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ABSTRACT

In deep learning theory, a critical question is to understand how neural networks
learn hierarchical features. In this work, we study the learning of hierarchical
polynomials of multiple nonlinear features using three-layer neural networks. We
examine a broad class of functions of the form f⋆ = g⋆ ◦ p, where p : Rd →
Rr represents multiple quadratic features with r ≪ d and g⋆ : Rr → R is a
polynomial of degree p. This can be viewed as a nonlinear generalization of the
multi-index model (Damian et al., 2022), and also an expansion upon previous
work that focused only on a single nonlinear feature, i.e. r = 1 (Nichani et al.,
2023; Wang et al., 2023).
Our primary contribution shows that a three-layer neural network trained via lay-
erwise gradient descent suffices for

• complete recovery of the space spanned by the nonlinear features
• efficient learning of the target function f⋆ = g⋆ ◦ p or transfer learning of
f = g ◦ p with a different link function

within Õ(d4) samples and polynomial time. For such hierarchical targets, our
result substantially improves the sample complexity Θ(d2p) of the kernel methods,
demonstrating the power of efficient feature learning. It is important to highlight
that our results leverage novel techniques and thus manage to go beyond all prior
settings such as single-index and multi-index models as well as models depending
just on one nonlinear feature, contributing to a more comprehensive understanding
of feature learning in deep learning.

1 INTRODUCTION

Deep neural networks have achieved remarkable empirical success across numerous domains of
artificial intelligence (Krizhevsky et al., 2012; He et al., 2016). This success can be largely attributed
to their ability to extract latent features from real-world data and decompose complex targets into
hierarchical representations, which improves test accuracy (He et al., 2016) and allows efficient
transfer learning (Devlin, 2018). These feature learning capabilities are widely regarded as a core
strength of neural networks over non-adaptive approaches such as kernel methods (Wei et al., 2020;
Bai and Lee, 2020).

Despite these empirical achievements, the feature learning capabilities of neural networks are less
well understood from a theoretical point of view. Previous work on feature learning has shown that
two-layer neural networks can learn multiple linear features of the input (Damian et al., 2022), that
is, multi-index models. However, the two-layer architecture inherently limits the network’s ability
to represent and learn nonlinear features (Daniely, 2017). Given that many real-world scenarios
involve diverse and nonlinear features, recent studies have shifted focus to investigating the learning
of nonlinear features using deeper neural networks. Safran and Lee (2022); Ren et al. (2023);
Nichani et al. (2023); Wang et al. (2023) have demonstrated that three-layer networks, when trained
via gradient descent, can efficiently learn hierarchical targets of the form h = g ◦ p, where p
represents certain types of features such as the norm |x| or a quadratic form x⊤Ax. However,
these studies are limited to relatively simple hierarchical functions and mainly focus on targets of
a single feature. It remains unclear whether neural networks can efficiently learn a wider range of

∗Peking University. Email: fhy2021@stu.pku.edu.cn
†Stanford University. Email: zihaow@stanford.edu
‡Princeton University. Email: {eshnich,jasonlee}@princeton.edu

1



Published as a conference paper at ICLR 2025

hierarchical functions, particularly those that depend on multiple nonlinear features. This leads us
to the following central question:

Can neural networks adaptively identify multiple nonlinear features from the hierarchical targets
by gradient descent, thereby allowing an efficient learning for such targets?

1.1 MAIN CONTRIBUTIONS

In this paper, we provide strong theoretical evidence that three-layer neural networks have the ability
to learn multiple hidden nonlinear features. Specifically, we study the problem of learning any
hierarchical polynomial with multiple quadratic features using a three-layer network trained via
layer-wise gradient descent. Our main contributions are summarized as follows:

• A Novel Analytic Framework for Multi-Nonlinear Feature Learning. We demonstrate
that when the target function belongs to a broad class of the form f⋆ = g⋆ ◦ p, where
p : Rd → Rr represents r quadratic (nonlinear) features and g⋆ is a link function, the
first step of gradient descent efficiently learns and recovers the space spanned by these
nonlinear features p within only Õ(d4) samples. We remark that our proof techniques
are also applicable to general nonlinear features. The core technical novelty is that we
develop a novel and general universality argument (Lemma 1) that bridges multi nonlinear
feature models to multi-index models, which allows for an accurate reconstruction of the
features through a simple linear transformation on the learned representations with small
approximation error (Proposition 1)

• Improved Sample Complexity and Efficient Transfer Learning. Leveraging the learned
features in the first GD step, we prove that when the link function g⋆ is a polynomial of
degree p, the gradient descent on the outer layer can achieves a vanishing generalization
error with a small outer width and at most O(rO(p)) additional training samples, removing
the dependence on d (Theorem 1). This significantly improves upon the sample complexity
of kernel methods, which require Θ(d2p) samples. Moreover, our analysis enables efficient
transfer learning for any other target function of the form f = g ◦ p with a different link
function g, which also only requires O(rO(p)) additional samples.

1.2 RELATED WORKS

Kernel Methods. Earlier research links the behavior of gradient descent (GD) on the entire net-
work to its linear approximation near the initialization. In this scenario, neural networks act as
kernels, known as the Neural Tangent Kernel (NTK). This connection bridges neural network anal-
ysis with established kernel theory and offers initial learning guarantees for neural networks (Jacot
et al., 2018; Soltanolkotabi et al., 2018; Du et al., 2018; Chizat et al., 2019; Arora et al., 2019).
However, kernel theory fails to explain the superior empirical achievements of neural networks over
kernel methods (Arora et al., 2019; Lee et al., 2020; E et al., 2020). Networks in the kernel regime
fail to learn features (Yang and Hu, 2021), not adaptable to hierarchical structures of real world
targets. Ghorbani et al. (2021) proves that for uniformly distributed data on the sphere, the NTK
method requires Ω̃(dk) samples to learn any polynomials of degree k in d dimensions, which is
impractical when k is large. Thus, a central question is how neural networks can detect and capture
the underlying hierarchies in the target functions, which allows for a better generalization behavior
versus kernel methods.
Learning Linear Features. Recent studies have demonstrated neural networks’ capability to
learn hierarchical functions of linear features more efficiently than kernel methods. Specifically,
Bietti et al. (2022); Ba et al. (2022) establish the efficient learning of single-index models, i.e.,
f⋆(x) = g(⟨u,x⟩). Furthermore, recent works Damian et al. (2022); Abbe et al. (2023); Dandi
et al. (2023a); Bietti et al. (2023) further demonstrate that for isotropic data, two-layer or three-layer
neural networks can effectively learn multi-index models of the form f∗(x) = g(Ux). These studies
adopt certain modified training algorithms, such as layer-wise training. With sufficient feature learn-
ing, these networks can learn low-rank polynomials with a benign sample complexity of O(dO(1)),
which does not scale with the degree of the polynomial g. Empirically, fully connected networks
trained via gradient descent on image classification tasks also capture low-rank features (Lee et al.,
2007; Radhakrishnan et al., 2022). More recently, the learning of single-index and multi-index
models is analyzed with more advanced algorithm framework or specified data structure. Mousavi-
Hosseini et al. (2024) considers learning general multi-index models with two-layer neural networks
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through a mean-field Langevin dynamics, Dandi et al. (2024b); Lee et al. (2024) goes beyond the
traditional Correlational Statistical Query (CSQ) setting and consider algorithms that reuse samples
for feature learning. Mousavi-Hosseini et al. (2023); Ba et al. (2023); Wang et al. (2024) considers
learning linear features with structured data (such as data with a spiked covariance) rather than the
commonly considered isotropic one. Cui et al. (2024); Dandi et al. (2024a) study the spectral struc-
ture revealed in the learned features with one huge gradient step through a spiked random feature
model to understand the mechanism of feature learning in neural networks.
Learning Nonlinear Features. Previous studies indicate that neural networks can effectively learn
specific hierarchies of nonlinear features. Safran and Lee (2022) shows that GD can efficiently learn
functions such as 1∥x∥⩾λ with a three-layer network. Ren et al. (2023) demonstrates that ReLU(1−
∥x∥) can be learned by a multi-layer mean-field network. Moniri et al. (2024) studies the nonlinear
feature learning capabilities of two-layer neural networks with one step of gradient descent. Allen-
Zhu and Li (2019; 2020) explore learning target functions of the form p + αg ◦ p with p being
the underlying feature through a three-layer residual network, though they either need α = od(1) or
cannot reach vanishing error. More recent works have addressed a broader class of nonlinear features
compared with the previous research and demonstrate that three-layer neural networks can learn
these hidden features efficiently. Specifically, Nichani et al. (2023) demonstrates that a three-layer
network trained with layer-wise GD algorithm effectively learns g ◦p for a quadratic feature p(x) =
x⊤Ax with an improved sample complexity of Θ̃(d4). Wang et al. (2023) further demonstrates
that such a network can in fact efficiently learn g ◦ p for p within a broad subclass of degree k

polynomials and optimizes the sample complexity to Õ(dk). However, all of these studies focus
on a single nonlinear feature, limiting their applicability to scenarios involving multiple features.
Our work addresses this gap by establishing the first theoretical guarantee for efficiently learning
hierarchical polynomials of multiple nonlinear features, which significantly broadens the learnable
function class and advances towards a better understanding of feature learning.

2 PRELIMINARIES

2.1 NOTATIONS

We use bold letters to denote vectors and matrices. For a vector v, we denote its Euclidean norm by
∥v∥2. For a matrix A, we denote its operator and Frobenius norm as ∥A∥2 and ∥A∥F, respectively.
For any positive integer n, we denote [n] = {1, 2, . . . , n}. Moreover, for any indexes i and j, we
denote δij = 1 if i = j and 0 otherwise. We use O, Θ and Ω to hide absolute constants. In addition,
we denote f ≲ g when there exists some positive absolute constant C with f ⩽ Cg. We use Õ,
Θ̃ and Ω̃ to ignore logarithmic terms. For a function f : X → R and a distribution v on X , we
denote ∥f∥Lp(X ,v) = (Ex∼v[|f(x)|p])1/p. When the domain is clear from context, we write ∥f∥Lp

for simplicity. Finally, we write Ex as the shorthand for Ex∼v sometimes.

2.2 PROBLEM SETUP

Data distribution Our aim is to learn the target function f⋆ : X → R, with X ⊆ Rd being
the input space. Throughout the paper, we assume X = Sd−1(

√
d), that is, the sphere with radius√

d in d dimensions. Also, we consider the data distribution to be the uniform distribution on the
sphere, i.e., x ∼ Unif(X ), and we draw two independent datasetsD1,D2, each with n1 and n2 i.i.d.
samples, respectively. Thus, we draw n1 + n2 samples in total.

Target function For the target function f⋆ : Rd → R, we assume they are hierarchical functions
of r quadratic features

f⋆(x) = g⋆(p(x)) = g⋆
(
x⊤A1x,x

⊤A2x, . . . ,x
⊤Arx

)
.

This structure represents a broad class of functions where p(x) = [x⊤A1x,x
⊤A2x, . . . ,x

⊤Arx]
⊤

represents r quadratic features, and g⋆ : Rr → R is a link function. Here we consider the case
r ≪ d. To simplify our analysis while maintaining generality, we make the following assumptions:

Assumption 1 (Orthogonal quadratic features). For any i, j ∈ [r], we suppose

Ex

[
x⊤Aix

]
= 0, Ex

[
(x⊤Aix)(x

⊤Ajx)
]
= δij and ∥Ai∥op ≤

κ1√
d
.

Here we assume κ1 = poly(log d).
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The first assumption is equivalent to tr(Ai) = 0 for any i ∈ [r]. For Ai such that tr(Ai) ̸= 0, we
could simply subtract the mean of the feature to A′

i = Ai − (tr(Ai)/d) · I so

x⊤A′
ix = x⊤(Ai − (tr(Ai)/d) · I)x = x⊤Aix− tr(Ai).

The second assumption on the feature orthonormality can be attained via linear transformation on
the features, preserving the overall function class. The third assumption on the operator norm bound
ensures that the features are balanced, which is common in the non-linear feature learning literature
(Nichani et al., 2023; Wang et al., 2023). Moreover, we note that when the entries of Ai are sampled
i.i.d., the assumption is satisfied with high probability by standard random matrix arguments.
Assumption 2 (Well-conditioned link function). For the link function g⋆, we assume g⋆ is a degree-
p polynomial with Ez

[
g⋆(z)2

]
= Θ(1), where z ∼ N (0, Ir) and p ∈ N is a constant. Moreover,

we assume the expected Hessian H = Ez

[
∇2g⋆(z)

]
∈ Rr×r is well-conditioned, i.e., there exists a

constant CH such that λmin(H) ⩾ CH√
r

.

This assumption ensures the link function adequately emphasizes all r features, preventing degen-
eracy to a lower-dimensional subspace. The second-moment condition is achievable through simple
normalization.
Assumption 3 (Prepocessed target function). For the entire target function f⋆, we assumeP0(f

⋆) =

Ex[f
⋆(x)] = 0 and ∥P2(f

⋆)∥L2 ≤ κ2/
√
d. Here Pk is the projection onto the function space of

degree k spherical harmonics on the sphere Sd−1(
√
d), and κ2 satisfies κ2 = poly(r, log d).

We will give a rigorous definition of Pk in Section 2.3.1. This assumption is analogous to a pre-
processing procedure conducted in Damian et al. (2022), which subtracts out the mean and linear
component of the features from the target. The zero-mean condition ensures the network focuses on
learning the function’s variability rather than a constant offset. While Nichani et al. (2023); Wang
et al. (2023) assume the link function g has non-zero linear component, we rather assume g has a
nearly zero linear component, which prevents the target function from being dominated by a sin-
gle linear combination of the quadratic features and keeps the learned representation space from
collapsing to the one-dimenional space of that certain linear combination. This is an essential dif-
ference between single-feature and multi-feature learning, because our assumptions ensure that the
network genuinely learns to represent and distinguish all r features rather than conflate them, while
assumptions in Nichani et al. (2023); Wang et al. (2023) represent a degenerate case that neural
network may only learn the dominant linear combination of the r features. We provide examples
and counterexamples as follows.
Remark 1. These assumptions accommodate a wide range of target functions. For instance,
f⋆(x) = 1√

r

∑r
k=1

(
x⊤Akx

)2 − √r satisfies Assumption 3 with κ2 ≲
√
rκ1 for any {ak}k∈[r]

under Assumption 1. Moreover, for diagonal Ak with Ak = diag(ak), where a1,a2, . . . ,ar are or-
thogonal zero-sum vectors with entries ak,i ∈ {±c/

√
d}, we can achieve κ2 = 0. Here c = Θ(1) is

a normalizing constant. Notably, linear combinations of features like f(x) = 1√
r

∑r
k=1

(
x⊤Akx

)

violate our assumptions, since it represents a degenerate case with ∥P2(f)∥L2 = ∥f∥L2 = Θ(1).

Three-layer neural network We adopt a standard three-layer neural network for learning the
target functions. Let m1, m2 be the two hidden layer widths, and σ1, σ2 be two activation functions.
Our learner is a three-layer neural network parameterized by θ = (a,W,b,V), where a ∈ Rm1 ,
W ∈ Rm1×m2 , b ∈ Rm1 , and V ∈ Rm2×d. The network f(x; θ) is defined as

f(x; θ) =
1

m1

m1∑

i=1

aiσ1(⟨wi, σ2(Vx)⟩+ bi) =
1

m1

m1∑

i=1

aiσ1

(
⟨wi,h

(0)(x)⟩+ bi

)
. (1)

Here, wi ∈ Rm2 is the i-th row of W , and h(0)(x) := σ2(Vx) ∈ Rm2 is the random feature
embedding lying in the innermost layer. We initialize each row of V to be drawn uniformly on
the sphere of radius

√
d, i.e., v(0)

i ∼ Unif(Sd−1(
√
d)). For a, b and W, we use a symmetric

initialization so that f(x; θ(0)) = 0 (Chizat et al., 2019). Explicitly, we assume that m1 is an even
number and for any j ∈ [m1/2], we initialize the paramters as

a
(0)
j = −a(0)m1−j ∼ Unif({−1, 1}), w

(0)
j = w

(0)
m1−j ∼ N (0, ϵIm2), and b

(0)
j = b

(0)
m1−j = 0.
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Here ϵ > 0 is a hyperparameter to control the magnitude of the initial neurons. Different from
Nichani et al. (2023) where the weights wj are initialized at zeros, we require a random initializa-
tion, which enables the learned weights to capture the multiple features in all directions instead of
converging to a specific direction like the previous results for learning a single feature.

For the activation functions σ1 and σ2, we have the following assumptions:
Assumption 4 (Activation Function). We take the outer activation function σ1 and the inner acti-
vation function σ2 as

σ1(t) =

{
2 |t| − 1, |t| ⩾ 1,

t2, |t| < 1.
and σ2(t) =

∞∑

i=2

ciQi(t), (2)

where Qi(t) is the i-th degree Gegenbauer polynomial in the d-dimensional space. Moreover, we
assume there exist constants Cσ , ασ such that |σ2(t)| ≤ Cσ for |t| ≤ d, and Ex

[
σk
2 (x

⊤1d)
]
≤

d−kCk for k = 2, 4. We assume c2 = Θ(1), and C2, C4 and {ci}∞i=2 are all constants independent
of n, d, m1 and m2.

We remark the outer activation σ1 is a slightly modified version of the absolute value function
|t|, smoothed around the origin. The assumptions on σ2 are based on the Gegenbauer expansion,
often considered in the spherical analysis (introduced in Section 2.3.2). Compared to standard inner
activations, we remove the constant term (Q0(t) = 1) and the linear term (Q1(t) = t/d) to focus
on learning nonlinear features without low-order interference. Importantly, these assumptions on
activation functions maintain significant generality. The assumptions on magnitude and moments
are satisfied by many common activation functions with appropriate scaling. The core assumption
in the Gegenbauer expansion is the non-zero component of Q2, i.e., c2 = Θ(1), which we rely on
for a subspace recovery of the r quadratic features while other assumptions are made to simplify
our analysis since other components in inner activation will lead to useless noises or biases in the
weights after training. Moreover, if we consider higher degree nonlinear features such as degree q
polynomials, we expect that σ2 has sufficient emphasis on Qq for efficient feature learning.

Remark 2. σ2(t) = Q2(t) =
t2−d

d(d−1) is an example of the inner activation function.

Training Algorithm Following Nichani et al. (2023), our network is trained via layer-wise gra-
dient descent with sample splitting. Throughout the training process, we freeze the innermost layer
weights V. In the first stage, the second layer weights W are trained for one step with a specified
learning rate η1 and weight decay λ1. In the second stage, we reinitialize the bias b and train the
outer layer weights a for T − 1 steps.

Transfer Learning We remark that our algorithm allows transfer learning of a different target
function f that shares the same features of the original target:

f⋆(x)→ f(x) = g
(
x⊤A1x,x

⊤A2x, . . . ,x
⊤Arx

)
(transferred target)

In this case, we switch the target function from f⋆ = g⋆(p) to f = g(p) in the second training
stage. For the loss function, we use the standard squared loss:

L̂(1)(θ) =
1

n1

∑

x∈D1

(f(x; θ)− f⋆(x))
2
, L̂(2)(θ) =

{
1
n2

∑
x∈D2

(f(x; θ)− f⋆(x))
2 (original),

1
n2

∑
x∈D2

(f(x; θ)− f(x))
2 (transferred).

This layer-wise training approach, combined with the ability to perform transfer learning, provides a
powerful framework for learning and adapting to hierarchical functions with hidden features (Kulka-
rni and Karande, 2017; Damian et al., 2022; Nichani et al., 2023). The pseudocode for the entire
training procedure is presented in Algorithm 1.

2.3 TECHNICAL BACKGROUND: ANALYSIS OVER THE SPHERE

We briefly introduce spherical harmonics and Gegenbauer polynomials, which forms the foundation
of our analysis over the sphere Sd−1(

√
d). For more details, see Appendix B.5.

2.3.1 SPHERICAL HARMONICS

Let τd−1 be the uniform distribution on Sd−1(
√
d). Consider functions in L2(Sd−1(

√
d), τd−1), with

scalar product and norm denoted as ⟨·, ·⟩L2 and ∥·∥L2 . For ℓ ∈ Z⩾0, let Vd,ℓ be the linear space of
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Algorithm 1 Layer-wise training algorithm
Input: Learning rates η1, η2, weight decay λ1, λ2, parameter ϵ, number of steps T

1 initialize a,b,W and V.
2 train W on dataset D1

3 W(1) ←W(0) − η1[∇WL̂(1)(θ) + λ1W
(0)]

4 end
5 re-initialize
6 b

(1)
i ∼ Unif([−3, 3]), i ∈ [m1]

a(1),V(1) ← a(0),V(0)

θ(1) ← (a(1),W(1),b(1),V(0))
7 end
8 train a on dataset D2

9 for t = 2 to T do
10 a(t) ← a(t−1) − η2[∇aL̂(2)(θ(t−1)) + λ2a

(t−1)]
11 end
12 end
13 return Prediction function f(·; θ(T )): x→ 1

m1
⟨a(T ), σ1(W

(1)h(0)(x) + b(1))⟩

homogeneous harmonic polynomials of degree ℓ restricted on Sd−1(
√
d). The set {Vd,ℓ}ℓ⩾0 forms

an orthogonal basis of the L2 space, with dimension dim(Vd,ℓ) = Θ(dℓ). For each ℓ ∈ Z⩾0, the
spherical harmonics {Yℓ,j}j∈[B(d,ℓ)] form an orthonormal basis of Vd,ℓ. Moreover, we denote by Pk

the orthogonal projections to Vd,k, which can be written as

Pk(f)(x) =

B(d,k)∑

ℓ=1

⟨f, Yk,ℓ⟩L2Yk,ℓ(x).

We also define P≤ℓ ≡
∑ℓ

k=0 Pk, P>ℓ ≡ I− P≤ℓ, P<ℓ ≡ P≤ℓ−1, and P⩾ℓ ≡ P>ℓ−1.

2.3.2 GEGENBAUER POLYNOMIALS

Corresponding to the degree ℓ spherical harmonics in the d-dimension space, the ℓ-th Gegenbauer
polynomial Qℓ : [−d, d]→ R is a polynomial of degree ℓ. The set {Qℓ}ℓ⩾0 forms an orthogonal ba-
sis on L2([−d, d], τ̃d−1), where τ̃d−1 is the distribution of

√
d⟨x, e1⟩ when x ∼ τd−1. In particular,

these polynomials are normalized so that Qℓ(d) = 1. We present the explicit forms of Gegenbauer
polynomials of degree no more than 2:

Q0(t) = 1, Q1(t) =
t

d
, and Q2(t) =

t2 − d

d(d− 1)
.

Gegenbauer polynomials are directly related to spherical harmonics, leading to a number of elegant
properties. We provide further details on these properties in Appendix B.5.

3 MAIN RESULTS

The following is our main theorem, which bounds the population absolute loss of Algorithm 1:

Theorem 1. Suppose n1 = Ω̃(d4) and m2 = Ω̃(d6). Let θ̂ be the output of Algorithm 1 after
T = poly(n1, n2,m1,m2, d) steps. Then, there exists a set of hyper-parameters (ϵ, η1, η2, λ1, λ2)
such that, with high probability over the initialization of parameters and draws of D1,D2, we have

Ex

[∣∣∣f(x; θ̂)− f⋆(x)
∣∣∣
]
= Õ




√
rpκ2p

2

min(m1, n2)︸ ︷︷ ︸
Complexity of g⋆

+

√
d6rp+1

m2
+

√
d2rp+1

n1
+

rp+2

d1/6
︸ ︷︷ ︸

Feature Learning Error



.

Moreover, for any other degree p polynomial g : Rr → R with ∥g∥L2 ≲ 1, by substituting the target
function f⋆ = g⋆ ◦ p by f = g ◦ p in the second training stage, we can achieve the same result for
learning the new target function.
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The full proof is provided in Appendix E.1. To interpret the results, we provide the following
discussion of Theorem 1.
Feature learning error This terms quantifies the requirements on the first-stage sample complex-
ity and the inner width to sufficiently capture the non-linear features. Given d ≫ r, if the width
m2 = Ω̃(d6rp+1) and the sample size n1 = Ω̃(d4 + d2rp+1), we can fully capture the underlying
feature information and approximate any degree p polynomials of the features. We will demon-
strate how Algorithm 1 learns these features through the learned representations in Proposition 1
and express hierarchical polynomials in Proposition 2.
Complexity of g⋆ This term is the second-stage sample (and width) complexity given that the r
features have been fully captured in the first stage. Moreover, for a sufficiently preprocessed target
function, i.e., κ2 = O(1), we achieve the standard results of Õ(rp) complexity in learning a degree-
p polynomial in the r-dimensional space in the kernel regime.
Transfer learning Leveraging the two-stage structure of training, we can learn a different target
function in the second stage that shares the same features with the original target. This also sup-
ports the fact that we have fully captured the information of the r nonlinear features in the first
stage, making it possible for the efficient learning with a different polynomial head g. Moreover,
by viewing the first stage as a pre-training process with Ω̃(d4 + d2rp+1) samples, only additional
Õ(rpκ2p

2 ) samples are required to learn any degree p polynomial of the features, which gets rid of
the polynomial dependence on the ambient dimension of d.

