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ABSTRACT

DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning
capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by
this breakthrough, we explore how RL can be utilized to enhance the reasoning
capability of MLLMs. However, direct training with RL struggles to activate
complex reasoning capabilities such as questioning and reflection in MLLMs, due
to the absence of substantial high-quality multimodal reasoning data. To address
this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal
reasoning capability. Specifically, we first construct a high-quality multimodal CoT
dataset without human annotations by leveraging an existing MLLM and DeepSeek-
R1 through modality bridging and data filtering to obtain a 200K multimodal CoT
dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-
R1. To mitigate the optimization challenges caused by overthinking after cold
start, we propose Progressive Thinking Suppression Training (PTST) strategy
and employ Group Relative Policy Optimization (GRPO) with the hard formatting
result reward function to gradually refine the model’s ability to learn correct and
complex reasoning processes on the multimodal math dataset. Comprehensive
experiments show our model achieves an average improvement of ∼6% across
various multimodal math reasoning benchmarks using only a 10K multimodal math
data during RL training. Vision-R1-7B achieves a 73.5% accuracy on the widely
used MathVista benchmark, which is only 0.4% lower than the leading reasoning
model, OpenAI O1. Scaling up the amount of multimodal math data in the RL
training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista
benchmark scores, respectively.

1 INTRODUCTION

Enhancing the complex reasoning capability of Large Language Models (LLMs) remains one of
the most challenging problems in Artificial Intelligence (AI), which is widely regarded as a critical
pathway toward Artificial General Intelligence (AGI) (Jaech et al., 2024; DeepSeek-AI, 2025).
Conventional inference paradigms typically rely on a simple “direct prediction” approach to generate
concise final answers without explicit, structured intermediate reasoning steps, which often exhibits
suboptimal performance on complex reasoning tasks (Jaech et al., 2024). OpenAI O1 (Jaech et al.,
2024) was the first LLM with strong reasoning ability by using complex Chain-of-Thought (CoT) for
training to achieve significant performance gains over prior LLMs. Meanwhile, various methods (Wei
et al., 2022; Yao et al., 2023; Besta et al., 2024; Lightman et al., 2023; Uesato et al., 2022; Wang
et al., 2023; Lai et al., 2024; Wan et al., 2024; Trinh et al., 2024; Xin et al., 2024; Muennighoff
et al., 2025; Ye et al., 2025) have been explored to generate high-quality complex CoT reasoning and
further advance the field by optimizing reasoning pathways.

In the field of Multimodal Large Language Models (MLLMs), recent works (Yao et al., 2024;
Thawakar et al., 2025) have also explored the application of CoT reasoning. These approaches
assume that MLLMs lack a structured reasoning process, achieving low performance on the tasks
that require logical inference. To improve the reasoning capability of MLLMs, several methods (Xu
et al., 2024; Yao et al., 2024) try to construct the datasets manually containing step-level reasoning
processes and apply supervised fine-tuning (SFT) to reformat MLLMs’ outputs. However, this
manually designed “Formatted Reasoning MLLM” often results in “Pseudo-CoT” reasoning, which
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Figure 1: Left panel: Our Vision-R1 Pipeline. We first use the existing MLLM and DeepSeek-R1
to obtain a high-quantity Multimodal CoT dataset, which is used as the cold-start initialization data
for the base MLLM to obtain the post-cold-start Vision-R1-CI, and then we perform the RL training
on Vision-R1-CI to obtain the reasoning MLLM, Vision-R1. Right panel: We observe that directly
applying RL to MLLMs fails to effectively incentivize strong reasoning capability (see (C) and (D)).
Vision-R1-Zero, trained via RL without prior initialization, struggles to generalize from limited data
(see (E), (F), notably, Vision-R1-Zero was applied in format reward function). Vision-R1-CI faces
the Overthinking Optimization Problem, favoring shorter CoT reasoning, where correct reasoning
processes mostly focus on the shorter CoT reasoning sequences (see (A)). During subsequent RL
training, we observe a lengthening of reasoning steps but a decline in performance (see (D) and
(E)), making optimization particularly challenging. For Vision-R1, it initially shortens CoT to refine
the right thought process under RL training. PTST enables Vision-R1 to progressively acquire a
more complex reasoning process (see (C), (D), and (E)) to improve the performance, such that our
Vision-R1 with 7B parameters achieves comparable performance to the 70B+ strongest MLLMs (see
(B)). Note that Vision-R1 used various colored lines to indicate the different stages in PTST.

lacks essential cognitive processes commonly observed in human thoughts, such as questioning,
reflection and inspecting (see Fig. 2, the data examples of “Pseudo-CoT” and the complex CoT).
This limitation hinders their application on complex vision reasoning tasks. Thus, it is important to
generate human-like, high-quality, complex CoT reasoning data for training MLLMs, enabling them
to more effectively tackle intricate multimodal reasoning tasks.

Recently, DeepSeek-R1 (DeepSeek-AI, 2025) has successfully applied Reinforcement Learning
(RL) to induce the self-emergence of complex cognitive reasoning ability in LLMs. This begs
our rethinking: Can RL be utilized to incentivize the reasoning capability in MLLMs? To answer
this question, we first follow the DeepSeek-R1-Zero paradigm (DeepSeek-AI, 2025), by directly
using RL to improve the reasoning capability of MLLMs. Unfortunately, this direct RL training is
challenged, as it struggles to effectively guide MLLMs generating complex CoT reasoning in absence
of large-scale, high-quality multimodal data and prolonged training (see Fig. 1 (E) and (F)).

To address the above issue, we propose Vision-R1, a reasoning MLLM that integrates cold-start
initialization with RL training. First, we construct a high-quality multimodal CoT dataset without
requiring manual annotations. Specifically, we leverage an existing MLLM to generate “Pseudo-
CoT” reasoning text from multimodal image-text pairs. This “Pseudo-CoT” reasoning explicitly
incorporates both vision descriptions and structured step-level reasoning process, exposing more
detailed vision information in a textual format. Next, we feed the enriched reasoning text back into
the MLLM to obtain a description including necessary vision information. This process effectively
implements “Modality Bridging”, converting vision information to language. The resulting textual
descriptions are then passed to a text-only reasoning LLM, DeepSeek-R1, to extract high-quality
CoT reasoning. Finally, the dataset is refined through rule-based data filtering, ultimately obtaining
a dataset with 200K multimodal human-like complex CoT reasoning samples, which serves as the
cold-start initialization dataset for Vision-R1.

Following the DeepSeek-R1 training pipeline, we need to apply Group Relative Policy Optimization
(GRPO) (Shao et al., 2024; DeepSeek-AI, 2025) on a 10K multimodal math dataset to enhance the
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model’s reasoning capability. However, as shown in Fig. 1 (A) and (D), we observe an overthinking
phenomenon in the cold-start initialized MLLM, i.e., the correct reasoning processes tend to be
concentrated on shorter CoT reasoning sequences. This issue leads to the optimization problem in
subsequent RL training. To address this challenge, we propose Progressive Thinking Suppression
Training (PTST) alongside GRPO, which incorporates a hard-formatting result reward function.
This approach encourages Vision-R1 to compress CoT reasoning steps early in the RL process,
internalizing correct reasoning methods while progressively extending its reasoning duration over
time to effectively tackle more complex problems.

Our main contributions can be summarized as follows:

1. We explore how to use R1-like RL for MLLMs and introduce Vision-R1, a reasoning MLLM
that leverages cold-start initialization and RL training to incentivize reasoning capability. It is an
early exploration that investigates the application of R1-like RL for enhancing reasoning capability
in MLLMs and analyzes differences between direct RL training and the combined approach of
cold-start initialization and RL training. We believe that our exploration can inspire new insights for
the community.

