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Abstract

Within the field of optimal transport (OT), the
choice of ground cost is crucial to ensuring that
the optimality of a transport map corresponds to
being useful in real-world applications. It is there-
fore desirable to use known information to tailor
cost functions and hence learn OT maps which are
adapted to the problem at hand. By considering a
class of neural ground costs whose Monge maps
have a known form, we construct a differentiable
Monge map estimator which can be trained to
exhibit desirable properties. In doing so, we si-
multaneously learn both an OT map estimator and
a corresponding adapted cost function. Through
suitable choices of loss function, our method pro-
vides a general approach for incorporating prior
information about the Monge map itself when
learning adapted OT maps and cost functions.

1. Introduction
Optimal transport. Mapping samples between two datasets
in a meaningful way is one of the most fundamental tasks
across the sciences. Optimal transport (OT) provides a
principled framework for such mapping problems, and has
enjoyed success in many fields including throughout biology
[Schiebinger et al., 2019], and extensively in machine learn-
ing with applications in generative modelling [De Bortoli
et al., 2021, Genevay et al., 2018], differentiable sorting [Cu-
turi et al., 2019], clustering [Genevay et al., 2019], resam-
pling [Corenflos et al., 2021] and self supervised learning
[Caron et al., 2020].

For two probability measures µ and ν on Rd, the OT prob-
lem finds the most efficient way to transport µ to ν relative
to a ground cost function c : Rd × Rd → R. The choice of
cost function therefore determines the notion of optimality.

Choice of Ground Cost. The squared-Euclidean distance
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Figure 1. Using the squared-Euclidean cost can result in incorrect
map estimators that do not align with known ground-truth map-
pings. By optimizing a differentiable cost-parameterized Monge
map estimator to resemble known information, we can obtain
Monge map estimators and corresponding cost functions which
are consistent with the ground-truth.

c(x, y) = 1
2∥x − y∥2 is the default and most commonly

used ground cost in computational OT methods, due to its
desirable theoretical properties and ease of implementation.
It allows the use of the closed-form transport map from Bre-
nier’s theorem [Brenier, 1987], and an elegant connection
to convex analysis upon which many methods are based
[Makkuva et al., 2020, Korotin et al., 2021a]. However, the
squared-Euclidean cost can be an arbitrary choice and may
not be suitable for the given problem [Genevay et al., 2018].
Moreover, it can result in erroneous mappings that do not
agree with known ground-truth information [Somnath et al.,
2023], as demonstrated in Figure 1. Recently, several works
have proposed methods to estimate OT maps for more gen-
eral ground costs [Fan et al., 2023, Asadulaev et al., 2023,
Cuturi et al., 2023, Uscidda and Cuturi, 2023], however it
remains unclear how such a cost should be chosen.

Cost Learning. Ambiguity surrounding the choice of
ground cost has motivated recent interest in learning adapted
cost functions by leveraging assumed additional information
about the transport map (see Appendix B.2 for a discussion
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of related work). A frequently studied setting is inverse
OT, which aims to learn cost functions from paired sam-
ples assumed to come from a transport coupling. Access
to completely paired datasets is however unlikely to arise
in practical applications. Instead, we may aim to learn
an improved cost function from partial information about
the mapping, such as a limited number of paired points or
known structure in the map displacements. This motivates a
need for general cost learning frameworks that are able to
learn from a variety of types of available information.

One general approach for learning cost functions is a bi-
level approach entailing solving a regularized OT problem
for given cost function with Sinkhorn’s algorithm, then
differentiating through this solution to optimize the cost (see
Appendix B.2.2). In many OT applications however, one
wishes to approximate the Monge map T ⋆ itself, rather than
the cost function alone. This can be used to transport out-
of-sample points, enabling applications such as generative
modelling and prediction [Bunne et al., 2023]. While a
learned cost can be plugged-in to an OT map estimator, if
an accurate approximation is not obtained then the resulting
estimator may not agree with the information used to learn
the cost.

Contributions. We introduce an alternative approach for
learning adapted cost functions and OT maps by instead op-
timizing a cost-parameterized Monge map estimator directly
to be consistent with known information. This approach
simultaneously learns a map estimator and a corresponding
cost function, ensuring that the resulting map has the desired
properties. We make the following contributions:

• We propose a differentiable, structured Monge map
estimator, incorporating flexibly parameterized cost
functions c, and provide a multi-level optimization
procedure involving the differentiable entropic map
estimator [Pooladian and Niles-Weed, 2021, Cuturi
et al., 2023] to facilitate gradient based training.

• We first explore costs of the form c(x, y) = h(x− y)
for strictly convex h. We parameterize h using an Input
Convex Neural Network (ICNN) [Amos et al., 2017]
hθ. As far as we are aware this is the first such use of
ICNNs, which are more typically used to parameterize
potentials [Makkuva et al., 2020] rather than costs.

• We then extend our construction to costs c(x, y) =
h(Φµ(x)− Φν(y)) for invertible functions Φ·, provid-
ing additional flexibility whilst retaining a structured
Monge map.

• We showcase how our approach can incorporate par-
tially known information, including aligning mapping
estimators with known data associations, and encour-
aging desirable properties in the resulting transport
map.

2. Background on Optimal Transport
Monge. The original OT formulation given by Monge
[1781] seeks a map T ⋆ minimizing the total transportation
cost amongst maps T : Rd → Rd pushing µ onto ν:

min
T :T#µ=ν

∫
Rd

c(x, T (x))dµ(x). (1)

Kantorovich. A more general formulation, permitting mass
splitting, by Kantorovich [1942] seeks a joint distribution
π⋆ ∈ P(Rd × Rd) minimizing the cost over the set of
couplings Γ(µ, ν) between marginals µ and ν:

min
π∈Γ(µ,ν)

∫∫
Rd×Rd

c(x, y)dπ(x, y). (2)

The Kantorovich formulation admits the following dual
formulation, where Rc = {(f, g) ∈ L1(µ)×L1(ν) : f(x)+
g(y) ≤ c(x, y) µ ⊗ ν a.e.}. The solutions (f⋆, g⋆) to the
dual problem are known as the Kantorovich potentials,

sup
(f,g)∈Rc

{∫
fdµ+

∫
gdν

}
. (3)

Closed-form Monge maps. The following theorem de-
tails sufficient conditions for equivalence of the Monge and
Kantorovich problems, and motivates solving for the Kan-
torovich potentials to obtain the Monge mapping.
Theorem 2.1 (Theorem 1.17, Santambrogio [2015]). For
measures µ and ν on a compact domain Ω ⊂ Rd and a cost
of the form c(x, y) = h(x − y) for a strictly convex func-
tion h, there exists an optimal plan π⋆ for the Kantorovich
problem. If µ is absolutely continuous and ∂Ω is negligible,
then this optimal plan is unique and of the form (Id, T ⋆)#µ,
there exists a Kantorovich potential f⋆, and

T ⋆(x) = x− (∇h)−1(∇f⋆(x)). (4)

Entropic OT. The entropic OT problem instead smooths
the transport plan by adding an entropic penalty term to (2),

π⋆ = argmin
π∈Γ(µ,ν)

∫∫
Rd×Rd

c(x, y)dπ(x, y) + εKL(π|µ⊗ ν).

This relaxes the constraints on the dual potentials. The
solutions (f⋆ε , g

⋆
ε ) to the dual problem are known as the

entropic potentials,

sup
f∈C(X )
g∈C(Y)

{∫
fdµ+

∫
gdν +R(f, g)

}
, (5)

where R(f, g) := −ε
∫∫

e
f(x)+g(y)−c(x,y)

ε dµ(x)dν(y).

