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Abstract

3D visual grounding (3DVG) is challenging
due to the need to understand 3D spatial re-
lations. While supervised approaches have
achieved superior performance, they are con-
strained by the scarcity and high annotation
costs of 3D vision-language datasets. Training-
free approaches based on LLMs/VLMs elim-
inate the need for large-scale training data,
but they either incur prohibitive grounding
time and token costs or have unsatisfactory
accuracy. To address the challenges, we in-
troduce a novel method for training-free 3D
visual grounding, namely Language-to-Space
Programming (LASP). LASP introduces LLM-
generated codes to analyze 3D spatial relations
among objects, along with a pipeline that eval-
uates and optimizes the codes automatically.
Experimental results demonstrate that LASP
achieves 52.9% accuracy on the Nr3D bench-
mark, ranking among the best training-free
methods. Moreover, it substantially reduces
the grounding time and token costs, offering
a balanced trade-off between performance and
efficiency.

1 Introduction

The 3D visual grounding (3DVG) task focuses on
locating an object in a 3D scene based on a refer-
ring utterance (Liu et al., 2024). Numerous super-
vised methods have been proposed for 3DVG (Hsu
et al., 2023; Jain et al., 2022; Huang et al., 2022;
Chen et al., 2022; Huang et al., 2024; Zhu et al.,
2023; BAKR et al., 2024; Wu et al., 2023). These
methods learn representations of referring utter-
ances, object attributes, and spatial relations from
large-scale 3D vision-language training datasets
with high-quality annotations and achieve state-
of-the-art performance on 3DVG. However, the
scarcity of 3D vision-language datasets (Chen et al.,
2020; Achlioptas et al., 2020), coupled with the

high cost of their annotations, limits these methods’
applicability.

Recently, large language models (LLMs) and
vision-language models (VLMs) have shown re-
markable capabilities in reasoning, code genera-
tion, and visual perception. Building on these ad-
vancements, open-vocabulary and zero-shot meth-
ods (Yang et al., 2024b; Xu et al., 2024; Fang et al.,
2024; Yuan et al., 2021; Li et al., 2025) are pro-
posed. Agent-based methods (Yang et al., 2024b;
Xu et al., 2024; Fang et al., 2024) always let LLMs
perform numerical reasoning on object locations
and in text modality to find the target object (Yang
et al., 2024b; Fang et al., 2024), or let VLMs locate
targets from scene scan images in visual modal-
ity (Xu et al., 2024). These agents achieve superior
accuracy compared to other training-free methods,
but for one referring utterance, they need to in-
put the whole scene information into LLMs/VLMs.
Before finding the target object, LLMs/VLMs al-
ways generate lengthy responses, containing plan-
ning, reasoning, or self-debugging processes. This
results in high costs in terms of grounding time
and token usage (see Figure 1, Agents block). In
contrast, the visual programming method (Yuan
et al., 2024b) only inputs the referring utterance
into LLMs to generate a short program which calls
annotated selection functions. Then the program
execution, which is much faster than LLM rea-
soning, outputs the target object. As a result, its
time and token costs are much lower. However, it
has trouble considering multiple spatial relations in
the referring utterance simultaneously (Yuan et al.,
2024a), resulting in relatively low accuracy.(see
Figure 1, Visprog. block.)

To address the dual challenges of accuracy and
costs, we propose LASP, a novel training-free
3DVG method that balances the accuracy and
grounding costs. (see Figure 1, block.)
Specifically, LASP uses Python codes that are gen-
erated and optimized by LLLMs as spatial relation
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Figure 1: Accuracy and cost comparison of

(ours) with two types of existing training-free 3DVG methods.