2. A high-quality 200K multimodal CoT dataset without human annotations is constructed to serve
as a cold-start initialization data for MLLMs. We leverage the proposed PTST to GRPO with hard-
formatting result reward function, which effectively addresses the overthinking optimization problem
in RL training. PTST enables Vision-R1 to progressively develop more complex reasoning processes
while effectively guiding MLLMs toward enhanced reasoning capability.

3. Notably, despite having only 7B parameters, Vision-R1 achieves performance comparable to
State-of-The-Art (SoTA) MLLMs with over 70B parameters in math reasoning tasks. Furthermore,
the Vision-R1-32B and Vision-R1-72B models achieve an average accuracy improvement of around
10% compared to the base model on multiple multimodal math benchmarks.

2 RELATED WORK

2.1 LARGE LANGUAGE MODEL REASONING

As researchers have discovered that enabling LLMs to simulate human-like thought processes and
perform stepwise reasoning can significantly enhance their performance on reasoning tasks (Jaech
et al., 2024), extensive work has been dedicated to exploring LLM reasoning methods. These
approaches typically rely on human design to format LLM outputs to follow specific steps, such
as Chain-of-Thought (CoT) prompting methods (Wei et al., 2022), plan-based methods like Tree-
of-Thought and Graph-of-Thought (Yao et al., 2023; Besta et al., 2024), process-based reward
models (Lightman et al., 2023; Uesato et al., 2022; Wang et al., 2023; Lai et al., 2024), Monte Carlo
Tree Search (MCTS) and Beam Search (Wan et al., 2024; Trinh et al., 2024; Xin et al., 2024), as well
as constructing SFT datasets (Muennighoff et al., 2025; Ye et al., 2025).

A recent development, DeepSeek-R1 (DeepSeek-AI, 2025), demonstrates that applying large-scale
Reinforcement Learning (RL) with formatting and result-only reward functions can guide LLMs
toward self-emerging thought processes, producing human-like complex CoT reasoning and achieving
significant advantages in complex reasoning tasks. This approach has shown immense potential in
the field of Large Language Model Reasoning, however, its application to MLLMs remains an open
area of inquiry.

2.2 MULTIMODAL LARGE LANGUAGE MODEL REASONING

MLLMs typically map inputs from other modalities to the textual modality, which are then processed
by LLMs. This approach has been proven to exhibit superior performance in a range of vision
understanding tasks (Liu et al., 2024b;a; Bai et al., 2023; Zhu et al., 2023; Huang et al., 2024;
Zhao et al., 2024). Inspired by advancements in LLM reasoning, many studies have also sought
to enhance the reasoning capability of MLLMs. For instance, efforts have been made to employ
CoT prompting (Zhang et al., 2024b; Mitra et al., 2024; Luan et al., 2024) and to construct SFT
datasets that include step-level reasoning (Yao et al., 2024; Thawakar et al., 2025). However, the
CoT generated by these methods often lacks natural human cognitive processes, such as questioning,
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Multimodal Data

Question:
As shown in the 
figure, points A, D, 
B, and F are on a 
straight line, and 
triangle ABC is 
congruent to 
triangle FDE. If AF 
= 10 and AD = 3.5, 
then the length of 
BD is ( )  A. 3  B. 
3.5  C. 6  D. 7

MLLM

Caption
The image shows two 
triangles...... and F aligned on 
a straight line......they are 
congruent, and the line AF is 
marked with a length of 10 
units.

Following the above 
image description, 
think step by step and 
answer the following 
question directly.

Prompt

DeepSeek
     -R1

Reasoning
Given ... (    ABC≌   FDE), 
corresponding parts of 
congruent triangles are equal. 
Therefore, AB =  
DF......segment AF 
encompasses AD, DB, and 
BF......To find BD, we calculate:
- AF = AD + BD + BF
- Substitute known values: 
10 = 3.5 + BD + 3.5
- Simplify the equation: 10 = 7 + 
BD
- Solving for BD gives: BD = 10 - 
7 = 3

Okay, let's try to figure out the 
length of BD...... First......That's a 
key point. So AB = DF.
 ...... Let's denote BD as x. Then, 
since AB is a segment from A to B, 
which would be AD + DB, right? AD 
is 3.5, and DB is x, so AB = 3.5 + x. 
Since AB = DF (because the 
triangles are congruent)...... Wait, 
but D is between A and B, and F is 
after B. So from D to F, that's DF. 
Let's break that down. From D to 
B is x, and from B to F is some 
length. Let's call BF as y. Then DF = 
DB + BF = x + y. But wait, we 
already said DF = AB = 3.5 + x. So 
according to that, x + y = 3.5 + x....... 
Hmm, interesting...... So BD is 3 
units. That would be answer choice 
A. Let me just check that again to 
make sure I didn't make a 
mistake......⇒ x = 3. Yeah, that 
seems right. So BD should be 3. The 
answer is A.

deepseek-r1

Post-
process

Question:
As shown in the 
figure......then the 
length of BD is ( )  
A. 3  B. 3.5  C. 6  D. 7

Response: 
<think>Okay, let's try 
to figure out...... The 
answer is A.
</think>
<answer>A</answer>

Vision-R1-coldDescription

Modality Bridging

The image shows two 
triangles......, and F 
aligned on a straight 
line......they are 
congruent...... a 
length of 10 units. 
Point D lies between 
A and B, and point B 
lies between D and 
F......that 
corresponding sides 
are equal, specifically 
(AB = DF). The goal is 
to ......the properties 
of congruent triangles.

MLLM

Pseudo-CoT

Figure 2: The overall data generation pipeline incorporating our Modality Bridging method. The
multimodal data is first sent to MLLMs to obtain a “Pseudo-CoT” consisting of a caption and
reasoning process, which serves as the input of MLLMs along with the original image-question pair
to produce detailed descriptions. Through this modality bridging approach, the textual descriptions
provide DeepSeek-R1 with holistic information that facilitates the generation of high-quality CoT
processes, which are post-processed and integrated with the original data to create the final Vision-
R1-cold dataset.

reflection, and inspecting, which limits their effectiveness in solving complex reasoning tasks. In
contrast, Vision-R1 distinguishes itself by combining cold-start initialization with RL training to
acquire high-quality, complex CoT reasoning capability.

3 METHOD

3.1 CAN ONLY RL INCENTIVIZE REASONING CAPABILITY IN MLLMS?

Inspired by DeepSeek-R1-Zero (DeepSeek-AI, 2025), we aimed to directly use RL to guide models
towards self-thought and the emergence of complex reasoning capability. To this end, we collected a
dataset of 10K open-source math problems for RL training. Specifically, we followed the DeepSeek-
R1-Zero pipeline, training a base MLLM using GRPO (Shao et al., 2024), with output format
constraints dictated by the following system prompt:

A conversation between User and Assistant. ... first thinks
about the reasoning process ... provides the user with the
answer. The reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags ...

For the reward function, we utilized both formatting and result rewards:

1. Formatting reward function: The model’s output must adhere to the “<think>
</think><answer> </answer>” format.

2. Result reward function: The model’s generated final result must align with the ground truth.

We set the formatting and result reward ratio as 1 : 1.

The model after purely RL training is named as Vision-R1-Zero. Unfortunately, as shown in Fig. 1
(D) and (E), directly applying RL to train MLLMs has proven challenging in stimulating MLLM’s
reasoning capability and producing lengthy, complex CoT, limiting the model’s reasoning ability.
Moreover, we observed that as training progressed over extended periods, the model gradually
learned to use longer reasoning processes to solve hard problems, but this did not show significant
performance improvement. Thus, we claim that directly using RL to incentivize the reasoning
capability of MLLMs for solving complex reasoning problems remains a challenging task, especially
under constraints of data quality and quantity, as well as computation resources.