Entropic OT approaches and hence approximates OT in the
limit as ε ↘ 0, but the entropic solution enjoys the key
benefit of differentiability with respect to the inputs. It also
enables efficient computation for discrete measures µ̂, ν̂
using Sinkhorn’s algorithm [Cuturi, 2013] to solve for the
Sinkhorn potentials (f⋆ε ,g

⋆
ε) (see Appendix B.1.2).
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3. A Differentiable Monge Map Estimator
We consider learning costs of the form c(x, y) = hθ(x− y)
for a strictly convex hθ, for which the Monge map has the
form in (4). This enables direct optimization according
to conditions on the map itself, ensuring that the resulting
mapping is consistent with known prior information.

Such costs allow the use of methods such as the entropic
mapping estimator [Pooladian and Niles-Weed, 2021, Cu-
turi et al., 2023] and c-rectified flow [Liu, 2022], ensuring
reliable estimation of the corresponding OT map. In con-
trast, learning OT map estimators for arbitrary costs requires
a trade-off between distribution fitting and optimality (see
Appendix B.1.1), and if the resulting mapping is inaccurate
it may not be consistent with the information from which the
cost was learned. Moreover, additional known information
about an OT map will not uniquely determine a cost func-
tion. By considering convex costs, we provide an inductive
bias towards simpler and more interpretable costs.

3.1. Differentiable, Cost-Parameterized Transport Maps

We parameterize hθ using an Input Convex Neural Network
(ICNN) [Amos et al., 2017]. We also enforce α-strong
convexity and (optionally) symmetry of hθ (see Appendix
A.1). We use the entropic potential f̂εθ [Pooladian and Niles-
Weed, 2021, Cuturi et al., 2023] for the discrete empirical
measures µ̂, ν̂ as a differentiable proxy for the Kantorovich
potential f⋆. This is constructed from the Sinkhorn potential
g⋆ε solving the discrete OT problem between µ̂, ν̂:

f̂εθ (x) = −ε log
∑
j

exp

(
(g⋆ε)j − hθ(x− yj)

ε

)
. (6)

The resulting estimator is T εθ (x) = x−(∇hθ)−1(∇f̂εθ (x)).

Differentiability. We can differentiate through the output
of Sinkhorn’s algorithm using implicit differentiation [Luise
et al., 2018], or by unrolling the iterates [Adams and Zemel,
2011, Flamary et al., 2018]. We also note the following well-
known relation, enabling differentiation through (∇hθ)−1.

Proposition 3.1. For a smooth, strictly convex function h
with domain Rd, we have

(∇h)−1(x) = argmin
z

{
h(z)− ⟨z, x⟩

}
. (7)

We use the CELU activation function [Barron, 2017] to en-
sure smoothness of our ICNN parameterization hθ. As we
enforce α-strong convexity of h, strict convexity is also sat-
isfied, and the minimization in (7) can be solved efficiently
using numerical methods. We can then use implicit differ-
entiation (see Chapter 10, Blondel and Roulet [2024]) to
differentiate through this inner minimization with respect to
the cost parameters. We implement this using the JAXopt
libary [Blondel et al., 2022].

ICNNs have previously been used in OT methods to parame-
terize Kantorovich potentials [Makkuva et al., 2020, Korotin
et al., 2021a]. To our knowledge, using an ICNN to parame-
terize the cost function is novel, as is the construction of a
Monge map estimator that is end-to-end differentiable with
respect to its cost function parameters.

Choice of loss function. The training procedure is de-
scribed in Algorithm 1 in Appendix A. By choosing an
appropriate loss function L(θ), we can incorporate de-
sired explicit biases into the learned cost through map
estimator T εθ . For example, given a known subset of
paired points (xi, yi)

N
i=1, a natural choice of training loss is

L(θ) := 1
N

∑N
i=1∥T εθ (xi)− yi∥22 to encourage the learned

map to respect the known pairs. We provide other choices
of loss functions suitable for a range of problems in Ap-
pendix A.2. We can also construct the reverse map esti-
mator

(
T εθ (x)

)−1
. We find it beneficial to train using both

mappings jointly; see Appendix A.2.3 for details.

Warmstarting the inner optimizations. Each training itera-
tion entails two inner optimization problems, (1) the discrete
entropy-regularized OT problem using Sinkhorn, and (2)
the evaluation of (∇h)−1. We warmstart each optimization
from the corresponding solutions at the previous iteration,
which significantly improves training speed [Amos, 2022].

3.2. Augmenting with Diffeomorphisms

In the presence of extensive information about the map,
the choice of strictly convex costs c(x, y) = h(x − y)
can be overly restrictive, as there may not be a convex
cost that allows the Monge map to be consistent with the
known information. We therefore extend our framework by
first transforming the marginal measures using diffeomor-
phisms Φµ,Φν , then applying our method to µ̃ = Φµ#µ
and ν̃ = Φν#ν. The following extension of Theorem 2.1,
proved in Appendix E, shows that this amounts to learning
an OT map with cost c(x, y) = h(Φµ(x)− Φν(y)).

Theorem 3.2. Under the conditions of Theorem 2.1 with
a cost of the form c(x, y) = h(Φµ(x)− Φν(y)) for strictly
convex h and diffeomorphisms Φµ,Φν , the optimal plan is
unique, of the form (Id, T ⋆)#µ, where T ⋆ can be written:

T ⋆(x) = Φ−1
ν

[
Φµ(x)− (∇h)−1 ◦ ∇f⋆ ◦ Φµ(x)

]
. (8)

We parameterize Φµ,Φν using normalizing flows [Rezende
and Mohamed, 2015], and train end-to-end along with the
procedure in Algorithm 1. This increases the expressivity
of the class of cost functions we consider. As we would
prefer to learn simpler costs, we can take Φµ = Φν which
preserves symmetry when h is symmetric. Theorem 3.2 re-
sembles similar recent results which use learnable invertible
matrices [Klein et al., 2024, Prop 3.] and fixed mirror-maps
[Rankin and Wong, 2023].
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Figure 2. (left) By optimizing the map directly, we learn a Monge map estimator which agrees with the Live-seq trajectories. (middle)
Optimizing according to the coupling matrix with a cost h(Φ(x)− Φ(y)) transports some points correctly, but struggles to learn a good
cost overall (see Table 1). (right) For a general MLP cost, it is difficult to obtain a good mapping estimator.

4. Experiments
Inverse OT. In Figure 1 we verify that our method can
indeed learn valid cost functions in the Inverse OT setting
using synthetic 2d distributions. We are able to learn a
consistent map estimator for the T-shape dataset using only
a symmetric convex cost c(x, y) = h(x− y). For the moon
and spiral datasets, we require costs of form c(x, y) =
h(Φµ(x)−Φν(y)). Solving the discrete OT problem on the
training datasets using the learned cost recovers the correct
pairs, demonstrating that the learned costs are indeed valid.

Limited labelled pairs. Optimal transport is commonly
used to infer single-cell transcriptome trajectories between
unaligned datasets, under the assumption that a cell popula-
tion has moved ‘efficiently’ between the observed timesteps
[Schiebinger et al., 2019, Bunne et al., 2023]. The recent
Live-seq profiling technique [Chen et al., 2022] avoids the
destruction of measured cells, enabling a number of individ-
ual cell trajectories to be traced. These trajectories appear
not to agree with those predicted by OT methods that use the
squared-Euclidean cost. Nevertheless, the assumption that
cells move ‘efficiently’ is reasonable, raising the question of
whether a different choice of ground-cost is more suitable.

