
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Byte Latent Transformer: Patches Scale Better Than Tokens

Anonymous Authors1

Abstract
We introduce the Byte Latent Transformer (BLT),
a new byte-level LLM architecture that, for the
first time, matches tokenization-based LLM per-
formance at scale with significant improvements
in inference efficiency and robustness. BLT en-
codes bytes into dynamically sized patches, which
serve as the primary units of computation. Patches
are segmented based on the entropy of the next
byte, allocating more compute and model capac-
ity where increased data complexity demands
it. We present the first FLOP controlled scaling
study of byte-level models – up to 8B parame-
ters and 4T training bytes – demonstrating the
feasibility of scaling models trained on raw bytes
without a fixed vocabulary. Both training and
inference efficiency improve due to dynamically
selecting long patches when data is predictable,
along with qualitative improvements on reason-
ing and long tail generalization. For fixed infer-
ence costs, BLT shows significantly better scal-
ing than tokenization-based models, by simulta-
neously growing both patch and model size.

1. Introduction
Existing large language models (LLMs) are trained almost
entirely end-to-end, except for tokenization—a heuristic pre-
processing step that groups bytes into a static set of tokens.
Such tokens bias how a string is compressed, leading to
shortcomings such as domain/modality sensitivity (Dagan
et al., 2024), sensitivity to input noise (Pruthi et al., 2019;
Sun et al., 2020), a lack of orthographic knowledge (Edman
et al., 2024), and multilingual inequity (Liang et al., 2023;
Petrov et al., 2024; Limisiewicz et al., 2024).

Tokenization has previously been essential because di-
rectly training LLMs on bytes is prohibitively costly at
scale due to long sequence lengths (Xue et al., 2022).
Prior work mitigates this by employing more efficient self-
attention (El Boukkouri et al., 2020; Clark et al., 2022) or
attention-free architectures (Wang et al., 2024). However,
at scale, the computational cost of a Transformer (Vaswani
et al., 2017) is dominated by large feed-forward network
layers that run on every byte, not the cost of the attention

1021 1022

Total Training FLOPs

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Bi
ts

-p
er

-b
yt

e
(B

PB
)

40
0B

 b
yt

es

1T
 b

yt
es

BPB vs Training Bytes at Fixed Inference FLOPs
BLT Entropy ps=6 5.2B
BLT Entropy ps=8 6.4B
LLaMA 2 BPE 3.6B
LLaMA 3 BPE 3.9B

Figure 1. Scaling trends for fixed inference FLOP models (fully)
trained with varying training budgets. In token-based models, a
fixed inference budget determines the model size. In contrast, the
BLT architecture provides a new scaling axis allowing simulta-
neous increases in model and patch size while keeping the same
training and inference budget. BLT patch-size (ps) 6 and 8 mod-
els quickly overtake scaling trends of BPE Llama 2 and 3. BPE
compute-optimal point and crossover point are indicated with ver-
tical lines.

mechanism.

We introduce the Byte Latent Transformer (BLT), a
tokenizer-free architecture that learns from raw byte data
and, for the first time, matches the performance of
tokenization-based models at scale. Following Yu et al.
(2023); Nawrot et al. (2023); Slagle (2024), instead of di-
rectly operating on bytes, BLT groups bytes into patches
which serve as the primary unit of computation. To close the
gap with BPE tokenization, we improve on previous work
with a dynamic, learnable method for grouping bytes into
patches and a new architecture that mixes byte and patch
information. Unlike tokenization, BLT has no fixed vocabu-
lary for patches. Arbitrary groups of bytes are mapped to
latent patch representations via light-weight learned encoder
and decoder modules.

We present the first FLOP-controlled scaling study of byte-
level models, demonstrating that models with up to 8B
parameters and 4T training bytes can be trained end-to-end

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Byte Latent Transformer: Patches Scale Better Than Tokens

from bytes without fixed-vocabulary tokenization. BLT
matches training FLOP-controlled performance of Llama 3
while using up to 50% fewer FLOPs at inference. Addition-
ally, BLT offers significant improvements in handling the
long-tail of data, showing enhanced robustness to noisy in-
puts and better character-level understanding, as evidenced
by its performance on orthographic knowledge, phonology,
and low-resource machine translation tasks.

Finally, with BLT models, we can simultaneously increase
model size and patch size while maintaining the same in-
ference FLOP budget. Longer patch sizes, on average, save
compute which can be reallocated to grow the size of the
global latent transformer, because it is run less often. We
conduct inference-FLOP controlled scaling experiments (Fig-
ure 1), and observe significantly better scaling trends than
with tokenization-based architectures.

In summary, this paper contributes the following: 1) We
introduce BLT, a byte latent LLM architecture that dynami-
cally allocates compute for improved FLOP efficiency. 2) We
achieve training FLOP-controlled parity with Llama 3 up to
8B scale, with potential FLOP efficiency gains of up to 50%.
3) We unlock a new dimension for scaling LLMs, allowing
model and patch size to jointly increase while maintaining a
fixed-inference budget. 4) We demonstrate BLT’s improved
robustness to input noise and its awareness of sub-word
aspects missed by token-based LLMs. 1

2. Patching: From Bytes to Patches
Segmenting bytes into patches allows BLT to dynamically
allocate compute based on context. Figure 3 shows several
different methods for segmenting bytes into patches. For-
mally, a patching function segments a sequence of bytes
xxx = {xi, |i = 1, . . . t} of length t into a sequence of m < t
patches ppp = {pj |j = 1, . . .m} by mapping each xi to the
set {0,1} where 1 indicates the start of a new patch. For both
token-based and patch-based models, the computational cost
of processing data is primarily determined by the number of
steps executed by the main Transformer. In BLT, this is the
number of patches needed to encode the data with a given
patching function. Consequently, the average size of a patch,
or simply patch size, is the main factor for determining the
cost of processing data during both training and inference
with a given patching function.

2.1. Tokenization vs. Patching

We use “tokens” to refer to byte-groups drawn from a fi-
nite vocabulary determined prior to training as opposed
to “patches” which refer to dynamically grouped sequences
without a fixed vocabulary. Unlike with tokens, patch-based
models have direct access to the underlying bytes (e.g. char-

1Training and inference code for BLT are attached.

Local Decoder

<s> B e t et r _ t h a n _ B P E

B e t et r _ t h a n _ B P E !

Local Encoder

Latent Transformer

θ

H

5. Small Byte-Level
Transformer Makes
Next-Byte Prediction

4. Unpatching to Byte
Sequence via
Cross-Attn

3. Large Latent
Transformer Predicts
Next Patch

2. Entropy-Based
Grouping of Bytes Into
Patches via Cross-Attn

1. Byte-Level Small
Transformer Encodes
Byte Stream

Figure 2. BLT comprises three modules, a lightweight Local En-
coder that encodes input bytes into patch representations, a Latent
Transformer over patch representations, and a lightweight Local
Decoder to decode the next patch of bytes. BLT incorporates byte
n-gram embeddings and a cross-attention mechanism to maximize
information flow between bytes and patches (Figure 4) and pre-
serve access to the byte-level information.

acter information). In §A, we discuss BPE tokenization in
more detail and why it cannot be directly used as a patching
function.

2.2. Strided and Space Paching

We describe here two approaches from the literature for
grouping bytes into patches with details in §B.

Strided Patching MegaByte (Yu et al., 2023) groups
bytes into patches of fixed size k. However, this does not
take into account information density for compute allocation
and leads to inconsistent patching byte sequences, such as
the same word being split differently.

Space Patching Slagle (2024) starts new patches after
space-like bytes which are natural boundaries for linguistic
units in many languages. This ensures words are patched in
the same way across sequences and that flops are allocated
for hard predictions which often follow spaces. However,
space patching cannot handle all languages and domains,
and cannot vary the patch size.

2.3. Entropy Patching

Rather than relying on a rule-based heuristic such as whites-
pace, we instead take a data-driven approach to identify

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Byte Latent Transformer: Patches Scale Better Than Tokens

Figure 3. Patching schemes group bytes in different ways, each leading to a different number of resulting patches.

high uncertainty next-byte predictions. We introduce en-
tropy patching, which uses entropy estimates to derive patch
boundaries. In BLT training and inference, entropy patching
is a lightweight preprocessing step executed during dataload-
ing.

We train a small byte-level auto-regressive language model
on the training data for BLT and compute next byte entropies
under the LM distribution pe over the byte vocabulary V:

H(xi) = −
∑
v∈V

pe(xi = v|xxx<i) log pe(xi = v|xxx<i)

We experiment with two methods to identify patch bound-
aries given entropies H(xi). Global finds points above a
global entropy threshold, as illustrated in Figure 6. Approx-
imate Monotonicity, identifies points that are high relative
to the previous entropy. This can also be interpreted as
identifying points that break approximate monotonically
decreasing entropy withing the patch.

Global H(xi) > θg

Approx. Monotonic H(xi)−H(xi−1) > θr

Although Nawrot et al. (2023) propose a similar entropy-
base approach, they do not match BPE performance. This is
likely due to a combination of the use of a different segmen-
tation criterion, a separate classifier for boundary detection,
and a less expressive model architecture.

3. BLT Architecture
BLT is composed of a large global autoregressive trans-
former that operates on patch representations, along with
two smaller local models that encode sequences of bytes
into patches and decode next patch representations back into
bytes (Figure 2).

3.1. Latent Global Transformer Model

The Latent Global Transformer is an autoregressive trans-
former model G with lG layers, which maps a sequence of
latent input patch representations, pj into a sequence of out-
put patch representations, oj .2 This module consumes the
bulk of the FLOPs during pre-training as well as inference,

2We use j to denote patches and i to denote bytes.

and thus, choosing when to invoke it allows us to control and
vary the amount of compute expended for different portions
of the input sequence. This module uses a block-causal
attention mask (Dubey et al., 2024).