Comparison with previous works Compared with the sample complexity of Ω̃(d2r + drp) in
Damian et al. (2022) for learning multi-index models, we have a similar polynomial dependence on
r, and the dependence on d increases from d2 to d4 because of the increased complexity of quadratic
features rather than linear ones. Moreover, our approach significantly improves upon the Θ(d2p)
sample complexity required by kernel methods to learn degree p polynomials of quadratic features
(i.e., degree 2p polynomials of the input). Crucially, our polynomial dependence on d in the overall
sample complexity is independent of the degree p of the link function g.

Near optimality of the sample complexity We remark that our sample complexity of Õ(d4) is
nearly optimal with respect to d for all algorithms that use one step of gradient descent for feature
learning. Our assumptions on the target functions imply that the leap index1 of our target functions
are basically 4 (more specifically, the second order information of g ◦ p, where p are quadratic
features), and we also utilize P4(f) for recovering the subspace of the r quadratic features, which
will be discussed in details in Section 4. Dandi et al. (2023b) indicates that Ω(d4) samples are
required for an efficient learning of terms in P4(f

⋆), which substantiates the near optimality of our
result.

4 PROOF ROADMAP OF THEOREM 1
The proof of Theorem 1 unfolds in two training stages. First, by a novel universality argument
(Lemma 1), we show that after the first training stage, with sufficient training samples, the net-
work learns to fully extract out the hidden features p (Proposition 1). Next, we show that during
the second stage, the network is capable of expressing the link function with a mild outer width
m1 (Proposition 2). We conclude the proof through standard Rademacher complexity analysis to
quantify the generalization error of the second-stage model (detailed in Appendix E.1).

4.1 STAGE 1: LEARNING THE FEATURES

We provide a brief analysis on the learned representations after the first training stage. Denote
wj = ϵ−1w

(0)
j ∼ N (0, Im2). According to Algorithm 1, by setting ϵ sufficiently small, after

one-step gradient descent on W, we know for each j ∈ [m1],

η1∇w
(0)
j
L(θ(0)) = −η1

a
(0)
j

m1
· 1

n1

∑

x∈D1

f∗(xi)h
(0)(xi)σ

′
1

(
⟨ϵwj ,h

(0)(xi)⟩
)

→
ϵ→0
−2ϵη1

m1
a
(0)
j ·

1

n1

∑

x∈D1

f∗(xi)h
(0)(xi)h

(0)(xi)
⊤wj .

1The leap index of a target function f⋆ is the first integer ℓ that Pℓf
⋆ ̸= 0. Our assumptions imply a

diminishing P<4(f
⋆) and a non-degenerate P4(f

⋆) as d → ∞.
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By taking η1 = m1

2ϵm2
· η for some η > 0 to be chosen later and λ1 = η−1

1 , we have

w
(1)
j = w

(0)
j − η1

[
∇

w
(0)
j
L(θ(0)) + λ1w

(0)
j

]
=

ηa
(0)
j

m2
· 1

n1

∑

x∈D1

f∗(xi)h
(0)(xi)h

(0)(xi)
⊤wj .

Then for any second-stage training sample x′ ∈ D2, the inner-layer representation becomes

〈
w

(1)
j , σ2(Vx′)

〉
=

ηa
(0)
j

m2

〈
1

n1

∑

x∈D1

f∗(xi)h
(0)(xi)h

(0)(xi)
⊤wj ,h

(0)(x′)

〉

= ηa
(0)
j ·

〈
wj ,

1

n1m2

∑

x∈D1

f⋆(xi)⟨h(0)(xi),h
(0)(x′)⟩h(0)(xi)

︸ ︷︷ ︸
h(1)(x′)

〉
.

Our main contribution in this part is that the first-step trained presentations representations h(1)(x)
approximately spans the space of the target features (x⊤A1x,x

⊤A2x, . . . ,x
⊤Arx). Thus, the

target features p(x) can be reconstructed through a linear transformation from the learned represen-
tations h(1)(x), which is formalized in the following proposition.

Proposition 1 (Reconstruct the feature). Suppose m2, n1 = Ω̃(d4). With high probability jointly on
V , D1 and D2, there exists a matrix B⋆ ∈ Rr×m2 such that for any x ∈ D2, we have

∥∥∥B⋆h(1)(x)− p(x)
∥∥∥
2
= Õ

(
d3r√
m2

+
dr√
n1

+
r

p+5
2

d1/6

)
. (3)

The proof is provided in Appendix C.3. We summarize the main idea of the proof as follows.

Universality of features The foundation of the proof lies in the universality result that the joint
distribution of the multiple features p is approximately multivariate standard Gaussian:

(
x⊤A1x,x

⊤A2x, . . . ,x
⊤Arx

) d≈ N (0r, Ir), d≫ r.

It is worth mentioning that we provide a general universality theory that quantifies the difference
between the distribution of any r-dimensional function (not limited in quadratic forms) and the
r-dimensional Gaussian distribution, which is presented in Lemma 1.
Lemma 1 (Universality of vector-valued functions). Suppose X ∼ N (0, Id) is an d-dimensional
standard Gaussian variable. If a function p : Rd → Rr satisfies EX [p(X)] = 0r and
Cov(p(X),p(X)) = Ir, then we have

W1(Law(p(X)),N (0, Ir)) ≤
4√
π

(
r∑

i=1

E
[
∥∇pi(X)∥42

]1/4
)


r∑

j=1

E
[∥∥∇2pj(X)

∥∥4
op

]1/4

.

Here p(x) = [p1(x), p2(x), . . . , pr(x)]
⊤ and W1 denotes the Wasserstein-1 distance.

The proof is provided in Appendix B.2. This lemma extends the previous universality results of
univariate Gaussian approximation theory (Chatterjee, 2007) to the multivariate version and could
be of independent interest for the field of high dimensional probability theory. As a corollary, when
we take p to be r quadratic features satisfying Assumption 1, we ensure the W1 distance is bounded
by Õ(r2/

√
d) (see Lemma 16 in the appendix for the formal statement). This approximation error

finally contributes to third term in the error bound of Proposition 1 (Equation (3)).

Utilizing the second-order information of g⋆ Lemma 1 establishes a crucial link between our
model and the multi-index model studied by Damian et al. (2022). This connection allows us to sim-
plify the analysis on non-linear features and utilize the second-order information of the link function
g⋆ to fully recover the feature space. In the context of multi-index models where f⋆(x) = g⋆(p(x))
with p(x) = Ux, it has been shown that for a prepossessed target with a non-degenerate expected
Hessian H = Ez

[
∇2g⋆(z)

]
, the learned representations, dominated by the degree 2 component of

8
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f∗ which takes form Ex

[
f⋆(x)x⊗2

]
≈ U⊤HU, are spanned by {ui ⊗ uj}i,j∈[r]. Extending this

to our setting with quadratic features and applying the universality argument from Lemma 1, we
demonstrate that the degree 4 component of our f∗, namely Ex

[
f∗(x)Y2(x)

⊗2
]
, is approximately

spanned by the quantities {Ai ⊗Aj}i,j∈[r], which is formalized in Proposition 3 in Appendix C.1.
Here Y2(x) represents the tensorized quadratic spherical harmonics. Under Assumption 3, it turns
out that after the first step of GD (Stage 1 of Algorithm 1), the learned representations are dominated
by this degree 4 component (Proposition 4 in Appendix C.2). This domination enables efficient re-
covery of the ”span” of the hidden features p. For a visual representation of our proof strategy, we
also present our main idea of the proof in Figure 1. Remarkably, we find that the reconstruction
matrix admits a surprisingly simple form of B⋆ ∝ H−1[p(v1),p(v2), . . . ,p(vm2

)]. We provide
empirical support for the effectiveness of this reconstruction through experiments in Section A.
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→
<latexit sha1_base64="SpJIiVzIJeUC7ZjvSALzXLe4hPs=">AAAB63icdVDJSgNBEK1xjXGLevTSGARPw0yIMbkFvXiMYBZIhtDT6UmadPcM3T1CGPILXjwo4tUf8ubf2FkE1wcFj/eqqKoXJpxp43nvzsrq2vrGZm4rv72zu7dfODhs6ThVhDZJzGPVCbGmnEnaNMxw2kkUxSLktB2Or2Z++44qzWJ5ayYJDQQeShYxgs1MCvse6heKnnteq5ZLNfSb+K43RxGWaPQLb71BTFJBpSEca931vcQEGVaGEU6n+V6qaYLJGA9p11KJBdVBNr91ik6tMkBRrGxJg+bq14kMC60nIrSdApuR/unNxL+8bmqiapAxmaSGSrJYFKUcmRjNHkcDpigxfGIJJorZWxEZYYWJsfHkbQifn6L/Savk+hW3clMu1i+XceTgGE7gDHy4gDpcQwOaQGAE9/AIT45wHpxn52XRuuIsZ47gG5zXD+NAji0=</latexit>

b0

<latexit sha1_base64="GnCnyq1+6DMwTVW1upxR7HZAVaE=">AAACBHicdVDLSsNAFJ34rPUVddnNYBHqJiSl1nZXdOOygn1AE8NkOmmHTh7MTIQSsnDjr7hxoYhbP8Kdf+OkreDzwIXDOfdy7z1ezKiQpvmuLS2vrK6tFzaKm1vbO7v63n5XRAnHpIMjFvG+hwRhNCQdSSUj/ZgTFHiM9LzJee73bggXNAqv5DQmToBGIfUpRlJJrl6yAyTHGLG0nbmpmVX869QWEvHsGLp62TROmo1atQl/E8swZyiDBdqu/mYPI5wEJJSYISEGlhlLJ0VcUsxIVrQTQWKEJ2hEBoqGKCDCSWdPZPBIKUPoR1xVKOFM/TqRokCIaeCpzvxk8dPLxb+8QSL9hpPSME4kCfF8kZ8wKCOYJwKHlBMs2VQRhDlVt0I8RhxhqXIrqhA+P4X/k27VsOpG/bJWbp0t4iiAEjgEFWCBU9ACF6ANOgCDW3APHsGTdqc9aM/ay7x1SVvMHIBv0F4/ADCkmHs=</latexit>P0(f
ω)

<latexit sha1_base64="+u2dKW1hkX+R3vsyWPL57fjGRG4=">AAACA3icdVDLSsNAFJ34rPUVdaebwSLUTUhKre2u6MZlBfuAJobJdNIOnTyYmQglBNz4K25cKOLWn3Dn3zhpK/g8cOFwzr3ce48XMyqkab5rC4tLyyurhbXi+sbm1ra+s9sRUcIxaeOIRbznIUEYDUlbUslIL+YEBR4jXW98nvvdG8IFjcIrOYmJE6BhSH2KkVSSq+/bAZIjjFjayty0kpX969QWEvHs2NVLpnHSqFcrDfibWIY5RQnM0XL1N3sQ4SQgocQMCdG3zFg6KeKSYkayop0IEiM8RkPSVzREARFOOv0hg0dKGUA/4qpCCafq14kUBUJMAk915heLn14u/uX1E+nXnZSGcSJJiGeL/IRBGcE8EDignGDJJoogzKm6FeIR4ghLFVtRhfD5KfyfdCqGVTNql9VS82weRwEcgENQBhY4BU1wAVqgDTC4BffgETxpd9qD9qy9zFoXtPnMHvgG7fUD09iYUw==</latexit>P2(f
ω)

<latexit sha1_base64="P/0dwSJBNShHabWv2BkMVttNj/Q=">AAACA3icdVDLSsNAFJ3UV62vqDvdDBahbsKkltpl0Y3LCvYBTSyT6aQdOnkwMxFKCLjxV9y4UMStP+HOv3HSVlDRAxcO59zLvfd4MWdSIfRhFJaWV1bXiuuljc2t7R1zd68jo0QQ2iYRj0TPw5JyFtK2YorTXiwoDjxOu97kIve7t1RIFoXXahpTN8CjkPmMYKWlgXngBFiNCeZpKxuktazi36SOVFhkJwOzjCxk26hag8iq2qcNhDRpNGp2FUHbQjOUwQKtgfnuDCOSBDRUhGMp+zaKlZtioRjhNCs5iaQxJhM8on1NQxxQ6aazHzJ4rJUh9COhK1Rwpn6fSHEg5TTwdGd+sfzt5eJfXj9RfsNNWRgnioZkvshPOFQRzAOBQyYoUXyqCSaC6VshGWOBidKxlXQIX5/C/0mnatl1q35VKzfPF3EUwSE4AhVggzPQBJegBdqAgDvwAJ7As3FvPBovxuu8tWAsZvbBDxhvn3b8mBM=</latexit>P4(f
ω)

<latexit sha1_base64="+t/n7TBV6EFA4nc/ZnYxjOnU+Ck=">AAAB+HicdVBNS8NAEN3Ur1o/WvXoZbEInkKS0lpvRS8ePFSwH9CGstlO26WbbNjdKLX0l3jxoIhXf4o3/42btoKKPhh4vDfDzLwg5kxpx/mwMiura+sb2c3c1vbObr6wt99UIpEUGlRwIdsBUcBZBA3NNId2LIGEAYdWML5I/dYtSMVEdKMnMfghGUZswCjRRuoV8lfiDgvZB4k1yFD1CkXHLnsVz/VwSpzyWTUlJadUKWPXduYooiXqvcJ7ty9oEkKkKSdKdVwn1v6USM0oh1mumyiICR2TIXQMjUgIyp/OD5/hY6P08UBIU5HGc/X7xJSESk3CwHSGRI/Uby8V//I6iR5U/SmL4kRDRBeLBgnHWuA0BdxnEqjmE0MIlczciumISEJNCCpnQvj6FP9Pmp7tVuzKtVesnS/jyKJDdIROkItOUQ1dojpqIIoS9ICe0LN1bz1aL9brojVjLWcO0A9Yb5/ndpNI</latexit>

Low order terms
<latexit sha1_base64="7CDz+hFii/hnzm/SPcG6JVj1JjA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXJHoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5VypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3UXjLo=</latexit>

+

<latexit sha1_base64="5mH9L9UUX/Rqo58hRip3I6WlTeg=">AAACFXicbVDLSsNAFJ3UV62vqks3wSK2ICURqS6LblxWsA9IYplMJ+3YyYOZG7GE/IQbf8WNC0XcCu78G6dtBG09cOFwzr3ce48bcSbBML603MLi0vJKfrWwtr6xuVXc3mnJMBaENknIQ9FxsaScBbQJDDjtRIJi3+W07Q4vxn77jgrJwuAaRhF1fNwPmMcIBiV1i0c2px5Yto9h4HrJIL1JymYlLf8I9+lhxRasPwCne9stloyqMYE+T8yMlFCGRrf4afdCEvs0AMKxlJZpROAkWAAjnKYFO5Y0wmSI+9RSNMA+lU4y+SrVD5TS071QqApAn6i/JxLsSznyXdU5PlbOemPxP8+KwTtzEhZEMdCATBd5Mdch1McR6T0mKAE+UgQTwdStOhlggQmoIAsqBHP25XnSOq6atWrt6qRUP8/iyKM9tI/KyESnqI4uUQM1EUEP6Am9oFftUXvW3rT3aWtOy2Z20R9oH9+1A58s</latexit>[
h(1)(x→)

]
j

<latexit sha1_base64="J2u/6zpa2wsI9cNrq07d7mhbDh0="></latexit>〈
Ex

[
fω(x)Y2(x)→2

]
,Y2(vj)→Y2(x

↑)
〉

<latexit sha1_base64="H6/bu84yrhxu0/xPkdhOIeoAYbM="></latexit>〈
Ez

[
gω(z)z→2

]
,p(vj)→ p(x↑)

〉

<latexit sha1_base64="B1vAyhi5joKkRjcfpvBdZZIbFek="></latexit>〈
Ex

[
fω(x)Y2(x)→2

]
,Y2 →Y2

〉

<latexit sha1_base64="FwcK5lyC1ZtvI4f4ZRQV8v5tsIo=">AAAB7nicdVDLSgMxFM34rPVVdekmWARXQ6aWOsuiG5cV7APaoWTSTBuaSUKSEcvQj3DjQhG3fo87/8b0IajogQuHc+7l3ntixZmxCH14K6tr6xubha3i9s7u3n7p4LBlZKYJbRLJpe7E2FDOBG1aZjntKE1xGnPajsdXM799R7VhUtzaiaJRioeCJYxg66R2Dyul5X2/VEY+CgJUqULkV4LzECFHwrAaVBAMfDRHGSzR6JfeewNJspQKSzg2phsgZaMca8sIp9NiLzNUYTLGQ9p1VOCUmiifnzuFp04ZwERqV8LCufp9IsepMZM0dp0ptiPz25uJf3ndzCZhlDOhMksFWSxKMg6thLPf4YBpSiyfOIKJZu5WSEZYY2JdQkUXwten8H/SqvhBza/dVMv1y2UcBXAMTsAZCMAFqINr0ABNQMAYPIAn8Owp79F78V4XrSvecuYI/ID39gnXpY/u</latexit>

→
<latexit sha1_base64="FwcK5lyC1ZtvI4f4ZRQV8v5tsIo=">AAAB7nicdVDLSgMxFM34rPVVdekmWARXQ6aWOsuiG5cV7APaoWTSTBuaSUKSEcvQj3DjQhG3fo87/8b0IajogQuHc+7l3ntixZmxCH14K6tr6xubha3i9s7u3n7p4LBlZKYJbRLJpe7E2FDOBG1aZjntKE1xGnPajsdXM799R7VhUtzaiaJRioeCJYxg66R2Dyul5X2/VEY+CgJUqULkV4LzECFHwrAaVBAMfDRHGSzR6JfeewNJspQKSzg2phsgZaMca8sIp9NiLzNUYTLGQ9p1VOCUmiifnzuFp04ZwERqV8LCufp9IsepMZM0dp0ptiPz25uJf3ndzCZhlDOhMksFWSxKMg6thLPf4YBpSiyfOIKJZu5WSEZYY2JdQkUXwten8H/SqvhBza/dVMv1y2UcBXAMTsAZCMAFqINr0ABNQMAYPIAn8Owp79F78V4XrSvecuYI/ID39gnXpY/u</latexit>

→
<latexit sha1_base64="nFo6s4AHWhlyJLnrIcI7sXcgbp0="></latexit>

→Ez

[
gω(z)z→2

]
︸ ︷︷ ︸

H

,p↑ p↓

<latexit sha1_base64="7CDz+hFii/hnzm/SPcG6JVj1JjA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXJHoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5VypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3UXjLo=</latexit>

+
<latexit sha1_base64="FZOvO407f1SulCCKgaiiuwHiWyQ=">AAAB+XicdVDLSsNAFJ3UV62vqEs3g0VwVZI+osuimy4r2Ae0oUymt+3QySTMTAol9E/cuFDErX/izr9x0lZQ0QMXDufcy733BDFnSjvOh5Xb2Nza3snvFvb2Dw6P7OOTtooSSaFFIx7JbkAUcCagpZnm0I0lkDDg0Ammt5nfmYFULBL3eh6DH5KxYCNGiTbSwLYbbDzBkRyCxBpkqAZ20SlVa65X8bAhVa9cqWSkVvMqVeyWnCWKaI3mwH7vDyOahCA05USpnuvE2k+J1IxyWBT6iYKY0CkZQ89QQUJQfrq8fIEvjDLEo0iaEhov1e8TKQmVmoeB6QyJnqjfXib+5fUSPbr2UybiRIOgq0WjhGMd4SwGPGQSqOZzQwiVzNyK6YRIQk0IqmBC+PoU/0/a5ZLrlby7crF+s44jj87QObpELrpCddRATdRCFM3QA3pCz1ZqPVov1uuqNWetZ07RD1hvn47wk6U=</latexit>

High order terms

<latexit sha1_base64="JWfHEnSoqkNVxYf4lVjtJ/8RHRs=">AAAB9XicdVDLSsNAFJ3UV62vqks3g0WomzCJpWZZdOOygn1AG8tkOm2HTiZhZqKE0P9w40IRt/6LO//GSVtBRQ9cOJxzL/feE8ScKY3Qh1VYWV1b3yhulra2d3b3yvsHbRUlktAWiXgkuwFWlDNBW5ppTruxpDgMOO0E08vc79xRqVgkbnQaUz/EY8FGjGBtpNtqIlhuY850ejooV5CNHAe5NYhs1znzEDLE82qOi6BjozkqYInmoPzeH0YkCanQhGOleg6KtZ9hqRnhdFbqJ4rGmEzxmPYMFTikys/mV8/giVGGcBRJU0LDufp9IsOhUmkYmM4Q64n67eXiX14v0SPPz5iIE00FWSwaJRzqCOYRwCGTlGieGoKJZOZWSCZYYqJNEiUTwten8H/Sdm2nbtev3UrjYhlHERyBY1AFDjgHDXAFmqAFCJDgATyBZ+veerRerNdFa8FazhyCH7DePgHOaZK8</latexit>

(universality)

<latexit sha1_base64="JWfHEnSoqkNVxYf4lVjtJ/8RHRs=">AAAB9XicdVDLSsNAFJ3UV62vqks3g0WomzCJpWZZdOOygn1AG8tkOm2HTiZhZqKE0P9w40IRt/6LO//GSVtBRQ9cOJxzL/feE8ScKY3Qh1VYWV1b3yhulra2d3b3yvsHbRUlktAWiXgkuwFWlDNBW5ppTruxpDgMOO0E08vc79xRqVgkbnQaUz/EY8FGjGBtpNtqIlhuY850ejooV5CNHAe5NYhs1znzEDLE82qOi6BjozkqYInmoPzeH0YkCanQhGOleg6KtZ9hqRnhdFbqJ4rGmEzxmPYMFTikys/mV8/giVGGcBRJU0LDufp9IsOhUmkYmM4Q64n67eXiX14v0SPPz5iIE00FWSwaJRzqCOYRwCGTlGieGoKJZOZWSCZYYqJNEiUTwten8H/Sdm2nbtev3UrjYhlHERyBY1AFDjgHDXAFmqAFCJDgATyBZ+veerRerNdFa8FazhyCH7DePgHOaZK8</latexit>

(universality)
<latexit sha1_base64="gm0mewO90Sc+tNNOV32kALe7GWY="></latexit>

→ p(vj)
→Hp(x↑)

<latexit sha1_base64="GNElbcTnoYxAQpnSrjXSnLkcX1c=">AAACBXicdVDLSgMxFM34rPVVdamLYBHqZpjptKPLajcuK9gHtKVkMmkbmkmGJCOU0o0bf8WNC0Xc+g/u/BszbQUVPXDhcM693HtPEDOqtON8WEvLK6tr65mN7ObW9s5ubm+/oUQiMaljwYRsBUgRRjmpa6oZacWSoChgpBmMqqnfvCVSUcFv9Dgm3QgNOO1TjLSRermjQlVwLQVjJITBGF4olURx6kHvtJfLO3ap7PqeDw0p+UXPS0m57Hsl6NrODHmwQK2Xe++EAicR4RozpFTbdWLdnSCpKWZkmu0kisQIj9CAtA3lKCKqO5l9MYUnRglhX0hTXMOZ+n1igiKlxlFgOiOkh+q3l4p/ee1E98+7E8rjRBOO54v6CYNawDQSGFJJsGZjQxCW1NwK8RBJhLUJLmtC+PoU/k8aRdv1bf+6mK9cLuLIgENwDArABWegAq5ADdQBBnfgATyBZ+veerRerNd565K1mDkAP2C9fQK+sJge</latexit>

(Controlled by Assumption 3)