To learn an expressive but interpretable cost, we consider
learning symmetric costs of the form h(Φ(x)− Φ(y)). We
fit the Monge map estimator to the first 10 principal com-
ponents of the Live-seq data consisting of cells pre- and
post cell-differentiation, so that it agrees with the known
trajectories. We plot the resulting mapping estimators in
Figure 2. In Table 1 we report the total incorrectly trans-
ported mass in the resulting coupling (denoted I.M.; see
Appendix C), as a measure of the validity of the learned
cost. To assess the adapted OT map, we also report the
RMSE of the predictions for the known cell trajectories,
and the Sinkhorn divergence Sε(T̂#µ, ν). Experimental
details are provided in Appendix C. We compare against
costs learned by optimizing the Sinkhorn coupling matrix
to minimize the incorrect mass reported in Table 1. We first
use the same parameterization h(Φ(x)− Φ(y)) and obtain
a map using the entropic mapping estimator. We also use an
unstructured MLP cost c(x, y) [Liu et al., 2020] and learn a

Table 1. Results from the Live-seq experiment, over 10 initial-
ization seeds. Lower is better. Unsurprisingly, the MLP cost is
able to place most mass along the correct pairings. The resulting
cost is however unstructured and difficult to interpret, and it is
difficult to approximate the corresponding OT map. For costs
h(Φ(x) − Φ(y)), the resulting entropic mappings show an im-
proved fit to the target, but optimizing the map learns better costs
and has significantly better alignment with the ground truth.

OPTIMIZING MAP OPTIMIZING MATRIX
h(Φ(x)− Φ(y)) h(Φ(x)− Φ(y)) MLP c(x, y)

I.M. 0.095± 0.035 0.153± 0.012 0.051± 0.000
RMSE 2.02± 2.21 16.9± 1.6 6.91± 2.52

Sε(T̂#µ, ν) 7.73± 3.02 4.94± 0.85 19.8± 2.8

map estimator using the Monge Gap regularizer [Uscidda
and Cuturi, 2023]. Optimizing the map directly consistently
obtained both an interpretable cost function and a good
transport estimator agreeing with the observed trajectories.

Given the scarcity of known Live-seq trajectories, we cannot
test out-of-sample performance of the resulting map estima-
tor. We therefore perform the same procedure on synthetic
data with different numbers of labelled pairs in Appendix
D.1, reporting results on training and newly-sampled data.

Additional Experiments. We provide additional experi-
ments in Appendix D, including the ability to induce desir-
able properties that hold on the map displacements them-
selves, such as being low-rank or k-directional.

5. Conclusion
We have introduced a Monge map estimator parameterized
by a learnable cost function, which is differentiable with
respect to its parameters. This enables learning adapted cost
functions and OT map estimators through gradient based
training so that the map is consistent with known prior in-
formation. We have demonstrated the ability to learn costs
by aligning with paired data samples, and by inducing desir-
able properties on the Monge map estimator itself. Future
directions include: conducting further comparisons of opti-
mizing the entropic map compared to the coupling matrix,
and investigating the use of adapted costs and OT maps in
downstream tasks.
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Gabriel Peyré and Marco Cuturi. Computational optimal
transport. Foundations and Trends in Machine Learning,
11 (5-6):355–602, 2019.

Silviu Pitis, Harris Chan, Kiarash Jamali, and Jimmy Ba.
An inductive bias for distances: Neural nets that respect
the triangle inequality. In International Conference on
Learning Representations, 2020.

Aram-Alexandre Pooladian and Jonathan Niles-Weed. En-
tropic estimation of optimal transport maps, 2021.

Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky
T. Q. Chen, and Brandon Amos. Neural optimal trans-
port with Lagrangian costs. In ICML Workshop on New
Frontiers in Learning, Control, and Dynamical Systems,
2023.

Cale Rankin and Ting-Kam Leonard Wong. Bregman-
Wasserstein divergence: geometry and applications.
arXiv preprint arXiv:2302.05833, 2023.

Danilo Rezende and Shakir Mohamed. Variational infer-
ence with normalizing flows. In Proceedings of the 32nd
International Conference on Machine Learning, 2015.

R. Tyrrell Rockafellar. Convex analysis. Princeton Mathe-
matical Series. Princeton University Press, 1970.

6



Differentiable Cost-Parameterized Monge Map Estimators

F. Santambrogio. Optimal Transport for Applied Mathe-
maticians: Calculus of Variations, PDEs, and Modeling.
Springer International Publishing, 2015.

Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian
Cleary, Vidya Subramanian, Aryeh Solomon, Joshua
Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia Lee,
Jenny Chen, Justin Brumbaugh, Philippe Rigollet, Konrad
Hochedlinger, Rudolf Jaenisch, Aviv Regev, and Eric S.
Lander. Optimal-transport analysis of single-cell gene
expression identifies developmental trajectories in repro-
gramming. Cell, 176(4), 2019.

Vivien Seguy, Bharath Bhushan Damodaran, Remi Flamary,
Nicolas Courty, Antoine Rolet, and Mathieu Blondel.
Large-Scale Optimal Transport and Mapping Estimation.
In International Conference on Learning Representations,
2018.

Liangliang Shi, Gu Zhang, Haoyu Zhen, Jintao Fan, and
Junchi Yan. Understanding and generalizing contrastive
learning from the inverse optimal transport perspective.
In Proceedings of the 40th International Conference on
Machine Learning, 2023.

Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh,
Maria Rodriguez Martinez, Andreas Krause, and Char-
lotte Bunne. Aligned diffusion Schrödinger bridges. In
The 39th Conference on Uncertainty in Artificial Intelli-
gence, 2023.

Andrew M. Stuart and Marie-Therese Wolfram. Inverse
optimal transport. SIAM J. Appl. Math., 80, 2019.

Amirhossein Taghvaei and Amin Jalali. 2-Wasserstein ap-
proximation via restricted convex potentials with applica-
tion to improved training for gans, 2019.
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A. Method

Algorithm 1 Differentiable cost-parameterized entropic mapping estimator
Input: Empirical measures µ̂ =

∑
i δxi

, ν̂ =
∑
j δyj ,

Parameterized ICNN cost hθ ;
Entropy regularization scaling value ε̃;
Loss function L(θ);
Regularizing function R(θ);
while not converged do

1. Apply Sinkhorn’s algorithm between the empirical measures µ̂, ν̂ with entropy regularization value ε (the cost
matrix mean scaled by ε̃), using the current parameterized function hθ,

2. Use Sinkhorn output g⋆ε to construct the entropic potential estimator

f̂εθ (x) = −ε log
∑
j

exp

(
(g⋆ε)j − hθ(x− yj)

ε

)
, (9)

3. Construct the entropic mapping estimator

T εθ (x) = x− (∇hθ)−1 ◦ (∇f̂εθ )(x), (10)

4. Update θ by gradient descent according to a loss function L(θ) +R(θ) by differentiating through Sinkhorn and
(∇h)−1 using implicit differentiation.

end while

We implement the differentiation through Sinkhorn using the OTT-JAX library [Cuturi et al., 2022]. We use the L-BFGS
solver [Liu and Nocedal, 1989] from the JAXopt library [Blondel et al., 2022] to evaluate and implicitly differentiate through
the inner minimization when evaluating (∇hθ)−1.

A.1. Cost function parameterization

A.1.1. CONVEX FUNCTION h

Input Convex Neural Networks. ICNNs [Amos et al., 2017] are a class of neural networks fθ : Rd → R with an
architecture that ensures that the mapping x 7→ fθ(x) is convex. An ICNN consists of k feedforward layers, where for each
layer i = 0, ..., k − 1 the activations are given by

zi+1 = σi(W
(z)
i zi +W

(x)
i x+ bi), fθ(x) = zk. (11)

The network ensures convexity by consisting only of non-negative sums and compositions of convex non-decreasing
functions with convex functions. It therefore requires the nonlinear activation functions to be convex and non-decreasing,
and the weight matrices W (z)

i to be non-negative (no such requirements are required for the passthrough matrices W (x)
i ).