3.2. Local Encoder

The Local Encoder Model, denoted by E , is a lightweight
transformer-based model with lE << lG layers, whose
main role is to efficiently map a sequence of input bytes
xi, into expressive patch representations, pj . We employ a
cross-attention layer after each transformer layer to expres-
sively aggregate byte representations into patch representa-
tions (Figure 4). First, the input sequence of bytes, xi, are
embedded using a R256×hE matrix, denoted as ei. These
embeddings are then augmented with additional information
in the form of hash-embeddings (§3.2.1). A series of alter-
nating transformer and cross-attention layers (§3.2.2) then
transform these representations into patch representations,
pj that are processed by the global transformer, G. The
transformer layers use a local block causal attention mask;
each byte attends to a fixed window of wE preceding bytes
that in general can cross the dynamic patch boundaries but
can not cross document boundaries.

3.2.1. ENCODER HASH N-GRAM EMBEDDINGS

A key component in creating robust, expressive representa-
tions is to incorporate information about preceding bytes. In
BLT, we model both the byte xi individually and as part of
a byte n-gram. For each step i, we first construct byte-grams
of length n:

gi,n = {xi−n+1, . . . , xi}

We then introduce hash n-gram embeddings, that map all
byte n-grams via a hash function to an index in an embed-
ding table Ehash

n for each n ∈ {3, 4, 5, 6, 7, 8} (Bai et al.,
2010). The resulting embedding is then added to the embed-
ding of the byte before being normalized and passed as input
to the local encoder model. We calculate the augmented
embedding

e′i = ei +
∑

n=3,...,8

Ehash
n (Hash(gi,n))

Hash(gi,n) = RollPolyHash(gi,n)%|Ehash
n |

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Byte Latent Transformer: Patches Scale Better Than Tokens

Decoder Patch Cross Attention

Queries Key/Vals (Split + Mask)

Byte Transf. Layer X Dec.
LayersEncoder Patch Cross Attention

Key/Vals (Patch Mask) Queries
(Pooling Init)

X Enc.
LayersByte Transf. Layer

Byte Embeds Byte Encoder Hidden States

Byte Encoder
Hidden States Global Patch Inputs

Global Outputs

Byte Decoder
Hidden States

Figure 4. The encoder cross-attention uses patch representations
as queries, and byte representations as key/values to encode byte
into patch representations. In the decoder, the roles are reversed.
Here cross-att k = 2.

We normalize e′i by the number of n-grams sizes plus one
and use RollPolyHash (Rabin, 1981) as defined in §E. Un-
like Deiseroth et al. (2024), hash n-gram embeddings are
only used to improve the input byte-representations without
switching to n-gram based predictions. In section 7, we
ablate the effects of n-gram hash embeddings with different
values for n and embedding table size on FLOP-controlled
scaling trends. We find hash n-gram embeddings to per-
form better than frequency based n-gram embeddings as
discussed in §J.

3.2.2. ENCODER MULTI-HEADED CROSS-ATTENTION

The encoder cross-attention helps expressively aggregate
byte representations into patch representations which will
be used as inputs to the Latent Transformer. We closely
follow the Perceiver cross-attention (Jaegle et al., 2021),
with the main difference being that latent representations
correspond to variable patch representations as opposed to a
fixed set of latent representations (Figure 4), and only attend
to the bytes that make up the respective patch. The mod-
ule comprises a query vector, corresponding to each patch
pj , which is initialized by pooling the byte representations
corresponding to patch pj , followed by a linear projection,
EC ∈ RhE×(hE×UE), where UE is the number of encoder
cross-attention heads. Formally, if we let f(bytes(pj)) de-
note a pooling function applied to the sequence of bytes
corresponding to patch pj , then we calculate

P0,j = EC(f(bytes(pj))

Pl = Pl−1 +Wo

(
softmax

(
QKT

√
dk

)
V

)
where hl = Encoder-Transformer-Layerl(hl−1)

Ki = Wk(hl,i), Vi = Wv(hl,i),

Qj = Wq(Pl−1,j)

where P ∈ Rm×hG represents m patch representations to
be processed by the global model, which is initialized by

pooling the byte embeddings e′i corresponding to each patch
pj . Wq, Wk, Wv and Wo are projections for queries, keys,
values, and outputs where the keys and values are the en-
coder byte hidden states hl,i. We use a masking strategy
specific to patching where each query Qj only attends to
the keys and values that correspond to the bytes in patch
j. Because we use multi-headed attention over Q,K and
V and patch representations are typically of larger dimen-
sion (hG) than hE , we maintain Pl as multiple heads of
dimension hE when doing cross-attention, and later, concat
these representations into hG dimensions. Additionally, we
use a pre-LayerNorm on the queries, keys and values and
no positional embeddings are used in this cross-attention
module. Finally, we use a residual connection around the
cross-attention block.

3.3. Local Decoder

Similar to the local encoder, the local decoder D is a
lightweight transformer-based model with lD << lG layers,
that decodes a sequence of global patch representations oj ,
into raw bytes, yi. The local decoder predicts a sequence of
raw bytes, as a function of previously decoded bytes, and
thus, takes as input the hidden representations produced by
the local encoder for the byte-sequence. It applies a series
of lD alternating layers of cross attention and transformer
layers. The cross-attention layer in the decoder is applied be-
fore the transformer layer to first create byte representations
from the patch representations.

3.3.1. DECODER MULTI-HEADED CROSS-ATTENTION

In the decoder cross-attention, the roles of the queries and
key/values are interchanged: the byte-representations are
now the queries, and the patch representations are now the
key/values. The initial byte-representations for the cross-
attention are initialized as the byte embeddings from the
last encoder layer i.e. hlE . The equations for the decoder
cross-attention, which closely resemble those of the encoder,
are provided in §F.

4. Experimental Setup
We carefully design controlled experiments to compare BLT
with tokenization based models with particular attention to
not give BLT any advantages, including from possibly using
longer sequence contexts. Hyperparameters and settings
not explicitly discussed here are described in detail in §G.
The exact equations for FLOPs computation of BLT, Trans-
former, and Cross-Attention FLOPs can be found in §H.
The equation of the standard bits-per-byte (BPB) metric can
also be found in §I.

Pre-training Datasets All model scales that we experi-
ment in this paper are pre-trained on two datasets: 1) The

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Byte Latent Transformer: Patches Scale Better Than Tokens

BLT-Exp dataset (Touvron et al., 2023), which comprises
2 trillion tokens collected from a variety of publicly avail-
able sources cleaned and filtered to improve quality; and 2)
BLT-1T: a higher quality 1 trillion token dataset gathered
from various public sources, and also including a subset of
the pre-training data released by Datacomp-LM (Li et al.,
2024). The former is used for ablations and scaling trends
experiments to determine the best architectural choices for
BLT, while the latter is used for a complete pre-training run
to compare with the Llama 3 architecture on downstream
tasks.

Entropy Model and Threshold For models using entropy
patching, we estimate a patching threshold that achieves a
desired average patch size on the pretraining data mix. We
default to the global entropy threshold when not specified.
Unless otherwise mentioned, our entropy model is a trans-
former with 100M parameters, 14 layers, and a hidden di-
mensionality of 512, sliding window attention of 512 bytes
and trained on the same distribution as BLT. We experiment
with different model sizes, receptive fields, and architectures
(§P). When the receptive field of the model is small enough,
the trained entropy model can be encoded in an efficient
lookup table.

Efficient Training on Patches When loading batches of
data, dynamic patching methods yield different ratios of
bytes to patches. For efficiency, our implementation packs
batches of patches as opposed to bytes to ensure a constant
number of patches in each batch and avoid padding steps in
the more expensive latent transformer. During training, we
pad or truncate byte sequences to 12k and 24k respectively
for BLT-Exp and BLT-1T datasets, to avoid memory spikes
from unusually large patches.

Equalizing Context Length In BLT, varying the patch
size has significant implications on the context size of the
model. To avoid any advantage from having access to a
larger context, we ensure that the number of bytes in each
batch remains constant on average. We therefore adjust the
sequence length of the Latent Transformer to achieve 8k and
16k byte contexts for the BLT-Exp and BLT-1T datasets.

5. Scaling Trends
We present a holistic picture of the scaling trends of byte-
level models that can inform further scaling of BLT models.
Our scaling study aims to address limitations of previous
research on byte-level models: (a) We compare trends for
the compute-optimal training regime, (b) We train FLOP
matched 8B models on 1T tokens/4T bytes and evaluate
on downstream tasks, and (c) We measure scaling trends in
inference-cost controlled settings.

1021 1022

Total Training FLOPs

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Bi
ts

-p
er

-b
yt

e
(B

PB
)

BPB vs Training FLOPs at Compute Optimal Ratio (Entropy Patching)
BLT Entropy ps=4
BLT Entropy ps=8
LLaMA 2 BPE
LLaMA 3 BPE
Megabyte++ ps=4
Megabyte++ ps=6

Figure 5. Scaling trends for BLT models and baseline token-based
models (fully) trained at multiple scales from 1B to 8B parameters
for the compute-optimal number of tokens based on Dubey et al.
(2024) and report bits-per-byte on a sample from the training
distribution.

5.1. Compute Optimal Scaling Trends

Using the BLT-Exp dataset, we train various compute-
optimal BPE and BLT models across four different sizes,
ranging from 1B to 8B parameters, and plot FLOPs agains
LM performance in terms of BPB on a sample from the
training data mix. The compute-optimal setup defines a ra-
tio between model parameters and training data size which
is theoretically designed to achieve the best performance
within a given training budget (Hoffmann et al., 2022; Dubey
et al., 2024). This provides a robust baseline for our model.
For each BPE model, we train a BLT model on the same data
with a Latent Transformer matching its Transformer size.
The BPB performance of global and monotonic patching
are equivalent so we only report global.

As illustrated in Figure 5, BLT models either match or
outperform their BPE counterparts and this trend holds as we
scale model size and FLOPs. To the best of our knowledge,
BLT is the first byte-level architecture to achieve matching
scaling trends with BPE-based models at compute optimal
regimes.

