latent variables combined with hierarchical training and importance sampling, achieving
scalable performance and establishing DyNeRF as a benchmark for dynamic NeRF. Another promi-
nent line of work leverages deformation fields to extend NeRF into the temporal domain, as in
Nerfies [Park et al.|(2021a)) and D-NeRF |Pumarola et al.|(2021). Nerfies decomposes 4D space into a
static NeRF template with time-dependent deformation fields, while D-NeRF directly predicts spatial
displacements over time. |Li et al.|(2021)) further encode both geometry and motion by training a
network to learn scene flow, thereby capturing spatial structure alongside temporal dynamics.

Dynamic Gaussian Splatting. Recent research extends static 3D Gaussian Splatting (3DGS) into
the 4D domain |Yang et al.| (2024); [Wu et al.| (2024a); Zhou et al.| (2024); Huang et al.| (2024); [Lin
et al.| (2024)); L1 et al.| (2024); Xie et al.| (2024); Kratimenos et al. (2023)); You & Houl (2024); [Lu
et al.[(2024)); Luiten et al.|(2023);|Guo et al.|(2024), enabling efficient modeling of object motion and
scene dynamics. By combining anisotropic Gaussians with deformation fields, these methods achieve
high-quality rendering with real-time efficiency [Wu et al.|(2024b). Existing approaches fall into two
categories: iterative and deformation-based. Iterative methods update Gaussian parameters frame
by frame, such as D-3DGS |Luiten et al.| (2023)) which propagates Gaussians across frames while
enforcing temporal coherence. While conceptually simple, they often struggle with occlusions and
unseen regions, and usually require multi-camera setups. In contrast, deformation-based methods
adopt a shared canonical representation and use deformation fields to predict temporal offsets,
avoiding per-frame optimization and improving scalability. For example, [Yang et al.|(2024) learn
spatial and temporal adjustments via an MLP queried by 4D coordinates, while |Wu et al.| (2024a)
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integrate a spatio-temporal encoder—decoder for efficient, high-quality modeling. These approaches
are generally more scalable and robust, though they depend heavily on accurate deformation modeling.

Despite these advances, prior work mainly focuses on refining deformation fields or canonical
representations while overlooking the spectral characteristics of motion. In particular, balancing
high-frequency motion with high-frequency image detail remains unresolved, often leading to motion
blur in novel views. Our work addresses this gap by introducing a frequency-aware formulation that
explicitly disentangles these spectral demands within the Gaussian representation.

3 METHODOLOGY

3.1 PRELIMINARIES

3D Gaussian Splatting. 3D Gaussian Splatting Kerbl et al.[(2023)) (3DGS) represents a scene as
a set of anisotropic 3D Gaussian primitives parameterized by position y € R3, rotation R, scaling
S, spherical harmonic coefficients cgy for view-dependent color, and opacity o. The covariance
is defined as 3P = RSSTRT to ensure positive semi-definiteness. Given a camera view, each
Gaussian is projected to the image plane with center 12" and covariance X2, and the final pixel
color is rendered via alpha blending:

N i—1
Cp) =Y coi [[(A-e;), i=o;exp [— Lp— 2Pi)T (222 (p— u2P)], ()
i=1 j=1

where N denotes the number of Gaussians overlapping pixel p. This formulation enables high-quality,
differentiable rendering suitable for optimization.

Deformation Network. Deformation networks Wu et al.| (2024a); |Xu et al.| (2024) model temporal
evolution of Gaussians in dynamic scenes. Specifically, given a Gaussian’s position x and timestamp ¢,
an MLP predicts residual updates (A, Ag, Ag) to its position, rotation, and scaling. The deformed
Gaussian (z + A,, R + Ar,S + Ag,csm,0) is then rasterized using Eq. This framework
maintains a shared canonical representation and improves temporal coherence compared to per-frame
optimization. However, since deformation primarily modifies geometry while alpha blending handles
color composition, it struggles to represent high-frequency motion and sharp appearance changes,
often leading to motion blur, especially near object boundaries or during rapid deformations.