Agent-based methods input scene information into LLMs/VLMs to analyze spatial relations, leading to high accuracy
but also high computational costs. Visual programming (Visprog.) only inputs the referring utterance into LLMs
to generate a program and finds the target by program execution. It reduces the costs signicicantly but sacrifices

the accuracy.

introduces code-based relation encoders along with its automatic generation pipeline. Spatial

relations are analyzed by code execution instead of LLMs/VLMs reasoning. This approach allows LASP to achieve
accuracy comparable to agent-based methods, while significantly reducing the costs.

encoders. Given the bounding boxes of scene ob-
jects, the spatial relation encoders generate relation
features which quantify the spatial relations of ob-
jects. Moreover, we introduce test suites which can
evaluate the codes. The test suites not only enable
us to select better relation encoders from multiple
LLM responses but also allow LLMs to leverage
failed test cases to optimize the codes. The relation
encoders can be seamlessly integrated with a sym-
bolic reasoning framework similar to (Hsu et al.,
2023). In our framework, a referring utterance is
converted to a symbolic expression. Then an ex-
ecutor aggregates the symbolic expression, relation
features, and object categories to give the matching
scores between objects and the referring utterance.
LASP also prompts VLMs to further distinguish
objects based on visual information. Compared
to agent-based methods, LASP only inputs the re-
ferring utterance into LLMs and one image into
VLMs, resulting in much lower costs. Compared
to the visual programming method, LASP has ob-
viously higher accuracy.

We evaluate LASP on the widely used
Nr3D (Achlioptas et al., 2020) datasets. Experi-
ment results show that LASP achieves 52.9% accu-
racy on Nr3D, and offers advantages in grounding
time and token cost compared to previous training-
free 3D visual grounding methods. Additionally,

we conduct experiments to demostrate the advan-
tages the LLM-desgined codes over human experts
and the generalization to other 3D datasets.

2 Related Work

Training-free 3D Visual Grounding Training-
free methods exploit pre-trained LLMs / VLMs
for open-vocabulary 3DVG. ZSVG3D (Yuan et al.,
2024b) uses LLMs to generate programs that
call predefined functions to find the target object.
CSVG (Yuan et al., 2024a) proposes to replace the
programming of ZSVG3D (Yuan et al., 2024b) by
constraint satisfaction solving for handling multiple
constraints. LLM-Grounder (Yang et al., 2024b),
Transcrib3D (Fang et al., 2024) deploy LLM/VLM-
based agents that analyze object appearances and
locations and find the target. VLM-Grounder (Xu
et al., 2024) and SeeGround (Li et al., 2025) mainly
rely on VLMs to find the target from scene images
by visual prompting. Xu et al. (2024) uses VLMs
and images from the scene to figure out the target
object. Li et al. (2025) first parses the landmark
and perspective of the referring utterance and then
uses VLMs to find the target object from rendered
images. Compared to these methods, LASP offers
a superior results on both accuracy and efficiency.

LLM-based Code Generation LLMs demon-
strate growing proficiency in generating executable
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Figure 2: Overview of LASP. Off-the-shelf spatial relation encoders are generated and optimized by LLMs before
grounding. At the grounding time, the encoders compute relation features based on object bounding boxes. An
executor uses the relation features, along with category features and the symbolic expression to get some candidate
objects. Then LASP uses VLMs to select the target from their images.

code (Roziere et al., 2023) for precise mathematical
reasoning (Li et al., 2024), robotics control (Liang
et al., 2023), tool use (Gupta and Kembhavi, 2023;
Yuan et al., 2024b) or data cleaning (Zhou et al.,
2024). Recent work further explores code refine-
ment via environmental feedback, such as RL train-
ing trajectories (Ma et al., 2024) or real-world ex-
ecution errors (Le et al., 2022; Chen et al., 2024).
In the 3DVG area, (Yuan et al., 2024b; Fang et al.,
2024) also uses code to process spatial relations,
but LASP advances this paradigm by introducing
the spatial relation encoders and test suites to auto-
matically optimize codes.

3 Method
3.1 Problem Statement

3D visual grounding tasks involve a scene, denoted
as S, represented by an RGB-colored point cloud
containing C' points. Associated with this is an ut-
terance U that describes an object within the scene
S. The objective is to identify the location of the
target object 7 in the form of a 3D bounding box.
In the ReferIt3D dataset (Achlioptas et al., 2020),
bounding boxes for all objects are provided, mak-
ing the visual grounding process a task of matching
these bounding boxes to the scene S.