Finally, our BLT architecture trends between Llama 2 and
3 when using significantly larger patch sizes. The BPE
tokenizers of Llama 2 and 3 have an average token size of 3.7
and 4.4 bytes. In contrast, BLT can achieve similar scaling
trends with an average patch size of 8 bytes. Inference FLOP
are inversely proportional to the average patch size, so a
patch size of 8 bytes would lead to nearly 50% inference
FLOP savings. BLT patch size 8 also performs comparably
better as we scale model and data size suggesting benefits
for larger patch sizes at larger compute scales.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Byte Latent Transformer: Patches Scale Better Than Tokens

Llama 3
1T Toks

BLT-Space
6T Bytes

BLT-Global
4.5T Bytes

BLT-Mono
4.5T Bytes

Arc-E 77.6 75.4 76.4 79.6
Arc-C 53.3 49.8 52.1 52.1
HellaSwag 79.1 79.6 80.4 80.6
PIQA 80.7 81.1 81.3 80.6
MMLU 58.1 54.8 56.2 57.4
MBPP 40.2 37.6 42.2 41.8
HumanEval 31.1 27.4 29.3 35.4

Average 60.0 58.0 59.7 61.1

Bytes/Patch Train Mix 4.4 6.1 4.5 4.5

Table 1. Comparison of FLOP-matched BLT and BPE 8B models
trained on the BLT-1T dataset on downstream tasks. BLT outper-
forms Llama 3, and depending on the patching scheme, achieves
significant FLOPs savings at the expense of minor performance
reduction.

5.2. Beyond Compute Optimal Evaluations

To assess scaling properties further, we train 8B models
beyond compute optimal on 4T bytes of a higher-quality
dataset, and measure performance on a suite of standard
classification and generation benchmarks (§L for task de-
tails).

In Table 1, we compare BPE Llama 3 tokenizer-based model,
and three variants of BLT: space-patching, global, and ap-
prox. monotonic entropy patching (as discussed in §O). All
models are trained with an equivalent FLOP budget. How-
ever, with BLT-Entropy we additionally make an inference
time adjustment of the entropy threshold to 0.1 which we
find to improve task performance at the cost of more infer-
ence steps.

The monotonic BLT-Entropy model outperforms the Llama
3 model on 4 out of 7 tasks while being trained on the
same number of bytes. This improvement is likely due to
a combination of (1) a better use of training compute via
dynamic patching, and (2) the direct modeling of byte-level
information as opposed to tokens. The Global BLT-Entropy
matches BPE but underperforms on structured tasks like
MMLU (see discussion §N). On the other hand, BLT-Space
underperforms the Llama 3 tokenizer on all but one task, but
it achieves a significant reduction in inference FLOPs with
its larger patch size of 6 bytes compared to 4.5 for the other
models.

5.3. Patches Scale Better Than Tokens

With BLT models, we can simultaneously increase model
size and patch size while maintaining the same training and
inference FLOP budget and keeping the amount of train-
ing data constant. Arbitrarily increasing the patch size is
a unique feature of patch-based models which break free
of the efficiency tradeoffs of fixed-vocabulary token-based
models (see discussion in §A).

Llama 3
1T toks

Llama 3.1
16T toks

BLT-Mono
4.5T bytes

HellaSwag Original 79.1 80.7 80.6
HellaSwag Noise Avg. 56.9 64.3 64.3

- AntSpeak 45.6 61.3 57.9
- Drop 53.8 57.3 58.2
- RandomCase 55.3 65.0 65.7
- Repeat 57.0 61.5 66.6
- UpperCase 72.9 76.5 77.3

Phonology-G2P 11.8 18.9 13.0

CUTE 27.5 - 54.1

Table 2. 8B BLT and BPE Llama 3 trained on 4T bytes on tasks
that assess robustness to noise and character-level understanding
(best result bold). We also evaluate Llama 3.1 and underline best
result overall.

Language → English English → Language

Llama 3 BLT Llama 3 BLT

High Resource 27.90 28.42 18.55 17.47
Low Resource 7.58 9.83 2.35 3.29

Overall Average 12.1 14.0 5.9 6.4

Table 3. Performance (BLEU) on translation tasks from FLORES-
101 (Goyal et al., 2022). 8B BLT versus BPE Llama 3 both trained
for 4T bytes.

We conduct a fixed inference scaling study to test the hypoth-
esis that larger models taking fewer steps on larger patches
might perform better than smaller models taking more steps.
Starting from a 3.6B Llama 2 tokenizer-base model, we find
FLOP equivalent Llama 3 tokenizer and BLT-Entropy mod-
els with average patch sizes of 6 and 8 bytes on the training
datamix (see §M for details and additional experiments).

Figure 1 shows that BLT models achieve better scaling
trends than tokenization-based architectures. BPE models
perform better with small training budgets but are quickly
surpassed by BLT, not far beyond the compute-optimal
regime. In practice, it can be preferable to spend more dur-
ing the one-time pretraining to achieve a better performing
model with a fixed inference budget. A perfect example of
this is the class of 8B models, like Llama 3.1, which has
been trained on two orders of magnitude more data than
what is compute-optimal for that model size.

6. Byte Modeling Improves Robustness
An early motivation for byte-level models is their potential
robustness to byte level noise and awareness of the con-
stituents of tokens, which current tokenizer-based models
struggle with. To measure these phenomena, we perform
additional evaluations on benchmarks that evaluate both ro-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Byte Latent Transformer: Patches Scale Better Than Tokens

bustness to input noise as well as awareness of characters,
in both English and multi-lingual settings. We summarize
the results in Table 2 and Table 3 with more details in §S.

Noisy Data We create noised versions of HellaSwag and
find that BLT outperforms in terms of robustness the Llama
3 BPE model by a large margin and even improves over
Llama 3.1 in many tasks indicating that the byte-level aware-
ness is not something that can easily be obtained with more
data.

Phonology - Grapheme-to-Phoneme (G2P) We assess
BLT’s capability to map a sequence of graphemes (charac-
ters) into a transcription of their pronunciation (phonemes).
On the G2P task (5-shot setting) from Phonology Bench (Su-
varna et al., 2024), we find that BLT outperforms the base-
line Llama 3 4T bytes tokenizer-based model.

Character-level Understanding The CUTE benchmark
(Edman et al., 2024) comprises tasks related to character
understanding, orthographic and semantic similarity, and
sequence manipulation. Table 12 shows that BLT-Entropy
outperforms by a large margin both BPE Llama 3 models on
this benchmark. In particular, our model demonstrates ex-
ceptional proficiency in character manipulation tasks achiev-
ing 99.9% on both spelling tasks.

Low Resource Machine Translation We evaluate BLT
on translation tasks from FLORES-101 benchmark (Goyal
et al., 2022) and report BLEU in Table 3. BLT outper-
forms the Llama 3 tokenizer-based model, achieving a 2-
point overall advantage in translating into English and a
0.5-point advantage in translating from English. BLT per-
forms comparably better in the lower-resource language
families, underscoring the effectiveness of byte modeling
for generalizing to long-tail byte sequences.

7. Ablations and Discussion
In this section, we present ablations for the primary archi-
tectural choices of BLT. For LM performance, we report
bits-per-byte (BPB) on different datasets and a random sam-
ple of the training data.

Cross-Attention In Table 4, we ablate including cross-
attention at various points in BLT. In the encoder, we test
initializing the queries with 1) the same learned embedding
for every global state, 2) a hash embedding of the bytes in
the patch, and 3) pooling of the encoder hidden representa-
tion of the patch bytes at the given encoder layer. We find
that using cross-attention in the decoder is most effective
while in the encoder, there is a slight improvement but only
with pooling initialization of queries. Additionally, we find
that cross-attention helps particularly on Common-Crawl.

BPB

XAtt. Dec. XAtt. Enc. Pool Init Wiki CC Github Train Dist

- All Layers False 0.830 0.915 0.442 0.891
- Last Layer False 0.836 0.906 0.447 0.886
- - - 0.833 0.892 0.446 0.866

First Layer Last Layer True 0.825 0.883 0.443 0.861
All Layers Last Layer True 0.823 0.871 0.443 0.846
All Layers All Layers True 0.828 0.868 0.443 0.844

Table 4. Ablations on the use of Cross Attention for a 1B BLT
model trained on 100B bytes.

BPB

Ngram Ngram Voc Total Voc Wiki CC Github Train Dist

- - - 0.892 0.867 0.506 0.850
6,7,8 100k 300k 0.873 0.860 0.499 0.842
6,7,8 200k 600k 0.862 0.856 0.492 0.838
3,4,5 100k 300k 0.859 0.855 0.491 0.837
6,7,8 400k 1M 0.855 0.853 0.491 0.834
3,4,5 200k 600k 0.850 0.852 0.485 0.833
3,4,5,6,7,8 100k 600k 0.850 0.852 0.486 0.833
3,4,5 400k 1M 0.844 0.851 0.483 0.832
3,4,5,6,7,8 200k 1M 0.840 0.849 0.481 0.830
3,4,5,6,7,8 400k 2M 0.831 0.846 0.478 0.826

Table 5. Ablations on the use of n-gram hash embedding tables for
a 1B BLT model trained on 100B bytes. We find that hash n-gram
embeddings are very effective with very large improvements in
BPB. The most significant parameter is the per-ngram vocab size
and that smaller ngram sizes are more impactful than larger ones.

n-gram Hash Embeddings We ablate various hash n-
gram sizes and embedding vocabularies and present results
in Table 5. We find that hash embeddings help on all do-
mains, but particularly on Wikipedia and Github. Smaller
n-gram sizes (3,4,5) outperform larger ones (6,7,8). Using
larger per n-gram vocabulary underperforms using smaller
vocabularies but different n-gran sizes for the same total vo-
cabulary. Using different n-gram sizes likely helps discrimi-
nate among collisions from the hash-function. At 8B scale
going from 500K to 300K hashes changed performance by
0.001 bpb on 15k steps. This indicates that hashes are vi-
tal to bringing the performance of BLT to match those of
tokenizer based models, however, after 300K hashes, there
are diminishing returns. Additionally, it appears that the
gains are largely complementary with cross-attention as they
provide improvements on different datasets.