3.2 FREQUENCY-DIFFERENTIATED GAUSSIAN KERNEL

The limited expressiveness of individual Gaussians often forces the deformation network to rely on
overlapping kernels, biasing deformation fields toward real motion. To address this, we propose the
Frequency-Differentiated Gaussian Kernel (FDGK), which endows each Gaussian with an adaptive
alpha modulation function. This enables specialization into high-frequency Gaussians for complex
textures and low-frequency Gaussians for smooth regions, reducing overlap and stabilizing defor-
mation optimization. We realize this extension of Gaussian splatting through three straightforward
modifications, detailed below.

Recalling Eq. [T} « decay is primarily governed by the subsequent power operation g, making it
sensitive to numerical fluctuations. We generalize the computation as

a; = min(09(g),0.99), ¥(g) = rg+b, Where g = exp [—%(p—ufD)T(E?D)‘l(p—u?D) :

)
Here, the slope r» modulates «’s smoothness (r — 1) versus sharpness (r — o0), effectively
generating high- and low-frequency Gaussians, with a standard Gaussian corresponding to r =
1 and b = 0. While DRK |Huang et al.| (2025) also adjusts r to enhance expressiveness, the
mapping boundaries are implicitly determined by r, so Gaussians sharing the same slope inherit
identical differentiated regions. This coupling constrains the separation between high- and low-
frequency Gaussians. In contrast, FDGK introduces a learnable boundary parameter 3 for each
Gaussian, dynamically controlling its differentiation region independently of r, thereby enabling each
Gaussian to adapt its frequency characteristics and differentiation span and substantially improving
representational flexibility. We provide more detailed results to illustrate the effects of 3 in Appn.
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First, to simplify the analysis, we partition the original mapping range into three intervals and
constrain the central interval to pass through (0.5, 0.5). This construction enables us to focus on the
middle region for Gaussian differentiation. Building on this foundation, we introduce the adaptive
alpha modulation function ¥ (g):

5+A—0.58—X
WQ’ 9 € [0.m), p1 = max (2326 ()
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cation to differentiate high-
and low-frequency Gaus-
sians.  Fig. [2] visualizes
how varying A affects 3D
Gaussians: when A\ = 0.5,
the Gaussians correspond to
standard 3D Gaussians with
a gradual transparency gra-
dient from the projection
center outward; for A < 0.5,
1(g) varies slowly with g, producing smooth, uniform transparency typical of low-frequency Gaus-
sians; for A > 0.5, ¥(g) changes rapidly, yielding sharp transitions and distinct boundaries character-
istic of high-frequency Gaussians.
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Figure 2: Adaptive alpha modulation function of the frequency-
differentiated Gaussian kernel. The piecewise activation function 1 (g)
regulates the o values of Gaussian projections, with its slope modulated
by the learnable parameters A and 8. By optimizing these parameters,
the activation becomes differentiated, enabling Gaussians to specialize
into low-frequency and high-frequency representations.

To further control the differentiated region, we introduce a boundary parameter 3. Let go denote
the point where ¢(go) = 0. The distance d,, between go and 0.5 defines the allowable span of the
frequency-differentiated region. We scale this distance by 5 to determine the left and right endpoints
as p; = 0.5 — Bdg, and p, = 0.5 + Bdg,, as formulated in Eq.[3| Optimizing A and 3 allows each
Gaussian to adaptively regulate its frequency and span.

The values of A and 3 for each Gaussian can be directly applied in the rasterization process and
gradient backpropagation. As a continuous and differentiable piecewise function spanning the full
range of g € [0, 1], ¥(g) preserves the opacity representation of Gaussians. The A and /3 can be
optimized by backpropagation:

2 2
ﬁga g S [Oapl> %97 g € [O7pl)
N(g) Y(g) _
“a\ g — 057 g S [plap’r] “ans 07 g € [plap’r]
B oy ap 09512
m(y - 1)a g e (p7'7 1] 0.5+ —5)2 (9 - l)a g e (pm 1]
“4)

By jointly optimizing A and the boundary parameter 3, the activation function ¢ (g) is adaptively
learned, differentiating Gaussians into high- and low-frequency types while stabilizing o values
within a controlled range, thereby ensuring robust and stable training of the deformation network.
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Figure 3: Overview of Frequency-Aware Gaussian Splatting. Top: Gaussians are initialized in a
canonical state and progressively differentiate into low- and high-frequency types during optimization,
fitting low-frequency smooth regions and high-frequency details, respectively. Bottom: Coordinates
x,y, z and time ¢ are hash-encoded to generate low-frequency features, which are then fused with
high-frequency Fourier embeddings to form a unified high-low frequency representation. This
representation is processed by a multi-head decoder to predict deformations, with a frequency-aware
gate modulating motion strength. Finally, rendering Gaussians to produce the final outputs.