3.2 OVERVIEW OF VISION-R1

In our above explorations, we observed that an RL-only approach struggles to guide MLLMs
in generating human-like, complex CoT. Consequently, we explored an alternative strategy and
introduced the reasoning MLLM, Vision-R1. This method begins with a cold-start using a multimodal
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Progressive Thinking Suppression Training (PTST)

4�

Figure 3: GRPO with our proposed PTST strategy. We progressively loosen the context length
restrictions, increasing the length of reasoning process. Specifically, we set the reasoning length to
4K, 8K and 16K tokens for each stage, with corresponding group numbers of 16, 8 and 4 respectively.
The reward function for GRPO is based on a hard formatting result reward function (HFRRF). The
dotted line in the “Stage 3” indicates that the final version of Vision-R1 did not undergo the third
stage of training.

CoT dataset, which initially teaches the base model to reason in a “human-like” manner. Subsequently,
we apply RL to the cold-start initialized model Vision-R1-CI to guide it towards adopting the correct
reasoning process, thereby incentivizing the reasoning capability in the final model Vision-R1.

In the following sections, we first describe our approach to create a high-quality, human annotation-
free multimodal CoT dataset in Sec. 3.3.1, as well as the Overthinking Optimization Problem faced by
post-cold-start MLLMs in Sec. 3.3.2. Then we discuss the RL training method, Progressive Thinking
Suppression Training (PTST) in Sec. 3.4, to address the Overthinking Optimization Problem.

3.3 COLD-START INITIALIZATION

3.3.1 MODALITY BRIDGING TO OBTAIN HIGH-QUALITY MULTIMODAL COT DATA

Many existing works (Xu et al., 2024; Yao et al., 2024) have attempted to construct multimodal
reasoning datasets to enhance the reasoning capability of MLLMs. Prior efforts typically gathered
CoT data which often lack the natural cognitive processes of questioning, and self-reflection. These
datasets are typically constructed in a step-by-step form based on human heuristics. However, our
goal is to collect a multimodal CoT dataset that encompasses complex cognitive processes to teach
Vision-R1 to reason in a human-like, natural manner. Furthermore, DeepSeek-R1 has demonstrated
the ability to generate CoT with natural cognitive processes and has proven to have strong reasoning
capability. By using the high-quality CoT data it generates, which incorporates human-like cognitive
self-reflection processes, we can train MLLMs to enhance their reasoning capability. However, being
a “text-only” LLM, DeepSeek-R1 struggles to effectively process multimodal inputs to produce
high-quality CoT.

To overcome these limitations, we utilize existing MLLMs alongside DeepSeek-R1 and propose a
method named Modality Bridging to indirectly convert multimodal information into textual infor-
mation, thereby capturing the complex cognitive processes of DeepSeek-R1. As the data generation
pipeline that shown in Fig. 2, firstly, we follow prior works (Xu et al., 2024; Yao et al., 2024) by
inputting an image-question-answer pair and a prompt into a MLLM to generate a “Pseudo-CoT”
featuring both image description and reasoning processes. Subsequently, we concatenate the image-
question pair with the “Pseudo-CoT” and a prompt, and then feed them into a MLLM to obtain a
detailed image description. Below is the prompt template:

Given a image, a question:{question} and a thinking
process:{thinking process}, provide a detailed description
containing all the necessary details of the image to answer the
question correctly...

This process of generating “Pseudo-CoT” explicitly exposes more of the necessary vision details for
reasoning in textual form, compared to pure image descriptions. This assists the MLLM in producing
more detailed descriptions, thereby minimizing information loss during the conversion of original
multimodal information to textual information (see Fig. 5).

At this stage, we cleverly bridge image information to textual information and feed it into DeepSeek-
R1 to obtain high-quality CoT processes. We then retain reasoning processes from the generated
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Table 1: Comprehensive comparison with SoTA MLLMs (closed-source, open-source gen-
eral/math/reasoning MLLMs) across diverse multimodal math benchmarks.“Avg.” denotes the average
performance over all benchmarks. For MathVista benchmark, we have specifically compared all
models on three sub-tasks that are highly related to mathematical reasoning: geometry reasoning
(GEO), algebraic reasoning (ALG), geometry problem solving (GPS) and math word problems
(MWP). “ALL” denotes the average score on MathVista benchmark. The best results are bolded.

Model Params. MathVista MathVerse MM-Math DynaMath Avg.
GEO ALG GPS MWP ALL

Closed-Source MLLMs

OpenAI O1 (Jaech et al., 2024) − − − − − 73.9† − − − −
GPT-4o (Hurst et al., 2024) − − − − − 63.8 37.6 31.8 64.9
GPT-4V (OpenAI, 2023) − − − − − 49.9 39.4 23.1 − 37.5

Claude-3.5 Sonnet (Anthropic, 2024) − − − − − 67.7 26.5 − 62.5 −
Open-Source General MLLMs

Qwen2.5-VL-7B (Bai et al., 2025) 7B 66.9 68.7 66.8 76.9 68.1 46.7 34.1 50.7 49.9
Qwen2.5-VL-32B (Bai et al., 2025) 32B 72.8 73.7 75.0 72.6 72.9 52.3 34.9 55.5 53.9
Qwen2.5-VL-72B (Bai et al., 2025) 72B 77.8 77.9 78.8 74.7 73.5 51.3 45.6 61.2 57.9

InternVL2.5-78B (Chen et al., 2024c) 78B 76.6 76.5 77.9 75.8 71.9 25.4 17.8 41.4 39.1

Open-Source Math MLLMs

Math-LLaVA-13B (Shi et al., 2024) 13B 56.5 40.2 57.7 56.5 46.6 22.9 − − −
Math-PUMA-Qwen2-7B (Zhuang et al., 2024) 7B 47.3 − 48.1 − 47.9 33.6 − − −

Multimath-7B (Peng et al., 2024) 7B − − 66.8 61.8 50.0 26.9 − − −
URSA-8B (Luo et al., 2025) 8B − − 79.3 75.3 59.8 45.7 − − −

Open-Source Reasoning MLLMs

LLaVA-CoT-11B (Xu et al., 2024) 11B − − − − 54.8 20.3 16.5 34.6 31.6
Mulberry-7B (Yao et al., 2024) 7B − − − − 63.1 − 23.7 − −

Our Model

Vision-R1-7B (Ours) 7B 80.3 79.0 83.2 80.6 73.5 52.4 40.2 56.3 55.6
∆ (vs Qwen2.5-VL-7B) +13.4 +10.3 +16.4 +3.7 +5.4 +5.7 +6.1 +5.6 +5.7

Vision-R1-32B* (Ours) 32B 85.8 82.6 88.0 78.5 76.4 62.1 55.3 65.6 64.9
∆ (vs Qwen2.5-VL-32B) +13.0 +8.9 +13.0 +5.9 +4.7 +9.8 +20.4 +10.1 +11.0

Vision-R1-72B* (Ours) 72B 88.3 86.8 89.4 79.6 78.2 63.2 59.3 66.4 66.8
∆ (vs Qwen2.5-VL-72B) +10.5 +8.9 +10.6 +4.9 +4.7 +11.9 +13.7 +5.2 +8.9

† The result is collected from the official MathVista leaderboard (https://mathvista.github.io/#leaderboard).
* It uses additional data during RL training.

multimodal CoT data that the final answer is aligned with ground truth and apply rule-based data
filtering to remove logical inconsistent samples and replace some words for semantic coherence.

Finally, we pair the pure text CoT data generated by DeepSeek-R1 from the above process with the
corresponding images, integrating into multimodal CoT data, named Vision-R1-cold dataset. This
dataset is used for the cold-start initialization of Vision-R1. By acquiring CoT data in this manner,
which closely mimics human cognitive behavior, the reasoning processes exhibit natural thinking.