The first layer does not require an additional passthrough layer, so we have W (z)
0 = 0.

ICNNs have previously been utilised in computational optimal transport methods to parameterize Kantorovich potentials,
which via a reparameterization are known to be convex in the case of the squared-Euclidean cost [Makkuva et al., 2020,
Korotin et al., 2021a]. Although mathematically elegant, Korotin et al. [2021b] note that constraining the potentials to be
ICNNs can in fact result in worse performance versus vanilla MLPs. We remark that in our case, the use of ICNNs instead
of MLPs to parameterize the cost is crucial to our methodology, as it ensures that the inner optimization in (7) is convex and
can be solved numerically.

Symmetry. The additional information used to learn an adapted Monge map and cost will not uniquely determine the
cost function. This is especially the case when there is little additional information. We therefore wish to favour learning
simpler and more interpretable costs. Translation-invariant convex costs c(x, y) = h(x− y) provide a good inductive bias
towards such costs. We may also wish for the cost to be symmetric; this can be optionally enforced by parameterizing as
h(z) = h̃θ(z) + h̃θ(−z) for an ICNN h̃θ.
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α-strong convexity. The closed-form of the Monge map in (4) requires strict convexity of h. We enforce this by adding a
quadratic term α∥x− y∥22 to the cost function. This also ensures that the inner minimization (7) is strongly convex and thus
the unique solution can be solved for efficiently with numerical methods.

Parameterizing the convex conjugate. We remark that after having learned an adapted transport map, evaluating the learned
mapping at a point x requires a minimization problem to evaluate (∇h)−1. This can be avoided by instead parameterizing
the convex conjugate h∗ rather than h, and using the relation (∇h)−1 = ∇h∗. While avoiding the inner minimization when
evaluating the map, this instead requires an inner minimization to evaluate each entry of the cost matrix Ci,j = c(xi, yj),
which is then fed into Sinkhorn at each training iteration. The result is that significantly more evaluations of (∇h)−1 are
required during training, though with the benefit that the resulting learned map can be evaluated directly. The choice to
parameterize h or h∗ should therefore depend on whether fast evaluation of the learned mapping is preferred over training
speed.

A.1.2. DIFFEOMORPHISMS Φµ,Φν

In Section 3.2, we extend our framework to incorporate cost functions of the form c(x, y) = h(Φµ(x) − Φν(y)). In our
experiments, we use the MADE flow architecture [Papamakarios et al., 2017] to parameterize Φµ,Φν , implemented using
the Jax-Flows library [Waites, 2020].

Relation to metric learning. When taking Φµ = Φν the cost c(x, y) = h(Φ(x) − Φ(y)) resembles a Siamese network
[Bromley et al., 1993], a common approach in the metric learning literature. Siamese networks seek to learn encoders Φ so
that the resulting function d(x, y) = 1

2∥Φ(x)− Φ(y)∥22 is an improved notion of distance for the data. However, Indyk et al.
[2017] note that such compositions can be insufficiently expressive to precisely model certain metrics. Motivated by this,
Pitis et al. [2020] replace the squared-Euclidean distance with a modified ICNN, providing a more expressive class of neural
distances.

Our motivation is similar. Note that we could use an ICNN ψ to directly parameterize a Monge map for a cost c(x, y) =
1
2∥Φµ(x)− Φν(y)∥22 according to the composition Φ−1

ν ◦ ∇ψ ◦ Φµ (via Brenier’s theorem and a change of variable as in
Theorem 3.2). However, by incorporating an ICNN we add flexibility in the cost parameterization, allowing us to favour
simpler and more interpretable learned costs.

A.2. Choice of Loss Function

To illustrate the generality of our method, we provide here potential choices of loss function suitable for different applications.
They encourage the map estimator to be consistent with known information or desired behaviour. We remark that these
suggestions are only examples of possible loss functions that can be used, and a practitioner is free to choose any differentiable
loss function suitable for their needs. In particular, our method is most suitable when behaviour is desired to hold on the
map estimator itself, as this is the object being optimized.

A.2.1. LABELLED DATAPOINTS

Paired datapoints. Consider assuming access to a subset {(xi, yi)}Ni=1 of µ̂, ν̂ consisting of known pairings from the
optimal mapping, so yi = T ⋆(xi). We can optimize our map to agree with the observed pairings by penalizing the L2

distance between the predictions and the known targets,

L(θ) := 1

N

N∑
i=1

∥T εθ (xi)− yi∥22.

In the case where all samples in µ̂, ν̂ are paired, this recovers the Inverse OT setting. Note that during training, we only need
to evaluate T εθ at the paired data points.

Subset-to-subset correspondence. Liu et al. [2020] consider a setting in which certain source subsets are known to map to
certain target subsets. If our empirical source and target distributions are µ =

⋃
i µi, ν =

⋃
i νi with µi known to map to νi,

then the loss function can be chosen as
L(θ) =

∑
i

Sε̃(T
ε
θ#µ̂i, ν̂i),

where Sε̃ denotes the Sinkhorn divergence [Genevay et al., 2018] with regularization parameter ε̃.
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A.2.2. PROPERTIES OF MAP DISPLACEMENTS

Low-rank displacements. To encourage the map estimator T εθ to transport along a lower p-dimensional subspace, we can
penalize the magnitude of the trailing singular values σ(θ)

i of the displacement matrix (T εθ (xi)− xi)i,

L(θ) =
∑
i>p

∥σ(θ)
i ∥2.

k-directional displacements. We can encourage the displacements to lie primarily along at most k distinct directions. We
can parameterize k directions vϕ = (vϕ1 , ..., v

ϕ
k ), then maximize the cumulative smoothed minimum of the cosine distance

dcos(u, v) = 1− u·v
∥u∥∥v∥ ,

L(θ, ϕ) = −
∑
i

LogSumExp
j

[
− dcos

(
T εθ (xi)− xi, v

ϕ
j

)]
.

A.2.3. REVERSE MAP ESTIMATORS

We have presented our method as optimizing according to a loss on the forward mapping estimator L(θ) = L(T εθ ). However,
we can also construct the reverse entropic mapping estimator as

ĝεθ(y) = −ε log
∑
i

exp

(
(f⋆ε )i − hθ(xi − y)

ε

)
, (T εθ )

−1(y) = y − (∇h̃θ)−1 ◦ (∇ĝεθ)(y),

where h̃θ(z) = hθ(−z). The reverse map estimator should also be consistent with the known information, so we optimize
according to the sum of the losses of the forward and backwards mapping estimators,

L(θ) = 1

2
L(T εθ ) +

1

2
L
(
(T εθ )

−1
)
.

A.3. Regularization

To ensure stable training, we add a regularization term R(θ) to the loss used during training.

Cost matrix. During optimization, the procedure may learn a cost function which places very large absolute values on
certain displacements in order to encourage the desired behaviour. Although the OT map is invariant to scaling of the cost
function, if such values become extreme this can result in numerical instability. To prevent this, we add a regularization term
penalizing the softmax of the largest absolute value in the cost matrix Cθ,

λmax LogSumExp
i,j

(
|cθ(xi, yj)|

)2
.

The value of λmax can be taken to be very small, so that it has minimal effect on optimization apart from preventing extreme
values.