3.3 FOURIER-DEFORMATION NETWORK

Existing deformation network Xu et al.| (2024)); [Yang et al.| (2024); Wu et al.| (2024a); |Cao & Johnson
(2023)) typically apply hash encoding to 4D coordinates (z, y, z,t) and use MLP to model the motion

of Gaussian points. While hash encoding preserves strong spatiotemporal continuity and maintains
geometric consistency in the reconstruction, these methods remain limited in modeling rapid temporal
motion. This inherent trade-off between capturing high-frequency spatial details and high-frequency
motion often leads to motion blur.

To address this, we propose the Fourier-Deformation Network, which explicitly models high-
frequency temporal variations for each Gaussian. Directly optimizing trajectories over all time
steps is computationally prohibitive for scenes with over 100k Gaussians. Instead, we encode high-
frequency motion for each point, integrate it with low-frequency spatial features, and leverage the
resulting high—low frequency feature to efficiently predict Gaussian deformations.

Specifically, we decompose the 4D coordinate (x,y, 2, t) into four 3D hash encodings: (z,y, z),
(z,9,t), (y,2,1), and (z, z,t), capturing different spatial-temporal interactions. These embeddings
produce a spatial feature fy,, and temporal feature fier, via MLP:

fspa = MLP(Hyy- (2,9, 2)),  frem = MLP (concat[Hyy (2, y, 1), Hyzt (y, 2, t), Hyzi(, 2,1)]).

(5)
High-frequency Fourier Embedding. We formulate each Gaussian’s motion as a segment of an
infinitely repeating cycle, allowing its trajectory to be decomposed through Fourier analysis into
amplitude—frequency components. To better capture high-frequency temporal variations, we design a
dedicated high-frequency Fourier embedding for each Gaussian:

ftre = [wisin(my1t), wqcos(myat), ..., wWpsin(Tynt), wn COS(?T’}/mt)]T , 6)

3i—3
where y; =271, m = %. D denotes the dimension of fp,,. This temporal encoding adopts denser

sampling designed to effectively span multiple temporal scales. The amplitude vector [wy, . .., W]
is specific to each Gaussian and time-invariant, predicted from its spatial feature fs,, via an MLP:
[wiy ..., W] = MLP(fspa)- @)

The resulting Fourier feature ft., captures periodic high-frequency motion, which can be aligned or
scaled to complement low-frequency temporal embeddings fien,. By fusing fg,. with low-frequency
features, the deformation network achieves precise control over both slow and rapid motions, enabling
accurate and stable reconstruction of dynamic scenes.
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Figure 4: Qualitative results on the synthetic D-Nerf dataset.

Frequency-aware Gate. A deformation network inherently predicts updates for all Gaussians, which
may inadvertently modify points that should remain static. To selectively suppress low-frequency
motion while promoting genuine high-frequency deformations, we introduce a frequency-aware gate
that estimates each Gaussian’s relative motion state at each time step, i.e., whether the point is more
dynamic or more static compared to other Gaussians. The high-frequency Fourier feature f,. is fused
with the temporal embedding fiem (i.e., the low-frequency features), and the resulting representation
is used to predict the deformation parameters via the deformation network Dy:

/J/ = nRa:M + ﬁTx, s'=5 + 77A87 R = R+ UAT» DG(fFD) = {777R$7TI) AT,AS}, (®)

where R, and T, denote the predicted rotation and translation, and 7 is the frequency-aware gate
score that modulates the deformation strength at time ¢. By adaptively weighting the updates, the
gate assigns larger 7 values to Gaussians undergoing high-frequency motion, allowing rapid changes
in their attributes, while near-static, low-frequency Gaussians receive smaller 7 values, effectively
suppressing undesired motion and stabilizing the optimization process.