3.3.2 OVERTHINKING OPTIMIZATION PROBLEM

After obtaining a multimodal CoT dataset, we conducted SFT on a pretrained MLLM (such as
Qwen2.5-VL (Bai et al., 2025)) as the base MLLM for cold-start initialization. The MLLM after cold
start initialization is named as Vision-R1-CI. At this stage, the base MLLM had learned the complex
reasoning mode from DeepSeek-R1, however, this led to the Overthinking Optimization Problem,
i.e., Vision-R1-CI would engage in prolonged thought processes on certain problems, whereas the
correct reasoning processes were typically concentrated in shorter cognitive chains.

As shown in Fig. 1 (D) and (E), this propensity for excessive incorrect reasoning significantly
complicates the optimization of subsequent RL training. For instance, when the allowed thought
length during RL training for Vision-R1-CI was directly extended to 16K, the model tended to
generate longer answers to fulfill the demands of complex reasoning. However, this incorrect
reasoning did not lead to performance improvements, thus presenting challenges in incentivizing
reasoning capability in MLLMs. So, it is crucial to guide the model to learn correct thinking in the
early stages for the reasoning performance of MLLMs.

3.4 PROGRESSIVE THINKING SUPPRESSION TRAINING

Inspired by the above phenomenon, we propose the Progressive Thinking Suppression Training
(PTST) algorithm to initially suppress the length of reasoning during the early stages of RL training
for Vision-R1, while guiding it towards the correct reasoning processes. As training progresses, we
gradually relax these constraints, allowing Vision-R1 to autonomously learn to utilize longer CoT
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Table 2: Comparison with SoTA MLLMs across diverse comprehensive multimodal benchmarks.
The base MLLM is Llama-3.2-11B-V-Instruct (Dubey et al., 2024). The results indicate that our data
significantly enhances the generalization capabilities of our model, leading to superior performance
across all benchmarks.

Method General Benchmark Math Benchmark

MMStar ChartQA MMEsum HallBench MathVista MathVerse MM-Math

Llama-3.2-11B-V (Dubey et al., 2024) 49.8 83.4 1787 40.3 48.6 8.4 4.1

Mulberry-Llama-11B (Yao et al., 2024) 58.5 83.5 2035 48.9 61.1 − 18.7
LLaVA-Cot-11B (Xu et al., 2024) 57.6 81.9 2137 47.8 54.8 20.3 16.5

Vision-R1-LlamaV-CI-11B 61.4 83.9 2190 49.5 62.7 27.1 26.1

to address increasingly complex problems, thereby enhancing its reasoning capability. Specifically,
we implement Group Relative Policy Optimization (GRPO) with hard formatting result rewards for
the model’s self-learning. Consider the standard GRPO approach, it samples a group of generated
output set {o1, o2, · · · , oG} for each question q from policy model πθold . Then GRPO maximizes the
following objective and optimizes the model πθ.

JGRPO(θ) = Eq∼P (Q), {oi}Gi=1∼πθold
(O|q)[

1

G

G∑
i=1

min
( πθ(oi | q)
πθold(oi | q)

Ai, clip
( πθ(oi | q)
πθold(oi | q)

, 1− ε, 1 + ε
)
Ai

)
− β DKL

(
πθ

∥∥πref

)]
,

(1)

where ε and β are the PPO clipping hyper-parameter and the coefficient controlling the Kull-
back–Leibler (KL) penalty (Shao et al., 2024; Schulman et al., 2017), respectively. We set ε=0.2
and β=1e-2 during training. Ai =

ri−mean({r1,r2,...,rG})
std({r1,r2,...,rG}) is the computed advantage using the group

rewards {r1, r2, · · · , rG} and DKL

(
πθ ∥πref

)
= πref(oi|q)

πθ(oi|q) − log
(

πref(oi|q)
πθ(oi|q)

)
− 1 is the KL divergence.

As shown in Fig. 3, in our proposed PTST, we denote the total number of training stages by S, with
each stage having its own sampling count Gs and sequence length limit Ls. The output space for
stage s ∈ {1, 2, . . . , S} is O(s) = { o : |o| ≤ Ls}. The training objective for the s-th stage can be
further reformulated based on Eq. 1 as:

J
(s),w/PTST
GRPO (θ) = E

q∼P (Q), {o(s)i }Gs
i=1∼πθold

(
O(s)|q

)[
1

Gs

Gs∑
i=1

min
( πθ

(
o
(s)
i | q

)
πθold

(
o
(s)
i | q

) A
(s)
i , clip

( πθ

(
o
(s)
i | q

)
πθold

(
o
(s)
i | q

) , 1− ε, 1 + ε
)
A

(s)
i

)
− β DKL

(
πθ

∥∥πref

)]
,

(2)

where A
(s)
i denotes the advantage estimate for the i-th sample in the training stage s, and πθold

denotes the policy model with an output length constraint of O(s). We employ the hard formatting
result reward function as the reward mechanism for GRPO, i.e., the model receives a reward score
of ri = 1 only when both the formatting requirements and the correctness of the final answer are
simultaneously satisfied; otherwise, it receives a score of ri = 0. Moreover, we do not impose
constraints using a system prompt, as Vision-R1-CI has already acquired robust formatting capability
during the cold-start initialization.

By applying PTST, we compress the model’s thought length in the early training stages to guide
correct reasoning and gradually relax these constraints in later stages. As illustrated in Fig. 1, this
progressive strategy enables Vision-R1 to generate more complex CoT and significantly enhances
its reasoning capability. Notably, in practice, we observe that Vision-R1 achieves competitive
performance by the end of the second training stage, leading us to select it as the final stage, i.e., we
set the parameters as S = 2, Ls ∈ {4K, 8K, 16K}, and Gs ∈ {16, 8, 4}, respectively.

4 EXPERIMENTS

Please refer to Appendix A to obtain the detailed data and training settings. We provide the main
results of Vision-R1 in Sec 4.1, and then we introduce the detailed ablation study in Sec 4.2.

4.1 MAIN RESULTS

As shown in Tab. 1, our proposed Vision-R1-7B achieves competitive results across multiple
math reasoning benchmarks, even when compared to SoTA models with over 10 times the pa-
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Q: As shown in the figure, AB parallel CD, EG 
bisects angle BEF, then angle 2 is equal to () 
Choices: A:50°B:60°C:65°D:90°

<think> Okay, let's see. The problem displays that 
AB is parallel to CD, and EG bisects angle BEF. We 
need to find the measure of angle 2. First, the 
image displays......Wait, angle 1 is at point F, 
so......be supplementary to angle 1 because they 
are same-side interior angles. So angle BEF 
would be 180 - 50 = 130 degrees. Then, EG bisects 
angle BEF, so it splits angle BEF into two equal 
parts. Therefore, each of the angles formed by 
the bisector EG would be 130 / 2 = 65 degrees. 
Since angle 2 is one of those bisected angles, 
angle 2 should be 65 degrees. Looking at the 
choices, option C is 65°. So the answer should be 
C. </think><answer> Final Answer:C </answer>

Q: As shown in the figure, AB is tangent to circle 
O at point B, then angle C is equal to ()
Choices: A:36°B:54°C:60°D:27°

<think> Okay, let's see. The problem displays......I 
remember that the tangent to a circle is 
perpendicular to the radius at the point of 
contact......so the remaining angle at O must be 180 
- 90 - 36 = 54 degrees......Now, the problem 
displays that angle C is an inscribed angle that 
subtends the same arc as the central angle O. Wait, 
the central angle subtended by arc OB would be 
angle O, which is 54 degrees. But angle C is an 
inscribed angle subtending the same arc. 
Remember that an inscribed angle is half the 
measure of the central angle subtending the same 
arc......So, angle C is 27 degrees. Looking at the 
choices, D is 27°. So the answer should be D. 
</think><answer> Final Answer:D </answer>