Flows. Recall that often we prefer to learn symmetric cost functions. However, when there is a large amount of available
information about the transport map, it might not be possible to fit such information with a symmetric cost. In such cases,
we can use two separate flows, and we can encourage the cost towards symmetricity by adding a regularizing function so
that Φµ ≈ Φν , ∑

i

∥Φµ(xi)− Φν(xi)∥2 +
∑
j

∥Φµ(yj)− Φν(yj)∥2.

As we wish to prefer simpler cost functions, we can control the complexity of the flow by regularizing using the Dirichlet
energy,

1

2

∑
i

∥∇Φµ(xi)∥22 +
1

2

∑
j

∥∇Φν(yj)∥22.
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B. Related Work
B.1. Monge Map Estimation

Often in applications it is desired to construct an estimator for the Monge map itself. This motivates our approach of
optimizing a Monge map estimator directly, to ensure that the resulting mapping agrees with known information. We here
provide an overview of methods to construct a Monge map estimator.

B.1.1. NEURAL OT MAP ESTIMATION

Many approaches utilise neural networks to parameterize the Kantorovich potentials, or alternatively the transport map itself.

Squared-Euclidean cost. In the case of the squared-Euclidean cost c(x, y) = 1
2∥x− y∥2, the closed form expression for

the Monge map given in Theorem 2.1 reduces to the celebrated Brenier’s theorem, T ⋆(x) = x−∇f⋆(x) [Brenier, 1987].
In this case, it is common to reparameterize the potentials by letting ψ = 1

2∥x∥
2 − f(x) and φ(y) = 1

2∥y∥
2 − g(y). The

Kantorovich dual problem (3) becomes

inf
(ψ,φ)∈Φ̃

{∫
ψdµ+

∫
φdν

}
, (12)

where Φ̃ = {(ψ,φ) ∈ L1(µ) × L1(ν) : ψ(x) + φ(y) ≥ ⟨x, y⟩ µ ⊗ ν a.e.}. There exists an optimal potential ψ⋆ that is
convex [Santambrogio, 2015], and the Monge map is given by T ⋆(x) = ∇ψ⋆(x).

The dual objective (12) and the link to convex analysis form the basis for many successful computational techniques,
though as a result they are restricted to only the squared-Euclidean cost. Taghvaei and Jalali [2019], Makkuva et al. [2020],
Korotin et al. [2021a] parameterize the dual potentials in (12) using ICNNs. Taghvaei and Jalali [2019] solve for the
convex conjugate ψ∗ as an inner minimization step, and subsequent work [Makkuva et al., 2020] instead parameterize both
potentials as ICNNs and optimize a minimax objective. Korotin et al. [2021a] remove the minimax objective by adding a
cycle-consistency regularizer to encourage the potentials to be convex-conjugate up to a constant. While the use of ICNNs
to parameterize the potentials is appealing from a mathematical standpoint, results in Korotin et al. [2021b] suggest that it
may hinder optimization.

Although the squared-Euclidean cost has desirable theoretical properties, it may not be an appropriate choice in applications.
Somnath et al. [2023] comment that methods approximating the squared-Euclidean OT map can result in erroneous matchings
when ground truth couplings are known (demonstrated in Figure 1), and Genevay et al. [2018] have shown it to have poor
discriminative properties for image data. This motivates learning an improved cost function more suitable for the problem at
hand.

General Cost Functions. Recently, several alternative methods have been proposed that are suitable for general cost
functions. Fan et al. [2023] and Asadulaev et al. [2023] optimize a saddle point formulation of the OT problem, directly
parameterizing the transport map and a dual potential using neural networks. Uscidda and Cuturi [2023] take an alternative
approach, instead parameterizing the mapping with a neural network and training so that it fits to the source measure, with
a Monge Gap regularizer that encourages the map to be optimal with respect to the chosen cost. Such methods present
a trade-off between fitting to the distribution, and optimality with respect to the chosen cost, both of which need to be
minimized if the resulting map is to be an accurate approximation to the OT map.

B.1.2. ENTROPIC MAP ESTIMATION

Entropic OT. The entropy regularized OT problem adds a entropic penalty term to the primal objective,

π⋆ε = arg inf
π∈Γ(µ,ν)

∫∫
Rd×Rd

c(x, y)dπ(x, y) + εKL(π|µ⊗ ν). (13)

Note that only the support of the reference measure µ⊗ ν affects the optimization problem [Peyré and Cuturi, 2019]. The
entropy regularization ‘blurs’ the solution, enabling differentiability of both the entropy-regularized OT cost and plan with
respect to the input measures and cost function. As a result, optimal transport has enjoyed success in machine learning
applications for which differentiability is required.

The dual formulation of the unregularized Kantorovich problem (3) has strict constraints on the potentials, leading to a
difficult optimization problem. The entropic-regularized dual formulation relaxes these constraints, making it more amenable
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to optimization,

sup
f∈C(X )
g∈C(Y)

{∫
fdµ+

∫
gdν − ε

∫∫
e

f(x)+g(y)−c(x,y)
ε dµ(x)dν(y)

}
.

Stochastic dual optimization. Genevay et al. [2016] optimize this dual objective with stochastic gradient descent using
samples from the measures. In the case of continuous measures, they parameterize the potentials as kernel expansions in a
Reproducing Kernel Hilbert Space. Seguy et al. [2018] instead propose using neural networks to parameterize the potentials,
and also construct a deterministic map using a neural network to approximate the resulting barycentric projection. In the
case of the squared-Euclidean cost, this barycentric projection corresponds to the Monge map.

Sinkhorn. In practice, we often have access to discrete empirical approximations to underlying continuous distributions. In
the discrete case with measures µ̃ =

∑
i aiδxi , ν̃ =

∑
j bjδyj and cost matrix Ci,j = c(xi, yj), the entropy-regularized OT

problem can be written as

Π⋆ε = min
Π∈U(a,b)

⟨Π,C⟩ − εH(Π), H(Π) = −
∑
i,j

Πi,j(logΠi,j − 1). (14)

The Sinkhorn algorithm [Cuturi, 2013] provides an efficient way to compute the dual variables of the discrete entropy-
regularized OT problem, and is also well-suited for parallelization on GPUs to solve multiple OT problems simultaneously.
From an arbitary initialization g(0) and using the kernel matrix Ki,j = exp

(−Ci,j

ε

)
, the Sinkhorn iterates are defined as

f (ℓ+1) = ε log a− ε log
(
Keg

(ℓ)/ε
)
, g(ℓ+1) = ε logb− ε log

(
K⊤ef

(ℓ+1)/ε
)
. (15)

These iterates converge to the Sinkhorn potentials (f⋆ε ,g
⋆
ε). The optimal transport plan Π⋆ε can then be recovered from the

potentials as Π⋆ε = diag(u)Kdiag(v), where u = exp(f⋆ε /ε),v = exp(g⋆ε/ε).

Entropic mapping estimator. Recall that for a cost function c(x, y) = h(x− y) for strictly convex h, the Monge map has
form

T ⋆(x) = x− (∇h)−1(∇f⋆(x)),
where f⋆ is the Kantorovich potential. The Kantorovich potentials can be chosen to satisfy the following h-conjugacy
property [Santambrogio, 2015], which is unfortunately a difficult property to enforce,

f⋆(x) = min
y

{
h(x− y)− g⋆(y)

}
g⋆(y) = min

x

{
h(x− y)− f⋆(x)

}
.

In the entropically regularized case, the entropic potentials f⋆ε , g
⋆
ε instead satisfy the following relation, which is a softmin

relaxation of the above h-conjugacy property,

f⋆ε (x) = −ε log
∫
e

g⋆ε (y)−h(x−y)

ε dν(y), g⋆ε (y) = −ε log
∫
e

f⋆
ε (x)−h(x−y)

ε dµ(x).