3.4 OPTIMIZATION

Fourier Frequency Loss. Although the frequency-differentiated Gaussian kernels and the Fourier-
Deformation Network are designed to capture high-frequency details and motion, their potential
cannot be fully realized without a frequency-aware optimization objective. To this end, we introduce
a Fourier frequency loss. Specifically, for a rendered image I’ and its target image I, we use Fast
Fourier Transform (FFT) to obtain the corresponding amplitude spectra I, ;mp and I,;,,p. The Fourier
frequency loss is then defined as:

Efre - || amp amp”l- (9)

Since the phase primarily encodes structural information and the rendered image I’ shares highly
similar geometry with the target image I, the differences in phase are minimal; therefore, we
only consider discrepancies in amplitude. We integrate L, with the reconstruction losses used in
Grid4D Xu et al.|(2024), yielding the final training objective:

L=0.Lr1+ (1—o0c)lass + 0r Ly + TreLsres (10)

where o, 0,, and oy, are hyperparameters balancing the contributions of each term. Here, £,
denotes the smooth regularization loss used in Grid4D. Following Xu et al.| (2024), we keep . and o,
consistent with their settings and fix them during training. Similar to prior works |Yang et al.| (2024);
Wu et al.| (2024al), we initialize with static canonical Gaussians at the beginning of training to ensure
stable convergence. For Gaussians initialized from SfM |Schonberger & Frahm|(2016), we shorten the
static initialization stage for improved efficiency. Moreover, we adopt the adaptive density controller
and opacity resetting mechanism introduced in Gaussian Splatting [Kerbl et al.|(2023)). The overall
pipeline of our FAGS is illustrated in Fig.[3]
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Table 1: Quantitative results on D-NeRF dataset. ' Best and second-best results are highlighted.

Model Bouncing Balls Hell Warrior Hook Jumping Jacks
PSNRt SSIMt LPIPS| | PSNR+ SSIMt LPIPS| | PSNRT SSIM1 LPIPS| | PSNRT SSIMT LPIPS|
Tensor-4D* 24.47 0.962 0.044 31.26 0.925 0.074 28.63 0.943 0.064 24.20 0.925 0.067
HexPlane* 40.36 0.992 0.031 24.30 0.944 0.073 28.26 0.955 0.052 31.74 0.974 0.036
TiNeuVox-B 40.28 0.991 0.039 28.30 0.966 0.064 31.86 0.972 0.044 34.77 0.987 0.033
DeformGS 41.67 0.995 0.008 41.09 0.986 0.027 37.06 0.986 0.016 37.06 0.986 0.016
4D-GS 40.77 0.994 0.016 3537 0.985 0.020 32.90 0.977 0.027 35.37 0.985 0.020
SC-GS 41.85 0.996 0.022 42.10 0.989 0.028 38.81 0.991 0.014 39.80 0.992 0.013
Grid4D 4236 0.995 0.007 42.85 0.990 0.016 38.89 0.990 0.009 39.36 0.993 0.008
GriddD+DRK | 40.82 0.995 0.011 41.92 0.989 0.019 | 36.07 0.983 0.021 37.57 0.991 0.011
Ours 43.32 0.996 0.007 43.13 0.991 0.014 40.18 0.992 0.008 40.52 0.994 0.006
Model Mutant Standup Trex Average
PSNRt SSIMT LPIPS| | PSNR+ SSIMt LPIPS| | PSNRT SSIM1 LPIPS| | PSNRT SSIMT LPIPS|

Tensor-4D* 29.11 0.945 0.060 30.56 0.958 0.036 31.25 0.964 0.048 28.50 0.946 0.056
HexPlane* 33.66 0.982 0.028 34.12 0.983 0.019 31.01 0.976 0.028 31.92 0.972 0.038
TiNeuVox-B 33.99 0.977 0.030 36.10 0.986 0.020 32.87 0.978 0.031 34.02 0.979 0.037
DeformGS 42.13 0.994 0.007 43.70 0.994 0.009 37.78 0.993 0.010 40.07 0.991 0.013
4D-GS 37.71 0.988 0.016 37.88 0.990 0.014 34.14 0.985 0.022 36.30 0.986 0.019
SC-GS 42.55 0.995 0.011 46.16 0.997 0.008 39.53 0.994 0.010 41.59 0.994 0.015
Grid4D 43.94 0.996 0.004 46.51 0.997 0.004 40.01 0.994 0.008 41.99 0.993 0.008
Grid4D+DRK | 38.95 0.988 0.019 42.64 0.992 0.012 | 38.04 0.993 0.012 39.43 0.990 0.015
Ours 44.16 0.997 0.004 47.30 0.997 0.003 40.69 0.995 0.008 42.76 0.995 0.007

Table 2: Quantitative results on Neu3D dataset. The color marks the best and the second best .