<think> Okay, let's see. The problem displays......
First, since AB = AC......Now, the perpendicular 
bisector of AB......Let's call the midpoint of AB as 
point M. So BM = MA......Wait, maybe I should 
consider the properties of the perpendicular 
bisector......But wait, angle DBA is part of angle 
ABC......But wait, maybe I'm getting confused 
here. Let me try a different approach......
Let's see. In triangle BDC......But wait, that might 
not be directly applicable. Wait, maybe we 
can......which is option A. Wait, but let me check 
again. Alternatively, maybe using......So the answer 
is 72 degrees, which is option A. That seems correct. 
</think><answer> Final Answer:A </answer>

Q: As shown in the figure, AB = AC, angle A = 
36.0, the perpendicular bisector of AB intersects 
AC at D, then the degree of angle BDC is ()
Choices: A:72°B:36°C:60°D:82°

Figure 4: The output examples of Vision-R1-7B on MathVerse benchmark. Vision-R1-7B shows
“human-like” questioning and self-reflective thought process when solving math reasoning problems,
which is also called “Aha moment” in DeepSeek-R1’s paper (DeepSeek-AI, 2025). More examples
are provided in supplementary materials.

rameters of Vision-R1-7B. For instance, on the MathVista benchmark, Vision-R1-7B achieves a
score of 73.5%, only 0.4% lower than OpenAI O1, the most widely recognized reasoning model.

Table 3: Evaluating the impact of Cold Start Initializa-
tion, GRPO, Progressive Thinking Suppression Train-
ing (PTST). “Avg. Len.” denotes the average output
token length on the 10K multimodal math dataset for
RL training. “Avg. Acc.” denotes the average perfor-
mance (MathVista, MathVerse, MM-Math).

Method Cold Start GRPO PTST Avg. Len. Avg. Acc.

Vision-R1-Zero ✓ 1285 50.7
Vision-R1-CI ✓ 3566 44.5

Vision-R1-Long ✓ ✓ 3107 47.7
Vision-R1 (Ours) ✓ ✓ ✓ 2057 55.4

Moreover, on the complex math reason-
ing sub-tasks of MathVista, i.e., GEO,
ALG, and GPS, Vision-R1-7B achieves
scores of 80.3%, 79.0%, and 83.2%, respec-
tively, exceeding the base model Qwen-2.5-
VL-7B by an average accuracy improve-
ment of over 10%. These results high-
light the strong reasoning capability Vision-
R1-7B gains through “human-like” com-
plex thinking processes. Furthermore, on
the more challenging MathVerse and MM-
Math benchmarks, Vision-R1-7B ranks
Top-1 and Top-2, respectively, with the lat-

ter being second only to Qwen-2.5-VL-72B. This demonstrates Vision-R1-7B’s effectiveness in
solving complex math problems.

4.2 ABLATION STUDY

Table 4: Comparison of the occurrence frequency of self-
reflective indicators between llava-cot, mulberry and our
Vision-R1-cold dataset. The higher frequency of these re-
flective markers in our dataset demonstrates its distinctive
self-reflection and self-correction characteristic.

Word llava-cot
(100K)

Mulberry
(260K)

Vision-R1-cold
(200K)

“Wait” 2,300 1,122 585,719
“Hmm” 1 0 75,853

“Mistake” 183 8,784 26,697
“Alternatively” 251 68 188,187

“Check” 8,332 26,421 100,148

Cold-start Dataset Quality. We con-
duct a quality analysis of our proposed
Vision-R1-cold dataset. The primary
objective of constructing Vision-R1-
cold is to supplement the existing
multimodal CoT datasets, which lack
complex cognitive processes, and to
leverage DeepSeek-R1’s high-quality
CoT process as cold-start data. To
evaluate this, we present a compar-
ative analysis in Tab. 4, where we
statistically examine the presence of
questioning, reflection, and inspec-
tion within the CoT processes of Mul-
berry, LLaVA-CoT, and Vision-R1-
cold datasets. The results indicate that
Vision-R1-cold contains a significantly higher proportion of human-like cognitive processes compared
to previous multimodal CoT datasets. This complex CoT structure facilitates the base MLLM in
learning reasoning mechanisms, providing a high-quality cold-start initialization for RL training.

Additionally, we compare Vision-R1-cold with previous multimodal CoT datasets by training on
Llama-3.2-11B-V in Tab. 2. After SFT, our Vision-R1-LlamaV-CI-11B model achieves SoTA
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Table 5: Effect of PTST. “4K×16” denotes a PTST setup where the Stage limits the response length
to 4K with 16 samples. “Avg.” denotes the average performance (MathVista, MathVerse, MM-Math).

Method Stage 1 Stage 2 Stage 3 MathVisita MathVerse MM-Math Avg.

Baseline − − − 68.1 46.7 34.1 49.6
− 4K×16 4K×16 − 72.6 51.4 39.0 54.3
− 4K×16 8K×16 − 72.9 53.5 39.5 55.3
− 4K×16 6K×12 8K×8 73.0 52.6 39.8 55.1

Vision-R1-Long 16K×4 16K×4 − 70.3 36.8 36.1 47.7
− 16K×16 16K×16 − 71.1 36.5 36.1 47.9

Vision-R1 (Ours) 4K×16 8K×8 − 73.5 52.4 40.2 55.4

performance across all general and math reasoning benchmarks, outperforming both LLaVA-CoT-
11B and Mulberry-Llama-11B, directly confirming the superior quality of Vision-R1-cold dataset.

Effect of Main Strategy. As shown in Tab. 3, we compare the performance of vari-
ous RL training strategies. The results indicate that Vision-R1-Zero, which applies RL
training directly without cold-start initialization, struggles to generate sufficiently long and
complex CoT reasoning, thereby limiting its ability to handle intricate reasoning tasks.

Table 6: Effect of Cold Start. “Zero+PTST” de-
notes we keep the Vision-R1-Zero settings while
adopting PTST strategy. “Zero+SFT+PTST ” in-
volves training the base model in the Vision-R1-
cold dataset without CoT annotations before RL
training, followed by RL training with the same
“Zero+PTST” setup. “Avg.” denotes the average per-
formance (MathVista, MathVerse, MM-Math).

Method MathVisita MathVerse MM-Math Avg.

Vision-R1-Zero 70.6 52.6 28.8 50.7
Zero+PTST 71.3 50.9 33.1 51.8

Zero+SFT+PTST 68.7 32.0 18.9 39.8
Vision-R1 (Ours) 73.5 52.4 40.2 55.4

In contrast, Vision-R1-CI, after cold-start ini-
tialization, tends to generate excessively long
CoTs. However, the presence of numerous in-
correct reasoning steps leads to lower overall
performance. Furthermore, Vision-R1-Long
via applying RL training directly to Vision-
R1-CI results in optimization difficulty, mak-
ing it hard to achieve significant performance
improvements. In comparison, our proposed
Vision-R1 demonstrates a substantial advan-
tage in reasoning performance, effectively bal-
ancing CoT complexity and accuracy.

Effect of PTST. In Tab. 5, our two-stage setup
(4K×16→8K×8) achieves the best average
(55.4%), outperforming training with a fixed

short length (4K×16→4K×16) by +1.1 Avg. (54.3→55.4), indicating that progressively relaxing the
length constraint in Stage 2 yields consistent gains once correct thinking is established in Stage 1.
In contrast, training with fixed 16K (16K×4 or 16K×16) severely underperforms (47.7%/47.9%),
showing that early length constraints effectively mitigate overthinking. Further increasing Stage 2
sampling to 16 (4K×16→8K×16, 55.3%) or inserting an extra stage (4K×16→6K×12→8K×8,
55.1%) brings no meaningful improvement, suggesting PTST is robust and a simple two-stage
schedule suffices under matched training time (sampling×length kept constant per stage).