3.2

The framework of LASP is shown in Figure 2.
Prior to grounding, relation encoders are generated
by LLMs, and objects in 3D scenes are detected
and classified. A semantic parser converts the re-
ferring utterance I/ into a symbolic expression &,
which encapsulates the spatial relations and cate-
gory names in /. Category features, quantifying
how well each object matches the category, are de-
rived from the classification results. Our spatial

Grounding Pipeline

relation encoders are Python code generated by
LLMs. Relation features, quantifying the probabil-
ity of spatial relationships between objects in £, are
computed by the relation encoders by explicit geo-
metric calculations. For example, féé;fr) quantifies
the probability that the ¢-th object is near the j-th
object. Our executor has a similar design to (Hsu
et al., 2023). Given the symbolic expression £ and
features, An executor uses the &, relation features,
and category features to calculate the matching
scores between all objects and the referring objects
based on the symbolic expression. Objects with
higher matching scores are selected as the candi-
dates. Then LASP employs VLMs to find the target
object from the images of these candidates. Please
see Appendix B for more details.

3.3 Spatial Relation Encoders

Sizes and positions of objects in 3D scenes inher-
ently determine spatial relations. For example, the
near relation depends on pairwise distances, while
large is determined by object volumes. In LASP,
each spatial relation encoder is a Python class that
can compute its associated relation features given
the object bounding boxes.

As illustrated in Figure 3, the spatial relation
encoders come from many optimization iterations.
There are several phases in one iteration: (1) re-
trieving in-context examples based on the semantic
similarities of relations (Section 3.3.1); (2) gener-
ating multiple codes from LLMs; and (3) testing
codes through test suites (Section 3.3.2). When test
failures occur, the test suites automatically synthe-
size error messages that contain failure cases. The
codes with highest pass rates and their error mes-
sages are then given to LLMs for code optimization
(Section 3.3.3).
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Figure 3: Overview of the generation and optimization
process of relation encoders.

3.3.1 In Context Example

Adding in-context example into the prompt can
improve the response quality from LL.Ms (Brown
et al., 2020). To reduce human annotation and pro-
vide suitable in-context example for different re-
lation encoders’ generation, we retrieve generated
codes as in-context example. For example, relation
encoders for “near” and “far” may both compute
pairwise distances but differ only in the numerical
processing, so the codes for “near” can be used as
the in-context example for the generation of “far”.
Please see Appendix B.5 for the details.

3.3.2 Test Suites

To increase the probability of getting high-
quality codes, we sample multiple responses from
LLMs (Wu et al., 2025b) and design test suites
that can evaluate the codes by testing their pass
rates on a series of test cases. Take the relation
“above” as an example. We collect 37 triplets
(less than 100 for most relations) in the format
of [target object ID], [distractor 1ID],
Lanchor object ID] from the training set, with
each triplet serving as a test case. In relation
feature fpope, if the element f(distractor.anchor)
is larger than f(target.anchor) “the test is deemed
to have failed, and an error message looks like
[target bbox] is above [anchor bbox] So
feature value of [target bbox] "above”
Lanchor bbox] should be larger than
the feature value of [distractor bbox]
"above"” [anchor bbox]. is synthesized. An

example of such an error message is in Section A.

3.3.3 Code Generation and Optimization

For any relation, we begin by prompting the LLMs
with the task description, the relation name, and
the retrieved in-context example (Section 3.3.1).
Then we sample Ngample codes from LLMs, where
Nsample 1s a configurable hyperparameter. Next,
each generated code is tested using the test suites.
We select the topy, codes that have the highest pass
rates on the test cases and subject them to an op-
timization phase. During the optimization phase,
LLMs receive the initial prompt, the code to be op-
timized, and the error message produced by the test
suites. Then LLMs are asked to revise the codes ac-
cording to failure cases in the error message. This
test and optimization procedure is repeated for up
to Njer iterations. Ultimately, we adopt the code
that achieves the highest pass rate across all test
cases. The detailed optimization and selection al-
gorithm is shown in Algorithm 2.

3.4 Visual Decision Module

The visual information, like color or shape in ut-
terances, is also essential for accurate grounding,
particularly for natural datasets like Nr3D (Achliop-
tas et al., 2020). When two candidate objects share
a similar class and spatial position, visual informa-
tion is required to distinguish between them.