Coffee Martini Cook Spinach Cut Roasted Beef

Model ‘ PSNR+ SSIM1 LPIPS| | PSNR1 SSIM?t LPIPS| | PSNRT SSIM?1 LPIPS|
4D-GS 27.00 0.885 0.189 31.80 0.942 0.159 32.06 0.939 0.167
Grid4D | 27.90 0.893 0.179 32.38 0.947 0.144 33.20 0.947 0.157
Ours 28.37 0.899 0.179 32.79 0.967 0.145 33.20 0.950 0.148
Model Flame Steak Sear Steak Average

PSNRt SSIMt LPIPS| | PSNR+ SSIM+ LPIPS| | PSNRT SSIMT LPIPS|
4D-GS 30.23 0.945 0.147 32.18 0.958 0.144 30.65 0.934 0.161
Grid4D | 32.07 0.942 0.136 32.61 0.955 0.132 31.63 0.937 0.149
Ours 32.95 0.947 0.132 33.58 0.968 0.125 32.18 0.946 0.146

4D-GS Grid4D Ours GT
Figure 5: Qualitative results on the real-world Neu3D dataset.

4 EXPERIMENTS

Datasets. We evaluate FAGS on D-NeRF Pumarola et al.|(2021), HyperNeRF (2021b), and
Neu3D (2022). D-NeRF is a synthetic monocular dataset with accurate time-varying poses,

while HyperNeRF and Neu3D contain real-world captures with poses estimated via COLMAP [Fisher
(2021)). Rendering resolutions are 800 x 800, 536 x 960, and 1,352 x 1,024, respectively.

Baselines. We compare against state-of-the-art 4D reconstruction methods (2024a); [Yang

et al| (2024); [Huang et al.| (2024); [Xu et al.| (2024)); [Fang et al| (2022); [Shao et al.| (2023)); [Cao &
Johnson| (2023). NeRF-based approaches include Tensor-4D Shao et al.| (2023) and TiNeuVox Fang;

et al.| (2022) (plane- and grid-based explicit representations). Gaussian-based models include 4D-

GS (2024a)), DeformGS [Yang et al| (2024), and SC-GS [Huang et al.| (2024), with the
latter extending DeformGS via sparse control points. Grid4D |Xu et al.| (2024) improves deformation

control using a 4D decomposed hash encoding with attention.

Implementation Details. Experiments are performed on an NVIDIA 3090 GPU. We train using
Adam with a learning rate of 0.002 for A and 8. FAGS is implemented in CUDA/C++ and integrates
with Grid4D (2024) as the deformation backbone. We set og. = 0.3 as the default

hyperparameter. Other settings that we follow (2024)’s work.
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Table 3: Quantitative results on real-world HyperNeRF dataset, including 4 rig subsets (Rig) and the
6 interpolation subsets (Interpolation) . The color marks the best and the second best .

Model ‘ Interpolation (6 scenes) Rig (4 scenes)

PSNRT SSIMT LPIPS| MS-SSIMT | PSNRT SSIMT LPIPS| MS-SSIMt
TiNeuVox | 27.11 - 0.923 24.21 - 0.836
4D-GS 27.58 0.794 0.315 0.910 24.64 0.665 0.363 0.654
Grid4D 28.59 0.844 0.199 0.993 25.24 0.685 0.319 0.818
Ours 29.02 0.850 0.195 0.994 25.63 0.719 0.269 0.885

;1D-GS Grid4D Ours GT
Figure 6: Qualitative results on the real-world HyperNeRF dataset.