Effect of Cold Start. Tab. 6 demonstrates that PTST alone offers limited benefit without cold start
(Zero+PTST: 51.8% vs Vision-R1-Zero: 50.7%), and SFT without CoT before RL is detrimental
(Zero+SFT+PTST: 39.8%). In contrast, cold-starting on Vision-R1-cold followed by PTST yields
the best average (55.4%), with a substantial gain on MM-Math (40.2% vs 33.1%/28.8%). These
results support that complex CoT priors acquired in cold start are essential for RL to learn correct
reasoning patterns. Furthermore, PTST then suppresses early overthinking (short 4K) and safely
extends reasoning length (8K), leading to consistent improvements.

Visualization. As shown in Fig. 4, our proposed Vision-R1-7B is capable of generating complex
reasoning processes and exhibits the emergence of the so-called “Aha moment” (DeepSeek-AI, 2025),
i.e., a phenomenon analogous to human cognitive processes involving questioning and reflection.
This sophisticated reasoning capability significantly enhances the model’s inference performance,
leading to substantial improvements in solving complex reasoning tasks.

5 CONCLUSION

We explore how to use RL training to incentivize reasoning capability in MLLMs. Moreover,
we proposed Vision-R1 and achieved the strong math reasoning ability, achieving comparable
performance to SoTA MLLMs.
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Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
Infographicvqa. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 1697–1706, 2022.

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over
scientific plots. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 1527–1536, 2020.

Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-thought
prompting for large multimodal models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14420–14431, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAI. Gpt-4v(ision) system card. https://openai.com/index/
gpt-4v-system-card, 2023.

Shuai Peng, Di Fu, Liangcai Gao, Xiuqin Zhong, Hongguang Fu, and Zhi Tang. Multimath: Bridging
visual and mathematical reasoning for large language models. arXiv preprint arXiv:2409.00147,
2024.

Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma GongQue,
Shanglin Lei, Zhe Wei, Miaoxuan Zhang, et al. We-math: Does your large multimodal model
achieve human-like mathematical reasoning? arXiv preprint arXiv:2407.01284, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
A-okvqa: A benchmark for visual question answering using world knowledge. In European
conference on computer vision, pp. 146–162. Springer, 2022.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni, and Clint Malcolm. Solving geometry
problems: Combining text and diagram interpretation. In Proceedings of the 2015 conference on
empirical methods in natural language processing, pp. 1466–1476, 2015.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and
Roy Ka-Wei Lee. Math-LLaVA: Bootstrapping mathematical reasoning for multimodal large
language models. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
4663–4680, November 2024.

13

https://openai.com/index/gpt-4v-system-card
https://openai.com/index/gpt-4v-system-card


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8317–8326, 2019.

Kai Sun, Yushi Bai, Ji Qi, Lei Hou, and Juanzi Li. Mm-math: Advancing multimodal math evaluation
with process evaluation and fine-grained classification. arXiv preprint arXiv:2404.05091, 2024.

Omkar Thawakar, Dinura Dissanayake, Ketan More, Ritesh Thawkar, Ahmed Heakl, Noor Ahsan,
Yuhao Li, Mohammed Zumri, Jean Lahoud, Rao Muhammad Anwer, et al. Llamav-o1: Rethinking
step-by-step visual reasoning in llms. arXiv preprint arXiv:2501.06186, 2025.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In
Forty-first International Conference on Machine Learning, 2024.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. Advances
in Neural Information Processing Systems, 37:95095–95169, 2025.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. arXiv
preprint arXiv:2312.08935, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for
reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024.

Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language
models reason step-by-step. arXiv preprint arXiv:2411.10440, 2024.

Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang,
Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm with o1-like reasoning
and reflection via collective monte carlo tree search. arXiv preprint arXiv:2412.18319, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan
Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams
in visual math problems? In European Conference on Computer Vision, pp. 169–186. Springer,
2024a.

Ruohong Zhang, Bowen Zhang, Yanghao Li, Haotian Zhang, Zhiqing Sun, Zhe Gan, Yinfei Yang,
Ruoming Pang, and Yiming Yang. Improve vision language model chain-of-thought reasoning.
arXiv preprint arXiv:2410.16198, 2024b.

Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weixiong Lin, Ya Zhang, Yanfeng Wang, and Weidi
Xie. Pmc-vqa: Visual instruction tuning for medical visual question answering. arXiv preprint
arXiv:2305.10415, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Fei Zhao, Taotian Pang, Chunhui Li, Zhen Wu, Junjie Guo, Shangyu Xing, and Xinyu Dai.
Aligngpt: Multi-modal large language models with adaptive alignment capability. arXiv preprint
arXiv:2405.14129, 2024.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang. Multihiertt: Numerical reasoning over multi
hierarchical tabular and textual data. arXiv preprint arXiv:2206.01347, 2022.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
Easyr1: An efficient, scalable, multi-modality rl training framework. https://github.com/
hiyouga/EasyR1, 2025.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

Wenwen Zhuang, Xin Huang, Xiantao Zhang, and Jin Zeng. Math-puma: Progressive upward
multimodal alignment to enhance mathematical reasoning. arXiv preprint arXiv:2408.08640,
2024.

15

http://arxiv.org/abs/2403.13372
https://github.com/hiyouga/EasyR1
https://github.com/hiyouga/EasyR1


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXPERIMENT SETTINGS

Dataset and Benchmarks. To obtain the cold-start dataset, we use the multimodal visual question
answering (VQA) datasets, LLaVA-CoT dataset (100K) (Xu et al., 2024) and Mulberry dataset
(260K) (Yao et al., 2024), to conduct Vision-R1-cold (200K). During GRPO process, we mix the
math datasets of We-Math (Qiao et al., 2024), MathVision (Wang et al., 2025), Polymath (Gupta et al.,
2024), SceMQA (Liang et al., 2024), Geometry3K (Lu et al., 2021a) as our RL training data. Total
amount of data is around 10K. For scaling up the RL dataset for Vision-R1-32B and Vision-R1-72B,
we render text-based AIME data before 2024 as images, extract a subset from MAmmoTH-VL (Guo
et al., 2024) and MMIQ (Cai et al., 2025), obtaining a total of ∼20K additional data.

For evaluating the reasoning capability of our Vision-R1, we choose three widely used multimodal
math benchmarks: MM-Math (Sun et al., 2024), MathVista (Lu et al., 2023a), MathVerse (Zhang
et al., 2024a). These benchmarks covers various mathematical fields which can provide a thorough
evaluation of MLLMs’ math reasoning ability. Besides, we select four general multimodal bench-
marks to demenstrate the general ability of our model: MMStar (Chen et al., 2024b), ChartQA (Masry
et al., 2022), MME (Fu et al., 2023) and HallBench (Guan et al., 2024). Those general benchmarks
are used to evaluate the data quality of our proposed Vision-R1-cold dataset.

Implementation Details. For the Vision-R1-cold dataset preparation, we deploy the open-source
MLLM Qwen2.5-VL-72B (Bai et al., 2025) and the reasoning LLM DeepSeek-R1 (DeepSeek-AI,
2025). We then process the VQA datasets using Qwen-2.5-VL-72B and DeepSeek-R1.

For the cold-start initialization of Vision-R1, we adopt Qwen2.5-VL (Bai et al., 2025) as the base
model and train it via supervised fine-tuning (SFT) for 2 epochs using Llama-Factory frame-
work (Zheng et al., 2024). After cold-start initialization, we obtain the post-cold-start model,
Vision-R1-CI, which is subsequently trained on the collected math dataset using GRPO in Verl
training framework (Sheng et al., 2024; Zheng et al., 2025), while following the two-stage PTST
approach (note that we do not use the third stage checkpoints), i.e., S was set to 2. The all models in
the paper are summarised as follows:

• Vision-R1-Zero: This represents the baseline approach where reinforcement learning (RL)
is applied directly to the base MLLM without cold-start initialization. We adopt the limit of
4K generation token length with 16 samples to train the base model via RL training. The
system prompt and the training method are described in Sec. 3.1. The full training step is
set to 300.