This suggests using the entropic potentials in place of the true Kantorovich potential. In practice, we only have access to
discrete empirical measures µ̂, ν̂ when constructing a Monge map estimator. The entropic mapping estimator therefore
solves the discrete entropic OT problem between µ̂, ν̂ using Sinkhorn, and uses the output to construct the entropic potential
f̂ε which is used in place of f∗ in the Monge map expression. The resulting entropic map estimator is

T εh(x) = x− (∇h)−1(∇f̂ε(x)).

This estimator was proposed in Pooladian and Niles-Weed [2021] for the squared-Euclidean cost, along with finite-sample
guarantees on its performance. It was extended to general convex functions h in Cuturi et al. [2023], and Klein et al. [2024]
demonstrate the versatility and good performance of the resulting estimator.

As it is constructed from the Sinkhorn iterations, the entropic mapping estimator can be computed efficiently in comparison
to the alternative approaches outlined above. As we can differentiate through the Sinkhorn iterations, it is therefore
suitable for our aim of constructing a differentiable Monge map estimator. Our additional contributions lie in the use of
ICNNs to parameterize h, and in the observation that the evaluation of (∇h)−1 can be differentiated through using implicit
differentiation, enabling end-to-end differentiability of the estimator with respect to the cost function parameters.
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B.2. Cost Learning

Methods to learn an adapted cost functions have attracted attention since the problem was introduced by Cuturi and Avis
[2014], but remain relatively unexplored in comparison to standard OT. Existing methods in the literature consider a variety
of different problem settings.

B.2.1. INVERSE OPTIMAL TRANSPORT

Inverse optimal transport (iOT) aims to learn a cost function given paired samples (xi, yi) from the optimal or entropic
coupling.

Optimizing a dual objective. Existing iOT approaches typically assume access to samples from the entropic coupling
(xi, yi) ∼ πε, which form an empirical joint measure π̂n = 1

n

∑
i δ(xi,yi). They then perform maximum likelihood

estimation for a parameterized cost cθ by minimizing the negative log-likelihood given by the convex function

ℓ(θ) = −⟨cθ, π̂n⟩+ sup
π∈U(a,b)

{
⟨cθ, π⟩ − εH(π)

}
.

The cost is usually parameterized as a linear combination of convex basis functions, and a convex regularizer R(θ) is added
to encourage the parameter to be sparse [Carlier et al., 2020, Andrade et al., 2024] or low-rank [Dupuy et al., 2019]. To
avoid a bilevel optimization procedure, the problem is reformulated as minimizing the dual objective

J (θ, f, g) =

∫
cθ(x, y)− f(x)− g(y)dπ̂n(x, y) + ε

∫
exp

(f(x) + g(y)− c(x, y)

ε

)
dµ(x)dν(y) + λR(θ). (16)

Ma et al. [2021] optimize a similar dual objective, and parameterize both the cost and the Kantorovich potentials using
MLPs. The numerical algorithm proposed in Andrade et al. [2024] uses the known form of the optimal potential g to instead
optimize a semi-dual formulation of (16), which results in a better-conditioned optimization problem.

Discrete inverse OT has been considered from the perspective of matching problems [Li et al., 2019], contrastive learning
[Shi et al., 2023], and economics [Dupuy and Galichon, 2014, Galichon and Salanié, 2021], as well as from a Bayesian
perspective in Stuart and Wolfram [2019]. Rather than learning a specific cost matrix, Chiu et al. [2022] provide a theoretical
analysis of the set of possible cost matrices.

The inverse OT setting assumes access to paired samples from an transport plan, which is an unlikely scenario in practice. It
is more likely that we have partial information about data associations, such as a smaller subset of paired points. Alternatively,
we may leverage known information about the transport map specific to the problem at hand as an inductive bias. The above
inverse OT methods are unable to utilise such partial information.

B.2.2. DIFFERENTIATING THROUGH SINKHORN

An alternative approach for learning cost functions is to optimize according a loss that is a function of the entropy-regularized
coupling matrix, which can be obtained using Sinkhorn’s algorithm. The cost parameter is then updated through the bilevel
optimization problem by unrolling the Sinkhorn iterations, or using implicit differentiation. Differentiating through Sinkhorn
provides a more flexible cost-learning approach in comparison to inverse OT, as a specific loss function can be chosen to
encourage the desired behaviour in the coupling matrix.

Liu et al. [2020] use this procedure to learn a cost function from known subset correspondences. they use Sinkhorn’s
algorithm to solve for the entropic coupling matrix according to the current parameterized cost function. The loss is then the
sum of the squares of the entries in the resulting matrix corresponding to incorrect mappings between the known subset
assignments. In the extreme case, this recovers inverse OT and the loss function is the sum of the squares of the off-diagonal
elements.

Klein et al. [2024] differentiate through Sinkhorn to instead learn cost functions based on structural assumptions on
the displacements. They minimize a loss L(θ) = ⟨πεθ,M(θ)⟩, where the matrix entries M(θ)ij = τθ(xi − yj) are a
parameterized convex regularization function evaluated on the displacements. As such, they aim to learn a cost so that
the resulting coupling places low mass on values with large regularization value. In particular, they consider regularizing
functions τ⊥A (z) = 1

2∥A
⊥z∥22 promoting displacements in the span of the orthonormal matrix A, which they aim to learn.

As discussed in Appendix B.1, it is often the case that we wish to obtain an estimator for the Monge map itself. Learned
costs can be plugged in to Monge map estimators, though it is only recently that such solvers have been developed that
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can handle general ground-cost functions (see Appendix B.1.1). Such estimators can be difficult to interpret as they use a
neural network rather than a closed-form mapping, and if they fail to learn accurate approximations to the OT map then
the resulting mapping may not display the desired properties. Moreover, it could be desired for properties to hold in the
displacements of the mapping estimator itself, rather than for the displacements in the coupling matrix which are fixed
according to the empirical distributions. In contrast to the aforementioned approaches, we optimize a map estimator itself.
This avoids the need for a two-step procedure and instead optimizes the object of interest directly, ensuring that the resulting
mapping displays the desired behaviour.

B.2.3. ALTERNATIVE APPROACHES TO COST LEARNING

Learning improved cost functions has been considered from the supervised metric-learning perspective, aiming to learn a
ground cost between histograms that agrees with labelled ‘similarity’ coefficients between pairings [Cuturi and Avis, 2014,
Wang and Guibas, 2012]. Heitz et al. [2020] and Pooladian et al. [2023] learn a cost from observations of a density that is
assumed to be evolving optimally. Heitz et al. [2020] consider discrete measures supported on graphs, in which the cost is
given by a geodesic on the graph parameterized by weights on each edge, whereas Pooladian et al. [2023] learn a Riemannian
metric on the underlying continuous space. Genevay et al. [2018], Paty and Cuturi [2020] consider an adversarial setting in
which the cost is chosen to maximize its discriminative power.

C. Experimental details
C.1. Inverse OT

We train according to the Inverse OT loss function given in Appendix A.2.1 using 128 pairs sampled from 2-dimensional
T-shape, moon, and spiral distributions. We plot the ground-truth pairings and learned predictions for 32 newly-sampled
test points in Figure 1, along with the squared-Euclidean entropic map estimator as a comparison. In all experiments, we
parameterize h to be symmetric and 0.01-strongly convex, and use an ICNN with hidden layers of size [32, 32]. We train
for 500 iterations. For the moon and spiral datasets we use a relative epsilon value of 0.01; for the T-shape dataset we
decay the relative epsilon from 0.05 to 0.002. We are able to learn a mapping estimator resembling the T-shape data using
a simple symmetric cost of the form c(x, y) = h(x− y). For the moon and spiral datasets, we require costs of the form
c(x, y) = h(Φµ(x)− Φν(y)).