Following VLM-Grounder (Xu et al., 2024), we
incorporate GPT-40 to identify the target object
from a set of candidates by utilizing 2D images
from ScanNet (Dai et al., 2017) as additional con-
text. Specifically, we select the top five objects hav-
ing the highest scores based on the matching scores
from the executor and retain those whose logits
exceed a chosen threshold as candidates. Eight im-
ages most relevant to candidate objects from scan
images of ScanNet (Dai et al., 2017) are selected
based on the projected area size of candidate ob-
jects. They are stitched together in 4 x 2 grids and
annotated with object IDs. Finally, we prompt GPT-
40 to identify the target object from the stitched
images. By integrating these visual cues, the VLM
decision module effectively disambiguates candi-
dates that appear similar in terms of category and
spatial attributes, yielding more accurate grounding
results. An example is in Figure 9 (we only show 6
of them for clarity).



Table 1: Performances on Nr3D. {: For VLM-Grounder (Xu et al., 2024), we use the results on a 250-sample subset
reported in its original paper. Results of Transcrib3D in GPT-4o are reported by concurrent SORT3D (Zantout et al.,

2025). *: We re-run ZSSVG3D (Yuan et al., 2024b) in GPT-4o.

Method Overall Easy Hard View Dep. View Indep.
Supervised

ViL3DRef (Chen et al., 2022) 64.4 70.2 574 62.0 64.5
BUTD-DETR (Jain et al., 2022) 54.6 60.7 484 46.0 58.0
SAT (Yang et al., 2021) 49.2 563 424 46.9 50.4
Training-free, predicted label

ZSVG3D* (Yuan et al., 2024b) 40.2 49.1 31.1 37.8 41.6
SeeGround (Li et al., 2025) 46.1 545 383 42.3 48.2
VLM-Groundert (Xu et al., 2024) 48.0 552 395 45.8 49.4
LASP w/o VLM 50.7 58.7 430 45.6 53.2
LASP 52.9 60.7 453 49.2 54.7
Training-free, ground-truth label

CSVG (Yuan et al., 2024a) 59.2 59.2 445 53.0 46.4
Transcrib3D (Fang et al., 2024) 65.6 - - 63.3 66.7
LASP w/o VLM 65.7 75.6  56.2 58.7 69.1
LASP 67.8 76.3 59.6 61.6 71.0

4 Experiments

4.1 Experimental Settings

Dataset We mainly conduct experiments on the
Nr3D subset of Referlt3D (Achlioptas et al., 2020)
dataset. Referlt3D has 2 subsets: Nr3D and
Sr3D. The Nr3D subset utterances contain human-
annotated utterances and the Sr3D contains synthe-
sized ones. Based on the number of same-class dis-
tractors, the dataset can be categorized into “easy”
and “hard” subsets. The easy subset has a single
distractor, and the hard subset has multiple dis-
tractors. The dataset can also be split into “view
dependent” and “view independent” subsets accord-
ing to the referring utterance. Ground truth object
bounding boxes are given in the Referlt3D default
evaluation setting. Therefore, the metric is an exact
match between the predicted bounding box and the
target bounding box.

Baselines We compare LASP against both super-
vised and training-free methods, evaluating accu-
racy, grounding time, and token cost. The super-
vised baselines include SAT (Yang et al., 2021),
BUTD-DETR (Jain et al., 2022), Vil3DRef (Chen
et al., 2022). The training-free approaches include
ZSVG3D (Yuan et al., 2024b), Transcrib3D (Fang
et al., 2024), VLM-Grounder (Xu et al., 2024),
CSVG (Yuan et al., 2024a) and SeeGround (Li
et al.,, 2025). On the Nr3D dataset, Tran-

scrib3D (Fang et al., 2024) and CSVG (Yuan et al.,
2024a) use ground-truth object labels, providing an
advantage over methods which rely on predicted
labels; therefore, we compare LASP with them in
their specific settings.