4.1 EXPERIMENTAL RESULTS

We evaluated FAGS against state-of-the-art methods on the synthetic D-NeRF dataset and real-
world HyperNeRF and Neu3D datasets. Quantitative metrics include PSNR |Fardo et al.| (2016),
SSIM [Wang et al.| (2003)), LPIPS [Zhang et al.| (2018)), and MS-SSIM Wang et al.| (2003). Our
Frequency-Differentiated Gaussian Kernel and Fourier Deformation Network improve rendering
of fine textures and achieve significant quantitative gains (Tab. [I] Tab.[2] Tab.[3). Across datasets,
our method consistently improves visual fidelity. On D-NeRF (Fig. d), object boundaries are better
preserved, e.g., feet in Hook and hand details in JumpingJacks. In Neu3D (Fig. ), baselines with
non-differentiated Gaussians often misadjust displacements, causing blurred static backgrounds
and loss of high-frequency motion details. In HyperNeRF (Fig. [6), improper handling of multiple
Gaussians leads to artifacts such as disappearing knife tips. By contrast, our FAGS effectively address
these issues, demonstrating superior control over both spatial structure and motion details.

4.2 ABLATION STUDIES

We present the ablation results of each component in Tab.[dand Fig.[8] (a) Frequency-Differentiated
Gaussian Kernels (FDGK). By decoupling Gaussians into high- and low-frequency categories,
FDGK reduces redundant stacking and alleviates the deformation network’s burden. This specializa-
tion enhances the reconstruction of fine-grained high-frequency details, as evidenced by sharper hand
and foot structures in Fig.[8] Compared to standard 3DGS, FDGK provides greater flexibility and
efficiency in representing frequency-aware scene components. (b) High-Frequency Fourier Embed-
ding (HFE). HFE injects temporally varying high-frequency signals into each Gaussian, preventing
uniformly smooth low-frequency motion. This enables better separation and preservation of fine
details, particularly in articulated regions such as fingers and leg joints. (c) Frequency-aware Gate
(FG). FG adaptively regulates the deformation strength of each Gaussian based on its frequency-aware
features. Low-frequency Gaussians are suppressed to remain stable, while genuine high-frequency
motions are amplified, improving the network’s control over dynamic regions. Unlike hard clamping
methods that enforce static bounds, we let  smoothly vary, allowing the deformation network to
adaptively modulate each Gaussian’s dynamic behavior at every timestep. (d) Fourier Frequency
Loss (Le). This loss explicitly regularizes the spectral domain by emphasizing hard-to-optimize
high-frequency regions. It guides both Gaussians and the deformation network toward precise local
fitting, yielding reconstructions closer to ground truth with enhanced detail fidelity.
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Table 4: Quantitative ablation results on the synthetic D-NeRF dataset.

Model | Full | w/o FDGK w/o HFE w/oFG w/o L. wlo (FG + L) | wio FDGK.A  w/o FDGK.3

PSNR 1 | 42.76 42.11 42.38 42.70 42.50 42.43 42.30 42.26
SSIM 1 | 0.995 0.993 0.994 0.994 0.994 0.994 0.994 0.994
LPIPS | | 0.007 0.009 0.009 0.008 0.008 0.008 0.008 0.008

GT Ours W/0 Lre GT Ours w/o FDGK  w/o HFE w/o FG
Figure 8: Ablation study visualization results on D-Nerf dataset.

4.3 MORE DISCUSSION

High-Low Frequency Gaussians (\’s distribution). At initialization, all Gaussian kernels are
assigned A = 0.5, 8 = 0.5, which is equivalent to the standard 3D Gaussian kernel. After about
5,000 training steps, the Gaussians clearly bifurcate into two distinct groups corresponding to low-
and high-frequency components, with a ratio of roughly 3:2, as shown in Fig.[7(a). More importantly,
once this differentiation emerges, the two groups remain stable throughout subsequent training,
indicating that the frequency-differentiated Gaussian kernel can both converge rapidly and maintain
consistent separation. For more details, please refer to the Appn.

Boundary (3’s distribution). The introduced boundary parameter 3 exhibits significant distri-
butional shifts in the early stages of training, as shown in Fig. [7[b). It suggests that the model
actively leverages f to rapidly adapt the differentiated region for better fitting. This highlights
the crucial role of 3 in enriching the expressiveness of frequency-differentiated Gaussian kernel.
Frequency-Based Motion Differen-

tiation (Gate ,S diStributiOH). Dur- Param. A's Distribution Param. B's Distribution Gate's Distribution
ing motion learning, we observe
that Gaussians are not simply clas-
sified into either completely static

5000 5000 5000
16000 16000 18000
25000

or fully dynamic states, as shown 20 " /

in Fig. [/(c). Instead, guided by the .. ‘ i ' ‘ P ‘ noo
Fourier-Deformation Network, each ~ so00 45 , " soopp IS 49000
Gaussian is adaptively assigned a rel- 0 @ o e (b;'z o o2
ative motion state according to its fre-

quency characteristics. A large pro- Figure 7: Distributions of frequency-differentiated parameters
portion of Gaussians concentrate in A, 3, and the frequency-aware gate across training steps.

the low-frequency regime, while a

smaller subset exhibits high-frequency behavior, demonstrating the network’s ability to capture
motion at multiple scales and achieve frequency-based differentiation of Gaussian dynamics.