8. Related Work
Character language modeling has been a focus since
early neural models due to their ability to handle out-of-
vocabulary words without back-off methods (Sutskever
et al., 2011; Mikolov et al., 2012; Graves, 2013). Kim et al.
(2016) used convolutional and highway networks feeding
into LSTM-based RNNs, matching state-of-the-art perfor-
mance on English and surpassing it on morphologically rich

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Byte Latent Transformer: Patches Scale Better Than Tokens

languages. Kenter et al. (2018) and Zhang et al. (2015)
demonstrated the effectiveness of byte-level and character-
based models on morphologically-rich languages and clas-
sification tasks, respectively. Hierarchical LSTM models
(Chung et al., 2019) and CNN-based ByteNet (Kalchbrenner
et al., 2016) further advanced character-level modeling.

Transformers with attention (Vaswani et al., 2017) and sub-
word tokenization (Sennrich et al., 2016) improved language
modeling. Al-Rfou et al. (2019) used deep transformers with
auxiliary losses, outperforming LSTM-based character mod-
els but not word-level LLMs. GPT-2 (Radford et al., 2019)
found byte-level LMs less competitive on large datasets.
Byte-level transformers (Choe et al., 2019; El Boukkouri
et al., 2020; Clark et al., 2022; Xue et al., 2022; Tay et al.,
2022; Sun et al., 2023) showed promise but required more
compute. Recent work (Wang et al., 2024) using the Mamba
Architecture (Gu & Dao, 2023) improved byte-level models
without patching. Patching reduces the computational cost
of byte-level LLMs. Nawrot et al. (2022) and Nawrot et al.
(2023) explored static and dynamic patching, outperforming
byte-level baselines. Lester et al. (2024) used arithmetic cod-
ing for sequence compression, achieving better performance
than byte-level baselines but not subword models.

Our work is inspired by MegaByte (Yu et al., 2023), a
decoder-only causal LLM using static patching. We find
that static patching lags behind state-of-the-art tokenizer-
based models in a FLOP controlled setting, and demonstrate
how BLT bridges this gap. Slagle (2024) suggested im-
provements to MegaByte, showing gains over tokenized
models in specific domains. We report further experiments
indicating the need for architectural enhancements to scale
byte-level models to match token-based models like Llama
3.

9. Conclusion
The Byte Latent Transformer redefines the conventional de-
pendency on fixed-vocabulary tokenization in LLMs. By
dynamically grouping bytes into patches, BLT allocates
computational resources based on data complexity, leading
to improvements in both efficiency and robustness. BLT
models match tokenization-based models at scales up to
8B and 4T bytes, and can trade minor losses in evaluation
metrics for up to 50% reductions in inference FLOPs. While
directly engaging with raw byte data, BLT better handles
the long-tail of data, offering improvements in robustness to
noisy inputs and handling of sub-word structures. Further-
more, BLT unlocks a new scaling dimension, allowing si-
multaneous increases in model and patch size within a fixed
inference budget. This paradigm becomes advantageous
for compute regimes commonly encountered in practical
settings. These results position BLT as a promising alterna-
tive to traditional tokenization-based approaches, for more

efficient and adaptable language models.

10. Limitations
In this work, for the purposes of architectural choices, we
train models for the optimal number of steps as determined
for Llama 3 (Dubey et al., 2024). However, these scaling
laws were calculated for BPE-level transformers on the BLT-
Exp dataset and may lead to suboptimal (data, parameter
sizes) ratios in the case of BLT. We leave for future work
the calculation of scaling laws for BLT potentially leading
to even more favorable scaling trends for our architecture.
Additionally, many of these experiments were conducted at
scales upto 1B parameters, and it is possible for the optimal
architectural choices to change as we scale to 8B parameters
and beyond, which may unlock improved performance for
larger scales.

While the research question of this work is whether Trans-
former models can match BPE performance with raw byte-
level training signal, we should investigate the use of state-
space models (e.g. Mamba (Gu & Dao, 2023)) as an alterna-
tive to the transformer for byte-level modeling. The use of
such models within BLT might fit the local encoder-decoder
modules. Others have shown that directly modeling bytes
with such models might also be an effective approach (Wang
et al., 2024).

We deliberately choose to use patching methods that are
not jointly trained with the main model to avoid adding
secondary objectives that might compete with the byte-
level cross-entropy loss used to train BLT. Some initial
experiments using the encoder as the entropy model showed
there might be some trade-offs. We further hypothesized
these issues might be exacerbated when scaling up. How-
ever, now that we demonstrated BLT successfully scales
up to BPE performance, future work can explore patching
schemes learned end-to-end alongside model training such
as Gumbel-Sigmoid patching proposed by Nawrot et al.
(2023).

Existing transformer libraries and codebases are designed
to be highly efficient for tokenizer-based transformer ar-
chitectures. While we present theoretical FLOP matched
experiments and also use certain efficient implementations
(such as FlexAttention) to handle layers that deviate from
the vanilla transformer architecture, our implementations
may yet not be at parity with tokenizer-based models in
terms of wall-clock time and may benefit from further opti-
mizations.

While we provide code and detailed hyperparameter settings
to experiment with BLT models, pretraining such models
from scratch requires significant amounts of compute re-
sources. We conducted promising experiments on initializ-
ing the BLT weights with already pretrained model weights.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Byte Latent Transformer: Patches Scale Better Than Tokens

However, we leave it to future work to determine whether
pretrained token-based models can effectively be converted
to operate on patches of bytes.

References
Al-Rfou, R., Choe, D., Constant, N., Guo, M., and Jones,

L. Character-level language modeling with deeper
self-attention. In Association for the Advancement of
Artificial Intelligence, volume 33, pp. 3159–3166, 2019.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., and
Sutton, C. Program synthesis with large language models,
2021.

Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa,
K., Qi, Y., Chapelle, O., and Weinberger, K. Learning to
rank with (a lot of) word features. Information retrieval,
13:291–314, 2010.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa:
Reasoning about physical commonsense in natural lan-
guage. In Association for the Advancement of Artificial
Intelligence, pp. 7432–7439, 2020.

Casson, A. Transformer flops, 2023. URL
https://www.adamcasson.com/posts/
transformer-flops.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf,
H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,
C., Tillet, P., Such, F. P., Cummings, D., Plappert, M.,
Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W. H.,
Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I.,
Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N.,
Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M., Brundage, M., Murati, M., Mayer, K.,
Welinder, P., McGrew, B., Amodei, D., McCandlish, S.,
Sutskever, I., and Zaremba, W. Evaluating large language
models trained on code, 2021.

Choe, D., Al-Rfou, R., Guo, M., Lee, H., and Constant,
N. Bridging the gap for tokenizer-free language models.
arXiv, abs/1908.10322, 2019.

Chung, J., Ahn, S., and Bengio, Y. Hierarchical multi-
scale recurrent neural networks. In Proceedings of the
International Conference on Learning Representations,
2019.

Clark, J. H., Garrette, D., Turc, I., and Wieting, J. Canine:
Pre-training an efficient tokenization-free encoder for
language representation. Transactions of the Association
for Computational Linguistics, 10:73–91, 2022.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? Try ARC, the AI2 reasoning chal-
lenge. arXiv, 2018.

Dagan, G., Synnaeve, G., and Roziere, B. Getting the
most out of your tokenizer for pre-training and domain
adaptation. In Forty-first International Conference on
Machine Learning, 2024.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C.
FlashAttention: Fast and memory-efficient exact attention
with io-awareness. Proceedings of Advances in Neural
Information Processing Systems, 35, 2022.

Deiseroth, B., Brack, M., Schramowski, P., Kersting,
K., and Weinbach, S. T-FREE: Subword tokenizer-
free generative LLMs via sparse representations for
memory-efficient embeddings. In Al-Onaizan, Y.,
Bansal, M., and Chen, Y.-N. (eds.), Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pp. 21829–21851, Miami,
Florida, USA, November 2024. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
1217. URL https://aclanthology.org/2024.
emnlp-main.1217/.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
et al. The llama 3 herd of models. arXiv, 2024.

Edman, L., Schmid, H., and Fraser, A. CUTE: Measuring
llms’ understanding of their tokens. arXiv, 2024.

El Boukkouri, H., Ferret, O., Lavergne, T., Noji, H.,
Zweigenbaum, P., and Tsujii, J. CharacterBERT: Rec-
onciling elmo and bert for word-level open-vocabulary
representations from characters. In Proceedings of
International Conference on Computational Linguistics,
2020.

Gage, P. A new algorithm for data compression. The C
Users Journal, 12(2):23–38, 1994.

Goyal, N., Gao, C., Chaudhary, V., Chen, P.-J., Wenzek, G.,
Ju, D., Krishnan, S., Ranzato, M., Guzmán, F., and Fan, A.
The Flores-101 evaluation benchmark for low-resource
and multilingual machine translation. Transactions of
the Association for Computational Linguistics, 10:522–
538, 2022. doi: 10.1162/tacl a 00474. URL https:
//aclanthology.org/2022.tacl-1.30.

Graves, A. Generating sequences with recurrent neural
networks. arXiv, 2013.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. arXiv, 2023.

9

https://www.adamcasson.com/posts/transformer-flops
https://www.adamcasson.com/posts/transformer-flops
https://aclanthology.org/2024.emnlp-main.1217/
https://aclanthology.org/2024.emnlp-main.1217/
https://aclanthology.org/2022.tacl-1.30
https://aclanthology.org/2022.tacl-1.30

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Byte Latent Transformer: Patches Scale Better Than Tokens

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring massive mul-
titask language understanding. In Proceedings of the
International Conference on Learning Representations,
2020.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya,
E., Cai, T., Rutherford, E., de Las Casas, D., Hen-
dricks, L. A., Welbl, J., Clark, A., et al. Training
compute-optimal large language models. In Proceedings
of Advances in Neural Information Processing Systems,
2022.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman,
A., and Carreira, J. Perceiver: General perception with
iterative attention. In Proceedings of the International
Conference of Machine Learning. PMLR, 2021.

Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord,
A., Graves, A., and Kavukcuoglu, K. Neural machine
translation in linear time. arXiv, 2016.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv, 2020.