• Vision-R1-CI: The base MLLM is cold-start initialized using the Vision-R1-cold dataset,
resulting in this model.

• Vision-R1-Long: This variant is trained with a maximum generation length of 16K tokens,
where four samples per input are generated from the cold-started Vision-R1-CI, followed by
300 training steps.

• Vision-R1: This model follows the Progressive Thinking Suppression Training (PTST)
strategy, where a two-stage RL training process is applied:

– Stage 1: The model is trained from Vision-R1-CI for 100 steps with an 4K token
generation limit, sampling 16 samples per input.

– Stage 2: Training continues for another 100 steps with a maximum generation length
of 8K tokens, sampling 8 samples per input.

The final model checkpoint at the end of Stage 2 is the final Vision-R1 model, as this stage
achieves an optimal balance between reasoning length and overall performance. Note that
for Vision-R1-32B and Vision-R1-72B, we use additional data to continue training them in
the RL stage under the same PTST Stage 2 settings.

Additionally, Vision-R1 can be further extended to a third training stage, following the same parameter
settings as Vision-R1-Long and continuing for an additional 100 training steps. However, as shown
in Fig. 1, further training does not yield significant performance improvements but does generate
more complex reasoning processes.

For the ablation study experiments in Sec 4.2, we choose Vision-R1-7B as the default to evaluate. In
Tab. 5 and Tab. 6, we chose the optimal checkpoint for reporting performance by evaluating every
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I need to check......Wait, but 
the original data isn't 
here......Wait, maybe there's a 
mistake......Hmm, this is a 
problem......Alternatively, 
maybe the answer is "34.2" as 
per real data, but I can't 
confirm......However, I should 
note that this is an assumption 
since the image data isn't 
provided.

Okay, let's see. The 
question......First, I'll recall 
the data points given......I need 
to confirm......Let me check 
again......So, the answer should 
be straightforward......which is 
clearly stated as 40.1.......I 
should make sure......Therefore, 
the answer is 40.1.

The image is a bar chart 
displaying the infant mortality 
rate in Kiribati from 2009 to 
2019. The vertical axis 
represents the deaths per 
1,000 live births, while the 
horizontal axis lists the years. 
Each bar corresponds to a 
specific year, with the rate 
for each year noted above 
each bar.

The image is a bar chart 
displaying the infant mortality 
rate in Kiribati from 2009 to 
2019...... The rates for each 
year are as follows: 49.9 in 
2009......40.1 in 2019. The 
bar for 2019 clearly indicates 
the infant mortality rate as 
40.1 deaths per 1,000 live 
births.

DeepSeek
     -R1

DeepSeek
     -R1

Simple Description

Detailed Description

Figure 5: Comparison between the CoT processes generated by descriptions with and without
“Pseudo-CoT”. Simple descriptions generated without the “Pseudo-CoT” input lack sufficient visual
information, leading to confusion and hallucination in the reasoning process of DeepSeek-R1. In
contrast, detailed descriptions enhanced through our Modality Bridging with “Pseudo-CoT” integrate
high-quality visual information into textual descriptions, which facilitates accurate reasoning and
enables R1 to generate correct answers.

fifth step in the final 50 steps of the RL training process, thereby avoiding the statistical bias caused
by training instability.

To assess the quality of the Vision-R1-cold dataset, we apply the same training hyper-parameters of
the cold-start initialization to Llama-3.2-V-Instruct (Dubey et al., 2024) for SFT, resulting in another
post-cold-start MLLM, Vision-R1-LlamaV-CI, which can also be used for subsequent RL training.

B COT COMPARISON FOR DATA CONSTRUCTION STRATEGY

We compare the CoT example generated by descriptions with and without “Pseudo-Co” in Fig. 5.
When we directly use the naive image description as the input for DeepSeek-R1, the strong reasoning
LLM cannot generate the correct trajectories for a massive amount of VQA data. This is because the
MLLM does not know which image information is important for reasoning, and the generated image
description lacks key converted image information, resulting in unusual CoT data.

C ADDITIONAL DATASET ILLUSTRATIONS

We provide some more examples of our Vision-R1-cold dataset in Fig. 6. Fig. 7 showcases multiple
response instances generated by our Vision-R1 model, including comprehensive reasoning processes
and corresponding final answers.

D DATA SOURCES

Our proposed Vision-R1-cold dataset consists of a wide range of multimodal data, including the
following categories:

• Mathematical Data: GLLaVA (Gao et al., 2023), GEOS (Seo et al., 2015), UniGeo (Chen
et al., 2022), GeoQA Plus (Chen et al., 2021), Geo3K (Lu et al., 2021a), MathVision (Wang
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Question: Given a cone with a base radius represented by the variable 'r' (r = 1) and a slant height represented by the variable 's' (s = 3), 
determine the lateral surface area using variables.
Choices: A: 2π  B: 3π  C: 6π  D: 8π

<think> Okay, let's see. The problem is asking for the lateral surface area of a cone using the given variables r and s. The image shows illustrates 
that the formula is L = π * r * s. The radius r is 1, and the slant height s is 3. Plugging those values in, we multiply π * 1 * 3, which gives 3π. 
Looking at the choices, option B is 3π. That matches the calculation. So the answer should be B. </think><answer> Final Answer:B </answer>

Question: The diamond ABCD is characterized by the side length AB as 'm' units (m = 5) and the side length AC as 'n' units (n = 8). Determine the 
area of the diamond using the given side lengths and locate the point of intersection O of the diagonals within the diamond.
Choices:A: 40  B: 20  C: 48  D: 24

<think> Okay, so I need to find the area of this diamond-shaped quadrilateral ABCD. From the image, it's a rhombus because the diagonals bisect 
each other at right angles, forming four congruent right triangles. The formula given is Area = 1/2 * d1 * d2, where d1 and d2 are the lengths of 
the diagonals. They mention that AC is 8 units, so that's one diagonal (d1 = 8). The problem is that the other diagonal, BD, isn't given directly. 
However, we know the side length AB is 5 units. Since the diagonals of a rhombus bisect each other at right angles, each half of the diagonals 
forms legs of a right triangle, with the side of the rhombus as the hypotenuse. Let me visualize this. The diagonals intersect at point O, which is 
the midpoint of both diagonals. So AO = AC/2 = 8/2 = 4 units. Let’s call BO the other half-diagonal, which would be BD/2. Since triangle AOB is a 
right triangle with legs AO = 4 and BO = (BD/2), and hypotenuse AB = 5. Using the Pythagorean theorem here: AO² + BO² = AB². Plugging the 
numbers: 4² + BO² = 5² → 16 + BO² = 25 → BO² = 9 → BO = 3. Therefore, BD = 2 * BO = 6 units. Now, using the area formula: 1/2 * AC * BD = 
1/2 * 8 * 6 = 24. Wait, but 8*6 is 48, half of that is 24. But looking at the choices, D is 24. But wait, maybe I made a mistake. Let me double-
check. Yes, AC is 8, BD is 6. So area is (8*6)/2 = 24. The answer should be D:24. But wait, the choices include 24 as D and 20 as B. Let me 
check again. Wait, maybe I miscalculated BD? Let's redo the steps. AB is 5, AO is 4. Then BO² = 5² - 4² = 25 -16=9, so BO=3. BD=2*3=6. So 
yes, diagonals are 8 and 6. Area is (8*6)/2=24. So D is correct. But wait, the problem shows \"diamond ABCD is characterized by the side length 
AB as 'm' units (m=5) and the side length AC as 'n' units (n=8)\". Wait, maybe I misunderstood. AC is a diagonal, not a side. So the given side 
length AB is 5, and diagonal AC is 8. So my calculation is correct. So the area is 24, choice D. </think><answer> Final Answer:D </answer>

Question: Find J L. 
Choices:A: 3  B: 6  C: 12  D: 24

<think> Okay, let's see. So there's a triangle JKL with a perpendicular bisector MK. MK divides the triangle into two congruent triangles, right? 
And JM is 6 units. They want the length of JL. First, since MK is a perpendicular bisector, that should mean that M is the midpoint of JL. 
Because a bisector splits a line into two equal parts. So if MK is the perpendicular bisector of JL, then JM must equal ML. Since JM is 6, ML 
should also be 6. Therefore, JL is JM + ML = 6 + 6 = 12 units. Looking at the choices, C is 12. So the answer should be C. Let me double-check. 
The problem shows MK is a perpendicular bisector, so yes, M is the midpoint. The congruent segments JM and ML are both 6, so JL is 12. Yep, 
that makes sense. No other options fit. </think><answer> Final Answer:C </answer>

Question: Is there luggage?