FDGK vs. DRK. To thoroughly evaluate reconstruction performance, we integrate the DRK [Huang
(2023) with the Grid4D (2024) deformation network and test on the D-NeRF dataset.
Models are trained using the default DRK parameters, and results are shown in Fig.[I] Compared
to the original Grid4D, the more flexible DRK kernels do not consistently improve reconstruction
quality and often degrade it in several scenes. We attribute this to the excessive flexibility of DRK,
which makes it difficult for the deformation network to control Gaussian deformations across multiple
time steps. In contrast, FDGK undergoes clear kernel differentiation early in training and exhibits
stable behavior throughout the optimization process (Fig. [7), which in turn enables more reliable
control of temporal deformations.

il

0.4 0.5

©

Reconstruction under Motion Blur. We evaluate FAGS under severe motion blur using the real-
world motion blur dataset from BARD-GS (2025)), and directly compare its performance with
BARD-GS. In this dataset, the images are synthetically blurred for reconstruction, while evaluation
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- 3DGS ~ DRK Our FDGK - GT

BARD-GS
Figure 10: Qualitative comparisons on the motion-blur dataset.

is performed against the sharp ground-truth frames. Quantitative results are reported in Tab.[7} and
qualitative comparisons are shown in Fig.[T0] Despite the challenging blur and without deblurring
pre-processing with MPRNet [Mehri et al| (2021)), FAGS remains competitive, often producing
substantially sharper and more faithful reconstructions. Applying a pre-processing deblurring step
with MPRNet can further improve the results, yielding performance surpassing BARD-GS.

Quantifying High-frequency Motion. In Fig. [T} we show the temporal power spectrum of
Gaussian’ trajectories in the “Jumpingjacks” sequence. The temporal power spectrum shows
that FAGS concentrates substantially more Gaussians in the high-frequency band than Grid4D.
This indicates that the FDN ac-
tively induces rapid deforma- 15000 _Histogram of High-Frequency Motion (FFT) Histogram of High-Frequency Motion (FFT)
tions on many Gaussians, effec- 25000
tively capturing high-frequency
motion. Furthermore, we pro-
vide heatmaps of the temporal
second-order finite-difference en-
ergy in Fig. [T5] Compared to
Grid4D, FAGS exhibits stronger v b O g Highfrequency Energy (FFT
contrast between bright and dark Grid4D Ours

regions, indicating that the FDN
accurately captures the differ-
ences in deformations across consecutive time steps, effectively avoiding overly smooth, global
motion. These quantitative results demonstrate that FAGS can precisely model and preserve high-
frequency motions, which are essential for accurate dynamic reconstruction.

25000 20000

20000 15000

15000
10000

Number of Points

10000
5000

Figure 11: Temporal Motion Power Spectrum of Gaussians.

5 CONCLUSION

In this paper, we present Frequency-Aware Dynamic Gaussian Splatting (FAGS), a principled
approach to mitigating motion blur in 4D reconstruction. The blur arises from a spectral conflict in
conventional methods that couple high-frequency rendering with high-frequency motion, leading
to optimization instability. FAGS resolves this challenge with two complementary innovations.
First, a Frequency-Differentiated Gaussian Kernel refines alpha blending by explicitly decoupling
opacity from Gaussian shape, allowing Gaussians to specialize in either smooth, low-frequency
regions or sharp, high-frequency boundaries. Second, a Fourier-Deformation Network enhances
motion representation by leveraging high-frequency Fourier embeddings and a frequency-aware gate,
enabling accurate and expressive motion modeling. Extensive experiments on both real and synthetic
4D benchmarks show that FAGS effectively reduces motion blur, sharpens structural details.
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