<latexit sha1_base64="jH11F030HMGPMiHRIRwCT8gLvK0=">AAACBHicbVC9TsMwGPxS/kr5CzB2saiQmKqkQ2GsYIGtSLRFaqPKcZzWqhNHtoNURR1YeBUWBhBi5SHYeBucNgO0nGT5fPd9su78hDOlHefbKq2tb2xulbcrO7t7+wf24VFXiVQS2iGCC3nvY0U5i2lHM83pfSIpjnxOe/7kKvd7D1QqJuI7PU2oF+FRzEJGsDbS0K62pRAhugkoRuY2r0QolnvIHdo1p+7MgVaJW5AaFGgP7a9BIEga0VgTjpXqu06ivQxLzQins8ogVTTBZIJHtG9ojCOqvGweYoZOjRKgUEhzYo3m6u+NDEdKTSPfTEZYj9Wyl4v/ef1UhxdexuIk1TQmi4/ClCMtUN4ICpikRPOpIZhIk50gMsYSE216q5gS3OXIq6TbqLvNevO2UWtdFnWUoQoncAYunEMLrqENHSDwCM/wCm/Wk/VivVsfi9GSVewcwx9Ynz+K7pdn</latexit>

Proof Idea of Proposition 1

<latexit sha1_base64="KpHLbHZMQrZ15/r5a5nqXH7D/XU=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIVdi2gTDNpYJmAukCxhdnKSjJm9MDMrhCVPYGOhiK0+jL2N+DZOLoUm/jDw8f/nMOccPxZcacf5tjIrq2vrG9lNe2t7Z3cvt39QV1EiGdZYJCLZ9KlCwUOsaa4FNmOJNPAFNvzh9SRv3KNUPApv9ShGL6D9kPc4o9pY1VInl3cKzlRkGdw55C8/7FL8/mVXOrnPdjdiSYChZoIq1XKdWHsplZozgWO7nSiMKRvSPrYMhjRA5aXTQcfkxDhd0oukeaEmU/d3R0oDpUaBbyoDqgdqMZuY/2WtRPcuvJSHcaIxZLOPeokgOiKTrUmXS2RajAxQJrmZlbABlZRpcxvbHMFdXHkZ6mcFt1goVp18+QpmysIRHMMpuHAOZbiBCtSAAcIDPMGzdWc9Wi/W66w0Y817DuGPrLcf7+aQCQ==</latexit>

=

<latexit sha1_base64="9fmj4HTFYofa1hZt+QYHcj1JfCo=">AAAB7nicbZC7SgNBFIbPxltcb1FLm8UgWIVdi2gjBm0sI5gLJEuYncwmQ2ZnhplZMSx5CBsLRSxsfBN7G/FtnFwKTfxh4OP/z2HOOZFkVBvf/3ZyS8srq2v5dXdjc2t7p7C7V9ciVZjUsGBCNSOkCaOc1Aw1jDSlIiiJGGlEg6tx3rgjSlPBb81QkjBBPU5jipGxVqONpFTivlMo+iV/Im8RghkULz7cc/n25VY7hc92V+A0IdxghrRuBb40YYaUoZiRkdtONZEID1CPtCxylBAdZpNxR96RdbpeLJR93HgT93dHhhKth0lkKxNk+no+G5v/Za3UxGdhRrlMDeF4+lGcMs8Ib7y716WKYMOGFhBW1M7q4T5SCBt7IdceIZhfeRHqJ6WgXCrf+MXKJUyVhwM4hGMI4BQqcA1VqAGGATzAEzw70nl0XpzXaWnOmfXswx857z/2e5L+</latexit>→

<latexit sha1_base64="EVYzt14K/K6gMrTVSxheNQ7CPzY="></latexit>

, j → [m2]
<latexit sha1_base64="HZu804qnoDejNLusg3SuJpODn/c="></latexit>

Linearly reconstruct p(x→) through

<latexit sha1_base64="7n6xmiN1yj3wOll4eAGb02qDlrU="></latexit>

(Stage 1)
<latexit sha1_base64="P7r51waEohDVuVk+x4myIelx16g=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSyCq5KUJNVd0Y3LCrYW2lAm02k7dPJg5kasoV/ixoUibv0Ud/6Nk7aCih64cDjn3pl7T5AIrsCyPozCyura+kZxs7S1vbNbNvf22ypOJWUtGotYdgKimOARawEHwTqJZCQMBLsJJhe5f3PLpOJxdA3ThPkhGUV8yCkBLfXNcg/YHVAuqWCDzJ71zYpVdVyr7npYE8dz3HpOXOesVsN21ZqjgpZo9s333iCmacgioIIo1bWtBPyMSOD6yVmplyqWEDohI9bVNCIhU342X3yGj7UywMNY6ooAz9XvExkJlZqGge4MCYzVby8X//K6KQxP/YxHSQosoouPhqnAEOM8BTzgklEQU00IlVzviumYSEJBZ1XSIXxdiv8n7VrV9qrelVNpnC/jKKJDdIROkI3qqIEuURO1EEUpekBP6Nm4Nx6NF+N10VowljMH6AeMt0+dr5O/</latexit>

1○ <latexit sha1_base64="6GbiKuUok9AKMJAsr/vc6/2PS9w=">AAAB+HicdVDLSgMxFM3UV62Pjrp0EyyCqzJTZ6a6K7pxWcE+oC0lk2ba0MyD5I5Yh36JGxeKuPVT3Pk3pg9BRQ9cOJxzb3Lv8RPBFVjWh5FbWV1b38hvFra2d3aL5t5+U8WppKxBYxHLtk8UEzxiDeAgWDuRjIS+YC1/fDnzW7dMKh5HNzBJWC8kw4gHnBLQUt8sdoHdAeWSCjbITqd9s2SVHdequh7WxPEctzojrnNeqWC7bM1RQkvU++Z7dxDTNGQRUEGU6thWAr2MSOD6yWmhmyqWEDomQ9bRNCIhU71svvgUH2tlgINY6ooAz9XvExkJlZqEvu4MCYzUb28m/uV1UgjOehmPkhRYRBcfBanAEONZCnjAJaMgJpoQKrneFdMRkYSCzqqgQ/i6FP9PmpWy7ZW9a6dUu1jGkUeH6AidIBtVUQ1doTpqIIpS9ICe0LNxbzwaL8brojVnLGcO0A8Yb5+guZPB</latexit>
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2○

Figure 1: The proof idea of Proposition 1. Block 1 characterizes the constant and linear terms of
g⋆, which is approximately equivalent to the low-order terms P<4(f

⋆) by our universality theory
and results into biases in the learned weights h(1)(x′) after Stage 1. This bias is vanishing with
d→∞ by our assumptions on P0(f

⋆) and P2(f
⋆). Block 2 describes the second-order information

of g⋆ (approximately P4(f
⋆)), which is of the greatest importance and captured by the quadratic

component c2Q2(·) in the inner activation σ2(·) and converted into quantities spanned by the r
quadratic features p. Block 3 represents the remaining terms of f⋆, which leads to high-order
nuisance in the learned weights, but still dominated by the second term due to Assumption 2 when
d is large, which enables us to utilize the terms in blue (resulted from Block 2) to reconstruct the
features efficiently.
4.2 STAGE 2: LEARNING THE LINK FUNCTION

By the deduction above, after the first training stage, the model becomes a random-feature model
(Rahimi and Recht, 2007):

f(x′; θ) =
1

m1

m1∑

j=1

ajσ1

(
ηa

(0)
j ⟨wj ,h

(1)(x′)⟩+ b
(1)
j

)
. (4)

Here θ = (a,W(1),b(1),V), with a = [a1, a2, . . . , am1
]⊤ ∈ Rm1 being the trainable parameters

in the second stage. Leveraging the construction in Proposition 1, we can construct a corresponding
weight vector a in the outer layer to express the polynomial g(B⋆h(1)(x)) ≈ g(p(x)).
Proposition 2 (Expressivity of the second-stage model). Suppose g is a degree p polynomial with
∥g∥L2 ≲ 1. Then there exists a learning rate η such that, with high probability over D1, D2, W
and V, there exists a⋆ ∈ Rm1 such that the parameter θ⋆ = (a⋆,W(1),b(1),V) achieves a small
empirical loss:

1

n2

∑

x∈D2

(f(x; θ⋆)− g(p(x)))
2
= Õ

(
∥a⋆∥22
m2

1

+
d6rp+1

m2
+

d2rp+1

n1
+

r2p+4

d1/3

)
.

Here a⋆ satisfies ∥a⋆∥22 = Õ
(
m1r

pκ2p
2

)
.

The proof is provided in Appendix D.1. We provide following discussions.
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Error propagation To explain the increased polynomial dependence on r, we remark that the
approximation error in Proposition 1 gets multiplied by the averaged Lipschitz smoothness of the
link function g, which is upper bounded by O(r p−1

2 ). This product is then squared due to the use of
squared loss in Proposition 2.

Reduced complexity of a Moreover, we remark that the complexity of a, i.e., ∥a∥2, gets rid of
the polynomial dependence on d, which is greatly reduced compared with a naive random-feature
model that requires ∥a∥22 = Θ(m1d

2p). This directly saves the second-stage sample complexity n1

and the outer width m1, since n1,m2 = Θ(m−1
1 ∥a⋆∥22) is required for efficient approximation and

generalization (Ghorbani et al., 2021). We also examine this reduced dependency by comparing our
model with a naive random feature model in learning hierarchical target functions in Section A.

Arbitrariness of g Thanks to the two-stage architecture and the sufficient learning of the features,
the choice on the link function g can be an arbitrary degree p polynomial, not limited to the truth
target g⋆. This allows us to conduct transfer learning tasks in Stage 2 of Algorithm 1.
Finally, by standard Rademacher complexity analysis on the random feature model presented in
Appendix E.1, we conclude our proof.

5 CONCLUSIONS AND DISCUSSIONS

Comparison with Nichani et al. (2023); Wang et al. (2023) As discussed under assumptions 3
and the initialization of our neural networks, our work differs significantly in the targets of inter-
ests, the parametrization of neural networks, the mathematical strategies, and the intuitions behind
the results. Our assumptions ensure a nearly zero linear component and a non-degenerate second
order term of the link function g which significantly contrasts the assumptions posed in Nichani
et al. (2023); Wang et al. (2023) that emphasize the linear component. Our random initialization
(rather than a deterministic initialization used in the aforementioned two works) in the weights of
the three-layer neural networks allows the learned weights to capture multiple features in all direc-
tions simultaneously after training rather than converge to a single direction. We develop a novel
universality result to relate multiple nonlinear features to multivariate Gaussian, while these two
works adopt existing result of the approximate Stein’s lemma which only applies to single nonlinear
feature. Most importantly, subspace recovery is completely different from and also significantly
harder than single feature recovery considered in Nichani et al. (2023); Wang et al. (2023).

Conclusions In this work, we have shown the provable capabilities of three-layer networks in ef-
ficiently learning targets of multiple quadratic features. Leveraging a novel universality result, we
have shown that one gradient step suffices for a full recovery of the subspace spanned by multiple
quadratic features. In addition, leveraging the learned features, we have demonstrated the transfer
learning capabilities of this three-layer neural network with a constant polynomial sample complex-
ity guarantee. To the best of our knowledge, this is the first theoretical result of efficiently learning
such a board target function class of multiple nonlinear features with neural networks. We have
made a great improvement on the sample complexity by highlighting feature learning compared to
kernel methods.

Future works First, it may be possible that the sample complexity bound of Õ(d4) could be
improved to the information-theoretic optimal sample complexity O(d2) in learning general hier-
archical polynomials of quadratic features. We think that this result may be achieved when we
consider more advanced algorithms that utilize the samples more thoroughly such as using multiple
steps of GD, which could be a great future extension of our work. Moreover, our methodology is
not inherently limited to quadratic features. The principles shown in Figure 1 and techniques devel-
oped here give a foundation for understanding the learning of even more complex function classes.
Another natural future direction of our work is to understand whether and when our results can be
generalized to learning multiple high-degree features.
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kala. The benefits of reusing batches for gradient descent in two-layer networks: Breaking the
curse of information and leap exponents, 2024b. URL https://arxiv.org/abs/2402.
03220.

Amit Daniely. Depth separation for neural networks, 2017. URL https://arxiv.org/abs/
1702.08489.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Weinan E, Chao Ma, and Lei Wu. A comparative analysis of optimization and generalization prop-
erties of two-layer neural network and random feature models under gradient descent dynamics.
Science China Mathematics, 63(7):1235–1258, jan 2020. doi: 10.1007/s11425-019-1628-5. URL
https://doi.org/10.1007%2Fs11425-019-1628-5.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers
neural networks in high dimension. The Annals of Statistics, 49(2):1029 – 1054, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Tom H. Koornwinder. Dual Addition Formulas Associated with Dual Product Formulas, page
373–392. WORLD SCIENTIFIC, January 2018. ISBN 9789813228887. doi: 10.1142/
9789813228887 0019. URL http://dx.doi.org/10.1142/9789813228887_0019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, 2012.

Mandar Kulkarni and Shirish Karande. Layer-wise training of deep networks using kernel similarity,
2017. URL https://arxiv.org/abs/1703.07115.

Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net model for visual area
v2. volume Vol 20, 01 2007.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances
in Neural Information Processing Systems, 33:15156–15172, 2020.

Jason D. Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
polynomials with sgd near the information-theoretic limit, 2024. URL https://arxiv.org/
abs/2406.01581.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random
features and kernel models. In Conference on Learning Theory, pages 3351–3418. PMLR, 2021.

Behrad Moniri, Donghwan Lee, Hamed Hassani, and Edgar Dobriban. A theory of non-linear feature
learning with one gradient step in two-layer neural networks, 2024. URL https://arxiv.
org/abs/2310.07891.

Alireza Mousavi-Hosseini, Denny Wu, Taiji Suzuki, and Murat A. Erdogdu. Gradient-based feature
learning under structured data, 2023. URL https://arxiv.org/abs/2309.03843.

12

https://arxiv.org/abs/2410.18938
https://arxiv.org/abs/2402.03220
https://arxiv.org/abs/2402.03220
https://arxiv.org/abs/1702.08489
https://arxiv.org/abs/1702.08489
https://doi.org/10.1007%2Fs11425-019-1628-5
http://dx.doi.org/10.1142/9789813228887_0019
https://arxiv.org/abs/1703.07115
https://arxiv.org/abs/2406.01581
https://arxiv.org/abs/2406.01581
https://arxiv.org/abs/2310.07891
https://arxiv.org/abs/2310.07891
https://arxiv.org/abs/2309.03843


Published as a conference paper at ICLR 2025

Alireza Mousavi-Hosseini, Denny Wu, and Murat A. Erdogdu. Learning multi-index models with
neural networks via mean-field langevin dynamics, 2024. URL https://arxiv.org/abs/
2408.07254.

Eshaan Nichani, Alex Damian, and Jason D Lee. Provable guarantees for nonlinear feature learning
in three-layer neural networks. arXiv preprint arXiv:2305.06986, 2023.

Giuseppe Da Prato and Luciano Tubaro. Wick powers in stochastic pdes: an introduction. 2007.
URL https://api.semanticscholar.org/CorpusID:55493217.

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Feature
learning in neural networks and kernel machines that recursively learn features. arXiv preprint
arXiv:2212.13881, 2022.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural In-
formation Processing Systems, volume 20. Curran Associates, Inc., 2007. URL
https://proceedings.neurips.cc/paper_files/paper/2007/file/
013a006f03dbc5392effeb8f18fda755-Paper.pdf.

Yunwei Ren, Mo Zhou, and Rong Ge. Depth separation with multilayer mean-field networks. arXiv
preprint arXiv:2304.01063, 2023.

Nathan Ross. Fundamentals of stein’s method. 2011.

Itay Safran and Jason Lee. Optimization-based separations for neural networks. In Conference on
Learning Theory, pages 3–64. PMLR, 2022.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Information
Theory, 65(2):742–769, 2018.

Ramon van Handel. Probability in high dimensions. 2016. URL https://web.math.
princeton.edu/˜rvan/APC550.pdf.

Zhichao Wang, Denny Wu, and Zhou Fan. Nonlinear spiked covariance matrices and signal propa-
gation in deep neural networks, 2024. URL https://arxiv.org/abs/2402.10127.

Zihao Wang, Eshaan Nichani, and Jason D. Lee. Learning hierarchical polynomials with three-layer
neural networks, 2023.

Colin Wei, Jason D. Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets v.s. their induced kernel, 2020.

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning, pages 11727–11737. PMLR, 2021.

13

https://arxiv.org/abs/2408.07254
https://arxiv.org/abs/2408.07254
https://api.semanticscholar.org/CorpusID:55493217
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://web.math.princeton.edu/~rvan/APC550.pdf
https://web.math.princeton.edu/~rvan/APC550.pdf
https://arxiv.org/abs/2402.10127


Published as a conference paper at ICLR 2025

Appendix

A Numerical Experiments 15

B Techinical Background 17

B.1 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Multivariate Gaussian Approximation . . . . . . . . . . . . . . . . . . . . . . . . 17

B.3 Hypercontractivity of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B.4 Moments and Factorization of Polynomials . . . . . . . . . . . . . . . . . . . . . 19

B.5 Spherical Harmonics and Gegenbauer Polynomials . . . . . . . . . . . . . . . . . 20

C Approximation Theory of the Inner Layer 21

C.1 Asymptotic Analysis of the Learned Feature . . . . . . . . . . . . . . . . . . . . . 21

C.2 Boundedness of the learned feature . . . . . . . . . . . . . . . . . . . . . . . . . . 30

C.3 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

C.4 Proof of Other Supporting Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . 42

D Approximation Theory of the Outer Layer 43

D.1 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

D.2 Omitted Proofs in Appendix D.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

E Generalization Theory 50

E.1 Formal Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

E.2 Omitted Proofs in Appendix E.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

14



Published as a conference paper at ICLR 2025

A NUMERICAL EXPERIMENTS

We empirically verify Theorem 1 and Proposition 1. We consider learning functions with r = 3
quadratic features. Regarding the target function, we choose the target functions to be of the form

f⋆
d,p(x) =

fd,p(x)− E [fd,p(x)]√
Var[fd,p(x)]

, with fd,p(x) =

r∑

i=1

(
x⊤A1x

)p
, p ∈ N. (5)

For the underlying features, we take p(x) = [x⊤A1x,x
⊤A2x,x

⊤A3x]
⊤ with Ak = diag (c · ak),

and c > 0 is a normalizing constant. To ensure the orthogonality of the features and tr(Ak) = 0,
we choose the ambient dimension d to be divisible by 4 and take ak to be

a1 = Vec ([1,1,−1,−1]), a2 = Vec ([1,−1,1,−1]), and a3 = Vec ([1,−1,−1,1]).

Here 1 is a vector of ones in d/4 dimensions, and c =
√

d+2
2d2 to ensure that Ex

[
(x⊤Akx)

2
]
= 1

for each k = 1, 2, 3.

For the network architecture, we choose σ1 as per (2) and σ2 = Q2, with network sizes set to
m1 = 10000 and m2 = 20000. We compare our proposed model (4) (given by Algorithm 1) against
the naive random-feature model defined as

fRF(x′; θ) =
1

m1

m1∑

j=1

ajσ1

(
ηa

(0)
j ⟨wj ,h

(0)(x′)⟩+ b
(1)
j

)
, (6)

where a is the only trainable parameter throughout the training process. Our experiments involve
learning f⋆

d,p with p = 4 and d ∈ {8, 16, 32}. To examine our model’s transfer learning capabilities,
we also train the model on an initial target function f⋆

d,2 with d = 16 and n1 = 216 in the first stage,
then transfer to targets f⋆

d,p with p = 4, 6, 8. For each task, we explore a range of sample sizes from
28 to 216. The results of these experiments are presented in Figure 2.

Improved sample complexity and Polynomial dependence on d The left panel of Figure 2
demonstrates that our model outperforms the naive random-feature model across all dimensions.
As the dimension d increases, both models show larger test errors, but our model exhibits less sen-
sitivity to d. This aligns with our theoretical analysis in Theorem 1 that the sample complexity of
kernel methods should be Ω(d2p−4) times greater than that of our model. Moreover, we redraw
Figure 2 by plotting the test error against logd n. As shown in Figure 3, the loss curves for our
model (Algorithm 1) align closely for different values of d, indicating that it achieves low error rates
with only Õ(d4) samples. In stark contrast, the naive random feature model exhibits significant
separation between curves for different d values, requiring more than Õ(d4) samples to achieve
comparable error rates. This graphical evidence powerfully demonstrates how our approach elimi-
nates the dependence on dimension Θ(d2p) presented in kernel methods, resulting in substantially
improved sample complexity in high-dimensional settings.

Efficient transfer learning The right panel of Figure 2 showcases our algorithm’s strong transfer
learning capabilities. our algorithm successfully learns all three transferred target functions with
benign second-stage sample complexity. Notably, as the degree p increases, the test error grows
no faster than rp, which is significantly slower than d2p. This supports our theoretical result that
the second-stage sample complexity depends on the number of features r rather than the ambient
dimension d, underscoring our model’s strong transfer learning capabilities.

Accurate reconstruction of quadratic features To further demonstrate our model’s feature learn-
ing capabilities, we extract the learned features h(1) after the first training stage of Algorithm 1, us-
ing f16,2 as the target. We then reconstruct these features using a linear transformation B⋆ ∈ Rr×m2 ,
as described in Proposition 1. We examine how reconstruction accuracy changes with first-stage
sample sizes. Figure 4 shows the correlation between true and reconstructed features for each sam-
ple size. As n1 increases, all features are better approximated simultaneously. Notably, d4 samples
prove sufficient to reconstruct the features with high accuracy, supporting our model’s effective fea-
ture learning ability.
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Figure 2: For the left panel, Algorithm 1 uses two equally sized datasets, while the random feature
model uses the full dataset. For the right panel, we conduct transfer learning with n1 = 216 pretrain-
ing samples and plot the dependence on n2. The figure reports the mean and normalized standard
error of the test error using 10,000 fresh samples, based on 5 independent experimental instances.
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Figure 3: Test error of Algorithm 1 and the naive random feature models with x-axis being the
relative sample complexity (logd n). We plot the test error of 5 independent instances for each
d ∈ {8, 16, 32}.
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Correlation between the true and the reconstructed features

Figure 4: The linear correlation between the three true features and their corresponding recon-
structed features for varying first-stage sample sizes n1. The reconstructed features are standardized
to match the variance of the true features. For i = 1, 2, 3, the i-th scatter plot represents 10, 000 test
sample points of ([B⋆h(1)(x)]i,x

⊤Aix) for n1 ∈ {d2, d3, d4}, where d = 16.
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B TECHINICAL BACKGROUND

B.1 ASYMPTOTIC NOTATION

Throughout the proof we will let C be a fixed but sufficiently large constant.
Definition 1 (high probability events). Let ι = C log(dn1n2m1m2). We say that an event happens
with high probability if it happens with probability at least 1− poly(d, n1, n2,m1,m2)e

−ι.

Example 1. If z ∼ N(0, 1) then |z| ≤
√
2ι with high probability.

Note that high probability events are closed under union bounds over sets of size
poly(d, n1, n2,m1,m2), such as D1, D2 and {wj}j∈[m1]. We will also assume throughout the
paper that ι ≤ C−1d.

B.2 MULTIVARIATE GAUSSIAN APPROXIMATION

In this section, we assume that X ∼ N (0, Id) and aim to establish an upper bound of Wasserstein
distance between the distribution of p(X) and the standard r-dimensional Gaussian distribution,
i.e., Lemma 1.

To prove Lemma 1, we introduce Stein’s method (Ross, 2011) for multivariate Gaussian approxima-
tion. We will use the following additional notations.

• Gf(x) :=
∫∞
0

EZ∼N (0,I)

[
f
(
e−tx+

√
1− e−2tZ

)
− f(Z)

]
d t denotes the potential op-

erator of f .
• J (p) := [∇p1,∇p2, ...,∇pr]⊤ ∈ Rr×n denotes the Jacobian matrix of p.

Now we state the supporting lemmas to prove Lemma 1.
Lemma 2 (Corollary 9.12 in van Handel (2016)). For any probability measure µ in Rr, we have

W1(µ,N (0, Ir)) ≤ sup
∥∇g∥≤1,∥∇2g∥≤

√
2
π

EY∼µ [∆g(Y)− ⟨∇g(Y),Y⟩].

Lemma 3 (Lemma 9.21 in van Handel (2016)). Suppose X = (X1, X2, ..., Xd) ∼ N (0, In) is an
d-dimensional standard Gaussian variable. Then for any functions g : Rd → R and h : Rd → R,
we have

Cov(g(X), h(X)) = EX [⟨∇g(X),∇Gh(X)⟩]

With the lemmas above, we begin our proof of Lemma 1.