C.2. Aligning OT maps to Live-seq trajectories

OT for cell profiling. Tracing individual cell transcriptome trajectories is an important problem in biological applications,
and aims to identify and predict responses of cells to biological processes or external treatments. Most profiling techniques
result in the destruction of the cell. The resulting data therefore consist only of individual ‘snapshots’ of the overall cell
population without alignment. In order to infer how individual cells have developed between these snapshots, optimal
transport methods can be used as an inductive bias to align the observed distributions, as it is assumed that the cell population
has moved ‘efficiently’ in the time between observations [Schiebinger et al., 2019, Bunne et al., 2023]. Such methods
typically use the squared-Euclidean cost, but it is unclear whether this is a suitable notion of distance for gene-expression
data.

Live-seq. Recently, Chen et al. [2022] propose the Live-seq profiling technique, which conducts genetic profiling using only
a small extract of cytoplasm from the cell. This does not require the destruction of the cell and has minimal effect on its
development, therefore enabling individual cell trajectories to be observed. As only cells which provide viable samples
at both timesteps can be traced, the number of individual cell trajectories that are observed is far smaller than the number
of observations in each cell population. Chen et al. [2022] observe the trajectories of 12 individual cells before and after
treatment, along with many more unpaired samples. It is therefore desirable to use this observed data to learn an improved
cost function and corresponding OT map, which can then be used in downstream tasks such as trajectory prediction or
lineage tracing. Inverse OT methods could be used to learn from only the paired samples, but they are unable to make use of
the unpaired majority in the cell populations.

We restrict our attention to the adipose stem and progenitor cell (ASPC) populations before and after cell-differentiation, as
these contain the majority of observed cell trajectories. Our source and target distributions therefore consist of 121 and 72
cell measurements respectively, including 9 trajectory pairings tracing the same cell.

Experiment details. We train a Monge map estimator for a symmetric cost of form h(Φ(x)− Φ(y)) to agree with these
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observed trajectories, using the first 10 principal components. We use a relative epsilon value of 0.01, enforce 0.01-strong
convexity of h, and use an ICNN with hidden dimensions [64, 64, 64]. We train both the ICNNs and flows using the Adam
optimizer with learning rates 3e-3 and 1e-3 respectively, and train for 1000 iterations.

For comparison, we consider optimizing the coupling matrix rather than the mapping. To ensure a fair comparison, we first
consider using the same cost parameterization h(Φ(x) − Φ(y)), and we use the entropic mapping estimator to obtain a
Monge map estimator. We also compare to learning a general unstructured cost c(x, y) parameterized by an MLP. To obtain
a map estimator for this cost, we use the Monge gap regularizer [Uscidda and Cuturi, 2023]. When optimizing the coupling
matrix, we maximize the total ‘correct mass’ according to the known trajectories. That is, we use the loss function

L(θ) = −⟨M,πεθ⟩, Mij =

{
1 if xi is known to map to yj
0 otherwise.

In Figure 2, we compare the predicted trajectories of the resulting mapping estimators to see whether they are indeed
consistent with the known ground-truth trajectories. In Table 1 we report the RMSE of the predictions of the known points,
and also the Sinkhorn divergence between the predicted points and the target distribution, averaged over 5 initializations.
We also report the total incorrectly transported mass in the resulting entropy-regularized coupling matrices, defined as

⟨M,πεθ⟩, Mij =

{
1 if xi is known to map to yj′ for j ̸= j′, or xi′ is known to map to yj for i ̸= i′

0 otherwise.

For a good learned cost, this value should be low as the entropic transport plan will transport a large amount of the mass for
a point xi to its known endpoint yj . Note that as the coupling matrix has the correct marginals, minimizing this quantity is
equivalent to the objective used when optimizing according to the matrix.

Results. By optimizing the map directly, we are able to learn a mapping that aligns with the known pairings (Figure 2),
which should be expected given that this was the objective used during training. The incorrectly transported mass in Table 1
is also low, indicating that we have also learned a good cost function which places mass along the known trajectory pairings.
In contrast, the maps obtained by optimizing the matrix do not align well with the ground-truth. For costs h(Φ(x)− Φ(y))
optimizing the matrix often struggles to learn a good cost, as evidenced by large amounts of incorrectly transport mass in
Table 1. Some of the points for the cost h(Φ(x) − Φ(y)) are approximately correct, indicating that the learned cost has
placed the mass correctly along some rows of the coupling matrix but has converged to a local minimum. The general MLP
c(x, y) learns a cost that places mass along the correct trajectories, which is unsurprising given the flexibility of such a cost
parameterization. However, as the cost is unstructured it is difficult to interpret. Moreover, the unstructured cost means that
it is difficult to obtain an estimator for the OT map, and consequently the map obtained using the Monge Gap regularizer
does not align well with the Live-seq trajectories from which the cost was learned.

D. Additional Experiments
D.1. Synthetic Limited Labelled Pairs

We validate the findings from the Live-seq experiment by performing the same procedure on similar synthetic datasets,
which enables us to evaluate performance on newly sampled points. We also investigate the effect of increasing the number
of paired points on the out-of-sample performance of the learned mapping.

Data generation. We generate the source and target datasets by pushing samples from a U = Unif([0, 1]d) distribution
through two respective randomly generated diffeomorphisms Φ1,Φ2, so we have µ = Φ1#U , ν = Φ2#U . This corresponds
to a continuous transformation from the source to the target via the composition of the diffeomorphisms, ν = (Φ2 ◦Φ−1

1 )#µ.
Note that while it is likely not the case that such mappings constitute an optimal transport map, such transformations provide
data distributions that resemble the Live-seq data. In the experiments, the datasets consist of an unpaired majority (i.e. most
are generated by independently sampling from U and pushing through the corresponding mapping). A subset of the datasets
are paired, meaning that y = Φ2 ◦ Φ−1

1 (x). Such pairs simulate the known trajectories in the Live-seq data.

Experimental details. We perform the procedure in 2, 4 and 6 dimensions, with 32, 128 and 256 source samples and 40,
160 and 320 target samples respectively. A subset of these datasets are known pairings. We use the same experimental
setup as for the Live-seq data. In Figure 3, we report the incorrectly transported mass in the entropy-regularized coupling
matrix for the training data as previously, as well as the RMSE error for the observed paired points. We also generate unseen
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Figure 3. Results for the synthetic limited labelled pairs experiment. Optimizing the map estimator results in a mapping that aligns
significantly better with the known paired points, and also demonstrates improved prediction for out-of-sample points. The learned cost
appears comparable to those learned by optimizing the coupling.

test samples µ̃, ν̃ consisting of fully paired points, and report the Sinkhorn divergence Sε(T̂#µ̃, ν̃) and the RMSE of the
resulting mapping estimator T̂ for these newly-sampled points. The results are averaged over 5 different randomly-generated
data distributions.

Results. The results are consistent with the observations in the Live-seq experiment. Optimizing the mapping appears to
result in good learned costs. The amount of mass placed along incorrect directions in the coupling matrix is generally similar
to those learned by optimizing the matrix, which are in fact optimized to minimize this objective.