Kenter, T., Jones, L., and Hewlett, D. Byte-level
machine reading across morphologically varied lan-
guages. In Association for the Advancement of Artificial
Intelligence, 2018.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. Character-
aware neural language models. In Association for the
Advancement of Artificial Intelligence, 2016.

Lester, B., Lee, J., Alemi, A., Pennington, J., Roberts, A.,
Sohl-Dickstein, J., and Constant, N. Training llms over
neurally compressed text. arXiv, 2024.

Li, J., Fang, A., Smyrnis, G., Ivgi, M., Jordan, M., Gadre, S.,
Bansal, H., Guha, E., Keh, S., Arora, K., et al. Datacomp-
lm: In search of the next generation of training sets for
language models. arXiv, 2024.

Liang, D., Gonen, H., Mao, Y., Hou, R., Goyal, N.,
Ghazvininejad, M., Zettlemoyer, L., and Khabsa, M. Xlm-
v: Overcoming the vocabulary bottleneck in multilingual
masked language models. In Proceedings of Empirical
Methods in Natural Language Processing, 2023.

Limisiewicz, T., Blevins, T., Gonen, H., Ahia, O., and Zettle-
moyer, L. Myte: Morphology-driven byte encoding for
better and fairer multilingual language modeling. arXiv,
2024.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv, 2017.

Mikolov, T., Sutskever, I., Deoras, A., Le, H.-S., Kom-
brink, S., and Cernocky, J. Subword language modeling
with neural networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8(67), 2012.

Nawrot, P., Tworkowski, S., Tyrolski, M., Kaiser, L., Wu,
Y., Szegedy, C., and Michalewski, H. Hierarchical
transformers are more efficient language models. In
Carpuat, M., de Marneffe, M.-C., and Meza Ruiz, I. V.
(eds.), Findings of the Association for Computational
Linguistics: NAACL 2022, pp. 1559–1571, Seattle,
United States, July 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.findings-naacl.
117. URL https://aclanthology.org/2022.
findings-naacl.117/.

Nawrot, P., Chorowski, J., Lancucki, A., and Ponti,
E. M. Efficient transformers with dynamic token pool-
ing. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 6403–6417, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.353. URL https:
//aclanthology.org/2023.acl-long.353/.

Petrov, A., La Malfa, E., Torr, P., and Bibi, A. Lan-
guage model tokenizers introduce unfairness between lan-
guages. Proceedings of Advances in Neural Information
Processing Systems, 2024.

Pruthi, D., Dhingra, B., and Lipton, Z. C. Combat-
ing adversarial misspellings with robust word recogni-
tion. In Korhonen, A., Traum, D., and Màrquez, L.
(eds.), Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 5582–
5591, Florence, Italy, July 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P19-1561. URL
https://aclanthology.org/P19-1561/.

Rabin, M. O. Fingerprinting by random polynomials.
Technical report, 1981.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In Erk,
K. and Smith, N. A. (eds.), Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162/.

Shazeer, N. GLU variants improve transformer. arXiv,
2020.

10

https://aclanthology.org/2022.findings-naacl.117/
https://aclanthology.org/2022.findings-naacl.117/
https://aclanthology.org/2023.acl-long.353/
https://aclanthology.org/2023.acl-long.353/
https://aclanthology.org/P19-1561/
https://aclanthology.org/P16-1162/

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Byte Latent Transformer: Patches Scale Better Than Tokens

Slagle, K. Spacebyte: Towards deleting tokenization from
large language modeling. arXiv, 2024.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu, Y.
RoFormer: Enhanced transformer with rotary position
embedding. arxiv e-prints, art. arXiv, 2021.

Sun, L., Hashimoto, K., Yin, W., Asai, A., Li, J., Yu, P., and
Xiong, C. Adv-bert: Bert is not robust on misspellings!
generating nature adversarial samples on bert. arXiv
preprint arXiv:2003.04985, 2020.

Sun, L., Luisier, F., Batmanghelich, K., Florencio, D., and
Zhang, C. From characters to words: Hierarchical pre-
trained language model for open-vocabulary language un-
derstanding. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 3605–3620, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.200. URL https:
//aclanthology.org/2023.acl-long.200/.

Sutskever, I., Martens, J., and Hinton, G. E. Generating
text with recurrent neural networks. In Proceedings of
the International Conference of Machine Learning, pp.
1017–1024, 2011.

Suvarna, A., Khandelwal, H., and Peng, N. Phonology-
bench: Evaluating phonological skills of large language
models. arXiv, 2024.

Tay, Y., Tran, V. Q., Ruder, S., Gupta, J., Chung, H. W.,
Bahri, D., Qin, Z., Baumgartner, S., Yu, C., and Metzler,
D. Charformer: Fast character transformers via gradient-
based subword tokenization. In International Conference
on Learning Representations, 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv, 2023.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. In Neural Information Processing
Systems, 2017.

Wang, J., Gangavarapu, T., Yan, J. N., and Rush, A. M.
Mambabyte: Token-free selective state space model.
arXiv, 2024.

Xiong, W., Liu, J., Molybog, I., Zhang, H., Bhargava,
P., Hou, R., Martin, L., Rungta, R., Sankararaman,
K. A., Oguz, B., et al. Effective long-context scal-
ing of foundation models. In Conference of the North
American Chapter of the Association for Computational
Linguistics, 2024.

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S.,
Kale, M., Roberts, A., and Raffel, C. Byt5: Towards
a token-free future with pre-trained byte-to-byte mod-
els. Transactions of the Association for Computational
Linguistics, 10:291–306, 2022.

Yu, L., Simig, D., Flaherty, C., Aghajanyan, A., Zettlemoyer,
L., and Lewis, M. Megabyte: Predicting million-byte
sequences with multiscale transformers. Proceedings
of Advances in Neural Information Processing Systems,
2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv, 2019.

Zhang, B. and Sennrich, R. Root mean square layer normal-
ization. Proceedings of Advances in Neural Information
Processing Systems, 32, 2019.

Zhang, X., Zhao, J., and LeCun, Y. Character-level
convolutional networks for text classification. In Cortes,
C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R.
(eds.), Proceedings of Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.
cc/paper_files/paper/2015/file/
250cf8b51c773f3f8dc8b4be867a9a02-Paper.
pdf.

11

https://aclanthology.org/2023.acl-long.200/
https://aclanthology.org/2023.acl-long.200/
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Byte Latent Transformer: Patches Scale Better Than Tokens

A. The Byte-Pair Encoding (BPE) Tokenizer and Incremental Patching
Many modern LLMs, including our baseline Llama 3, use a subword tokenizer like BPE (Gage, 1994; Sennrich et al., 2016).
We use “tokens” to refer to byte-groups drawn from a finite vocabulary determined prior to training as opposed to “patches”
which refer to dynamically grouped sequences without a fixed vocabulary. A critical difference between patches and tokens
is that with tokens, the model has no direct access to the underlying byte features.

A crucial improvement of BLT over tokenization-based models is that redefines the trade off between the vocabulary size
and compute. In standard LLMs, increasing the size of the vocabulary means larger tokens on average and therefore fewer
steps for the model but also larger output dimension for the final projection layer of the model. This trade off effectively
leaves little room for tokenization based approaches to achieve significant variations in token size and inference cost. For
example, Llama 3 increases the average token size from 3.7 to 4.4 bytes at the cost of increasing the size of its embedding
table 4x compared to Llama 2.

When generating, BLT needs to decide whether the current step in the byte sequence is at a patch boundary or not as this
determines whether more compute is invoked via the Latent Transformer. This decision needs to occur independently of
the rest of the sequence which has yet to be generated. Thus patching cannot assume access to future bytes in order to
choose how to segment the byte sequence. Formally, a patching scheme fp satisfies the property of incremental patching if
it satisfies:

fp(xxx<i) = fp(xxx)<i

BPE is not an incremental patching scheme as the same prefix can be tokenized differently depending on the continuation
sequence, and therefore does not satisfy the property above3.

B. Strided Patching Details
Perhaps the most straightforward way to group bytes is into patches of fixed size k as done in MegaByte (Yu et al., 2023).
The fixed stride is easy to implement for training and inference, provides a straightforward mechanism for changing the
average patch size, and therefore makes it easy to control the FLOP cost. However, this patching function comes with
significant downsides. First, compute is not dynamically allocated to where it is needed most: one could be either wasting a
transformer step j if only predicting whitespace in code, or not allocating sufficient compute for bytes dense with information
such as math. Second, this leads to inconsistent and non-contextual patching of similar byte sequences, such as the same
word being split differently.

C. Space Patching Details
Slagle (2024) proposes a simple yet effective improvement over strided patching that creates new patches after any space-like
bytes4 which are natural boundaries for linguistic units in many languages. In Space patching, a latent transformer step (i.e.,
more FLOPs) is allocated to model every word. This ensures words are patched in the same way across sequences and that
flops are allocated for hard predictions which often follow spaces. For example, predicting the first byte of the answer to the
question “Who composed the Magic Flute? ” is much harder than predicting the remaining bytes after “M” since the first
character significantly reduces the number of likely choices, making the completion “Mozart” comparatively easy to predict.
However, space patching cannot gracefully handle all languages and domains, and most importantly cannot vary the patch
size. Next, we introduce a new patching method that uses the insight that the first bytes in words are typically most difficult
to predict, but that provides a natural mechanism for controlling patch size.

D. Entropy Patching Illustration
Here illustrate the entropy H(xi) of the next byte and the resulting patches. Patches end when H(xi) exceeds the global
threshold θg, shown as a red horizontal line. The start of new patches are shown with vertical gray lines. For example, the
entropies of “G” and “e” in “George R.R. Martin” exceed θg, so “G” is the start of a single byte patch and “e” of a larger
patch extending to the end of the named entity as the entropy H(xi) stays low, resulting in no additional patches.

3Using a special delimiter token to indicate patch boundaries can turn BPE into an incremental patching scheme but increases the
byte-sequence length.