Proof of Lemma 1. By invoking Lemma 2 with µ = Law(p) and Y = p(X), for any g(y) : Rr →
R with ∥∇g∥ ≤ 1 and

∥∥∇2g
∥∥ ≤

√
2
π , we aim to bound

EX [∆g(p(X))− ⟨∇g(p(X)),p(X)⟩]︸ ︷︷ ︸
♠

=

r∑

i=1

EX

[
∂2g

∂y2i

∣∣∣∣
y=p(X)

− pi(X)
∂g

∂yi

∣∣∣∣
y=p(X)

]
.

Since for any i ∈ [r], E [pi(X)] = 0, we have

E

[
pi(X)

∂g

∂yi

∣∣∣∣
y=p(X)

]
= Cov

(
pi(X),

∂g

∂yi

∣∣∣∣
y=p(X)

)

= E

[〈
∇x

∂g

∂yi

∣∣∣∣
y=p(X)

,∇xGpi(X)

〉]

= E



〈

r∑

j=1

∂2g

∂yi∂yj

∣∣∣∣
y=p(X)

∇xpj(X),∇xGpi(X)

〉


=

r∑

j=1

E

[
∂2g

∂yi∂yj

∣∣∣∣
y=p(X)

⟨∇xpj(X),∇xGpi(X)⟩
]
,
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where the second equality follows from Lemma 3 and we obtain the third equality by the chain rule.
Thus, we have

♠ = E
[〈
∇2g(p(X)), Ir − J (p(X))J (Gp(X))⊤

〉]
. (7)

For a special case, for any i, j ∈ [r], we take g(y) = yiyj in (7), obtaining that

E [⟨∇xpj(X),∇xGpi(X)⟩] =
{
E [2pj(X)pi(X)] = 0, i ̸= j,
E
[
2p2i (X)

]
− 1 = 1, i = j.

Thus, E
[
Ir − J (p(X))J (Gp(X))⊤

]
= 0r×r. Since

∥∥∇2g
∥∥ ≤

√
2
π , we have

∣∣∣
[
∇2g

]
i,j

∣∣∣ ≤
√

2
π

for any i, j ∈ [r]. We can therefore estimate

W1(Law(p(X)),N (0, Ir)) ≤
√

2

π

∑

i,j∈[r]

E [|δi,j − ⟨∇xpj(X),∇xGpi(X)⟩|]

≤
√

2

π

∑

i,j∈[r]

Var[⟨∇xpj(X),∇xGpi(X)⟩]1/2

≤
√

2

π

∑

i,j∈[r]

E
[
∥∇x ⟨∇xpj(X),∇xGpi(X)⟩∥2

]1/2
,

where we invoke Poincaré inequality in the last inequality. For any i, j ∈ [r], we have

E
[
∥∇x ⟨∇xpj(X),∇xGpi(X)⟩∥2

]

= E
[∥∥∇2

xpj(X)∇Gpi(X) +∇xpj(X)∇2Gpi(X)
∥∥2
]

≤ 2E
[∥∥∇2

xpj(X)∇Gpi(X)
∥∥2
]
+ 2E

[∥∥∇xpj(X)∇2Gpi(X)
∥∥2
]

≤ 2E
[∥∥∇2pj

∥∥4
]1/2

E
[
∥∇Gpi∥4

]1/2
+ 2E

[
∥∇pj∥4

]1/2
E
[∥∥∇2Gpi

∥∥4
]1/2

≤ 2E
[∥∥∇2pj

∥∥4
]1/2

E
[
∥∇pi∥4

]1/2
+ 2E

[
∥∇pj∥4

]1/2
E
[∥∥∇2pi

∥∥4
]1/2

.

The last inequality follows from the inequality in Page 308 in van Handel (2016). By adding up all
the terms along i and j, we have

W1(Law(p(X)),N (0, Ir))

≤
√

2

π

∑

i,j∈[r]

√
2E
[
∥∇2pj∥4

]1/2
E
[
∥∇pi∥4

]1/2
+ 2E

[
∥∇pj∥4

]1/2
E
[
∥∇2pi∥4

]1/2

≤ 2√
π

∑

i,j∈[r]

(
E
[∥∥∇2pj

∥∥4
]1/4

E
[
∥∇pi∥4

]1/4
+ E

[
∥∇pj∥4

]1/4
E
[∥∥∇2pi

∥∥4
]1/4)

=
4√
π

(
r∑

i=1

E
[
∥∇pi∥4

]1/4
)


r∑

j=1

E
[∥∥∇2pj

∥∥4
]1/4


.

We complete our proof.

B.3 HYPERCONTRACTIVITY OF POLYNOMIALS

The following Lemma is cited from Mei et al. (2021) and is designed for uniform distribution on the
sphere in d dimension.
Lemma 4. For any ℓ ∈ N and f ∈ L2(Sd−1) to be a degree ℓ polynomial, for any q ⩾ 2, we have

(
Ez∼Unif(Sd−1(

√
d)) [f(z)

q]
)2/q

≤ (q − 1)ℓ Ez∼Unif(Sd−1(
√
d))

[
f(z)2

]
.

We remark that the results above are also multiplicative.
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Lemma 5. For any ℓ ∈ N and f ∈ L2((Sd−1)k) to be a degree ℓ polynomial in the components of
each z1, z2, . . . , zk, for any q ⩾ 2, we have

(
E
z∼Unif (Sd−1(

√
d))

k [f(z)q]

)2/q

≤ (q − 1)kℓ E
z∼Unif (Sd−1(

√
d))

k

[
f(z)2

]
.

Here z = Vec ([z1, z2, . . . , zk]).

For the case where the input distribution is standard Gaussian in d dimension (denoted as γ), we
have the next Lemma from Theorem 4.3, Prato and Tubaro (2007).

Lemma 6. For any ℓ ∈ N and f ∈ L2(γ) to be a degree ℓ polynomial, for any q ⩾ 2, we have

Ez∼γ [f(z)
q] ≤ Oq,ℓ(1)

(
Ez∼γ

[
f(z)2

])q/2
.

where we use Oq,ℓ(1) to denote some universal constant that only depends on q, ℓ.

Moreover, we introduce lemmas to control the deviation of random variables which polynomially
depend on some Gaussian random variables. We will use a slightly modified version of Lemma 30
from Damian et al. (2022).

Lemma 7. Let g be a polynomial of degree p and x ∼ N (0, Id). Then there exists an absolute
positive constant Cp depending only on p such that for any δ > 1,

P
[
|g(x)− E[g(x)]| ⩾ δ

√
Var(g(x))

]
≤ 2 exp

(
−Cpδ

2/p
)
.

We also have the spherical version of Lemma 7.

Lemma 8. Let g be a polynomial of degree p and x ∼ Sd−1(
√
d). Then there exists an absolute

positive constant Cp depending only on p such that for any δ > 1,

P
[
|g(x)− E[g(x)]| ⩾ δ

√
Var(g(x))

]
≤ 2 exp

(
−Cpδ

2/p
)
.

Thus, for a degree-p polynomial g, we have g(x) ≲ ιp/2 ∥g∥L2 with high probability.

B.4 MOMENTS AND FACTORIZATION OF POLYNOMIALS

In this section, we present formulae for calculating moments of Gaussian or spherical variables,
cited from Damian et al. (2022).

Lemma 9 (Expectations of Gaussian tensors). For w ∈ N (0d, Id) and k ∈ N, we have

Ew

[
w⊗2k

]
= (2k − 1)!!Sym(I⊗k

d )

Here Sym(T) is the symmetrization of a k-tensor T ∈ (Rd)⊗k across all k axes.

Leveraging this calculation, we can factorize any polynomial g into inner products between high-
order tensors and bound the Frobenius norm of the tensors.

Lemma 10. (Lemma 21 in Damian et al. (2022)) Given Let g : Rr → R be an degree-p polynomial.
Then there exists T0,T1, . . . ,Tp such that

g(z) =

p∑

k=0

〈
Tk, z

⊗k
〉

with ∥Tk∥F ≲ ∥g∥L2 r
p−k
4 , k = 0, 1, . . . , p.

Here ∥g∥L2 = Ez∼N (0,I)

[
g2(z)

]
.

As a corollary, we then have∇g(z) =∑p
k⩾1 kTk(z

⊗k−1) and

∥∇g(z)∥ ≤
p∑

k=1

k ∥Tk∥F ∥z∥
k−1 ≲ ∥g∥L2

p∑

k=1

kr
p−k
4 ∥z∥k−1

. (8)

For a spherical variable x ∼ Unif(Sd−1(
√
d)) we can also compute its moments.
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Lemma 11 (Expectations of Spherical tensors). For x ∼ Unif(Sd−1(
√
d)) and k ∈ N, we have

Ez

[
z⊗2k

]
= dk · Ew∼N (0d,Id)

[
w⊗2k

]

Ev∼χ(d) [v2k]
,

where χ(d) represents the chi-distribution with the degree of freedom being d, and its moments can
be computed as

Ev∼χ(d)

[
v2k
]
=

k−1∏

j=0

(d+ 2j) = Θ(dk).

As an example, the moments of spherical quadratic forms x⊤Ax can be computed explicitly as

Ex

[
x⊤Ax

]
= tr(A), and Ex

[
(x⊤Ax)(x⊤Bx)

]
=

d

d+ 2
· (tr(A)tr(B) + 2⟨A,B⟩).

Thus, to satisfy Assumption 1, we require tr(Ak) = 0, ∥Ak∥F =
√
(d+ 2)/(2d) and ⟨Ak,Aℓ⟩ =

0 for any k, ℓ ∈ [r].

B.5 SPHERICAL HARMONICS AND GEGENBAUER POLYNOMIALS

We introduce some facts of spherical harmonics and Gegenbauer polynomials, with the first four
properties from Ghorbani et al. (2021) and the last one from Koornwinder (2018).

1. For x,y ∈ Sd−1(
√
d),

|Qj(⟨x,y⟩)| ≤ Qj(d) = 1. (9)

2. For x,y ∈ Sd−1(
√
d),

〈
Qj(⟨x, ·⟩), Qk(⟨y, ·⟩)

〉
L2 =

1

B(d, k)
δjkQk(⟨x,y⟩). (10)

Here B(d, k) denotes the dimension of subspace of degree k spherical harmonics

B(d, k) := dim(Vd,k) =
2k + d− 2

k

(
k + d− 3

k − 1

)
= Θ(dk).

3. For x,y ∈ Sd−1(
√
d),

Qk(⟨x,y⟩) =
1

B(d, k)

B(d,k)∑

i=1

Yk,i(x)Yk,i(y). (11)

4. For any k ∈ N⩾1,

t

d
Qk(t) =

k

2k + d− 2
Qk−1(t) +

k + d− 2

2k + d− 2
Qk+1(t). (12)

5. For any i, j ∈ N,

Qi(t)Qj(t) =

min(i,j)∑

k=0

b
(i,j)
i+j−2k

(
i

k

)(
j

k

)
k!Qi+j−2k(t). (13)

Here, we have

b
(i,j)
i+j−2k =

2(i+ j − 2k) + d− 2

d− 2
·
((d− 2)/2)k((d− 2)/2)i−k((d− 2)/2)j−k(d− 2)i+j−k

(d− 2)i(d− 2)j(d/2)i+j−k

.

We note that (z)k = z(z + 1) · · · (z + k − 1) = Γ(z + k)/Γ(z) is the Pochhammer symbol. Given
any i and j, we have dkb

(i,j)
i+j−2k → 1 when d→∞. We derive a quantitative bound on the scale of

b
(i,j)
i+j−2k in Lemma 12.
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Lemma 12. For any i, j ⩾ k ⩾ 0, denote

c
(i,j)
i+j−2k =

((d− 2)/2)k((d− 2)/2)i−k((d− 2)/2)j−k(d− 2)i+j−k

(d− 2)i(d− 2)j(d/2)i+j−k

.

Then, when d ⩾ 4, it holds that c(i,j)i+j−2k ≤ 1
(d−2)k

.

Proof of Lemma 12. Note that when d ⩾ 4, i.e., d− 2 ⩾ d/2,

c
(i+1,j)
(i+1)+j−2k

c
(i,j)
i+j−2k

=

(
d−2
2 + i− k

)
(d− 2 + i+ j − k)

(d− 2 + i)
(
d
2 + i+ j − k

) (monotone decreasing with j)

≤
(
d−2
2 + i− k

)
(d− 2 + i)

(d− 2 + i)
(
d
2 + i

)

< 1.

Thus, we have c
(i+1,j)
(i+1)+j−2k ≤ c

(i,j)
i+j−2k. Similarly, we have c

(i,j+1)
i+(j+1)−2k ≤ c

(i,j)
i+j−2k. Consequently,

for any i, j ⩾ k, we have

c
(i,j)
i+j−2k ≤ c

(k,k)
k+k−2k

=
((d− 2)/2)k((d− 2)/2)0((d− 2)/2)0(d− 2)k

(d− 2)k(d− 2)k(d/2)k

=
((d− 2)/2)k

(d− 2)k(d/2)k

=
(d− 2)/2

(d− 2)k(d/2 + k − 1)

≤ 1

(d− 2)k
.

The proof is complete.

C APPROXIMATION THEORY OF THE INNER LAYER

Since we focus on the first training stage throughout this section, we denote n = n1 for notation
simplicity when the context is clear, and let the training set be D1 = {x1,x2, . . . ,xn}.
C.1 ASYMPTOTIC ANALYSIS OF THE LEARNED FEATURE

In this subsection, we analyse the learned feature h(1)(x′) in the asymptotic way, i.e., m2, n→∞.
Note that we can rewrite the learned feature as

h(1)(x′) =
1

nm2

n∑

i=1

f⋆(xi)⟨h(0)(xi),h
(0)(x′)⟩h(0)(xi)

=
1

n

n∑

i=1

f⋆(xi)K
(0)
m2

(x,x′)h(0)(xi).

where the initial kernel K(0)
m2(x,x

′) is defined as

K(0)
m2

(x,x′) =
1

m2
⟨σ2(Vx), σ2(Vx′)⟩ ≈ Ev

[
σ2(v

⊤x)σ2(v
⊤x′)

]
.

In this case, we have for any j ∈ [m2],

[h(1)(x′)]j =
1

n

n∑

i=1

K(0)
m2

(xi,x
′)σ2(v

⊤
j xi)

m2,n→∞→ Ex

[
f⋆(x)K(0)(x,x′)σ2(v

⊤
j x)

]
.

Here the infinite-inner-width kernel K(0) is defined as

K(0)(x,x′) := Ev

[
σ2(v

⊤x)σ2(v
⊤x′)

]
=

∞∑

i=2

c2i
B(d, i)

Qi(x
⊤x′).
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Recall that Q2(t) =
t2−d

d(d−1) , so Q2(v
⊤
j x) = ⟨xx⊤ − I,vjv

⊤
j − I⟩/(d(d − 1)). Let’s focus on the

contribution of the quadratic term Q2 in K(0)(x,x′) and σ2(v
⊤
j x), which is

c32
B(d, 2)

· Ex

[
f⋆(x)Q2(x

⊤x′)Q2(v
⊤
j x)

]

=
c32

B(d, 2)d2(d− 1)2
· Ex

[
f⋆(x)⟨xx⊤ − I,vjv

⊤
j − I⟩⟨xx⊤ − I,x′x′⊤ − I⟩

]

≈ 1

d6
〈
Ex

[
f⋆(x)(xx⊤ − I)⊗2

]
, (vjv

⊤
j − I)⊗ (x′x′⊤ − I)

〉
.

The following proposition provides an approximation of the tensor Ex

[
f⋆(x)(xx⊤ − I)⊗2

]
, which

lays the foundation of our feature reconstruction theory.

Proposition 3. Consider two linear operators T and T ⋆ that map Rd×d to Rd×d and satisfy

T (W) = Ex

[
f⋆(x)⟨W,xx⊤ − I⟩(xx⊤ − I)

]
, and (14)

T ⋆(W) =

r∑

k=1

1

∥Ak∥2F
⟨W,Ak⟩

r∑

j=1

Hk,jAj (15)

for any W ∈ Rd×d, where H is the expected Hessian matrix H = Ez∼N (0r,Ir)

[
∇2g⋆(z)

]
. Then

for any W ∈ Rd×d , we have

∥T (W)− T ⋆(W)∥F ≲ d−1/6Lr2κ1 log
2 d · ∥W∥F .

Here L = Õ(r p−1
2 ) is the Lipschitz constant of g⋆ that holds with high probability.

The proof is provided in Appendix C.1.1. This proposition shows that, when H is well-conditioned
and d ≫ r, T can fully recover the space spanned by A1,A2, . . . ,Ar, which enables us to recon-
struct the features efficiently. Specifically, when taking Wk =

∑r
j=1[H

−1]k,jAj for any k ∈ [r],
we have T (Wk) ≈ T ⋆(Wk) = Ak.

Now we consider the construction of B⋆. If we set B⋆ = 1
m2

[p0(v1), . . . ,p0(vm2
)] for some

vector-valued function p0 : Rd → Rr and denote p0(v) = [p0,1(v), . . . , p0,r(v)]
⊤, we directly

have for any k ∈ [r],

[B⋆h(1)(x′)]k≈
1

m2

m2∑

j=1

Ex

[
f⋆(x)K(0)(x,x′)σ2(v

⊤
j x)p0,k(vj)

]

≈ 1

d6
Ev

[〈
Ex

[
f⋆(x)(xx⊤ − I)⊗2

]
, p0,k(v)(vv

⊤ − I)⊗ (x′x′⊤ − I)
〉]
.

≈ 1

d6
〈
T ⋆
(
Ev

[
p0,k(v)(vv

⊤ − I)
])
,x′x′⊤ − I

〉
.

Thus, it suffices to solve

T ⋆
(
Ev

[
p0,k(v)(vv

⊤ − I)
])
∝ Ak, k = 1, 2, . . . , r,

which is equivalent to solving

Ev

[
p0,k(v)(vv

⊤ − I)
]
∝Wk =

r∑

j=1

[H−1]k,jAj .

Since we have Ev

[
(v⊤Akv)(vv

⊤ − I)
]
∝ Ak, we can explicitly construct p0,k(v) as

p0,k(v) ∝
r∑

j=1

[H−1]k,jv
⊤Ajv, i.e., p0(v) ∝ H−1p(v).

Thus, with a well conditioned H, we can fully reconstruct the features.
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C.1.1 PROOF OF PROPOSITION 3

To prove Proposition 3, it suffices to prove that the approximation error

R(W,V) = ⟨T (W)− T ⋆(W),V⟩ ≲ d−1/6Lr2κ1 log
2 d

holds for any test matrix V with ∥V∥F = 1. We rely on the following three lemmas.
Lemma 13 (Bound R(Ai,Aj)). For any i, j ∈ [r], we have
∣∣∣∣∣Ex

[
g⋆(x⊤A1x, . . . ,x

⊤Arx)⟨Ai,xx
⊤ − I⟩⟨Aj ,xx

⊤ − I⟩
]
− Ez∼N (0r,Ir)

[
∇2g(z)

]
i,j

∣∣∣∣∣ ≤
Lr2κ1 log

2 d√
d

.

Here L = CgRr
p−1
2 is the Lipschitz constant of g⋆ that holds with high probability.

Following the proof above, we have the following more general lemma.
Lemma 14 (Bound R(Ai,B)). For any matrix B ∈ Rd×d satisfying E

[
x⊤Bx

]
= 0,

E
[(
x⊤Bx

)2]
= 1 and ⟨B,Ai⟩ = 0 for any i = 1, 2, . . . , r, we have

∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)⟨Ai,xx
⊤ − I⟩⟨B,xx⊤ − I⟩

]∣∣ ≲ d−1/4Lr2κ1 log
2 d.

Lemma 15 (Bound R(B1,B2)). For any two matrices B1,B2 ∈ Rd×d satisfying E
[
x⊤Bjx

]
= 0,

E
[(
x⊤Bjx

)2]
= 1 and ⟨Bj ,Ai⟩ = 0 for any j = 1, 2 and i = 1, 2, . . . , r, we have

∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)⟨B1,xx
⊤ − I⟩⟨B2,xx

⊤ − I⟩
]∣∣ ≲ d−1/6Lr2κ1 log

2 d.

Here L ≲ ιr
p−1
2 is a Lipschitz constant satisfying ∥∇g⋆(p(x))∥2 ≤ L with high probability.

The proof of the three lemmas is provided in Appendix C.1.2. With the lemmas above, we begin our
proof of Proposition 3.

Proof of Proposition 3. Given any W ∈ Rd×d, we assume ∥W∥F = 1 without loss of generality.
Let’s decompose W as

W =

r∑

k=1

λkAk + λr+1
Id√
d
+ λr+2B, where ⟨B,Ak⟩ = ⟨B, Id⟩ = 0, k ∈ [r].

Here the coefficients {λk}r+2
k=1 satisfy

∑r+2
k=1 λ

2
k ≲ 1, so

∑r+2
k=1 |λk| ≲

√
r. Since T ⋆(B) = T (I) =

T ⋆(I) = 0d×d, we have

∥T (W)− T ⋆(W)∥F ≤
r∑

k=1

|λk| ∥T (Ak)− T ⋆(Ak)∥F

+ |λr+1|
∥∥∥∥T
(

Id√
d

)
− T ⋆

(
Id√
d

)∥∥∥∥
F

+ |λr+2| ∥T (B)− T ⋆(B)∥F

=

r∑

k=1

|λk| ∥T (Ak)− T ⋆(Ak)∥F + |λr+2| ∥T (B)∥F .

Since both T (Ak) and T ⋆(Ak) are traceless, by Lemma 13 and 14, we have for any k = 1, 2, · · · , r,
∥T (Ak)− T ⋆(Ak)∥F = max

∥V∥=1,tr(V)=0
⟨T (Ak)− T ⋆(Ak),V⟩

≲
√
r · d−1/2Lr2κ1 log

2 d+ d−1/4Lr2κ1 log
2 d

≲ d−1/4Lr2κ1 log
2 d.

This is because we can decompose V =
∑r

k=1 ckAk + cr+1B
′ with ⟨B′,Ak⟩ = 0 and apply the

two lemmas to obtain the results above. Similarly, by Lemma 14 and 15, we have
∥T (B)∥F = max

∥V∥=1,tr(V)=0
⟨T (B),V⟩

≲
√
r · d−1/4Lr2κ1 log

2 d+ d−1/6Lr2κ1 log
2 d

≲ d−1/6Lr2κ1 log
2 d.
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Thus, we have

∥T (W)− T ⋆(W)∥F ≲
r+2∑

k=1

|λk| d−1/4Lr2 log2 d+ |λr+2| d−1/6Lr2κ1 log
2 d

≲ d−1/6Lr2κ1 log
2 d.

Here we invoke
∑r+2

k=1 |λk| ≲
√
r = od(1) in the last inequality. The proof is complete.

C.1.2 OMITTED PROOFS IN APPENDIX C.1.1

The following lemmas lay the foundation for our approximation process.

Lemma 16. Suppose Assumption 1 holds. Then the Wasserstein-1 distance between the distribution
of (x⊤A1x, . . . ,x

⊤Arx) and standard Gaussian N (0r, Ir) can be bounded by

W1

(
(x⊤A1x, . . . ,x

⊤Arx),N (0r, Ir)
)
≲

r2κ1√
d
. (16)

Moreover, for any orthogonal unit vectors u1,u2, . . .us ∈ Rd, we have a similar bound of

W1

(
(x⊤A1x, · · · ,x⊤Arx,u

⊤
1 x,u

⊤
2 x, · · · ,u⊤

s x),N (0r+s, Ir+s)
)
≲

(r + s)2κ1√
d

. (17)

Proof of Lemma 16. For a fixed matrix Ai, define the function fi(z) = dz⊤Aiz
∥z∥2 and let x = z

√
d

∥z∥ .

Observe that when z ∼ N (0, I), we have x ∼ Unif(Sd−1(
√
d)). Therefore [fi(z)]i∈[r] is equal in

distribution to [x⊤Ax]i∈[r]. We have for any i ∈ [r],

∇fi(z) = 2d

(
Aiz

∥z∥2
− z⊤Aiz · z

∥z∥4

)

and

∇2fi(z) = 2d

(
Ai

∥z∥2
− 2Aizz

⊤

∥z∥4
− 2zz⊤Ai

∥z∥4
− 2

z⊤Aiz

∥z∥4
I+ 4

z⊤Aizzz
⊤

∥z∥6

)
.

Thus, we have

∥∇fi(z)∥ ≤ 2d

(
∥Aiz∥
∥z∥2

+

∣∣z⊤Aiz
∣∣

∥z∥3

)
≤
√
d

∥z∥ · ∥Aix∥ +
∣∣x⊤Aix

∣∣
∥z∥ .

and
∥∥∇2fi(z)

∥∥
op

≲
d

∥z∥2
∥Ai∥op .