The OT map estimator obtained from optimizing the mapping shows significantly better alignment with the known pairings,
which is as expected given that is the objective being optimized. The resulting map estimator also provides better out-of-
sample performance on the newly-sampled test points. In contrast, those learned from optimizing the matrix are much
less consistent with the known ground-truths and generally perform worse on the out-of-sample points. Optimizing the
mapping also appears to result in a mapping giving a lower Sinkhorn divergence when transporting the newly sampled
points, demonstrating an improved fit to the target at a distributional level.

We also remark that the entropic mapping obtained from the cost h(Φ(x) − Φ(y)) learned by optimizing the matrix
occasionally failed to give an appropriate mapping (giving very large Sinkhorn divergences between the mapped points and
the target distribution). This is presumably because of a poor choice of ε when constructing the estimator. We disregard
such results when calculating the averages in Table 3. In contrast, optimizing the map directly ensured that the final entropic
mapping was always reasonable.

D.2. Inducing properties on the transport map displacements

As we are optimizing according to the OT mapping estimator itself, we can also optimize to encourage properties we
wish to hold on the resulting displacements themselves. This allows us to leverage knowledge about the structure of the
mapping as an inductive bias when learning adapted cost functions and OT map estimators. We demonstrate the ability to
induce low-rank and 2-directional displacements by training according to the loss functions proposed in Appendix A.2.2,
with an addition Sinkhorn divergence term Sϵ(T̂#µ, ν) to ensure a good fit to the target distribution. We train the map
estimators using 3-dimensional empirical measures, each consisting of 128 datapoints, and use a symmetric cost of the form
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Figure 4. (middle) The learned low-rank mapping exhibits displacements primarily along a 2-dimensional plane, as demonstrated by the
small final singular value. (right) The displacements of the learned 2-directional mapping occur primarily along the displayed directions,
which were learned during training.

c(x, y) = h(x − y) with α = 0.01 and an ICNN with hidden dimensions [64, 64]. Figure 4 plots the learned mappings
applied to 128 newly sampled points, again with the squared-Euclidean entropic map estimator as a comparison. We see that
the learned mappings display the desired structural properties.

E. Proofs
Proposition 3.1. For a smooth, strictly convex function h with domain Rd, we have

(∇h)−1(x) = argmin
z

{
h(z)− ⟨z, x⟩

}
. (7)

Proof. Let h∗ denote the convex conjugate, h∗(x) = supz
{
⟨z, x⟩ − h(z)

}
where ⟨·, ·⟩ denotes the usual inner product on

Rd. As h is smooth and convex on the domain Rd, it is essentially smooth [Rockafellar, 1970]. As it is also strictly convex
and differentiable, it is of Legendre type on Rd, and we therefore have (∇h)−1 = ∇h∗ [Rockafellar, 1970, Theorem 26.5].
The expression for ∇h∗ then follows from Danskin’s theorem.

Theorem 3.2. Under the conditions of Theorem 2.1 with a cost of the form c(x, y) = h(Φµ(x)−Φν(y)) for strictly convex
h and diffeomorphisms Φµ,Φν , the optimal plan is unique, of the form (Id, T ⋆)#µ, where T ⋆ can be written:

T ⋆(x) = Φ−1
ν

[
Φµ(x)− (∇h)−1 ◦ ∇f⋆ ◦ Φµ(x)

]
. (8)

Proof. Define the push-forward measures µ̃ = Φµ#µ, ν̃ = Φν#ν and consider the following two Kantorovich problems,
denoting the original problem (K) and a transformed version (K̃).

arg inf
π∈Γ(µ,ν)

∫∫
Rd×Rd

h(Φµ(x)− Φν(y))dπ(x, y) (K)

arg inf
π̃∈Γ(µ̃,ν̃)

∫∫
Rd×Rd

h(x− y)dπ̃(x, y) (K̃)

We can construct a mapping F : Γ(µ, ν) → Γ(µ̃, ν̃) between the respective sets of admissible transport plans defined as
π 7→ π̃ = (Φµ ⊗ Φν)#π. The fact that the coupling π̃ has the correct marginals µ̃, ν̃ is a consequence of the definition of
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push-forward; for a test function φ ∈ C∞(Rd), we have∫∫
Rd×Rd

φ(x)dπ̃(x, y) =

∫∫
Rd×Rd

φ(x)d(Φµ ⊗ Φν)#π(x, y)

=

∫∫
Rd×Rd

φ(Φµ(x))dπ(x, y)

=

∫
Rd

φ(Φµ(x))dµ(x)

=

∫
Rd

φ(x)dµ̃(x).

This shows that π̃ has correct first marginal µ̃ and it can be shown similarly that the second marginal is ν̃, confirming that
π̃ ∈ Γ(µ̃, ν̃). Consider too the mapping G given by π̃ 7→ π = (Φ−1

µ ⊗ Φ−1
ν )#π̃, which defines a map from Γ(µ̃, ν̃) to

Γ(µ, ν). For a test function φ ∈ C∞(Rd × Rd),∫∫
Rd×Rd

φ(x, y)d(Φ−1
µ ⊗ Φ−1

ν )#(Φµ ⊗ Φν)#π(x, y) =

∫∫
Rd×Rd

φ(Φ−1
µ (x),Φ−1

ν (y))d(Φµ ⊗ Φν)#π(x, y)

=

∫∫
Rd×Rd

φ((Φµ ◦ Φ−1
µ )(x), (Φν ◦ Φ−1

ν )(y))dπ(x, y)

=

∫∫
Rd×Rd

φ(x, y)dπ(x, y).

This shows that G ◦ F = Id, and similarly we can show that F ◦G = Id. We thus conclude G = F−1, and that F is a
bijection between Γ(µ, ν) and Γ(µ̃, ν̃).

Define IK and IK̃ to be the respective infimums for the Kantorovich problems (K) and (K̃). For any π ∈ Γ(µ, ν), the
above shows that π̃ = F (π) is an admissible transport plan for (K̃) and thus

IK̃ ≤
∫∫

Rd×Rd

h(x− y)dπ̃(x, y) =

∫∫
Rd×Rd

h(Φµ(x)− Φν(y))dπ(x, y). (17)

Note that as Φµ,Φν are diffeomorphisms, the transformed Kantorovich problem (K̃) satisfies the conditions of Theorem 2.1
so has a unique solution π̃⋆. Letting π̂ = F−1(π̃⋆), we have∫∫

Rd×Rd

h(Φµ(x)− Φν(y))dπ̂(x, y) =

∫∫
Rd×Rd

h(x− y)dπ̃⋆(x, y) = IK̃ . (18)

We see that π̂ attains the lower bound in (17), and is therefore an optimal plan for the original Kantorovich problem (K).

For uniqueness, note that if there are two such optimal plans π⋆1 , π
⋆
1 ∈ Γ(µ, ν), then (again using the definition of

pushforwards) we have that both F (π⋆1), F (π
⋆
2) attain the infimum IK̃ . By uniqueness of π̃⋆, we must have F (π⋆1) =

F (π⋆2) = π̃⋆, and inverting F we see π⋆1 = π⋆2 as required.

The structure of the optimal plan π⋆ follows from that of π̃⋆. Recall from Theorem 2.1 that π̃⋆ is of the form (Id, T̃ ⋆) where
T̃ ⋆ = Id− (∇h)−1 ◦ (∇f⋆) for the Kantorovich potential f⋆. Applying the above result, we therefore see that the optimal
plan π⋆ for our original Kantorovich problem (K) is also of the form (Id, T ⋆). The map T ⋆ is now given by

T ⋆(x) = Φ−1
ν

[
Φµ(x)− (∇h)−1 ◦ ∇f⋆ ◦ Φµ(x)

]
,

where f⋆ is the Kantorovich potential for the transformed Kantorovich problem (K̃).
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