4Space-like bytes are defined as any byte that is not a latin character, digit, or UTF-8 continuation byte. In addition, each patch must
contain at least one non space-like byte.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Byte Latent Transformer: Patches Scale Better Than Tokens

< D a e n e r y s _ T a r g a r y e n _ i s _ i n _ G a m e _ o f _ T h r o n e s , _ a _ f a n t a s y _ e p i c _ b y _ G e o r g e _ R . R . _ M a r t i n . >
0

1

2

3

4

En
tr

op
y

of
 N

ex
t B

yt
e

Figure 6. This figure plots the entropy H(xi) of each byte in “Daenerys Targeryen is in Game of Thrones, a fantasy epic by George R.R.
Martin.” with spaces shown as underscores.

E. Rolling Polynomial Hashing
Given a byte n-gram gi,n = {bi−n+1, . . . , bi}, the rolling polynomial hash (Rabin, 1981) of gi,n is defined as:

Hash(gi,n) =
n∑

j=1

bi−j+1a
j−1 (1)

Where a is chosen to be a 10-digit prime number.

F. Decoder Cross-Attention Details
In the decoder cross-attention, the roles of the queries and key/values are interchanged: the byte-representations are now the
queries, and the patch representations are now the key/values. The initial byte-representations for the cross-attention are
initialized as the byte embeddings from the last encoder layer i.e. hlE . Equations for the decoder cross-attention are found at
§F. The subsequent byte-representations for layer l, dl,i are computed as:

D0 = hlE

Bl = Dl−1 +Wo

(
softmax

(
QKT

√
dk

)
V

)
where Dl = Decoder-Transformer-layerl(Bl)

Qi = Wq(dl−1,i),Ki = Wk(DC(oj)),

Vi = Wv(DC(oj))

where once again, Wk,Wv are key/value projection matrices that operate on a linear transformation and split operation
DC , applied to the final patch representations oj from the global model, Wq is a query projection matrices operating on
byte representations dl−1 from the previous decoder transformer layer (or hlE for the first layer), and Wo is the output
projection matrix, thus making B ∈ RhD×nb , where nb is the number of output bytes. The next decoder representations
Dl are computed using a decoder transformer layer on the output of the cross-attention block, B. As in the local encoder
cross-attention, we use multiple heads in the attention, use pre LayerNorms, no positional embeddings, and a residual
connection around the cross-attention module.

G. Hyperparameters
We describe hyperparameters distinguishing those that are specific to BLT from those that are standard to the Transformer.

G.1. Transformer Architecture Hyperparameters

For all the transformer blocks in BLT, i.e. both local and global models, we largely follow the architecture of Llama 3 (Dubey
et al., 2024); we use the SwiGLU activation function (Shazeer, 2020) in the feed-forward layers, rotary positional embeddings
(RoPE) (Su et al., 2021) with θ = 500000 (Xiong et al., 2024) only in self-attention layers, and RMSNorm (Zhang &
Sennrich, 2019) for layer normalization. We use Flash attention (Dao et al., 2022) for all self-attention layers that use
fixed-standard attention masks such as block causal or fixed-window block causal, and a window size of 512 for fixed-width

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Byte Latent Transformer: Patches Scale Better Than Tokens

attention masks. Since our cross-attention layers involve dynamic patch-dependent masks, we use Flex Attention5 to produce
fused implementations and significantly speed up training.

G.2. BLT-Specific Hyperparameters

To study the effectiveness of BLT models, we conduct experiments along two directions, scaling trends, and downstream task
evaluations, and we consider models at different scales: 400M, 1B, 2B, 4B and 8B for these experiments. The architecture
hyperparameters for these models are presented in Table 6. We use max-pooling to initialize the queries for the first
cross-attention layer in the local encoder. We use 500, 000 hashes with a single hash function, with n-gram sizes ranging
from 3 to 8, for all BLT models. We use a learning rate of 4e − 4 for all models. The choice of matching learning rate
between token and BLT models follows a hyperparameter search between 1e− 3 and 1e− 4 at 400M and 1B model scales
showing the same learning rate is optimal. For scaling trends on Llama-2 data, we use training batch-sizes as recommended
by (Dubey et al., 2024) or its equivalent in bytes. For optimization, we use the AdamW optimizer (Loshchilov & Hutter,
2017) with β1 set to 0.9 and β2 to 0.95, with an ϵ = 10−8. We use a linear warm-up of 2000 steps with an cosine decay
schedule of the learning rate to 0, we apply a weight decay of 0.1, and global gradient clipping at a threshold of 1.0.

Encoder Global Latent Transf. Decoder Cross-Attn.
Model lE #heads hE #Params lG #heads hG #Params lD #heads hD #Params #heads k

400M 1 12 768 7M 24 10 1280 470M 7 12 768 50M 10 2
1B 1 16 1024 12M 25 16 2048 1B 9 16 1024 113M 16 2
2B 1 16 1024 12M 26 20 2560 2B 9 16 1024 113M 16 3
4B 1 16 1024 12M 36 24 3072 4.1B 9 16 1024 113M 16 3
8B 1 20 1280 20M 32 32 4096 6.4B 6 20 1280 120M 20 4

Table 6. Architectural hyper-parameters for different BLT model sizes that we train for FLOP-controlled experiments described in this
paper.

H. FLOPs Estimation
We calculate the computational cost of a model by estimating the number of Floating Point OPerations (FLOPs) needed
to execute it or train it. FLOPs estimates provide a platform independent way of comparing the computational cost of a
neural architecture and are standard in the field (Kaplan et al., 2020). Additionally, given that the building blocks of the BLT
architecture are standard Transformer modules, the hardware utilization achieved by the BLT model should be in line with
standard dense Transformer models. FLOPs improvements should therefore directly translate in efficiency gains.

We largely follow the equations for computation of transformer FLOPs from Chinchilla (Hoffmann et al., 2022) comprising
FLOPs for the feed-forward layers, QKVO projections in the self-attention layer, and computation of attention and output
projection. A notable difference is that we assume the input embedding layer is implemented as an efficient lookup instead
of a dense matrix multiplication, therefore becoming a 0-FLOP operation. Following previous work, we estimate that the
backwards pass has twice the number of FLOPs as the forward pass.

To compute FLOPs per byte for BLT models, we add up the FLOPs for the local encoder transformer, the global latent
transformer, and the local decoder transformer, together with the cross attention blocks in the encoder and the decoder:

Next we describe the exact equations for FLOPs computation of BLT, Transformer, and Cross-Attention FLOPs. Here, we
provide the equations used for FLOP computation for the forward-pass of transformer and BLT models based on (Hoffmann
et al., 2022; Kaplan et al., 2020; Casson, 2023). We assume that the backward pass uses twice as much FLOPs as the forward
pass.

5https://pytorch.org/blog/flexattention

14

https://pytorch.org/blog/flexattention

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Byte Latent Transformer: Patches Scale Better Than Tokens

Operation FLOPs per token/byte

Attention (l, hk, nheads,m) 4× l × hk × nheads × m+1
2

QKVO (l, h, r) (r × 2 + 2)× 2× l × h2

Feed-forward (l, h, dff) 2× l × 2× h× dffh
De-Embedding (h, V) 2× h× |V |
Cross-Attention (l, hk, nheads, p, r) Attention(l, hk, nheads, p) + QKVO(l, hk × nheads, r)

Table 7. FLOPs for operations used in transformer and BLT models. l corresponds to layers, h is the hidden dimension (hk with nheads

heads), m is the context length, dff = 4 is the feed-forward dimension multiplier, p is the patch size, and r is the ratio of queries to keys.

Transformer-FLOPs For a transformer model with l layers, hidden dimension h, context length m, nheads attention heads
of dimension hk, and a feed-forward multipler of dff , we compute FLOPs as:

Transformer-FLOPs(l, h,m, nheads, hk, dff , V) =

Feed-forward(l, h, dff)
+ QKVO(l, h, r = 1)

+ Attention(l, hk, nheads,m)

+ De-Embedding(h, V)

BLT FLOPs For BLT models, we use the above-mentioned primitives together with the following equation from to
compute total FLOPs.

BLT-FLOPs =
Transf. FL(hG , lG ,m = nctx/np, V = 0)/np

+ Transf. FL(hE , lE ,m = wE , V = 0)

+ Transf. FL(hD, lD,m = wD, V = 256)

+ Cross Attn. FL(hE , lE ,m = np, r = np/k)× k/np

+ Cross Attn. FL(hD, lD,m = k, r = k/np)

where nctx is the sequence length in bytes, np is the patch size, r is the ratio of queries to key/values, k is the ratio
of patch-dimension to byte-dimension i.e. the number of local model splits that concatenate to form a global model
representation (k = 2 in Figure 4). V corresponds to the vocabulary size for the output projection, which is only used in
the local decoder. Depending on whether a module is applied on the byte or patch sequence, the attention uses a different
context length, m. We modify the attention FLOPs accordingly for each component.

I. Bits-Per-Byte Estimation
Perplexity only makes sense in the context of a fixed tokenizer as it is a measure of the uncertainty for each token. When
comparing byte and token-level models, following previous work (Xue et al., 2022; Yu et al., 2023; Wang et al., 2024), we
instead report Bits-Per-Byte (BPB), a tokenizer independent version of perplexity. Specifically:

BPB(x) =
LCE(xxx)

ln(2) · nbytes
(2)

where the uncertainty over the data xxx as measured by the sum of the cross-entropy loss is normalized by the total number of
bytes in xxx and a constant.

J. Frequency-based n-gram Embedddings
Prior to using hash n-gram embeddings in the final BLT architecture, we also experimented with frequency-based n-gram
embeddings. For each n ∈ {1, 2, 3, 4, 5, 6, 7, 8} there is an embedding matrix Engram

n that contains the most frequent

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Byte Latent Transformer: Patches Scale Better Than Tokens

byte-grams for the given n. Since it is intractable to store embeddings as n grows, we only store embeddings for the most
frequent 100, 000 byte-grams for each byte-gram. If a particular position i includes an n-gram present in the corresponding
the embedding matrix, then this embedding is passed to the next step, encoder multi-headed cross-attention. If a byte-gram
is infrequent and therefore not in the matrix, then its embedding is obtained from encoder hash embeddings instead.