Since ∥z∥2 is distributed as a chi-squared random variable with d degrees of freedom, and thus

E
[
∥z∥−2k

]
=

1
∏k

j=1(d− 2j)
.

Therefore, we have

E
[∥∥∇2fi(z)

∥∥4
op

]1/4
≲ d ∥Ai∥op E

[
∥z∥−8

]1/4
≲ ∥Ai∥op .

Then, using the fact that x and ∥z∥ are independent,

E
[
∥∇fi(z)∥4

]1/4
≲
√
dE
[
∥z∥−4

]1/4
E
[
∥Aix∥4]1/4

]
+ E

[
∥z∥−4

]1/4
E
[
(xTAix)

4
]1/4

≲ 1.
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Thus by Lemma 1 we have
W1

(
(x⊤A1x, . . . ,x

⊤Arx),N (0r, Ir)
)

= W1(f1(z), . . . , fr(z),N (0r, Ir))

≲
4√
π

(
r∑

i=1

E
[
∥∇fi(z)∥4

]1/4
)


r∑

j=1

E
[∥∥∇2fj(z)

∥∥4
]1/4




≲
r2κ1√

d
.

Now let’s focus on the function gj(z) =
√
d
u⊤

j z

∥z∥ . It holds that

∇gj(z) =
√
d

(
uj

∥z∥ −
u⊤
j z · z
∥z∥3

)

and

∇2gj(z) =
√
d

(
−
ujz

⊤ + zu⊤
j

∥z∥3
+ 3

u⊤
j z · zz⊤

∥z∥5

)
.

Thus, we have

∥∇gj(z)∥ ≤
2
√
d

∥z∥ and
∥∥∇2gj(z)

∥∥
op
≤ 5
√
d

∥z∥2
,

which directly gives rise to

E
[
∥∇gj(z)∥4

]1/4
≲ 1 and E

[∥∥∇2gj(z)
∥∥4
op

]1/4
≲

1√
d
.

Again by Lemma 1, we have
W1

(
(x⊤A1x, · · · ,x⊤Arx,u

⊤
1 x,u

⊤
2 x, · · · ,u⊤

s x),N (0r+s, Ir+s)
)

= W1(f1(z), . . . , fr(z), g1(z), · · · , gs(z),N (0r+s, Ir+s))

≲
4√
π

(
r∑

i=1

E
[
∥∇fi(z)∥4

]1/4 s∑

i=1

E
[
∥∇gi(z)∥4

]1/4
)

·




r∑

j=1

E
[∥∥∇2fj(z)

∥∥4
]1/4

+

s∑

j=1

E
[∥∥∇2gj(z)

∥∥4
]1/4




≲
(r + s)2κ1√

d
.

The proof is complete.

With the lemma above, we begin our proof of Lemma 13.

Proof of Lemma 13. For z ∈ Rd, define H(z) = g(z)zizj . Then by Stein’s Lemma, we have
Ez∼N (0r,Ir) [H(z)] = Ez∼N (0r,Ir)

[
∇2g(z)

]
i,j

+ δi,j Ez∼N (0r,Ir) [g(z)].

Moreover, let R > 0 be a truncation radius and we define H(z) = H(clip(z, R)). Here the clipping
function is defined as

clip(z, R)i = max(min(zi, R),−R), i = 1, 2, . . . , r.

By (8), we know g(clip(z, R)) isO(Rr
p−1
2 )-Lipschitz continuous, so H has a Lipschitz constant of

O(R3r
p−1
2 ). Thus, by Lemma 16, we have

∣∣Ex

[
g(clip

(
x⊤A1x, . . . ,x

⊤Arx), R
)]
− Ez∼N (0r,Ir) [g(clip(z, R))]

∣∣ ≲ Rr
p−1
2 · r2κ1√

d
,

∣∣E
[
H(x⊤A1x, . . . ,x

⊤Arx)
]
− Ez∼N (0r,Ir)

[
H(z)

]∣∣ ≲ R3r
p−1
2 · r2κ1√
d

.
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Since Ex[(x
⊤Akx)

2] = 1 for any k ∈ [r], by Lemma 8, choosing R = C log d for an appropriate
constant C can ensure that

∣∣E
[
H(x⊤A1x, . . . ,x

⊤Arx)−H(x⊤A1x, . . . ,x
⊤Arx)

]∣∣ ≤ 1

d
,

∣∣Ex

[
g(clip

(
x⊤A1x, . . . ,x

⊤Arx), R
)
− g
(
x⊤A1x, . . . ,x

⊤Arx
)]∣∣ ≤ 1

d
,

∣∣Ez∼N (0r,Ir)

[
H(z)−H(z)

]∣∣ ≤ 1

d
,

∣∣Ez∼N (0r,Ir) [g(clip(z, R))− g(z)]
∣∣ ≤ 1

d
.

Altogether, we have
∣∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)⟨Ai,xx
⊤ − I⟩⟨Aj ,xx

⊤ − I⟩
]
− Ez∼N (0r,Ir)

[
∇2g(z)

]
i,j

∣∣∣ ≤ Lr2κ1 log
2 d√

d
.

Here L = CgRr
p−1
2 for some constant Cg > 0 is the Lipschitz constant of g⋆ that holds with high

probability. The proof is complete.

Following the above proof and replacing Ai and Aj by any other traceless matrices B1 and B2 that
are orthogonal to all Ak, we directly have the following corollary:
Corollary 1. For any two matrices B1,B2 ∈ Rd×d satisfying E

[
x⊤Bjx

]
= 0 and ⟨Bj ,Ai⟩ = 0

for any i = 1, 2, . . . , r and j = 1, 2, we have
∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)⟨Ai,xx
⊤ − I⟩⟨Bj ,xx

⊤ − I⟩
]∣∣

≲

(
rκ1√
d
+
∥Bj∥op
∥Bj∥F

)
∥Bj∥F Lr log2 d,

for any j = 1, 2, and
∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)⟨B1,xx
⊤ − I⟩⟨B2,xx

⊤ − I⟩
]∣∣

≲

(
rκ1√
d
+
∥B1∥op
∥B1∥F

+
∥B2∥op
∥B2∥F

)
∥B1∥F ∥B2∥F Lr log2 d.

Also, by (17) we know for any unit vector u ∈ Rd, (x⊤A1x,x
⊤A2x, . . . ,x

⊤Arx,u
⊤x) is ap-

proximately Gaussian when d is sufficiently large, which gives rise to the following lemma by the
same deduction.
Corollary 2. For any i ∈ [r] and unit vector u1,u2 ∈ Rd and matrix B satisfying the same
requirements in Lemma 14, we have

∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)
〈
Ai,xx

⊤ − I
〉
((u⊤

j x)
2 − 1)

]∣∣ ≲ Lr2κ1 log
2 d√

d
,

∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)
〈
B,xx⊤ − I

〉
((u⊤

j x)
2 − 1)

]∣∣ ≲
(
rκ1√
d
+
∥Bj∥op
∥Bj∥F

)
∥Bj∥F Lr log2 d

for any j = 1, 2, and we further have

∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)((u
⊤
1 x)

2 − 1)((u⊤
2 x)

2 − 1)
]∣∣ ≲ Lr2κ1 log

2 d√
d

.

With the lemmas above, we can derive a stronger version of Corollary 1, i.e., Lemma 14, in which
the error gets rid of the dependence on ∥B∥op.

Proof of Lemma 14. Let τ > 1/
√
d be a threshold to be determined later. Decompose B as follows:

B =

d∑

j=1

λjuju
⊤
j =

∑

|λj |>τ

λj

(
uju

⊤
j −

1

d
I

)
−

r∑

k=1

1

∥Ak∥2F

∑

|λj |>τ

λju
⊤
j Akuj ·Ak + B̃,
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where {uj}di=1 are orthogonal unit vectors and

B̃ =
∑

|λj |≤τ

λjuju
⊤
j + I · 1

d

∑

|λj |>τ

λj +

r∑

k=1

1

∥Ak∥2F

∑

|λj |>τ

λju
⊤
j Akuj ·Ak.

By construction, we have

tr(B̃) =
∑

|λj |≤τ

λj +
∑

|λj |>τ

λj =
∑

j∈[d]

λj = 0.

Moreover, for any k ∈ [r], we have

⟨B̃,Ak⟩ =
∑

|λj |≤τ

λju
⊤
j Akuj +

∑

|λj |>τ

λju
⊤
j Akuj = ⟨Ak,B⟩ = 0.

Therefore by Lemma 1, we have
∣∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)⟨Ai,xx
⊤ − I⟩⟨B̃,xx⊤ − I⟩

]∣∣∣

≲


rκ1√

d
+

∥∥∥B̃
∥∥∥
op∥∥∥B̃
∥∥∥
F



∥∥∥B̃
∥∥∥
F
Lr log2 d. (18)

Since
∑d

j=1 λ
2
j = ∥B∥2F = (d + 2)/(2d) = O(1), there are at most O(τ−2) indices j satisfying

|λj | > τ , which gives rise to
∑

|λj |>τ

|λj | ≲
√
τ−2 ·

∑

|λj |>τ

|λj |2 ≤ τ−1.

Thus, we can bound the Frobenius norm of B̃ by

∥∥∥B̃
∥∥∥
2

F
≲
∑

|λj |≤τ

λ2
j +

1

d


∑

λj>τ

λj




2

+

∥∥∥∥∥∥

r∑

k=1

1

∥Ak∥2F

∑

|λj |>τ

λju
⊤
j Akuj ·Ak

∥∥∥∥∥∥

2

F

=
∥∥∥B̃
∥∥∥
2

F

∑

|λj |≤τ

λ2
j +

1

d


∑

λj>τ

λj




2

+

r∑

k=1


 ∑

|λj |>τ

λju
⊤
j Akuj




2

≲
∑

|λj |≤τ

λ2
j +

(
1

d
+

r∑

k=1

∥Ak∥2op

)
 ∑

|λj |>τ

λj




2

≲ 1 +
rκ2

1

dτ2
.

Thus, we have
∥∥∥B̃
∥∥∥
F
≲ 1 +

√
rκ1√
dτ

and

∥∥∥B̃
∥∥∥
op
≤ τ +

(
1

d
+

r∑

k=1

∥Ak∥op

)∣∣∣∣∣∣
∑

|λj |>τ

λju
⊤
j Auj

∣∣∣∣∣∣

≲ τ +
rκ1

dτ
.

Thus, plugging the norm bounds into (18), we obtain that
∣∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)⟨Ai,xx
⊤ − I⟩⟨B̃,xx⊤ − I⟩

]∣∣∣ ≲
(
rκ1√
d
+

r3/2κ2
1

dτ
+ τ +

rκ1

dτ

)
Lr log2 d.

Next, applying Corollary 2 with u = u1, u2, . . . , ud, we have

∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)
〈
Ai,xx

⊤ − I
〉
⟨uju

⊤
j − I/d,xx⊤ − I⟩

]∣∣ ≲ Lr2κ1 log
2 d√

d
, ∀j ∈ [d].
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Thus, we have
∣∣∣∣∣∣
E


g⋆(x⊤A1x, . . . ,x

⊤Arx)
〈
Ai,xx

⊤ − I
〉
〈 ∑

|λj |>τ

λj

(
uju

⊤
j −

1

d
I

)
,xx⊤ − I

〉

∣∣∣∣∣∣

≤
∑

|λj |>τ

|λj |
Lr2κ1 log

2 d√
d

≲
Lr2κ1 log

2 d√
dτ

.

Besides, by Lemma 13, we have
∣∣∣∣∣∣
E


g⋆(x⊤A1x, . . . ,x

⊤Arx)
〈
Ai,xx

⊤ − I
〉
〈

r∑

k=1

1

∥Ak∥2F

∑

|λj |>τ

λju
⊤
j Akuj ·Ak,xx

⊤ − I

〉

∣∣∣∣∣∣

≲
r∑

k=1

∣∣∣∣∣∣
∑

|λj |>τ

λju
⊤
j Akuj

∣∣∣∣∣∣

(
Ez∼N (0r,Ir)

[
∇2g(z)

]
k,i

+
Lr2κ1 log

2 d√
d

)

≲
r∑

k=1

L

∣∣∣∣∣∣
∑

|λj |>τ

λju
⊤
j Akuj

∣∣∣∣∣∣

≲
Lrκ1√
dτ

.

Altogether, we have
∣∣E
[
g⋆(x⊤A1x, . . . ,x

⊤Arx)⟨Ai,xx
⊤ − I⟩⟨B,xx⊤ − I⟩

]∣∣

≲

(
rκ1√
d
+

r3/2κ2
1

dτ
+ τ +

rκ1

dτ

)
Lr log2 d+

Lr2κ1 log
2 d√

dτ
+

Lrκ1√
dτ

≲ d−1/4Lr2κ1 log
2 d.

where we set τ = κ1d
−1/4. The proof is complete.

Following the proof above, we can complete the proof of Lemma 15.

Proof of Lemma 15. Similar to the proof of Lemma 14, we decompose B1 and B2 as follows:

Bi =

d∑

j=1

λi,jui,ju
⊤
i,j

=
∑

|λi,j |>τ

λi,j

(
ui,ju

⊤
i,j −

1

d
I

)
−

r∑

k=1

1

∥Ak∥2F

∑

|λi,j |>τ

λi,ju
⊤
i,jAkui,j ·Ak + B̃i,

where {ui,j}dj=1 are orthogonal unit vectors for i = 1, 2, respectively, and

B̃i =
∑

|λi,j |≤τ

λi,jui,ju
⊤
i,j + I · 1

d

∑

|λi,j |>τ

λi,j +

r∑

k=1

1

∥Ak∥2F

∑

|λi,j |>τ

λi,ju
⊤
i,jAkui,j ·Ak.

Then following the proof of Lemma 14, we know for any i = 1, 2 and k = 1, 2, . . . , r,

tr
(
B̃i

)
= ⟨B̃i,Ak⟩ = 0,

∥∥∥B̃i

∥∥∥
F
≲ 1 +

√
rκ1√
dτ

,
∥∥∥B̃i

∥∥∥
op

≲ τ +
rκ1

dτ
,

∑

|λi,j |>τ

|λi,j | ≲ τ−1.

Let’s denote the bi-linear operator Γ(·, ·) : Rd×d × Rd×d → R being

Γ(A,B) = E
[
f⋆(x)⟨A,xx⊤ − I⟩⟨B,xx⊤ − I⟩

]
. (19)
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By Corollary 1 and the proof of Lemma 14, we have

∣∣∣Γ(B̃1, B̃2)
∣∣∣ ≲

(
rκ1√
d

(
1 +

rκ2
1

dτ2

)
+
(
τ +

rκ1

dτ

)(
1 +

√
r√
dτ

))
Lr log2 d. (20)

∣∣∣∣∣∣
Γ


B̃i,

∑

|λ−i,j |>τ

λ−i,j

(
u−i,ju

⊤
−i,j − I/d

)


∣∣∣∣∣∣

≲ τ−1

(
rκ1√
d
+

r3/2κ2
1

dτ
+ τ +

rκ1

dτ

)
Lr log2 d (21)

∣∣∣∣∣∣
Γ


B̃i,

r∑

k=1

1

∥Ak∥2F

∑

|λ−i,j |>τ

λ−i,ju
⊤
−i,jAku−i,j ·Ak



∣∣∣∣∣∣

≲ τ−1

(
rκ1√
d
+

r3/2κ2
1

dτ
+ τ +

rκ1

dτ

)
Lr log2 d. (22)

Here −i means 2 when i = 1 and 1 when i = 2. Moreover, by Lemma 13, we have

∣∣∣∣∣∣
Γ




r∑

k=1

1

∥Ak∥2F

∑

|λ1,j |>τ

λ1,ju
⊤
1,jAku1,j ·Ak,

r∑

k=1

1

∥Ak∥2F

∑

|λ2,j |>τ

λ2,ju
⊤
2,jAku2,j ·Ak



∣∣∣∣∣∣

≲




r∑

k=1

∣∣∣∣∣∣
∑

|λ1,j |>τ

λ1,ju
⊤
1,jAku1,j

∣∣∣∣∣∣






r∑

k=1

∣∣∣∣∣∣
∑

|λ2,j |>τ

λ2,ju
⊤
2,jAku2,j

∣∣∣∣∣∣



(
1 +

Lr2κ1 log
2 d√

d

)

≲
r2κ2

1

dτ2
, (23)

and

∣∣∣∣∣∣
Γ




r∑

k=1

1

∥Ak∥2F

∑

|λi,j |>τ

λi,ju
⊤
i,jAkui,j ·Ak,

∑

|λ−i,j |>τ

λ−i,j

(
u−i,ju

⊤
−i,j − I/d

)


∣∣∣∣∣∣

≲




r∑

k=1

∣∣∣∣∣∣
∑

|λi,j |>τ

λi,ju
⊤
i,jAkui,j

∣∣∣∣∣∣




 ∑

|λ−i,j |>τ

|λ−i,j |


Lr2κ1 log

2 d√
d

≲
rκ1√
dτ2
· Lr

2κ1 log
2 d√

d
. (24)

Finally, we have

∣∣∣∣∣∣
Γ


 ∑

|λ1,j |>τ

λ1,j

(
u1,ju

⊤
1,j − I/d

)
,
∑

|λ2,j |>τ

λ2,j

(
u2,ju

⊤
2,j − I/d

)


∣∣∣∣∣∣

≲


 ∑

|λ1,j |>τ

|λ1,j |




 ∑

|λ2,j |>τ

|λ2,j |


Lr2κ1 log

2 d√
d

.

≲
1

τ2
· Lr

2κ1 log
2 d√

d
. (25)
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Summing (20) to (25) altogether, we have

|Γ(B1,B2)| ≲
(
rκ1√
d

(
1 +

rκ2
1

dτ2

)
+
(
τ +

rκ1

dτ

)(
1 +

√
r√
dτ

))
Lr log2 d

+ τ−1

(
rκ1√
d
+

r3/2κ2
1

dτ
+ τ +

rκ1

dτ

)
Lr log2 d

+
r√
dτ
· Lr

2κ1 log
2 d√

d
+

r2κ2
1

dτ2
+

rκ1√
dτ2
· Lr

2κ1 log
2 d√

d
+

1

τ2
· Lr

2κ1 log
2 d√

d

≲ d−1/6Lr2κ1 log
2 d,

where we take τ = κ1d
−1/6. The proof is complete.

C.2 BOUNDEDNESS OF THE LEARNED FEATURE

In this section, we aim to upper bound the magnitude of the learned feature ⟨w,h(1)(x′)⟩. Since we
focus on the first training stage throughout this section, we denote n = n1 for notation simplicity
when the context is clear, and let the training set be D1 = {x1,x2, . . . ,xn}. We have the following
proposition:
Proposition 4. Suppose m2 ⩾ d4C4

σ and n ⩾ Cι2d2 for some sufficiently large C. With high
probability jointly on V and the training datasetD1, and with probability at least 1−4n exp(−ι2/2)
on w, for any x′ ∈ D2, we have
∣∣∣⟨w,h(1)(x′)⟩

∣∣∣ ≲ ιp+2

d3
+

ιp+2√m2

d4
√
n

+

√
m2ι

3 log2(m2n2)

d6
·
(
∥P>2(f

⋆)∥L2 +
√
d ∥P2(f

⋆)∥L2

)
.

As a corollary, when m2 ≳ d6ι2p+4, n ≳ d4ι2p+4 and ∥P2(f
⋆)∥L2 ≲ κ2√

d
, we have for any x′ ∈ D2,

1√
m2

∣∣∣⟨w,h(1)(x′)⟩
∣∣∣ ≲ κ2ι

5

d6
. (26)

Thus, by taking the learning rate η = Cm
−1/2
2 κ−1

2 ι−5d6 for an appropriate constant C > 0, we can
ensure that

∣∣η⟨w,h(1)(x′)⟩
∣∣ ≤ 1 with high probability.

Proof of Proposition 4. Note that

1

m2
⟨w,h(1)(x′)⟩ = 1

m2n

n∑

i=1

m2∑

j=1

wjf
⋆(xi)K

(0)
m2

(xi,x
′)σ2

(
v⊤
j xi

)

=
1

m2

m2∑

j=1

1

n

n∑

i=1

f⋆(xi)K
(0)
m2

(xi,x
′)wjσ2

(
v⊤
j xi

)
.

We do a decomposition as follows

1

m2

m2∑

j=1

1

n

n∑

i=1

f⋆(xi)K
(0)
m2

(xi,x
′)wjσ2

(
v⊤
j xi

)

=
1

m2

m2∑

j=1

1

n

n∑

i=1

f⋆(xi)
(
K(0)

m2
(xi,x

′)−K(0)(xi,x
′)
)
wjσ2

(
v⊤
j xi

)

︸ ︷︷ ︸
A1

+
1

m2

m2∑

j=1

1

n

(
n∑

i=1

f⋆(xi)K
(0)(xi,x

′)wjσ2

(
v⊤
j xi

)
− Ex

[
f⋆(x)K(0)(x,x′)wjσ2

(
v⊤
j x
)]
)

︸ ︷︷ ︸
A2

+
1

m2

m2∑

j=1

wj Ex

[
f⋆(x)K(0)(x,x′)σ2

(
v⊤
j x
)]

︸ ︷︷ ︸
A3

.

We consider derive an upper bound on A1, A2 and A3, respectively.
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Lemma 17 (Bound A1). Suppose m2 ⩾ d4C4
σ . With high probability jointly on V and the training

dataset D1, and with probability at least 1− 2n exp(−ι2/2) on w, for any x′ ∈ D2, we have

|A1| ≲
ιp+2

m2d3
.

Lemma 18 (Bound A2). Suppose m2 ⩾ d4C4
σ and n ⩾ Cι2d2 for some sufficiently large C. With

high probability on the training dataset D1, for any x′ ∈ D2, we have

|A2| ≲
ιp+2

d4
√
m2n

.

Lemma 19 (Bound A3). Suppose m2 ⩾ d4C4
σ for some sufficiently large C. With high probability

jointly on V and the training dataset D1, and with probability at least 1 − 2n2 exp(−ι2/2) on w,
we have

|A3| ≲
ι3 log2(m2n2)√

m2d6
·
(
∥P>2(f)∥L2 +

√
d ∥P2(f)∥L2

)
.

Similarly, for a single point x′, with high probability on V andD1, with probability 1−2 exp(−ι2/2)
on w, we have

|A3| ≲
ι3 log2(m2n2)√

m2d6
·
(
∥P>2(f)∥L2 +

√
d ∥P2(f)∥L2

)
.

The proof of the three lemmas are provided in Appendix C.2.1. Combining the results in the three
lemmas above directly concludes our proof.

C.2.1 OMITTED PROOFS FOR PROPOSITION 4

Proof of Lemma 17. We can rewrite A1 as

|A1| =
1

n

n∑

i=1

f⋆(xi)
(
K(0)

m2
(xi,x

′)−K(0)(xi,x
′)
) 1

m2

m2∑

j=1

wjσ2

(
v⊤
j xi

)

Since 1√
m2

∑m2

j=1 wjσ2

(
v⊤
j x
)
∼ N

(
0, 1

m2

∑m2

j=1 σ2

(
v⊤
j x
)2)

, we know given any x and V, with

probability at least 1− 2 exp(−ι2/2) on w, we have
∣∣∣∣∣∣
1

m2

m2∑

j=1

wjσ2

(
v⊤
j x
)
∣∣∣∣∣∣
≤ ι√

m2
·

√√√√ 1

m2

m2∑

j=1

σ2

(
v⊤
j x
)2

Moreover, by (34) in the proof of Lemma 24, we know for any x and t > 0, we have

Pr


 1

m2

m2∑

j=1

(
σ2

(
v⊤
j x
)2 − Evj

[
σ2(v

⊤
j x)

2
])

⩾

√
t

m2




= Pr

[∣∣∣K(0)
m2

(x,x)−K(0)(x,x)
∣∣∣ ⩾

√
t

m2

]

≤ 2 exp


 −t/2

C4

d4 +
C2

σ

3

√
t

m2


.