<think> Okay, let's see. The question is asking if there's luggage in the image depicted. The image depicts shows that some people are 
carrying or handling luggage, and there are visible suitcases and travel bags. That clearly indicates the presence of luggage. The scene 
is at a train platform with passengers waiting to board, which makes sense they would have luggage. So the answer should be yes. 
</think><answer> Final Answer:yes </answer>

Figure 6: Examples of our Vision-R1-cold data. It comprises abundant information obtained through
our Modality Bridging method.

Question: As shown in the figure, it is known that angle 1 = angle 2 = angle 3 = 55.0, then the degree of angle 4 is ()
Choices: A:110°B:115°C:120°D:125°

<think> Okay, let's see. The problem displays that angles 1, 2, and 3 are each 55 degrees. Angle 4 is adjacent to angle 3 and they form a linear 
pair. A linear pair adds up to 180 degrees. So, if angle 3 is 55 degrees, then angle 4 must be 180 minus 55. Let me calculate that. 180 - 55 is 
125. So angle 4 should be 125 degrees. Looking at the choices, D is 125°. That must be the answer. </think><answer> Final Answer:D </answer>

Question: As shown in the figure, AC = BC, AD bisects angle CAB, then the perimeter of triangle DBE is ()
Choices: A:6cm  B:7cm  C:8cm  D:9cm

<think> Okay, let's see. The problem displays that AC equals BC, so triangle ABC is isosceles with AC = BC. That means angles at A and B are equal. AD 
bisects angle CAB, so angle CAD is equal to angle DAB. Since ABC is isosceles, the angle at A is split into two equal parts by AD. Now, there's a line DE 
perpendicular to AB, meeting at E. The perimeter of triangle DBE is what we need to find. The answer choices are 6, 7, 8, or 9 cm. The image 
mentioned that the perimeter is equal to AB, which is 6 cm. Wait, but AB is 6 cm. So if the perimeter of triangle DBE is equal to AB, then the answer 
should be 6 cm, which is option A. But let me make sure I didn't miss anything. The problem displays that AC = BC, and AD is an angle bisector. DE is 
perpendicular to AB. Maybe there's a property here where the perimeter of DBE equals AB because of some triangle congruence or something. 
Since the image displays displays the perimeter is equal to AB, which is 6 cm, then the answer is A. </think><answer> Final Answer:A </answer>

Question: As shown in the figure, PA and PB are tangent to circle O at A and B respectively. If angle C = 65.0, then the degree of angle P is ()
Choices: A:65°B:130°C:50°D:100°

<think> Okay, let's see. The problem is about tangents to a circle from an external point. PA and PB are tangentstouching the circle at A and B. The 
angle at C is 65 degrees, and we need to find the measure of angle P. First, I remember that the two tangent segments from a single external point 
to a circle are equal in length. So PA equals PB. That makes triangle PAB an isosceles triangle with PA = PB. But the question is about angle P, which is 
the angle between the two tangents. There's a property in geometry that displays the angle between two tangents from an external point is equal to 
180 degrees minus the measure of the central angle subtended by the points of contact. Alternatively, another way to think about it is that the 
angle between the tangents (angle P) is supplementary to the measure of the central angle AOB. So if I can find the measure of angle AOB, then 
angle P would be 180° - angle AOB. But how do I find angle AOB? Well, the points A and B are points of contact on the circle. The angle at the 
center, angle AOB, is related to the arc AB. The measure of angle AOB is equal to the measure of the arc AB in degrees. On the other hand, the angle 
at point C is given as 65 degrees. Since point C is on the circle, angle ACB is an inscribed angle. The measure of an inscribed angle is half the measure 
of its intercepted arc. So angle ACB intercepts arc AB, which means arc AB is 2 * 65° = 130°. Therefore, the central angle AOB is 130 degrees. 
Then, angle P is 180° - 130° = 50°. So the answer should be C: 50°. Let me double-check. If angle AOB is 130°, then the angle between the 
tangents (angle P) is 180 - 130 = 50°. That makes sense. The answer is C. </think><answer> Final Answer:C </answer>

Question: As shown in the figure, the plant spacing (the horizontal distance between two adjacent trees) is required to be 4.0. If trees are planted on 
a hillside with a slope of 0.75, and the plant spacing is also required to be 4.0, then the slope distance between two adjacent trees is ()
Choices: A:5m  B:6m  C:7m  D:8m

<think> Okay, let's see. The problem is about finding the slope distance between two adjacent trees on a hillside. The horizontal distance between 
them is 4.0 meters, and the slope of the hillside is 0.75. Hmm, slope is usually rise over run. So if the slope is 0.75, that means for every 1 meter 
horizontal distance, the vertical change is 0.75 meters. But here, the horizontal distance between the trees is 4.0 meters. So I need to find the 
vertical change over that 4 meters. Wait, the slope is 0.75, so the vertical change (let's call it v) for a horizontal run (r) of 4 meters would be v = 
0.75 * r. So v = 0.75 * 4 = 3 meters. So the vertical difference is 3 meters. Now, the slope distance would be the hypotenuse of a right triangle with 
horizontal leg 4 meters and vertical leg 3 meters. Using the Pythagorean theorem, the slope distance (d) is sqrt(4^2 + 3^2) = sqrt(16 + 9) = sqrt(25) 
= 5 meters. So the answer should be A:5m. </think><answer> Final Answer:A </answer>

Figure 7: More output examples of our Vision-R1-7B on MathVerse benchmark.

et al., 2025), GeoMverse (Kazemi et al., 2023), MathV360K (Shi et al., 2024), IconQA (Lu
et al., 2021b), TabMWP (Lu et al., 2023b), CLEVR (Johnson et al., 2017), CLEVR-
Math (Lindström & Abraham, 2022), and Super-CLEVR (Li et al., 2023).

• General QA Data: ShareGPT4V (Chen et al., 2024a), PISC (Li et al., 2017) VQA-AS (Antol
et al., 2015), A-OKVQA (Schwenk et al., 2022), TextVQA (Singh et al., 2019), Vizwiz (Gu-
rari et al., 2018), and VQA2.0 (Goyal et al., 2017)
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• Science and Medical Data: From GeoQA+ (Cao & Xiao, 2022), CLEVR-Math (Lindström
& Abraham, 2022), TQA (Kembhavi et al., 2017), AI2D (Kembhavi et al., 2016), Sci-
enceQA (Lu et al., 2022), VQA-RAD (Lau et al., 2018), and PMC-VQA (Zhang et al.,
2023)

• Figure Understanding Data: From DVQA (Kafle et al., 2018), DocVQA (Mathew et al.,
2021), FigureQA (Kahou et al., 2017), PlotQA (Methani et al., 2020), ChartQA (Masry et al.,
2022), InfoVQA (Mathew et al., 2022), MultiHiertt (Zhao et al., 2022), and LRV-Chart (Liu
et al., 2023).

E LLM USAGE

In this paper, we have used an LLM to refine some sentences and improve the grammar, making the
paper more academic.
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