4.2 Quantitative Results

Accuracy Table 1 presents the accuracy com-
parison on Nr3D. Compared to other training-free
baselines, LASP achieves higher overall accuracy
than both ZSVG3D (Yuan et al., 2024b), VLM-
Grounder (Xu et al., 2024) and SeeGround (Li
et al., 2025). LASP also surpasses one early super-
vised method, SAT (Yang et al., 2021) and further
narrows the gap in overall performance relative to
the supervised method BUTD-DETR (Jain et al.,
2022), especially on the view-dependent (VD) sub-
set. However, it still lags behind other more recent
supervised methods (Chen et al., 2022), which are
trained on large-scale 3D vision-language datasets.
We further evaluate LASP in the experimental set-
tings of (Fang et al., 2024; Yuan et al., 2024a), in
which ground truth object labels are utilized for
more accurate category-level object recognition.
CSVG (Yuan et al., 2024a) uses the same spatial
functions as ZSVG3D (Yuan et al., 2024b), result-
ing a lower accuracy. Transcrib3D (Fang et al.,
2024) can produce natural language reasoning pro-
cesses according to the specific utterance, offering



7 A
flzfright'fdoo'r f2

on door’s right

:fdesk'fl

desk on door’s right

f3 = fabove . f2

above door’s right desk

target

Figure 4: Visualization of the grounding process. Anchor (the door) is marked with red circles. Objects that
strongly match the below conditions are highlighted in green, with brighter shades indicating higher matching

SCOres.

Table 2: Grounding time and token costs. LASP has sig-
nificant advantage, especially when compared to agent-
based methods (VLM-Grounder (Xu et al., 2024) and
Transcrib3D (Fang et al., 2024)).

Method Time/s Token
ZSVG3D 2.4 2.5k
VLM-Grounder 50.3 8k
Transcrib3D 27.0 12k
CSVG 4.0 4.0k
SeeGround 9.0 2.6k
LASP (w/o VLM) 2.1 1.2k
LASP 7.7 (+5.6) 3.1k (+1.9k)

more flexibility. So that it achieves a close accu-
racy as LASP. For SeeGround (Li et al., 2025) and
CSVG (Yuan et al., 2024a), we use the results re-
ported in the original paper in Table 1. For a fair
comparison, We evaluate LASP and SeeGround (Li
et al., 2025) using the same VLMs (Yang et al.,
2024a) on Nr3D subset, the overall accuracy are
40.7% of SeeGround and 48.8% of LASP.

Grounding Costs Table 2 compares the average
grounding time and token costs of training-free
methods on a randomly sampled subset of Nr3D.
For every referring utterance, Transcrib3D (Fang
et al., 2024) calls the LLMs for many turns until
the target object is found and the context keeps
growing, which exhibits significantly higher time
and token consumption (27.0s and 50.3k tokens).
In contrast, all codes of LASP are generated be-
fore grounding and reused. So for every referring
utterance, LASP calls the LLMs (for parsing) and

VLMs for only once. VLM-Grounder (Xu et al.,
2024) inputs all scan images into VLMs, but the
executor of LASP can filter out most of the ob-
jects so LASP only needs to input one image into
VLMs. As a result, LASP maintains a large re-
duction in grounding time and token consump-
tion compared to them. LASP (without VLMs)
and ZSVG3D (Yuan et al., 2024b) only need one
LLM call for each referring utterance, so they
have similar grounding costs, but LASP demon-
strates a significant improvement in accuracy over
ZSVG3D (Yuan et al., 2024b). CSVG (Yuan et al.,
2024a) needs to call LLMs three times for an ut-
terance, causing longer time costs. SeeGround (Li
et al., 2025) and LASP call both LLMs and VLMs
once for an utterance, thus have a similar time
Costs.

Above quantitative results underscore the abil-
ity of LASP to balance accuracy and efficiency:
LASP achieves competitive accuracy compared to
the most accurate training-free methods while of-
fering substantial computational costs.

4.3 Qualitative Results

Visualization Figure 4 visualizes a grounding
process of LASP, demonstrating how the final
grounding result is constructed through the com-
bination of multiple features of conditions in the
referring utterance. The example referring utter-
ance is “When facing the door, it’s the shelf above
the desk on the right”. It can be understood as fol-
lowing four steps in the figure. First, the feature of
objects on door’s right, fi, is identified using
the category feature “door” and the relation fea-