Altogether, when m2 ⩾ d4C4
σ , by taking t = C2ι2/d4 for sufficiently large C and union bounding

over the dataset D1, we can ensure that with probability at least 1 − n exp(−ι) on V and at least
1− 2n exp(−ι2/2) on w, i.e., high probability on w, V, we have

∣∣∣∣∣∣
1

m2

m2∑

j=1

wjσ2

(
v⊤
j x
)
∣∣∣∣∣∣
≤ Cι√

m2

√
C2

d2
+

ι√
m2d2

≤ ιC3√
m2d

, ∀x ∈ D1. (27)
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Here C3 is a constant. We denote this joint event by E1. On the other hand, by Lemma 24, with
high probability on V, we have for any xi ∈ D1 and x′ ∈ D2,

∣∣∣K(0)
m2

(xi,x
′)−K(0)(xi,x

′)
∣∣∣ ≤ ι√

m2d2
. (28)

We denote this event by E2. Last, we truncate the range of the target function f . Denoting the
truncation radius as R = (Cη)p for a sufficient large constant C and η = log(dm1m2n1n2)
Pr [|f(x)| ⩾ R] ≤ 2e−2η (this could be guaranteed by Lemma 4). Given n i.i.d. samples
x1,x2 . . . ,xn ∼ Sd−1(

√
d), we have

Pr [|f(xi)| ≤ R,∀i ∈ [n]] ⩾ 1− 2ne−2η. (29)

Thus, with high probability on the dataset D, we have |f(x)| ≤ ιp for any x ∈ D1. We denote this
event by E3. Thus, combining (27) (32) and the truncation radius of f , we directly have

|A1| ≤ ιp · ι√
m2d2

· ιC3√
m2d

=
C3ι

p+2

m2d3
.

with high probability (under events E1, E2 and E3). The proof is complete.

Proof of Lemma 18. We rewrite A2 as

A2 =
1

n

n∑

i=1

Ex


f⋆(xi)K

(0)(xi,x
′)

1

m2

m2∑

j=1

wjσ2

(
v⊤
j xi

)
− f⋆(x)K(0)(x,x′)

1

m2

m2∑

j=1

wjσ2

(
v⊤
j x
)

.

Denote Y (x) = f⋆(x)K(0)(x,x′) 1
m2

∑m2

j=1 wjσ2

(
v⊤
j x
)
. By the proof of bounding A1, we could

choose the truncation radius as R = (Cη)p such that |f(x)| ≤ R for all x ∈ D with high probability
(1− 2ne−2η) on the dataset D. Now we denote a truncated version of Y by

Ỹ (x) = f⋆(x)1{f⋆(x) ≤ R}K(0)(x,x′)
1

m2

m2∑

j=1

wjσ2

(
v⊤
j x
)
1





1

m2

m2∑

j=1

wjσ2

(
v⊤
j x
)
≤ ιC3√

m2d



 .

Here C3 is a constant defined in (27). Now, we decompose the concentration error as

1

n

n∑

i=1

Y (xi)− Ex [Y (x)] =
1

n

n∑

i=1

(
Y (xi)− Ỹ (xi)

)

︸ ︷︷ ︸
L0

+
1

n

n∑

i=1

(
Ỹ (xi)− Exi

[
Ỹ (xi)

])

︸ ︷︷ ︸
L1

+
1

n

n∑

i=1

(
Exi

[
Ỹ (xi)

]
− Exi

[Y (xi)]
)

︸ ︷︷ ︸
L2

.

We know with probability at least 1− 2ne−2η on D, L0 = 0.

Bounding L1. We attempt to use Bernstein’s type bound. First we derive a uniform upper bound
of Ỹ (x). By the definition, we have

∣∣∣Ỹ (x)
∣∣∣ ≤ R

∣∣∣K(0)(x,x′)
∣∣∣

∣∣∣∣∣∣
1

m2

m2∑

j=1

wjσ2

(
v⊤
j x
)
∨ ιC3√

m2d

∣∣∣∣∣∣

≤ R · C2

d2
ιC3√
m2d

=
RC2C3ι

d3
√
m2

.
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Then, we bound the second moments of Ỹ (x)− Ex

[
Ỹ (x)

]
, which is

Var
[
Ỹ (x)

]
≤ Ex

[
Ỹ 2
k (x)

]

≤ r2κ1 Ex



(
K(0)(x,x′)

)2

 1

m2

m2∑

j=1

wjσ2

(
v⊤
j x
)
∨ ιC3√

m2d




2



≤ r2κ1 Ex

[(
K(0)(x,x′)

)2]( ιC3√
m2d

)2

≤ r2κ1

∞∑

k=2

c4k
B(d, k)3

·
(

ιC3√
m2d

)2

≤ C4r
2κ1ι

2

m2d8
.

Here C4 is a constant. Thus, by Bernstein’s inequality, we have

Pr

[
|L1| ⩾

Rι

d4
√
m2

√
t

n

]
≤ 2 exp


 − t

2

C4 +
C2C3

3

√
d2t
n


.

Thus, when n ⩾ Cϵι
2d2, by taking t = ι2 and R = (Cη)p ≤ ιp, with high probability on D, V and

w, we have

|L1| ≤
ιp+2

d4
√
m2n

.

Bounding L2. It suffices to bound∣∣∣Ex

[
Ỹk(x)

]
− Ex [Yk(x)]

∣∣∣

≤ Ex


|f⋆(x)|

∣∣∣∣∣∣
K(0)(x, x′)

1

m2

m2∑

j=1

wjσ2

(
v⊤
j x
)
∣∣∣∣∣∣
1



f⋆(x) > R or

1

m2

m2∑

j=1

wjσ2

(
v⊤
j x
)
>

ιC3√
m2d








≤ Ex

[
(f⋆(x))2

] 1
2 Pr


f⋆(x) > R or

1

m2

m2∑

j=1

wjσ2

(
v⊤
j x
)
>

ιC3√
m2d




1
4

Ex

[
K(0)(x,x′)4

] 1
4 τC3√

m2d

≲
(exp(−η) + exp(−ι))ιC3

d3
√
m2

.

Taking η ⩾ 2 log n+2 log d+log(C3) and ι ⩾ Cη, we ensure that L2 ≤ ι/(d4
√
m2n). Altogether,

with high probability (event E3) on D, we have

|A2| =
∣∣∣∣∣
1

n

n∑

i=1

Y (xi)− Ex [Y (x)]

∣∣∣∣∣ ≤
2ιp+2

d4
√
m2n

.

The proof is complete.

Proof of Lemma 19. We remember that

A3 =
1

m2

m2∑

j=1

wj Ex

[
f⋆(x)K(0)(x,x′)σ2

(
v⊤
j x
)]

=
1

m2

m2∑

j=1

wjh(vj ,x
′),

where h(v,x′) = Ex

[
f⋆(x)K(0)(x,x′)σ2

(
v⊤x

)]
. To bound h(v,x′) uniformly, we have the

following lemma:

Lemma 20. With high probability on V and the datasets D1 and D2, we have for any j ∈ [m2] and
x′ ∈ D2,

|h(vj ,x
′)| ≲ ι2 log2(m2n2)

d6
·
(
∥P>2(f)∥L2 +

√
d ∥P2(f)∥L2

)
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The proof of Lemma 20 is deferred to the end of this section. Thus, condition on the event above,
by invoking the upper bound of Gaussian tail and uniformly bounding over x′ ∈ D2, we have with
probability 1− 2n exp(−ι2/2) on w, for any x′ ∈ D2, we have

|A3| ≤
ι√
m2

√√√√ 1

m2

m2∑

j=1

h2(vj ,x′) ≲
ι3 log2(m2n2)√

m2d6
·
(
∥P>2(f)∥L2 +

√
d ∥P2(f)∥L2

)
.

Also, for a single point x′, with probability 1− 2 exp(−ι2/2) on w, we have

|A3| ≲
ι3 log2(m2n2)√

m2d6
·
(
∥P>2(f)∥L2 +

√
d ∥P2(f)∥L2

)
.

The proof is complete.

Proof of Lemma 20. Recall that the activation function σ2 admits a Gegenbauer expansion

σ2(t) =

∞∑

i=2

ciQi(t).

Let’s fix x′ and v. Note that we can decompose h(v,x′) as

h(v,x′) = Ex

[
f⋆(x)K(0)(x,x′)σ2

(
v⊤x

)]

= Ex


f⋆(x)

∞∑

i=2

c2iQi(x
⊤x′)

B(d, i)

∞∑

j=2

cjQj

(
x⊤v

)



=

∞∑

i=2

∞∑

j=2

Ex

[
f⋆(x)

c2i
B(d, i)2
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′)⟩ · cj
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]
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c2i cj
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⟨Yi(x
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⋆(x)Yi(x)⊗Yj(x)]⟩.

=:
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i=2

∞∑

j=2

c2i cj
B(d, i)2B(d, j)

hi,j(v,x
′).

By the definition of hi,j(v,x
′), we have

Ev,x′
[
h2
i,j(v,x

′)
]

(30)
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⋆(x)Yi(x)⊗Yj(x)]⟩

= B(d, i)B(d, j)Ex,x′
[
f(x)f(x′)Qi(x

⊤x′)Qj(x
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
f(x)f(x′)

min(i,j)∑

k=0

b
(i,j)
i+j−2kQi+j−2k(x

⊤x′)




= B(d, i)B(d, j)Ex,x′


f(x)f(x′)

min(i,j)∑

k=0

b
(i,j)
i+j−2k

B(d, i+ j − 2k)
⟨Yi+j−2k(x),Yi+j−2k(x

′)⟩




= B(d, i)B(d, j)

min(i,j)∑

k=0

b
(i,j)
i+j−2k

B(d, i+ j − 2k)
∥Ex [f(x)Yi+j−2k(x)]∥2F

= B(d, i)B(d, j)

min(i,j)∑

k=0

b
(i,j)
i+j−2k

B(d, i+ j − 2k)
∥[Pi+j−2k(f)]∥2L2 . (31)
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Since hi,j(v,x
′) is a degree i polynomial of x′ and a degree j polynomial of v, by Lemma 5, we

have for any q ⩾ 2,

Ev,x′
[
|hi,j(v,x

′)|q
]2/q ≤ (q − 1)i+jEv,x′

[
hi,j(v,x

′)2
]

Let δ = (2eι log (m2n2))
(i+j)/2 for some ι > 1, taking q = 1+e−1δ2/(i+j) and Markov inequality,

we have

Pr

[
|hi,j(v,x

′)| ⩾ δ
√
Ev,x′ [hi,j(v,x′)2]

]
≤ Ev,x′

[
|hi,j(v,x

′)|q
]

(
δ
√
Ev,x′ [hi,j(v,x′)2]

)∞

≤ (q − 1)
(i+j)q/2

δ−q

= exp

(
− i+ j

2

(
1 +

2eι log (m2n2)

e

))

= (m2n2)
−ι(i+j) exp(−(i+ j)/2).

Thus, with probability at least −(m2n2)
1−ι(i+j) exp(−(i+ j)/2),

hi,j(vi,x
′) ≤ (2eι log (m2n2))

(i+j)/2
√

Ev,x′ [hi,j(v,x′)2]

≤ (2eι log (m2n2))
(i+j)/2

√√√√
[(i+j)/2]∑

k=0

B(d, i)B(d, j)b
(i,j)
i+j−2k

B(d, i+ j − 2k)
∥[Pi+j−2k(f)]∥2L2 .

In the second inequality we invoke (31). Summing over i and j gives rise to

|h(v,x′)|

=

∣∣∣∣∣∣

∞∑

i=2

∞∑

j=2

c2i cj
B(d, i)2B(d, j)

hi,j(v,x
′)

∣∣∣∣∣∣

≤
∞∑

i=2

∞∑

j=2

c2i |cj | (2eι log (m2n2))
(i+j)/2

B(d, i)2B(d, j)

√√√√
[(i+j)/2]∑

k=0

B(d, i)B(d, j)b
(i,j)
i+j−2k

B(d, i+ j − 2k)
∥[Pi+j−2k(f)]∥2L2

≤

√√√√
∞∑

i=2

∞∑

j=2

c2i |cj | (2eι log (m2n2))
(i+j)/2

B(d, i)2B(d, j)1/2

·

√√√√
∞∑

i=2

∞∑

j=2

c2i |cj | (2eι log (m2n2))
(i+j)/2

B(d, i)2B(d, j)3/2

[(i+j)/2]∑

k=0

B(d, i)B(d, j)b
(i,j)
i+j−2k

B(d, i+ j − 2k)
∥[Pi+j−2k(f)]∥2L2

≲
ι log(m2n2)

d5/2
·

√√√√
∞∑

ℓ=0

1

B(d, ℓ)

2≤i,j∑

i+j−ℓ even

c2i |cj | b
(i,j)
ℓ (2eι log (m2n2))

(i+j)/2

B(d, i)B(d, j)1/2
∥[Pℓ(f)]∥2L2 .

In the second inequality we invoke Cauchy inequality. Then by plugging the bound on b
(i,j)
ℓ in

Lemma 12, we have

|h(v,x′)|

≲
ι log(m2n2)

d5/2
·

√√√√
∞∑

ℓ=0

4(2ℓ+ d− 2)

B(d, ℓ)(d− 2)

i,j⩾max(k,2)∑

i+j−ℓ=2k

c2i |cj | (2eι log (m2n2))
(i+j)/2

B(d, i)B(d, j)1/2(d− 2)k

(
i

k

)(
j

k

)
k! ∥[Pℓ(f)]∥2L2

≲
ι log(m2n2)

d5/2
·
(
ι log(m2n2)

d7/2
· ∥P>2(f)∥L2 +

ι log(m2n2)

d3
· ∥P2(f)∥L2

)

=
ι2 log2(m2n2)

d6
· ∥P>2(f)∥L2 +

ι2 log2(m2n2)

d11/2
· ∥P2(f)∥L2 .
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The probability of this event is at least

1−
∞∑

i=2

∞∑

j=2

(m2n2)
−ι(i+j) exp((i+ j)/2) = 1− m2n2

(
−(m2n2)

−ιe−1/2
)2

(m2n2)4ιe2
,

which is a high probability event when uniformly bounding over x′ ∈ D2 and v = v1,v2 . . . ,vm2 .
The proof is complete.

C.3 PROOF OF PROPOSITION 1

C.3.1 THE FORMAL STATEMENT OF PROPOSITION 1 AND THE COROLLARY

Let’s consider a formal version of Proposition 1. We remind the readers that throughout this section
we denote n = n1 for notation simplicity, since we only focus on the first training stage.

Proposition 5 (Reconstruct the feature). Suppose m2, n ⩾ Cd4 for some sufficiently large C. With
high probability jointly on V and the training datasets D1 and D2, there exists a matrix B⋆ ∈
Rr×m2 satisfying ∥B⋆∥op ≲ d6

λmin(H)

√
1

m2
such that for any x′ ∈ D2, we have

∥∥∥B⋆h(1)(x′)− p(x′)
∥∥∥
2
≲

√
r

λmin(H)
·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n
+

ιLr2κ1 log
2 d

d1/6

)
.

Here L ≲ ιr
p−1
2 is a Lipschitz constant satisfying ∥∇g⋆(p(x))∥2 ≤ L with high probability.

With the proposition above, we directly have the following result.

Corollary 3. Under the same assumption in Proposition 5, with high probability, we have

sup
x∈D2

∣∣∣g(B⋆h(1)(x))− g(p(x))
∣∣∣ ≲ ∥g∥L2 ·

rp/2

λmin(H)
·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n
+

ιLr2κ1 log
2 d

d1/6

)
.

We provide the main proof of Proposition 5 in Appendix C.3.2, and defer the proof of Corollary 3
and other supporting lemmas to Appendix C.3.3.

C.3.2 PROOF OF PROPOSITION 5

Proof. Denote the target features by p(v) = [v⊤A1v, · · · ,v⊤Arv]
⊤ ∈ Rr for any v ∈ Rd, and

we further let P = [p(v1),p(v2), · · · ,p(vm2
)]⊤ ∈ Rm2×r. Then for any x′ ∈ D2, we have the

following decomposition

1

m2
P⊤h(1)(x′) =

1

m2n

n∑

i=1

m2∑

j=1

f⋆(xi)K
(0)
m2

(xi,x
′)σ2

(
v⊤
j xi

)
p(vj)

=
1

n

n∑

i=1

1

m2

m2∑

j=1

f⋆(xi)
(
K(0)

m2
(xi,x

′)−K(0)(xi,x
′)
)
σ2

(
v⊤
j xi

)
p(vj)

︸ ︷︷ ︸
D1,1

+
1

n

n∑

i=1

f⋆(xi)K
(0)(xi,x

′)


 1

m2

m2∑

j=1

σ2

(
v⊤
j xi

)
p(vj)−

c2
B(d, 2)

p(xi)




︸ ︷︷ ︸
D1,2

+
c2

nB(d, 2)

(
n∑

i=1

f⋆(xi)K
(0)(xi,x

′)p(xi)− Ex

[
f⋆(x)K(0)(x,x′)p(xi)

])

︸ ︷︷ ︸
D2

+
c2

B(d, 2)
Ex

[
f⋆(x)K(0)(x,x′)p(x)

]

︸ ︷︷ ︸
D3

.
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We will derive an upper bound on the concentration error terms D1,1, D1,2 and D2, respectively.
Moreover, leveraging the asymptotic analysis in Appendix C.1, we show that D3 ≈ d−6Hp(x′)
with high probability,

Lemma 21 (Bound D1,1 and D1,2). Under the same assumptions in Proposition 5, with high prob-
ability on V, D1 and D2, we have

∥D1,1∥∞ ≤
9C

1/4
4 ιp+2

m2d
and ∥D1,2∥∞ ≤

9ιC
1/4
4 C2√
m2d3

.

Lemma 22 (Bound D2). Under the same assumptions in Proposition 5, with high probability on
D1 and D2, we have

∥D2∥∞ ≲
ιp+3/2

√
nd5

.

Lemma 23 (Compute D3). Under the same assumptions in Proposition 5, with high probability on
D2, for any x′ ∈ D2, we have

∥∥∥∥D3 −
c22

B(d, 2)2d(d− 1)
·Hp(x′)

∥∥∥∥
∞

≲
ιLr2κ1 log

2 d

d6+1/6
.

We defer the detailed proof of the three lemmas to Appendix C.3.3. Combining all the results above
and choosing

B⋆ =
B(d, 2)2d(d− 1)

c22
· 1

m2
H−1P⊤,

we have with high probability on V, D1 and D2,
∥∥∥B⋆h(1)(x′)− p(x′)

∥∥∥
2

≤ B(d, 2)2d(d− 1)

c22
·
∥∥∥∥H−1

(
D1,1 +D1,2 +D2 +D3 −

c22
B(d, 2)d(d− 1)

·Hp(x′)

)∥∥∥∥
2

≲
d6
√
r

λmin(H)
·
(
∥D1,1∥∞ + ∥D1,2∥∞ + ∥D2∥∞

+

∥∥∥∥D3 −
c22

B(d, 2)d(d− 1)
·Hp(x′)

∥∥∥∥
∞

)

≲

√
r

λmin(H)
·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n
+

ιLr2κ1 log
2 d

d1/6

)
,

To bound ∥B⋆∥op, note that

∥B⋆∥2op =
∥∥B⋆B⋆⊤∥∥

op

≲
d12

m2
2λ

2
min(H)

∥∥PP⊤∥∥
op

=
d12

m2λ2
min(H)

∥∥∥∥∥∥
1

m2

m2∑

j=1

p(vj)p(vj)
⊤

∥∥∥∥∥∥
op

.

Moreover, for any j ∈ [m2], we have

∥∥p(vj)p(vj)
⊤∥∥

op
= ∥p(vj)∥22 =

r∑

k=1

(v⊤
j Akvj)

2 ≲ rd2,
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and we have
∥∥∥Ev

[(
p(v)p(v)⊤

)2]∥∥∥
op

=

∥∥∥∥∥Ev

[
r∑

k=1

(v⊤Akv)
2p(v)p(v)⊤

]∥∥∥∥∥
op

≤
r∑

k=1

∥∥Ev

[
(v⊤Akv)

2p(v)p(v)⊤
]∥∥

op

≤
r∑

k=1

d2
∥∥Ev

[
p(v)p(v)⊤

]∥∥
op

= rd2.

The second inequality holds because p(v)p(v)⊤ is positive semi-definite. By Matrix Bernstein
Inequality, we have

Pr



∥∥∥∥∥∥

1

m2

m2∑

j=1

p(vj)p(vj)
⊤ − I

∥∥∥∥∥∥
op

⩾ 1 +

√
rdι√
m2


 ≤ exp


−

rd2ι2

2m2

rd2

m2
+ rd2

3m2
·
√
rdι√
m2




= exp


−

ι2

2

1 +
√
rdι

3
√
m2


.

Thus, when m2 ⩾ d4, we know with high probability on V,
∥∥∥∥∥∥

1

m2

m2∑

j=1

p(vj)p(vj)
⊤

∥∥∥∥∥∥
op

≤ 1 +

√
rdι√
m2

≲ 1.

Thus, we have ∥B⋆∥op ≲ d6

λmin(H)

√
1

m2
. The proof is complete.

C.3.3 OMITTED PROOFS IN APPENDICES C.3.1 AND C.3.2

Proof of Lemma 21. Let’s first bound D1,1. We can rewrite D1,1 as

D1,1 =
1

n

n∑

i=1

f⋆(xi)
(
K(0)

m2
(xi,x

′)−K(0)(xi,x
′)
) 1

m2

m2∑

j=1

σ2

(
v⊤
j xi

)
p(vj)

By Lemma 25, for any k ∈ [r], we have with high probability on V
∣∣∣∣∣∣
1

m2

m2∑

j=1

(v⊤
j Akvj)σ2(v

⊤
j xi)−

c2
B(d, 2)

x⊤
i Akxi

∣∣∣∣∣∣
≤ 9ιd−1C

1/4
4√

m2
.

Thus, by enumerating Ak over {A1,A2, . . . ,Ar}, we have with high probability on V,
∥∥∥∥∥∥

1

m2

m2∑

j=1

p(vj)σ2(v
⊤
j xi)−

c2
B(d, 2)

p(xi)

∥∥∥∥∥∥
∞

≤ 9ιd−1C
1/4
4√

m2
.

On the other hand, by Lemma 24, with high probability on V, we have for any xi ∈ D1,x
′ ∈ D2,

∣∣∣K(0)
m2

(xi,x
′)−K(0)(xi,x

′)
∣∣∣ ≤ ι√

m2d2
. (32)

Moreover, under the event E3 (defined in (29)), with high probability on the dataset D1, we have
|f(x)| ≤ ιp for any x ∈ D1. Thus, altogther we have

∥D1,1∥∞ ≤ ιp · ι√
m2d2

· 9ιd
−1C

1/4
4√

m2
=

9C
1/4
4 ιp+2

m2d
.
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with high probability. To bound D1,2, from the proof above, we know with high probability,∥∥∥∥∥∥
1

m2

m2∑

j=1

p(vj)σ2(v
⊤
j xi)−

c2
B(d, 2)

p(xi)

∥∥∥∥∥∥
∞

≤ 9ιd−1C
1/4
4√

m2
.

Moreover, for any x ∈ D1 and x′ ∈ D2,

K(0)(x,x′) = Ev

[
σ2(v

⊤x)σ2(v
⊤x′)

]
≤
√

Ev [σ2(v⊤x)2]Ev [σ2(v⊤x′)2] ≤ C2

d2
. (33)

Thus, we can bound D1,2 with high probability by

∥D1,2∥∞ ≤
C2

d2
· 9ιd

−1C
1/4
4√

m2
=

9ιC
1/4
4 C2√
m2d3

.

The proof is complete.

Proof of Lemma 22. Thus, let’s focus on the concentration of a single element
Yk(x) = f⋆(x)K(0)(x,x′)x⊤Akx, k = 1, 2, . . . , r.

Similar to the proof of Lemma 17, we denote a truncated version of Yk by

Ỹk(x) = f⋆(x)1{f⋆(x) ≤ R}K(0)(x,x′)x⊤Akx, k = 1, 2, . . . , r.

Here, R = (Cη)p for some large constant C. Now, we decompose the concentration error as

1

n

n∑

i=1

Yk(xi)− Ex [Yk(x)] =
1

n

n∑

i=1

(
Yk(xi)− Ỹk(xi)

)

︸ ︷︷ ︸
L0

+
1

n

n∑

i=1

(
Ỹk(xi)− Exi

[
Ỹk(xi)

])

︸ ︷︷ ︸
L1

+
1

n

n∑

i=1

(
Exi

[
Ỹk(xi)

]
− Exi

[Yk(xi)]
)

︸ ︷︷ ︸
L2

.

By (29), we know with probability at least 1− 2ne−2η , L0 = 0.

Bounding L1. First we derive a uniform upper bound of Ỹk(x), which is

|Yk(x)| ≤ R
∣∣∣K(0)(x,x′)x⊤Akx

∣∣∣

≤ R
∣∣∣K(0)(x,x′)

∣∣∣
∣∣x⊤Akx

∣∣

≤ R · C2

d2
d ∥Ak∥op

=
RC2 ∥Ak∥op

d
.