Since frequency-based n-grams are limited by the vocabulary of the n-gram tables with infrequent n-grams not being
represented at all, we subsequently moved to hash-based n-gram embeddings. See Table 8 for a comparison of hash and
frequency based n-gram embeddings.

bpb

Hash Ngram Sizes Per Hash Ngram Vocab Ngram Sizes Per Ngram Vocab Total Vocab Wikipedia CC Github Train Dist

- - - - - 0.892 0.867 0.506 0.850
6,7,8 50k 6,7,8 50k 300k 0.878 0.860 0.497 0.843
6,7,8 100k - - 300k 0.873 0.860 0.499 0.842
6,7,8 100k 6,7,8 100k 600k 0.868 0.857 0.494 0.839
6,7,8 200k - - 600k 0.862 0.856 0.492 0.838
3,4,5 50k 3,4,5 50k 300k 0.862 0.856 0.491 0.837
3,4,5 100k - - 300k 0.859 0.855 0.491 0.837
6,7,8 200k 6,7,8 200k 1M 0.861 0.855 0.491 0.837
6,7,8 400k - - 1M 0.855 0.853 0.491 0.834
3,4,5,6,7,8 50k 3,4,5,6,7,8 50k 600k 0.855 0.853 0.488 0.834
3,4,5 100k 3,4,5 100k 600k 0.851 0.853 0.486 0.834
3,4,5 200k - - 600k 0.850 0.852 0.485 0.833
3,4,5,6,7,8 100k - - 600k 0.850 0.852 0.486 0.833
3,4,5 400k - - 1M 0.844 0.851 0.483 0.832
3,4,5 200k 3,4,5 200k 1M 0.843 0.850 0.482 0.830
3,4,5,6,7,8 100k 3,4,5,6,7,8 100k 1M 0.844 0.850 0.482 0.830
3,4,5,6,7,8 200k - - 1M 0.840 0.849 0.481 0.830
3,4,5,6,7,8 200k 3,4,5,6,7,8 200k 2M 0.833 0.846 0.478 0.826
3,4,5,6,7,8 400k - - 2M 0.831 0.846 0.478 0.826

Table 8. Ablations on the use of frequency-based as well as hash-based n-gram embedding tables for a 1B BLT model trained on 100B
bytes.

K. Scaling Trends
In Figure 7, we include scaling trends for additional model architecture configurations not included in the main body of the
paper. These include Space-patching and the use of cross-attention.

L. Task Evaluation Details
For task evaluation, we select the following common sense reasoning, world knowledge, and code generation tasks:

Classification tasks include ARC-Easy (0-shot) (Clark et al., 2018), Arc-Challenge (0-shot) (Clark et al., 2018), HellaSwag
(0-shot) (Zellers et al., 2019), PIQA (0-shot) (Bisk et al., 2020), and MMLU (5-shot) (Hendrycks et al., 2020). We employ a
prompt-scoring method, calculating the likelihood over choice characters, and report the average accuracy.

Coding related generation tasks: We report pass@1 scores on MBPP (3-shot) (Austin et al., 2021) and HumanEval
(0-shot) (Chen et al., 2021), to evaluate the ability of LLMs to generate Python code.

M. Fixed Inference Scaling Details
We conducted fixed inference FLOPs scaling experiments at two different scales. The two plots are presented in Figure 8.
BLT demonstrates improved scaling trends at two different scales suggesting that these observation would continue to hold
at scale.

For patch size 8 models, we use 3 encoder layers instead of 1. We train each model for various training FLOP budgets.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Byte Latent Transformer: Patches Scale Better Than Tokens

1021 1022

Total Training FLOPS

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Bi
ts

-p
er

-b
yt

e
(B

PB
)

BPB vs Training FLOPs at Compute Optimal Ratio (Space Patching)
BLT Space ps=6
BLT Space w/o cross-attn
LLaMA 3 BPE
Megabyte++ ps=4
Megabyte++ ps=6
SpaceByte

1021 1022

Total Training FLOPs

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Bi
ts

-p
er

-b
yt

e
(B

PB
)

BPB vs Training FLOPs at Compute Optimal Ratio (Entropy Patching)
BLT Entropy ps=4
BLT Entropy ps=8
LLaMA 2 BPE
LLaMA 3 BPE
Megabyte++ ps=4
Megabyte++ ps=6

Figure 7. Scaling trends for BLT models with different architectural choices, as well as for baseline BPE token-based models. We train
models at multiple scales from 1B up to 8B parameters for the optimal number of tokens as computed by (Dubey et al., 2024) and report
bits-per-byte on a sample from the training distribution. BLT models perform on par with state-of-the-art tokenizer-based models such as
Llama 3, at scale. PS denotes patch size. We illustrate separate architecture improvements on space-patching (left) and combine them
with dynamic patching (right).

Llama 2 Llama 3 Entropy ps=6 Entropy ps=8 Inference FLOPs Compute Optimal (Bytes) Crossover (Bytes)

470m 450m 610m (1.2x) 760m (1.6x) 3.1E8 50B 150B
3.6B 3.9B 5.2B (1.3x) 6.6B (1.7x) 2.1E9 400B 1T

Table 9. Details of models used in the fixed-inference scaling study. We report non-embedding parameters for each model and their
relative number compared to Llama 2. We pick model sizes with equal inference FLOPs per byte. We also indicate BPE’s compute-optimal
training data quantity and the crossover point where BLT surpasses BPE as seen in Figure 1 (both expressed in bytes of training data).
This point is achieved at much smaller scales compared to many modern training budgets.

Model details can be found at Table 9.

The crossover point where BLT improves over token-based models has shifted slightly closer to the compute-optimal point
when moving to the larger FLOP class models (from 3x down to 2.5x the compute optimal budget). Similarly, the larger
patch size 8 model has steeper scaling trend in the larger FLOP class overtaking the other models sooner. As discussed in
Section 5.1, larger patch sizes appear to perform closer to BPE models at larger model scales. We attribute this, in part,
to the decreasing share of total FLOPs used by the byte-level Encoder and Decoder modules which seem to scale slower
than the Latent Transformer. When growing total parameters 20x from 400M to 8B, we only roughly double BLT’s local
model parameters. This is important as larger patch sizes only affect FLOPs from the patch Latent Transformer and not the
byte-level modules. In fact, that is why the BLT-Entropy ps=8 went from 1.6x to 1.7x of the Llama 2 model size when
moving to the larger model scale.

In summary, our patch-length scaling study demonstrates that the BLT patch-based architecture can achieve better scaling
trends by simultaneously increasing both patch and model size. Such trends seem to persist and even improve at larger
model scales.

N. Entropy Patching Example from MMLU
We illustrate how a few-shot example from a downstream task i.e. MMLU (Hendrycks et al., 2020), is patched using an
entropy-model trained for use with BLT models in Figure 9. Directly using the entropy model with the full-context window
causes repetitive patterns to be heavily patched. For example, “10 times, with an rms deviation of about” in the MMLU
query is patched frequently the first time it is encountered, but is part of very large patches the next three times, which,
although inference efficient, maybe undesirable for reasoning. One method that we use to avoid such a “entropy” drift is by
resetting the entropy context with new lines and using a approximate monotonic constraint (see Section O).

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Byte Latent Transformer: Patches Scale Better Than Tokens

1020

Total Training FLOPs

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Bi
ts

-p
er

-b
yt

e
(B

PB
)

50
B

by
te

s

15
0B

 b
yt

es

BPB vs Training Bytes at Fixed Inference FLOPs
BLT Entropy ps=6 550M
BLT Entropy ps=8 760M
LLaMA 2 BPE 450M
LLaMA 3 BPE 450M

1021 1022

Total Training FLOPs

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Bi
ts

-p
er

-b
yt

e
(B

PB
)

40
0B

 b
yt

es

1T
 b

yt
es

BPB vs Training Bytes at Fixed Inference FLOPs
BLT Entropy ps=6 5.2B
BLT Entropy ps=8 6.4B
LLaMA 2 BPE 3.6B
LLaMA 3 BPE 3.9B

Figure 8. Scaling trends for fixed inference FLOP models (fully) trained with varying training budgets. In token-based models, a fixed
inference budget determines the model size. In contrast, the BLT architecture provides a new scaling axis allowing simultaneous increases
in model and patch size while keeping the same training and inference budget. BLT patch-size (ps) 6 and 8 models quickly overtake
scaling trends of BPE Llama 2 and 3. Moving to the larger inference budget makes the larger patch size 8 model more desirable sooner.
Both BPE compute-optimal point and crossover point are indicated with vertical lines.

Llama 3
BPE

Space Patching
BLT

Entropy Patch Size 4
BLT

Arc-E 67.4 67.2 68.9
Arc-C 40.5 37.6 38.3
HellaSwag 71.3 70.8 72.7
PIQA 77.0 76.5 77.6

Table 10. Benchmark evaluations of two patching schemes for 8b BLT models and BPE Llama 3 baseline. These are compute-optimal
models trained on the Llama 2 data.

O. Entropy Model Context
Empirically, we find that using entropy patching yields progressively larger patches in structured content like multiple choice
tasks (see patching on an MMLU example in Figure 9) which are often very repetitive. These variations are caused by lower
entropy on the repeated content found in the entropy model context. So for the large scale run of BLT-Entropy with patch
size 4.5, we reset the entropy context with new lines and use approximate monontonicity constraint as it suffers less from
”entropy drift” from changes in context length. This change only affects how we compute entropies, but we still follow the
same procedure to identify the value of the entropy threshold.

P. Entropy Model Ablations
To study the effect of varying entropy model size and context window length on scaling performance, we train byte-level
entropy transformer models of different model sizes between 1m and 100m parameters, with varying context window lengths
from 64 to 512. We plot bpb vs training FLOP scaling law curves, created using our 400m and 1b BLT models trained on the
Llama-2 dataset and present them in Figure 10. We find that scaling performance is positively correlated with both these
dimensions of the entropy model, with diminishing returns when we scale beyond 50m parameters.