# In Front Class

def forward(self) —> torch.Tensor
centers = self.centers

sizes = self.sizes

N = centers.size(0)

dist_ij = torch.norm(vec_ij, dim=-1)
vec_ij = centers[:, None, :2] - centers[None, :, :2

update parameter

+ o+ o+ o+

N = self.object_locations.size(0)
x_min_i = self.x_min.view(N, 1)
x_max_i = self.x_max.view(N, 1)
x_min_j = self.x_min.view(1, N)
x_max_j = self.x_max.view(1, N)

+ front_orientation = vec_ij / (dist_ij[..., None] + le-8)
+ projection_length = torch.sum(vec_ij * front_orientation, dim=-1)
+ mask = (torch.eye(N, device=DEVICE) == @) & (projection_length > @)

- overlap_in_x = torch.minimum(x_max_1i, x_max_j)
— torch.maximum(x_min_i, x_min_j)

- overlap_mask = overlap_in_x > @

- y_min_j = self.y_min.view(1, N)

- y_max_i = self.y_max.view(N, 1)

- frontness = y_min_j - y_max_i

- frontness_mask = frontness > @

update algorithm

+ size_factors = torch.norm(sizes[:, None, :2], dim=-1)
+ torch.norm(sizes[None, :, :2], dim=-1)
add factor
+ relation_feature = torch.zeros((N, N), device=DEVICE)
+ relation_feature[mask] = torch.exp(-projection_length[mask]

/ (size_factors[mask] + le-8))

- relation_feature = torch.where(overlap_mask & frontness_mask,
torch.exp(-frontness), torch.tensor(0.0, device=DEVICE))

Figure 5: The LLM-based optimization of “front" rela-
tion encoder.

ture “right”. Next, the feature of desk on door’s
right is computed by multiplying the category fea-
ture “desk” and the f;. Objects above on door’s
right desk are identified by relation feature f,po0e
and the previous feature; the target “shelf” is found
by multiplying fsper. More visualization results
can be found in Figure 11.

Cross-Dataset Generalization Although LASP
requires no pre-training on large-scale 3D datasets,
it does exploit a small subset of the ReferIt3D
corpus (Achlioptas et al., 2020) during optimiza-
tion, whereas other training-free approaches use
no external data at all. To probe the generaliza-
tion ability of our relational encoders, we further
evaluate on GRScenes (Wang et al., 2024), a high-
quality indoor 3D scene dataset. We manually an-
notate 40 referring expressions across five scenes
and adopt a naive baseline that randomly selects
an object from the same semantic category as the
target. LASP attains an overall accuracy of 90.0%,
while the random baseline achieves only 15.6%.
These results demonstrate that, even when opti-
mized solely with ScanNet (Dai et al., 2017) and
Referlt3D (Achlioptas et al., 2020) language, our
relational encoders transfer robustly to previously
unseen environments. Qualitative visualizations
are provided in Appendix D.6.

Table 3: Accuracy on GRScenes (Wang et al., 2024).

Method  View Dep. View Indep.
LASP 87.5% 91.7%
Random 15.4% 15.7%

Comparison with Human Annotations FEu-
reka (Ma et al., 2024) demonstrates that LLMs can
surpass human experts in reward-function design.
For 3D visual grounding, ZSVG3D (Yuan et al.,
2024b) relies on manually crafted spatial-relation
functions, whereas LASP achieves substantially
higher performance. Because the two pipelines dif-
fer considerably, it is non-trivial to directly reuse
their code in LASP. To quantify the gap, we evalu-
ate LLM-generated programs and human-written
functions on Nr3D (Achlioptas et al., 2020). Substi-
tuting the automatically synthesized functions with
human-designed ones causes the overall accuracy
of LASP to fall sharply to 44.0%. These results
highlight the advantages our generated codes over
manual annotations.

Optimization Quality By analyzing failed test
cases, LLMs can iteratively refine relation encoders
across multiple dimensions. Figure 5 illustrates
the difference between the initial LLM-generated
implementation (in red) and the optimized ver-
sion (in green) using the relation “front” as an ex-
ample. The optimized version incorporates both
distances and directional vectors between object
centers, rather than relying solely on axis-aligned
bounding box coordinates. It also replaces simple
X-axis overlap and Y-axis comparison with vector
projection, enabling the detection of “front” rela-
tions in arbitrary directions;. Additionally, object
size is used as a normalization factor, enhancing the
accuracy and robustness of the relation prediction.