Then, we bound the second moments of Ỹk(x) − Ex

[
Ỹk(x)

]
. Again by Lemma 8, we know that

there exists a sufficient large constant C > 0 s.t. Pr
[∣∣x⊤Akx

∣∣ ⩾ Cι
]
≤ 2 exp(−ι). By taking

ι ⩾ 2 log d, we have

Var
[
Ỹk(x)

]
≤ Ex

[
Ỹ 2
k (x)

]

= Ex

[
Ỹ 2
k (x)1

{∣∣x⊤Akx
∣∣ ≤ Cι

}]
+ Ex

[
Ỹ 2
k (x)1

{∣∣x⊤Akx
∣∣ > Cι

}]

≤ C2r2κ1ι
2 Ex

[(
K(0)(x,x′)

)2]
+

r2κ1C
2
2

d4
· Ex

[
1
{∣∣x⊤Akx

∣∣ > Cι
}]

≤ C2r2κ1ι
2 ·

∞∑

i=2

c4i
B(d, i)3

+
2r2κ1C

2
2 exp(−ι)
d4

≲
C ′r2κ1ι

2

d6
.
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Here C ′ is a sufficiently large constant independent of d. We invoke (33) in the second inequality.
Thus, by Bernstein’s inequality, we have

Pr

[
|L1| ⩾

Rι

d3

√
C ′ι
n

]
≤ 2 exp


 − ι3C′r2κ1

2nd6

C′r2κ1ι2

nd6 +
RC2∥Ak∥op

3nd

√
r2κ1ι
nd6




= 2 exp


 − ι

2

1 +
C2∥Ak∥op

3C′

√
d4

nι3


.

Thus, when n ⩾ C2
2 ∥Ak∥2op d4 , we have with high probability on the training dataset D1,

|L1| ≤
Rι

d3

√
C ′ι
n

≲
Rι3/2√
nd3

.

Bounding L2. It suffices to bound
∣∣∣Ex

[
Ỹk(x)

]
− Ex [Yk(x)]

∣∣∣ ≤ Ex

[
|f⋆(x)|1{f⋆(x) > R}

∣∣∣K(0)(x, x′)x⊤Akx
∣∣∣
]

≤ Ex

[
(f⋆(x))2

] 1
2 Pr [f⋆(x) > R]

1
4 Ex

[
K(0)(x,x′)8

] 1
8 Ex

[
(x⊤Akx)

8
] 1

8

≤ 1 · exp(−η/2) · C2

d2
· (8− 1)

=
7C2 exp(−η/2)

d2
.

Here we invoke (33) and Lemma 8 in the last inequality. By taking η = ι ⩾ 2 log n + 8 log d, we
can ensure that with high probability, we have

∣∣∣∣∣
1

n

n∑

i=1

Yk(xi)− Ex [Yk(x)]

∣∣∣∣∣ ≤ |L1|+ |L2| ≲
Rι3/2√
nd3

.

Thus, by taking k over [r], we have with high probability over the training set D1, we have

∥D2∥∞ ≤
|c2|

B(d, 2)
· Rι3/2√

nd3
≲

Rι3/2√
nd5

≲
ιp+3/2

√
nd5

.

The proof is complete.

Proof of Lemma 23. Note that for any k ∈ [r], we have

Ex

[
f⋆(x)K(0)(x,x′)x⊤Akx

]

= Ex

[
f⋆(x)

∞∑

i=2

c2iQi(x
⊤x′)

B(d, i)
· x⊤Akx

]

=

∞∑

i=2

c2i
B(d, i)

· Ex

[
f⋆(x)Qi(x

⊤x′)x⊤Akx
]

=
c22

B(d, 2)d(d− 1)
·
〈
Ex

[
f⋆(x)(x⊤Akx)(xx

⊤ − I)
]
,x′x′⊤ − I

〉

+

∞∑

i=3

c22
B(d, i)

· Ex

[
f⋆(x)Qi(x

⊤x′)x⊤Akx
]

=
c2i

B(d, 2)d(d− 1)
·
〈
T (Ak),x

′x′⊤ − I
〉
+

∞∑

i=3

c2i
B(d, i)

· Ex

[
f⋆(x)Qi(x

⊤x′)x⊤Akx
]
.
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Here T is the linear operator defined in (14). Recall by Proposition 3, we have
∥∥∥∥∥∥
T (Ak)−

r∑

j=1

Hk,jAj

∥∥∥∥∥∥
F

≲ d−1/6Lr2κ1 log
2 d.

Let’s denote Rk = T (Ak) −
∑r

j=1 Hk,jAj so that ∥Rk∥F ≲ d−1/6Lr2κ1 log
2 d. Since

⟨Rk,x
′x′⊤ − I⟩ is a quadratic function of x′, and Ex′

[
⟨Rk,x

′x′⊤ − I⟩2
]
= 2d

d+2 ∥Rk∥2F. By
Lemma 8, there exists a constant C > 0 such that

Pr

[∣∣⟨Rk,x
′x′⊤ − I⟩

∣∣ ⩾ Cι
√

Ex′ [⟨Rk,x′x′⊤ − I⟩2]
]
≤ 2 exp(−ι).

Thus, by enumerating k ∈ [r] and x′ ∈ D2, we obtain that with high probability (1 − nr exp(−ι))
on D2, for any k ∈ [r], we have

∣∣∣∣∣∣
〈
T (Ak),x

′x′⊤ − I
〉
−

r∑

j=1

Hk,jx
′⊤Ajx

′

∣∣∣∣∣∣
≲

ιLr2κ1 log
2 d

d1/6
.

Moreover, we have for any x′
∣∣∣∣∣
∞∑

i=3

c2i
B(d, i)

· Ex

[
f⋆(x)Qi(x

⊤x′)x⊤Akx
]
∣∣∣∣∣

≤
∞∑

i=3

c2i
B(d, i)

·
∣∣Ex

[
f⋆(x)Qi(x

⊤x′)x⊤Akx
]∣∣

≤
∞∑

i=3

c2i
B(d, i)

·
√
Ex [Qi(x⊤x′)2]Ex [f⋆(x)2(x⊤Akx)2]

≤
∞∑

i=3

c2i
B(d, i)3/2

·
√
Ex [f⋆(x)2(x⊤Akx)2].

Again by Lemma 8, we know that there exists a sufficient large constant C > 0 s.t.
Pr
[∣∣x⊤Akx

∣∣ ⩾ Cι
]
≤ 2 exp(−ι). By taking ι ⩾ (2p+ 2) log d, we have

Ex

[
f⋆(x)2(x⊤Akx)

2
]
= Ex

[
f⋆(x)2(x⊤Akx)

21{
∣∣x⊤Akx

∣∣ ≤ Cι}
]

+ Ex

[
f⋆(x)2(x⊤Akx)

21{
∣∣x⊤Akx

∣∣ > Cι}
]

≲ C2ι2 + 2d2p+2exp(−ι)
≲ C2ι2.

Altogether, with high probability on D2, for any k ∈ [r], we have
∣∣∣∣∣∣
Ex

[
f⋆(x)K(0)(x,x′)x⊤Akx

]
− c22

B(d, 2)d(d− 1)
·

r∑

j=1

Hk,jx
′⊤Ajx

′

∣∣∣∣∣∣

≤ ιLr2κ1 log
2 d

B(d, 2)d7/6(d− 1)
+

∞∑

i=3

Cιc2i
B(d, i)3/2

.

Thus, by paralleling the r entries together, we have with high probability on D2
∥∥∥∥D3 −

c22
B(d, 2)2d(d− 1)

·Hp(x′)

∥∥∥∥
∞
≤ ιLr2κ1 log

2 d

B(d, 2)2d7/6(d− 1)
+

∞∑

i=3

Cιc2i
B(d, 2)B(d, i)3/2

≲
ιLr2κ1 log

2 d

d6+1/6
.

The proof is complete.
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Proof of Lemma 3. By the mean value theorem, we have
∣∣∣g(B⋆h(1)(x))− g(p(x))

∣∣∣ ≲ sup
λ∈[0,1]

∥∥∥∇g(λB⋆h(1)(x) + (1− λ)p(x))
∥∥∥
2

∥∥∥B⋆h(1)(x)− p(x)
∥∥∥
2
.

Recall by (8), we have ∥∇g(z)∥2 ≲ ∥g∥L2

∑p
k=1 r

p−k
4 ∥z∥k−1

2 . Note that with high probability,
supx∈D2

∥p(x)∥ ≤ Õ(
√
r). Therefore

sup
x∈D2

sup
λ∈[0,1]

∥∥∥∇g(λB⋆h(1)(x) + (1− λ)p(x))
∥∥∥ ≲ ∥g∥L2 r

p−1
2 .

Altogether, by Proposition 5,

sup
x∈D2

∣∣∣g(B⋆h(1)(x))− g(p(x))
∣∣∣

≲ ∥g∥L2 r
p−1
2

∥∥∥B⋆h(1)(x)− p(x)
∥∥∥
2

≤ ∥g∥L2 ·
rp/2

λmin(H)
·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n
+

ιLr2κ1 log
2 d

d1/6

)

The proof is complete.

C.4 PROOF OF OTHER SUPPORTING LEMMAS

We first present the concentration of the initial kernel K(0)
m2(x,x

′).

Lemma 24. Let K(0)
m2(x,x

′) = 1
m2
⟨σ2(Vx), σ2(Vx′)⟩ be the initial kernel with inner width being

m2, and K(0)(x,x′) = Ev∼Unif-Sd−1(
√
d)

[
σ2(v

⊤x)σ2(v
⊤x′)

]
be the infinite-width kernel. Then

there exists a constant C s.t. when m2 ⩾ Cd4, with high probability probability on w, V and the
training dataset D, for any x ∈ D1 and x′ ∈ D2, we have

∣∣∣K(0)
m2

(x,x′)−K(0)(x,x′)
∣∣∣ ≤ ι√

m2d2
.

Proof of Lemma 24. By Assumption 4, for any x,x′ ∈ D and v ∈ Sd−1(
√
d), we have

∣∣σ2

(
v⊤x

)
σ2

(
v⊤x′)∣∣ ≤ C2

σ

and

Ev

[
σ2

(
v⊤x

)2
σ2

(
v⊤x′)2] ≤

√
Ev

[
σ2(v⊤x)4

]
Ev

[
σ2(v⊤x′)4

]
≤ C4

d4
.

Thus, by Bernstein inequality, we have

Pr

[∣∣∣K(0)
m2

(x,x′)−K(0)(x,x′)
∣∣∣ ⩾

√
t

m2

]
≤ 2 exp


 − t

2m2

C4

m2d4 +
C2

σ

3m2

√
t

m2




= exp


 −t/2

C4

d4 +
C2

σ

3

√
t

m2


. (34)

By enumerating x,x′ over D, we have

Pr

[
max

x,x′∈D

∣∣∣K(0)
m2

(x,x′)−K(0)(x,x′)
∣∣∣ ⩾

√
t

m2

]
≤ n2 exp


 −t/2

C4

d4 +
C2

σ

3

√
t

m2


.

Thus, when m2 ⩾ d4, we can take t = ι2/d4 to bound the probability by poly(d, n,m2)e
−ι, which

concludes our proof.

Then we present the concentration of the reconstructed features.
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Lemma 25. Suppose m2 ⩾ C2
σC

−1/2
4 d4 ∥A∥2op. Given any A such that v⊤Av is a quadratic

spherical harmonic, with high probability on V, for any x ∈ D, we have
∣∣∣∣∣
1

m2

m2∑

i=1

(v⊤
i Avi)σ2(v

⊤
i x)−

c2
B(d, 2)

x⊤Ax

∣∣∣∣∣ ≤
9ιd−1C

1/4
4√

m2
.

Proof of Lemma 25. Given any fixed x ∈ D and A such that v⊤Av is a quadratic spherical har-
monic, we have

Ev

[
(v⊤Av)2σ2

2(v
⊤x)

]
≤
√

Ev [(v⊤Av)4]Ev [σ4
2(v

⊤x)]

≤ (4− 1)2∗2 E
[
(v⊤

i Avi)
2
]
d−2C

1/2
4

= 81d−2C
1/2
4

and
∣∣(v⊤Av)σ2(v

⊤x)
∣∣ ≤ d ∥A∥op · Cσ = dCσ ∥A∥op .

Since Ev

[
(v⊤Av)σ2(v

⊤x)
]
= c2

B(d,2)x
⊤Ax, by Bernstein Inequality, we have

Pr

[∣∣∣∣∣
1

m2

m2∑

i=1

(v⊤
i Avi)σ2(v

⊤
i x)−

c2
B(d, 2)

x⊤Ax

∣∣∣∣∣ ⩾
9ιd−1C

1/4
4√

m2

]

≤ 2 exp


−

81d−2C
1/2
4 ι2

2m2

81d−2C
1/2
4

m2
+ 1

3m2
· d(Cσ ∥A∥op ·

9ιd−1C
1/4
4√

m2




= 2 exp


− ι2/2

1 +
Cσd2∥A∥op

27C
1/4
4

√
m2

· ι




Thus, when m2 ⩾ C2
σC

−1/2
4 d4 ∥A∥2op, by enumerating x ∈ D, we obtain that with high probability

on V, for any x ∈ D, we have
∣∣∣∣∣
1

m2

m2∑

i=1

(v⊤
i Avi)σ2(v

⊤
i x)−

c2
B(d, 2)

x⊤Ax

∣∣∣∣∣ ≤
9ιd−1C

1/4
4√

m2
.

The proof is complete.

D APPROXIMATION THEORY OF THE OUTER LAYER

D.1 PROOF OF PROPOSITION 2

Since we mainly focus on the first training stage throughout this section, we may sometimes denote
n = n1 for notation simplicity, and let the training set be D1 = {x1,x2, . . . ,xn}. Let’s consider a
formal version of Proposition 2.

Proposition 6. Suppose g is a degree p polynomial. By setting η = Cι−5κ−1
2 m

−1/2
2 d6 for some

constant C > 0, with high probability over D1, D2, {wi}m1
i=1 and V, there exists a⋆ ∈ Rm1 such

that the parameter θ⋆ = (a⋆,W(1),b(1),V) gives rise to

L2(θ
⋆) : =

1

n2

∑

x∈D2

(f(x; θ⋆)− g(p(x)))
2

≲ ∥g∥2L2 ·
rp

λmin(H)
·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n
+

ιLr2 log2 d

d1/6

)2

+
ιp+1 ∥g∥2L2

m1
·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

.
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Here a⋆ satisfies

∥a⋆∥22
m1

≲ ιp∥g∥2L2 ·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

= Ω̃(κ2p
2 rp).

To prove the proposition, let’s introduce the infinite-outer-width model as a transition term between
the finite-outer-width model and the target function. We define the infinite-outer-width model as

f∞,m2(x; v) = Ea,b,w

[
v(a, b,w)σ1

(
aη⟨w,h(1)(x)⟩+ b

)]
,

where h(1)(x′) = 1
n

∑n
i=1 f

⋆(xi) ·K(0)
m2(xi,x

′) · σ2

(
V⊤xi

)
.

We can decompose the L2 loss of the truth model f(x; θ) as

L̂(θ⋆) = 1

n

∑

x∈D2

(f(x; θ)− f⋆(x))
2

=
1

n

∑

x∈D2

(
f(x; θ)− f∞,m2

(x′) + f∞,m2
(x′)− g(B⋆h(1)(x)) + g(B⋆h(1)(x))− g(p(x))

)2

≲
1

n

∑

x∈D2

(f(x; θ)− f∞,m2
(x′))

2

︸ ︷︷ ︸
L1

+
1

n

∑

x∈D2

(
f∞,m2

(x′)− g(B⋆h(1)(x))
)2

︸ ︷︷ ︸
L2

+
1

n

∑

x∈D2

(
g(B⋆h(1)(x))− g(p(x))

)2

︸ ︷︷ ︸
L3

.

We have bounded L3 in Corollary 3. We state Lemmas 26 and 27 as follows to bound L1 and L2,
respectively.

Lemma 26 (Bound L2). Given B⋆ ∈ Rr×m2 and setting the learning rate η = Cι−5κ−1
2 m

−1/2
2 d6

for a constant C > 0, there exists v : {±1} × R× Rm2 → R such that

∥v∥L2 ≲ ∥g∥L2

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4 ,

and, with high probability over D1, D2 and V, the infinite-width network satisfies

1

n

∑

x∈D2

(f∞,m2(x; v)− g(B⋆h(1)(x)))2 ≲ o

(
1

d2n2
1n

2
2m

2
1m

2
2

)
.

Lemma 27 (Bound L1). Given the function v : {±1} × R × Rm2 → R in Lemma 26. With high
probability over D1, D2, {wi}m1

i=1 and V, it holds that for any x ∈ D2,
∣∣∣∣∣
1

m1

m1∑

i=1

v(ai, bi,wi)σ1(ηai⟨wi,h
(1)(x)⟩+ bi)− f∞,m2

(x; v)

∣∣∣∣∣ ≲

√
ιp+1 ∥v∥2L2

m1
, with

1

m1

m1∑

i=1

v(ai, bi,wi)
2 ≲ ιp∥v∥2L2 .

The proof of Lemmas 26 and 27 is provided in Appendix D.2. Now we begin our proof of Proposi-
tion 6.
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Proof of Proposition 6. By Corollary 3, Lemma 27 and Lemma 26, by defining the vector a⋆ ∈ Rm1

by a⋆i = v(a
(0)
i , b

(1)
i ,w

(1)
i ) and letting θ∗ = (a∗,W(1),b(1),V), we have with high probability that

L̂2(θ
∗) ≲ L1 + L2 + L3

≲ ∥g∥2L2 ·
rp

λ2
min(H)

·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n
+

ιLr2 log2 d

d1/6

)2

+
ιp+1 ∥g∥2L2

m1
·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

+ o

(
1

d2n2
1n

2
2m

2
1m

2
2

)

≲ ∥g∥2L2 ·
rp

λ2
min(H)

·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n
+

ιLr2 log2 d

d1/6

)2

+
ιp+1 ∥g∥2L2

m1
·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

.

Here a⋆ satisfies

∥a⋆∥22 ≤
m1∑

i=1

v(ai, bi,wi)
2

≲ m1ι
p ∥v∥2L2

≲ m1ι
p ∥g∥2L2

(
p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

.

The proof is complete.

D.2 OMITTED PROOFS IN APPENDIX D.1

D.2.1 RANDOM FEATURE CONSTRUCTION OF UNIVARIATE POLYNOMIALS

In this section, before proving Lemmas 26 and 27, we first construct univariate polynomials using
the outer activation function σ1 and the random features a and b progressively.

Lemma 28. There exists v0(a, b), supported on {±1} × [2, 3], such that for any |z| ≤ 1

Ea,b[v0(a, b)σ(az + b)] = 1, sup
a,b
|v(a, b)| ≲ 1.

Proof. Let v0(a, b) = 12 · 1a=1(b− 5
2 ) ·

1b∈[2,3]

µ(b) . Then, since z + b ⩾ 1,

Ea,b[v0(a, b)σ(az + b)] = 6

∫ 3

2

(b− 5

2
)σ(z + b)db

= 6

∫ 3

2

(b− 5

2
)(2z + 2b− 1)db

= z · 6
∫ 3

2

(b− 5

2
)db+ 6

∫ 3

2

(b− 5

2
)(2b− 1)db

= 1.

The proof is complete.

Lemma 29. There exists v1(a, b), supported on {±1} × [2, 3], such that for any |z| ≤ 1

Ea,b[v1(a, b)σ(az + b)] = z, sup
a,b
|v(a, b)| ≲ 1.
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Proof. Let v0(a, b) = 1a=1(−24b+ 61) · 1b∈[2,3]

µ(b) . Then, since z + b ⩾ 1,

Ea,b[v1(a, b)σ(az + b)] =
1

2

∫ 3

2

(−24b+ 61)σ(z + b)db

=
1

2

∫ 3

2

(−24b+ 61)(2z + 2b− 1)db

= z

∫ 3

2

(−24b+ 61)db+
1

2

∫ 3

2

(−24b+ 61)(2b− 1)db

= z.

The proof is complete.

Lemma 30. There exists v2(a, b), supported on {±1} × [−2, 3], such that for any |z| ≤ 1

Ea,b[v2(a, b)σ(az + b)] = z2, sup
a,b
|v(a, b)| ≲ 1.

Proof. First, see that
∫ 2

−2

σ(z + b)db =

∫ 2+z

−2+z

σ(b)db

=

∫ −1

−2+z

(−2b− 1)db+

∫ 1

−1

b2db+

∫ 2+z

1

(2b− 1)db

= [−b2 − b]−1
−2+z +

2

3
+ [b2 − b]2+z

1

= (z − 2)2 + (z − 2) +
2

3
+ (z + 2)2 − (z + 2)

= 2z2 +
14

3
.

Let v2(a, b) = 1a=1
1b∈[−2,2]

µ(b) − 7
3v0(a, b) Then

Ea,b[v2(a, b)σ(az + b)] =
1

2

∫ 2

−2

σ(z + b)db− 7

3

= z2 +
7

3
− 7

3

= z2.

The proof is complete.

Lemma 31. Let v(b) = − 1
2k(k − 1)(k − 2)(1− b)k−3 · 1b∈[0,1]

µ(b) . Then

Eb[vk(b)σ(z + b)] = zk · 1z>0 −
k(k − 1)

2
z2 − kz − 1.

Proof. Plugging in vk(b) and applying integration by parts yields

Eb[vk(b)σ(z + b)] =

∫ 1

0

−1

2
k(k − 1)(k − 2)(1− b)k−3σ(z + b)db

= [
1

2
k(k − 1)(1− b)k−2σ(z + b)]10 −

∫ 1

0

1

2
k(k − 1)(1− b)k−2σ′(z + b)db

= −1

2
k(k − 1)σ(z) + [

1

2
k(1− b)k−1σ′(z + b)]10 −

∫ 1

0

1

2
k(1− b)k−1σ′′(z + b)db

= −1

2
k(k − 1)σ(z)− 1

2
kσ′(z)−

∫ 1

0

k(1− b)k−11|z+b|≤1db
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When 1 ⩾ z > 0, we have

−
∫ 1

0

k(1− b)k−11|z+b|≤1db = −
∫ 1−z

0

k(1− b)k−1db = [(1− b)k]1−z
0 = zk − 1.

When −1 ≤ z ≤ 0, we have

−
∫ 1

0

k(1− b)k−11|z+b|≤1db = −
∫ 1

0

k(1− b)k−1db = −1.

Since z ∈ [−1, 1], we have that σ(z) = z2 and σ′(z) = 2z. Therefore for z ∈ [−1, 1]

Eb[vk(b)σ(z + b)] = zk · 1z>0 −
k(k − 1)

2
z2 − kz − 1.

The proof is complete.

Lemma 32. There exists vk(a, b), supported on {±1} × [−2, 3], such that for any |z| ≤ 1

Ea,b[vk(a, b)σ(az + b)] = zk, sup
a,b
|vk(a, b)| ≲ poly(k).

Proof. We focus on k ⩾ 3. We have that

Eb[vk(b)σ(z + b)] = zk · 1z>0 −
k(k − 1)

2
z2 − kz − 1.

Eb[vk(b)σ(−z + b)] = (−z)k · 1z<0 −
k(k − 1)

2
z2 + kz − 1.

Therefore if k is even

Eb[v(b)σ(z + b) + v(b)σ(−z + b)] = zk − k(k − 1)z2 − 2.

Let vk(a, b) = 2vk(b) + k(k − 1)v2(a, b) + 2. Then

Ea,b[vk(a, b)σ(az + b)] = Eb[vk(b)σ(z + b) + vk(b)σ(z − b)] + k(k − 1)z2 + 2 = zk.

If k is odd,

Eb[v(b)σ(z + b)− v(b)σ(−z + b)] = zk − 2kz.

Let vk(a, b) = 2avk(b) + 2kv1(a, b). Then

Ea,b[vk(a, b)σ(az + b)] = Eb[vk(b)σ(z + b)− vk(b)σ(z − b)] + 2kz = zk.

The proof is complete.

D.2.2 PROOF OF SUPPORTING LEMMAS IN APPENDIX D.1

Proof of Lemma 26. Let’s consider a general version of Lemma 26.

Lemma 33. Let g : Rr → R be a degree p polynomial, and let B⋆ ∈ Rr×m2 . Given a set of
vectors D = {z1, z2, . . . , zn} ⊆ Rm2 that satisfies η⟨w, z⟩ ≤ 1 for any z ∈ D with probability at
least 1 − 2(n1 + n2) exp(−ι2/2) over w ∼ N (0m2

, Im2
) (uniformly over D). Then, there exists

v : {±1} × R× Rm → R so that for all z ∈ D,

Ea,b,w[v(a, b,w)σ1(ηa⟨w, z⟩+ b)] = g(B⋆z) + o

(
1

dn1n2m1m2

)
, and

∥v∥L2 ≲ ∥g∥L2

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4 .