Q. Patching Ablations
In Table 10, we present benchmark evaluations for compute-optimal tokenizer-based models, space, and entropy patching
BLT models, trained on the BLT-Exp dataset (Dubey et al., 2024). Although space patching is a simpler strategy that does
not involve running an entropy model on the fly during training, we find that the gains we observed using entropy-based

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Byte Latent Transformer: Patches Scale Better Than Tokens

Figure 9. An example of default entropy-based patching with global threshold during inference on MMLU. Green denotes the prompt, Blue
denotes the few-shot examples, and red denotes the question to be answered. Note that the size of the patches for the repeated phrases
in the answer choices is much larger, which means that the global model is invoked significantly fewer times than its tokenizer-based
counterpart, with this inference patching scheme.

patching on scaling trends (Section K) do indeed carry forward even to downstream benchmark tasks. 6

R. Local Model Hyperparamaters
In Table 11, we ablate various settings for the number of layers in the local encoder and decoder. When paired with hash
n-gram embeddings, BLT works well with an encoder that is extremely light-weight i.e. just one layer, and with a heavier
decoder.

S. Robustness Experiment Details
Noisy Data We create noised versions of the benchmark classification tasks described in Section 5.2, to compare the
robustness of tokenizer-based models with that of BLT. We employ five distinct character-level noising strategies to introduce
variations in the text: (a) AntSpeak: This strategy converts the entire text into uppercase, space-separated characters. (b)
Drop: Randomly removes 10% of the characters from the text. (c) RandomCase: Converts 50% of the characters to
uppercase and 50% to lowercase randomly throughout the text. (d) Repeat: Repeats 20% of the characters up to a maximum
of four times. (e) UpperCase: Transforms all characters in the text to uppercase. During evaluation, we apply each noising
strategy to either the prompt, completion, or both as separate tasks and report the average scores. In Table 12 we report

6Space patching results are from earlier runs without cross-attention, but similar trends are observed even with cross-attention.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Byte Latent Transformer: Patches Scale Better Than Tokens

1020 2 × 1020 3 × 1020

Total Training FLOPS

0.85

0.90

0.95

1.00

1.05

Bi
ts

-p
er

-b
yt

e
(B

PB
)

BPB vs Training FLOPs at Compute Optimal Ratio
P=100m,w=512
P= 10m,w=128
P= 10m,w=512
P= 1m,w=512
P= 50m,w=512
P= 1m,w= 64

Figure 10. Variation of language modeling performance in bits-per-byte (bpb) with training FLOPs for 400m and 1b BLT models patched
with entropy models of different sizes and context windows. Both dimensions improve scaling performance, with diminishing returns
beyond 50m parameter entropy models with a context of 512 bytes.

Ngram Embeds Enc Layers Dec Layers BPB

False 1 9 0.850
False 5 5 0.843

True 5 5 0.844
True 3 7 0.824
True 1 9 0.822

Table 11. When paired with hash n-gram embeddings, a light-weight local encoder is sufficient. More layers can then be allocated to the
decoder for the same cost.

results on noised HellaSwag (Zellers et al., 2019) and find that BLT indeed outperforms tokenizer-based models across
the board in terms of robustness, with an average advantage of 8 points over the model trained on the same data, and even
improves over the Llama 3.1 model trained on a much larger dataset.

Phonology - Grapheme-to-Phoneme (G2P) We assess BLT’s capability to map a sequence of graphemes (characters
representing a word) into a transcription of that word’s pronunciation (phonemes). In Table 12, we present the results of
the G2P task in a 5-shot setting using Phonology Bench (Suvarna et al., 2024) and find that BLT outperforms the baseline
Llama 3 1T tokenizer-based model on this task.

CUTE To assess character-level understanding, we evaluate BLT on the CUTE benchmark (Edman et al., 2024), which
comprises several tasks that are broadly classified into three categories: understanding composition, understanding ortho-
graphic similarity, and ability to manipulate sequences. This benchmark poses a significant challenge for most tokenizer-
based models, as they appear to possess knowledge of their tokens’ spellings but struggle to effectively utilize this information
to manipulate text. Table 12 shows that BLT-Entropy outperforms both BPE Llama 3 models by more than 25 points on this
benchmark. In particular, our model demonstrates exceptional proficiency in character manipulation tasks achieving 99.9%
on both spelling tasks. Such large improvements despite BLT having been trained on 16x less data than Llama 3.1 indicates
that character level information is hard to learn for BPE models. Figure 11 illustrates a few such scenarios where Llama 3
tokenizer model struggles but our BLT model performs well. Word deletion and insertion are the only two tasks where BPE
performs better. Such word manipulation might not be straightforward for a byte-level model but the gap is not too wide and
building from characters to words could be easier than the other way around. We use the same evaluation setup in all tasks

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Byte Latent Transformer: Patches Scale Better Than Tokens

Llama 3
(1T tokens)

Llama 3.1
(16T tokens)

BLT
(1T tokens)

HellaSwag Original 79.1 80.7 80.6
HellaSwag Noise Avg. 56.9 64.3 64.3

- AntSpeak 45.6 61.3 57.9
- Drop 53.8 57.3 58.2
- RandomCase 55.3 65.0 65.7
- Repeat 57.0 61.5 66.6
- UpperCase 72.9 76.5 77.3

Phonology-G2P 11.8 18.9 13.0

CUTE 27.5 20.0 54.1
- Contains Char 0.0 0.0 55.9
- Contains Word 55.1 21.6 73.5
- Del Char 34.6 34.3 35.9
- Del Word 75.5 84.5 56.1
- Ins Char 7.5 0.0 7.6
- Ins Word 33.5 63.3 31.2
- Orthography 43.1 0.0 52.4
- Semantic 65 0.0 90.5
- Spelling 1.1 - 99.9
- Spelling Inverse 30.1 3.6 99.9
- Substitute Char 0.4 1.2 48.7
- Substitute Word 16.4 6.8 72.8
- Swap Char 2.6 2.4 11.5
- Swap Word 20.1 4.1 21

Table 12. We compare our 8B BLT model to 8B BPE Llama 3 trained on 1T tokens on tasks that assess robustness to noise and awareness
of the constituents of language (best result bold). We also report the performance of Llama 3.1 on the same tasks and underline best result
overall. BLT outperforms the Llama 3 BPE model by a large margin and even improves over Llama 3.1 in many tasks indicating that the
byte-level awareness is not something that can easily be obtained with more data.

and the original prompts from Huggingface. BPE models might benefit from additional prompt engineering.

Low Resource Machine Translation We evaluate BLT on translating into and out of six popular language families and
twenty one lower resource languages with various scripts from the FLORES-101 benchmark (Goyal et al., 2022) and report
SentencePiece BLEU in Table 13. Our results demonstrate that BLT outperforms a model trained with the Llama 3 tokenizer,
achieving a 2-point overall advantage in translating into English and a 0.5-point advantage in translating from English. In
popular language pairs, BLT performs comparably to or slightly better than Llama 3. However, BLT outperforms Llama 3
on numerous language pairs within lower-resource language families, underscoring the effectiveness of byte modeling for
generalizing to long-tail byte sequences.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Byte Latent Transformer: Patches Scale Better Than Tokens

Language Language → English English → Language

Llama 3 BLT Llama 3 BLT

Arabic 22.3 24.6 10.4 8.8
German 41.3 42.0 29.8 31.2
Hindi 20.7 20.9 7.8 7.2
Italian 34.0 33.9 24.4 26.2
Vietnamese 31.2 31.0 28.4 23.7
Thai 17.9 18.1 10.5 7.7

Armenian 1.7 6.3 0.6 0.9
Amharic 1.3 3.1 0.4 0.5
Assamese 2.7 5.4 0.8 1.6
Bengali 4.7 12.7 1.7 4.1
Bosnian 36.0 37.3 16.9 19.6
Cebuano 18.2 20.6 5.8 9.1
Georgian 1.7 7.4 1.0 2.5
Gujarati 2.0 5.8 1.0 2.2
Hausa 5.75 5.9 1.2 1.3
Icelandic 16.1 17.9 4.8 5.3
Kannada 1.6 3.9 0.7 1.7
Kazakh 5.6 7.0 1.0 2.6
Kabuverdianu 20.3 20.9 5.1 6.8
Khmer 4.4 9.5 0.8 0.8
Kyrgyz 4.6 5.1 0.9 2.0
Malayalam 1.8 3.5 0.7 1.4
Odia 1.6 2.7 0.8 1.1
Somali 5.0 5.0 1.1 1.4
Swahili 10.1 12.0 1.4 2.3
Urdu 9.3 9.5 2.0 1.4
Zulu 4.7 5.0 0.6 0.5

Overall Average 12.1 14.0 5.9 6.4

Table 13. Performance of 8B BLT and 8B Llama 3 trained for 1T tokens on translating into and from six widely-used languages and
twenty one lower resource languages with various scripts from the FLORES-101 benchmark (Goyal et al., 2022).

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Byte Latent Transformer: Patches Scale Better Than Tokens

Task Prompt Llama 3 BLT

Substitute
Word

Question: Substitute " and " with "
internet " in " She went to the kitchen
and saw two cereals. ". Answer:

She went to
the kitchen
and saw two
cereals.

She went to
the kitchen
internet saw
two cereals.

Swap Char Question: Swap " h " and " a " in "
that ". Answer:

that taht

Substitute
Char

Question: Substitute " a " with " m "
in " page ". Answer:

- pmge

Semantic
Similarity

Question: More semantically related to
" are ": " seem ", " acre ". Answer:

acre seem

Orthographic
Similarity

Question: Closer in Levenshtein
distance to " time ": " timber ", "
period ". Answer:

period timber

Insert
Char

Question: Add an " z " after every " n
" in " not ". Answer:

znotz nzot

Figure 11. Output responses from Llama 3 and BLT models for various tasks from CUTE benchmark. BLT model performs better on
sequence manipulation tasks compared to the tokenizer-based Llama 3 model. Note that few-shot examples are not shown in the above
prompts to maintain clarity.

23