Thus, according to Proposition 4, we could set the learning rate η = Cι−5κ−1
2 m

−1/2
2 d6 for a con-

stant C > 0 to ensure
∣∣η⟨w,h(1)(x′)⟩

∣∣ ≤ 1 for any x′ ∈ D2 with high probability on V, D1, and
probability at least 1−2(n1+n2) exp(−ι2/2) on w. Thus, takingD = {h(x)}x∈D2

concludes our
proof.

47



Published as a conference paper at ICLR 2025

To prove Lemma 33, we first decompose g into sum of polynomials of different degrees and con-
struct a function v to express these polynomials accordingly.

Lemma 34. Given z ∈ Rm2 . Let B⋆ ∈ Rr×m2 and Tk ∈ (Rr)⊗k. Then, there exists vk : Rm2 → R
such that

Ew

[
vk(w)(η⟨w, z⟩)k

]
= Tk

(
(B⋆z)⊗k

)
.

Here vk satisfies

∥vk∥L2 ≲ η−k ∥B⋆∥kop ∥Tk∥F and sup
w
|vk(w)| ≲ m

k/2
2 η−k ∥B⋆∥kop ∥Tk∥F . (35)

Proof of Lemma 34. It suffices to solve

Ew[v(w)w⊗k] = η−kB⋆⊗k(Tk),

where B⋆⊗k(Tk) ∈ (Rm2)⊗k. This is achieved by setting

v(w) := η−k Vec(w⊗k)T Mat(E[w⊗2k])−1 Vec(B⋆⊗k(Tk)).

Then,

∥v∥2L2 = η−2k Vec(B⋆⊗k(Tk))
T Mat(E[w⊗2k])−1 Vec(B⋆⊗k(Tk)).

Since

Mat(E[w⊗2k]) ⪰ k!ΠSymk(Rm2 ),

we have

∥v∥2L2 ≲ η−2k
∥∥∥B⋆⊗k(Tk)

∥∥∥
2

F
≤ η−2k ∥B⋆∥2kop ∥Tk∥2F .

Finally,

sup
w
|v(w)| = η−k sup

w

∣∣∣Vec(w⊗k)T Mat(E[w⊗2k])−1 Vec(B⋆⊗k(Tk))
∣∣∣

≤
∥∥w⊗k

∥∥
F

∥∥∥B⋆⊗k(Tk)
∥∥∥
F

≲ m
k/2
2 η−k ∥B⋆∥kop ∥Tk∥F .

The proof is complete.

Then we begin our proof of Lemma 33.

Proof of Lemma 33. We can write

g(z) =

p∑

k=0

⟨Tk, z
⊗k⟩.

By Lemma 10, we have ∥Tk∥F ≲ r
p−k
4 ∥g∥L2 .

Define vk(a, b) to be the function so that Ea,b[vk(a, b)σ1(az + b)] = zk, and let vk(w) be the
function where Ew[v(w)(η⟨w, z⟩)k] = ⟨Tk, (B

⋆z)⊗k⟩. Next, define

v(a, b,w) =

p∑

k=0

vk(a, b)vk(w).

Here vk(a, b) is defined in Lemma 34. Then we have that

∥v∥L2 ≲
p∑

k=0

(E[vk(w)2])1/2 ≤ ∥g∥L2

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4 .
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Note that ∥v∥L2 = O(poly(m2, d)) and |σ1(ηa⟨w, z⟩+ b)| ≤ ηa⟨w, z⟩ + b) has polynomial
growth. Since we have taken ι = C log(dn1n2m1m2) for some sufficiently large C > 0, we
know by Cauchy inequality,

|Ea,b,w[v(w)σ1(η⟨w, z⟩+ b)1{η⟨w, z⟩ > 1}]| ≤ o

(
1

dn1n2m1m2

)
.

Thus, we then have that

Ea,b,w[v(a, b,w)σ1(ηa⟨w, z⟩+ b)]

= Ea,b,w[v(a, b,w)σ1(ηa⟨w, z⟩+ b) · 1|η⟨w,z⟩|≤1] + o

(
1

dn1n2m1m2

)

=

p∑

k=0

Ea,b,w[vk(a, b)vk(w)σ1(ηa⟨w, z⟩+ b) · 1|η⟨w,z⟩|≤1] + o

(
1

dn1n2m1m2

)

=

p∑

k=0

Ew[vk(w)(η⟨w, z⟩)k · 1|η⟨w,z⟩|≤1] + o

(
1

dn1n2m1m2

)

=

p∑

k=0

Ew[vk(w)(η⟨w, z⟩)k] + o

(
1

dn1n2m1m2

)

=

p∑

k=0

⟨Tk, (B
⋆z)⊗k⟩+ o

(
1

dn1n2m1m2

)

= g(B⋆z) + o

(
1

dn1n2m1m2

)
.

The proof is complete.

Proof of Lemma 27. Fix x ∈ D2. For notation simplicity, we denote f∞
v (x) = f∞,m2

(x; v). Con-
sider a truncation radius R > 0 to be chosen later and let Ex be the set of w such that

sup
a,b
|v(a, b,w)| ≤ R and η⟨w,h(1)(x)⟩ ≤ 1.

By the construction of v(a, b,w) in the proof of Lemma 33, we know it can be seen as a degree-
p polynomial of w. Thus, by Lemma 7, by taking R = Cιp/2 ∥v∥L2 for some sufficiently large
C > 0, we can ensure that

Pr[sup
a,b
|v(a, b,w)| ≤ R] ⩾ 1− exp(−ι).

Moreover, by Proposition 4, conditional on a high probability event on V, D1 and D2, by taking
η = Cι−5d6m−1

2 , we have Pr[η⟨w,h(1)(x)⟩ ≤ 1] ⩾ 1−4 exp(−ι2/2) for a single x. Now consider
the random variables

Zi := 1{wi ∈ Ex}v(ai, bi,wi)σ1(ηai⟨wi,h
(1)(x)⟩+ bi), i = 1, 2, . . . ,m1.

We directly have that |Zi| ≲ ιp/2 ∥v∥L2 , and with high probability,

1

m1

m1∑

i=1

v(ai, bi,wi)
2 ≲ ιp∥v∥2L2 .

Therefore by Hoeffding inequality, with probability at least 1− 2 exp(−ι), we have
∣∣∣∣∣
1

m1

m1∑

i=1

1wi∈Exv(ai, bi,wi)σ1(ηai⟨wi,h
(1)(x)⟩+ bi)

− E[1w∈Ex
v(a, b,w)σ1(ηa⟨w,h(1)(x)⟩+ b)]

∣∣∣∣∣ ≲

√
ιp+1 ∥v∥2L2

m1
.
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Similar to the proof of Lemma 33, note that both v(a, b,w) and |σ1(ηa⟨w, z⟩+ b)| has polynomial
growth. Since we have taken ι = C log(dn1n2m1m2) for some sufficiently large C > 0, we know
by Cauchy inequality, ∣∣∣E[1w∈Ex

v(a, b,w)σ1(ηa⟨w,h(1)(x)⟩+ b)]− f∞
v (x)

∣∣∣

=
∣∣∣E[1w ̸∈Ex

v(a, b,w)σ1(ηa⟨w,h(1)(x)⟩+ b)]
∣∣∣

≤ P(w ̸∈ Ex)(E[v(a, b,w)2σ1(ηa⟨w,h(1)(x)⟩+ b)2])1/2

≲ exp(−C log(dm1m2n1n2))Õ(∥v∥L2)

≲
1

m1
.

Finally, union bounding over x ∈ D2, we see that

sup
x∈D2

∣∣∣∣∣
1

m1

m1∑

i=1

v(ai, bi,wi)σ1(ηai⟨wi,h
(1)(x)⟩+ bi)− f∞

v (x)

∣∣∣∣∣ ≲

√
ιp+1 ∥v∥2L2

m1
+

1

m1

≲

√
ιp+1 ∥v∥2L2

m1
.

The proof is complete.

E GENERALIZATION THEORY

E.1 FORMAL PROOF OF THEOREM 1

The proof is divided into two parts. The first part of proof formalizes the proof we present in Section
4. The second part presents the generalization theory after we construct a⋆ that gives small L2 error
by Proposition 2, with the formal version presented in Proposition 6.

E.1.1 PART1: ANALYSIS BEFORE FEATURE RECONSTRUCTION

Denote wj = ϵ−1w
(0)
j ∼ N (0, Im2

). Note that for any x ∈ D1 and j ∈ [m1], we have

⟨w(0)
j ,h(0)(x)⟩ = ⟨ϵwj ,h

(0)(x)⟩ ∼ N
(
0, ϵ2

∥∥∥h(0)(x)
∥∥∥
2

2

)
.

Since
∥∥h(0)(x)

∥∥2
2

=
∑m2

k=1 σ
2
2(v

⊤
k x) ≤ m2C

2
σ . By setting ϵ−1 = Cσ

√
2ιm2, we know

⟨w(0)
j ,h(0)(x)⟩ ≤ 1 with probability at least 1−2 exp(−ι). Thus, uniformly bounding over x ∈ D1

and j ∈ [m1], we know with high probability over W, we have

⟨w(0)
j ,h(0)(x)⟩ ≤ 1 for any x ∈ D1, j ∈ [m1].

Then, according Algorithm 1, after one-step gradient descent on W, we know with high probability,
for each j ∈ [m1],

η1∇w
(0)
j
L(θ(0)) = −η1

a
(0)
j

m1
· 1

n1

∑

x∈D1

f∗(x)h(0)(x)σ′
1

(
⟨ϵwj ,h

(0)(x)⟩
)

= −2ϵη1
m1

a
(0)
j ·

1

n1

n∑

i=1

f∗(x)h(0)(x)h(0)(x)⊤wj ,

which is a linear transformation on wj . By taking η1 = m1

2ϵm2
· η for some η > 0 to be chosen later

and λ1 = η−1
1 , we have

w
(1)
j = w

(0)
j − η1

[
∇

w
(0)
j
L(θ(0)) + λ1w

(0)
j

]

= −η1∇w
(0)
j
L(θ(0))

=
ηa

(0)
j

m2
· 1

n1

n∑

i=1

f∗(x)h(0)(x)h(0)(x)⊤wj .
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Then for any second-stage training sample x′ ∈ D2, the inner-layer neuron becomes

〈
w

(1)
j , σ2(Vx′)

〉
=

ηa
(0)
j

m2

〈
1

n1

n∑

i=1

f∗(x)h(0)(x)h(0)(x)⊤wj ,h
(0)(x′)

〉

= ηa
(0)
j ·

〈
wj ,

1

n1

n∑

i=1

K(0)
m2

(x,x′)h(0)(x)

〉

= ηa
(0)
j · ⟨wj ,h

(1)(x′)⟩.

Thus, after the first training stage and reinitialization on b = b(1), the model becomes the following
random-feature model in the second stage:

f(x′; θ) =
1

m1

m1∑

j=1

ajσ1

(
ηa

(0)
j ⟨wj ,h

(1)(x′)⟩+ b
(1)
j

)
.

By Proposition 6, we know there exists a⋆ ∈ Rm1 such that with high probability over D1, D2,
{wi}m1

i=1 and V, by taking the parameter θ⋆ = (a⋆,W(1),b(1),V), it holds that

L̂2(θ
⋆) ≲ ∥g∥2L2 ·

rp

λmin(H)
·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n1
+

ιLr2κ1 log
2 d

d1/6

)2

+
ιp+1 ∥g∥2L2

m1
·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

.

Here a⋆ satisfies

∥a⋆∥22
m1

≲ ιp∥g∥2L2 ·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

.

The first part of the proof is complete.

E.1.2 PART2: GENERALIZATION THEORY

Denote the population absolute loss as L1(f, g) = Ex [|f(x)− g(x)|]. Moreover, we consider a
truncated loss function as

ℓτ (z) = min(|z| , τ) and L1,τ (f, g) = Ex [ℓτ (f(x)− g(x))],

where τ > 0 is the truncation radius. Moreover, we denote the empirical truncated absolute loss as

L̂1,τ (f, g) =
1

n2

∑

x∈D2

ℓτ (f(x)− g(x)).

Suppose Algorithm 1 gives rise to a set of parameters θ̂ = (â,W(1),b(1),V), and we have con-
structed θ⋆ = (a⋆,W(1),b(1),V) that leads to small empirical loss, we decompose the population
absolute loss as

L1(f(·; θ̂), f⋆) = L̂1,τ (f(·; θ̂), f⋆)︸ ︷︷ ︸
L1

+L1,τ (f(·; θ̂), f⋆)− L̂1,τ (f(·; θ̂), f⋆)︸ ︷︷ ︸
L2

+ L1(f(·; θ̂), f⋆)− L1,τ (f(·; θ̂), f⋆)︸ ︷︷ ︸
L3

.

Here with a little abuse of notation, we consider f⋆ = g⋆(p) for learning the original target function
and denote f⋆ = g(p) with g being any degree p polynomial for the transfer learning setting. Next,
we bound L1, L2 and L3 respectively.

Bound L1 With a little abuse of notation, we denote L̂2(a) = L̂2(θ) for θ = (a,W(1),b(1),V)
since we only optimize a in the second stage. By Proposition 6, we know with high probability, the
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empirical L2 loss of θ⋆ is bounded by

L̂2(a
⋆) =

1

n2

∑

x∈D2

(f(x; θ⋆)− f⋆(x))
2

≲ ∥g∥2L2 ·
rp

λ2
min(H)

·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n1
+

ιLr2κ1 log
2 d

d1/6

)2

+
ιp+1 ∥g∥2L2

m1
·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

.

Here a⋆ satisfies

∥a⋆∥22
m1

≲ ιp∥g∥2L2 ·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

.

In the second training stage, let’s set the weight decay in the second training stage as

λ2 = λ = ∥a⋆∥−2
2 ∥g∥

2
L2 ·

(
rp

λ2
min(H)

·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n1
+

ιLr2κ1 log
2 d

d1/6

)2

+
ιp+1

m1
·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2)

so that the empirical L2 loss is directly bounded by

L̂2(a
⋆) :=

1

n2

∑

x∈D2

(f(x; θ⋆)− f⋆(x))
2 ≲ λ ∥a⋆∥22 .

We further consider the regularized second-stage training loss to be

L̂2,λ(a) =
1

n2

∑

x∈D2

(
f(x; (a,W(1),b(1),V))− f⋆(x)

)2
+

λ

2
∥a∥22 .

Note that this loss is strongly convex, so it has a global minimum a(∞) = argmin L̂2,λ(a). Thus,
we have

L2,λ(a
(∞)) ≤ L2,λ(a

⋆) ≲ λ ∥a⋆∥22 .
Since L2,λ(a) is λ- strongly convex, and we can write f(x; (a,W(1),b(1),V)) = a⊤Ψ(x), where

Ψ(x) = Vec
(
m−1

1 σ1

(
ηa

(0)
i ⟨wi,h

(1)(x)⟩+ b
(1)
i

))
. Therefore, by Lemma 4 and our choice of η

to ensure η⟨wi,h
(1)(x)⟩ ≤ 1 with high probability, we know with high probability,

λmax

(
∇2

aL̂2,λ

)
≤ 2

n2

∑

x∈D2

∥Ψ(x)∥2 ≲
1

m1
.

Thus, L2,λ(a) is λ + O( 1
m1

)- smooth. By choosing the second-stage learning rate η2 = Ω(m1),

after T = Õ(λ−1) = poly(d, n,m1,m2, ∥g∥L2) steps, we can reach an iterate â = a(T ) so that

L̂2(â) ≲ L̂2(a
⋆) and ∥â∥2 ≲ ∥a⋆∥2 .

Denoting θ̂ = (â,W(1),b(1),V), it holds that

L̂1,τ (f(·; θ̂), f⋆) ≤ 1

n2

∑

x∈D2

∣∣∣f(x; θ̂)− f⋆(x)
∣∣∣ ≤

√
L2(â) ≤

√
L2(a⋆).

Thus, we have

L1 = L̂1,τ (f(·; θ̂), f⋆) ≤
√

1

n2

∑

x∈D2

(f(x; θ⋆)− f⋆(x))
2

≲ ∥g∥L2 ·
rp/2

λmin(H)
·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n
+

ιLr2κ1 log
2 d

d1/6

)

+

√
ιp+1 ∥g∥L2

m1
·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)
.
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Here â satisfies

∥â∥22
m1

≲
∥a⋆∥22
m1

≲ ιp∥g∥2L2 ·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

.

We assume ∥a∥22 ≤ m1B
2
a, where Ba satisfies

B2
a ≲ ιp∥g∥2L2 ·

(
p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)2

.

Bound L2 To bound L2, we rely on standard Rademacher complixity analysis. The following
lemma provides an upper bound on the Rademacher complixity of the random feature model.

Lemma 35. Let F = {fθ : θ = (a,W(1),b(1),V), ∥a∥2 ≤
√
m1Ba}. Recall the empirical

Rademacher complexity of F as

Rn(F) = Eσ∈{±1}n

[
sup
f∈F

1

n2

n∑

i=1

σif(xi)

]
,

Here the dataset {x1,x2, . . . ,xn2
} = D2. Then with high probability, we have

Rn(F) ≲
Ba√
n2

.

The proof is provided in Appendix E.2. Since the ℓτ is 1-Lipschitz, by standard Rademacher com-
plexity analysis, we have that with high probability that

L2 = Exℓτ

(
f(x; θ̂)− f∗(x)

)
− 1

n2

∑

x∈D2

ℓτ

(
f(x; θ̂)− f⋆(x)

)

≲ Rn(F) + τ

√
ι

n2

≲

√
B2

a

n2
+ τ

√
ι

n2
.

Bound L3 Finally, we relate the truncated loss ℓτ to the L1 population loss.

Lemma 36. By letting τ = Ω(max(ιp, Ba)), with high probability over θ̂, we have

L3 = Ex

[∣∣∣f(x; θ̂)− f∗(x)
∣∣∣
]
− Ex

[
ℓτ

(
f(x; θ̂)− f∗(x)

)]
≤ o

(
1

n1n2m1m2d

)
.

Here we recall that n = n1 + n2. The proof is provided in Appendix E.2.
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Put the loss together By invoking the upper bound of L1, L2 and L3 and plugging the values of
τ , η, ∥B⋆∥op, λmin(H), Ba, L and ∥g∥L2 , we have

Ex

[∣∣∣f(x; θ̂)− f∗(x)
∣∣∣
]
= L1 + L2 + L3

≲
1

n2

∑

x∈D2

ℓτ (f(x; θ
⋆)− f⋆(x)) +

√
B2

a

n2
+ τ

√
ι

n2
+ o

(
1

n1n2m1m2d

)

≲ ∥g∥L2 ·
rp/2

λmin(H)
·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n1
+

ιLr2κ1 log
2 d

d1/6

)

+

√
ιp+1 ∥g∥L2

m1
·
(

p∑

k=0

η−k ∥B⋆∥kop r
p−k
4

)
+

√
B2

a

n2
+ τ

√
ι

n2
.

≲
rp/2

λmin(H)
·
(
ιp+2d5

m2
+

ιd3√
m2

+
ιp+3/2d√

n1
+

ιLr2κ1 log
2 d

d1/6

)

+

√
ι6p+1rp/2κ2p

2 (r1/4 ∨ λ−1
min(H))p

m1

+

√
ι6p+1rp/2κ2p

2 (r1/4 ∨ λ−1
min(H))p

n2

= Õ



√

rpκ2p
2

min(n2,m1)
+

√
d6rp+1

m2
+

√
d2rp+1

n
+

rp+2κ1

d1/6


.

The proof is complete.

E.2 OMITTED PROOFS IN APPENDIX E.1

Proof of Lemma 35. Given θ = (a,W(1),b(1),V), since we can write

fθ(x) = a⊤Ψ(x), where Ψ(x) = Vec
(
m−1

1 σ1

(
ηa

(0)
i ⟨wi,h

(1)(x)⟩+ b
(1)
i

))
.

By Proposition 4 and our choice of η to ensure
∣∣η⟨wi,h

(1)(x)⟩
∣∣ ≤ 1 with high probability for any

x ∈ D2, we obtain that for any i ∈ [m1] and x ∈ D2,
∣∣∣ηa(0)i ⟨wi,h

(1)(x)⟩+ b
(1)
i

∣∣∣ ≤ a
(0)
i

∣∣∣η⟨wi,h
(1)(x)⟩

∣∣∣+ b
(1)
i ≲ 1.

Thus, ∥Ψ(x)∥22 ≤ m−1
1 . by the standard linear Rademacher bound, with high probability, the em-

pirical Rademacher complexity is upper bounded by

Rn(F) ≲
√
m1Ba

n2

√∑

x∈D2

∥Ψ(x)∥22 ≤
Ba√
n2

.

The proof is complete.

Proof of Lemma 36. We can bound the difference between ℓτ and L1 loss by

Ex

[∣∣∣f(x; θ̂)− f∗(x)
∣∣∣
]
− Ex

[
ℓτ

(
f(x; θ̂)− f∗(x)

)]

≤ Ex

[∣∣∣f(x; θ̂)− f∗(x)
∣∣∣1
{∣∣∣f(x; θ̂)− f∗(x)

∣∣∣ ⩾ τ
}]

≤
√

Ex

[∣∣∣f(x; θ̂)− f∗(x)
∣∣∣
2
]
Pr
[∣∣∣f(x; θ̂)− f∗(x)

∣∣∣ ⩾ τ
]

≲

√
Ex

[(
f(x; θ̂)2 + f⋆(x)2

)][
Pr
[∣∣∣f(x; θ̂)

∣∣∣ ⩾ τ/2
]
+ Pr [|f⋆(x)| ⩾ τ/2]

]
(36)
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Recall that we can write

f(x; θ̂) = â⊤Ψ(x), where Ψ(x) = Vec
(
m−1

1 σ1

(
ηa

(0)
i ⟨wi,h

(1)(x)⟩+ b
(1)
i

))
.

By following the proof of Lemma 35 and applying Proposition 4 for one single sample point x
(instead of the whole set D2), we know with high probability over V, w and D1 (we denote this
event by E1), we have for any i ∈ [m1],

∣∣∣η⟨wi,h
(1)(x)⟩

∣∣∣ ≤ 1

holds with high probability on x. Also, since for any i ∈ [m1], wi ∼ N (0m2
, Im2

), we
know ∥wi∥2 ≲

√
m2ι for any i ∈ [m1] with high probability. We denote this joint event on

w1,w2, . . . ,wm1
by E2. Thus, conditional on events E1 and E2, we have

∣∣∣f(x; θ̂)
∣∣∣ ≲ ∥â∥2√

m1
with high probability on x.

We denote this conditional event by Ex,1. Moreover, since η = Cι−5m
−1/2
2 d6, we have

∣∣∣f(x; θ̂)
∣∣∣ ≤ ∥â∥2

m1

m1∑

j=1

(
η ∥wj∥2

∥∥∥∥∥
1

n2

n∑

i=1

K(0)
m2

(xi,x
′)h(0)(xi)

∥∥∥∥∥
2

+ 3

)

≤
√
m2ι ∥â∥2
m1

m1∑

j=1

η

n

n∑

i=1

C2
σ ·
√
m2Cσ + 3

≲
√
m2d

6 ∥â∥2
holds for any x. Moreover, since f⋆(x) is a degree-2p polynomial of x, we know by Lemma
8, with probability at least 1 − exp(−ι), we have |f⋆| ≤ Cf ι

p for sufficiently large Cf > 0.
Besides, we have Ex

[
f⋆(x)2

]
≲ 1. Altogether, conditional on E1 and E2, by choosing τ =

C ′ max(ιp,m
−1/2
1 ∥â∥2) = Ω(max(ιp, Ba) for some sufficiently large C, we have

Ex

[(
f(x; θ̂)2 + f⋆(x)2

)][
Pr
[∣∣∣f(x; θ̂)

∣∣∣ ⩾ τ/2
]
+ Pr [|f⋆(x)| ⩾ τ/2]

]

≲
(
m2d

12 ∥â∥22 + 1
)
(Pr[x ̸∈ Ex,1] + Pr[x ̸∈ Ex,2])

≲ o

(
1

d2m2
1m

2
2n

2
1n

2
2

)
.

The last inequality holds because of the definition of high probability events and the choice of ι
with ι = C log(dm1m2n1n2) for sufficiently large C. Plugging the result into (36) concludes our
proof.
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