4.4 Ablation Study

We conduct ablation studies to investigate the im-
pact of various components during the code gen-
eration and optimization processes by evaluating
three different variants. Variant 1 ablates all three
key components: optimization, error messages, and
in-context examples. In this variant, we directly
prompt LLMs to generate multiple codes and se-
lect the one with the highest pass rate on unit tests.
Variant 2 adds optimization processes and ablates
the error message by replacing it with a general
optimization instruction that doesn’t contain any
failure case; variant 3 only ablates in-context exam-
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Figure 6: Ablation study on different variants. The x-axis stands for the number of optimization iterations. The
y-axis stands for the normalized accuracy on corresponding Nr3D subsets.

ples. For relatively simple relations like “small”,
the generated codes can pass all unit tests in the
first generation, so there is no following optimiza-
tion, so we choose to analyze six relations that
required multiple optimization iterations. For the
relations that no in-context example is used (“left”,
“above”, and “corner”), variant 3 is identical to the
full method, so we only report variant 1 and 2 for
these relations. To control for the impact of the
initial generation, we use the same responses of the
first iteration across variant 2 and 3.

Figure 6 illustrates the results of the ablation
study; different variants are represented by lines
of different colors. The horizontal axis represents
the number of iterations. The vertical axis shows
the normalized accuracy on test examples associ-
ated with the relation. The effect of optimization is
evident in variant 1: without optimization, LLMs
fail to produce accurate relation encoders for most
relations, except “corner” and “between”. Variant 2
demonstrates the effect of optimization: by incorpo-
rating simple optimization, the accuracies improve
on some relations compared to variant 1. However,
without the detailed error message, LLMs still can’t
generate accurate encoders for most relations. The

results of variant 3 highlight the effect of error
messages: by using specific failure cases in error
messages, LLMs are able to generate more accurate
spatial relation encoders for most relations. For re-
lations “right”, “between” and “below” which use
in-context examples, the accuracies of variant 3 are
significantly lower than LASP in the first iteration,
underscoring the impact of in-context examples.

5 Conclusion

In this paper, we present LASP, a training-free
method for 3D visual grounding that uses Python
codes to encode spatial relations, along with a au-
tomatic generation pipeline. Leveraging the rich
spatial knowledge in LLMs, LASP eliminates the
need for large-scale 3D vision—-language datasets.
We introduce novel test suites that evaluate LLM-
generated codes and guide their optimization. Ac-
cording to the test results and feedback, supe-
rior codes are selected and optimized iteratively
by LLMs, yielding more accurate spatial relation
encoders. Experimental results demonstrate that
LASP achieves competitive accuracy compared
to previous training-free methods while offering
promising advantages in time and token costs.



Limitations

We acknowledge that LASP has limitations in the
following respects.

Performance Limitations

Although we have made progress in balancing ac-
curacy and efficiency, there is still a noticeable
gap between training-free methods and recent su-
pervised models that jointly learn object detection
and spatial reasoning (Zhu et al., 2023; Wu et al.,
2025a; Arnaud et al., 2025). Current training-free
approaches—including ours—focus mainly on spa-
tial reasoning while relying on off-the-shelf 3D
detectors and object classifiers. Designing more ac-
curate, lightweight 3D perception modules tailored
for referring tasks therefore remains an important
research direction.

System Limitations

Symbolic expression. Our symbolic representa-
tion captures object categories and pairwise spa-
tial relations, but it struggles with ordinal or non-
relation phrases such as “second from the left.” A
possible solution is incorporating order constraints,
as in CSVG (Yuan et al., 2024a).

Relation coverage. For simplicity we restrict our-
selves to frequent relations (near, above, left, etc.).
Low-frequency relations are omitted from the cur-
rent analysis, which may hide weaknesses on those
cases. Building 3DVG benchmarks with a wider
range of challenging relations would enable deeper
evaluation.

Scene representation. We simply model a scene
as a set of 3D bounding boxes and ignore shapes,
orientations, and functional zones (e.g., bathrooms).
Enriching the scene graph with such information
and developing stronger encodings for LLMs and
VLMs are promising directions.

Dependence on Pre-trained 3D Models

While LASP removes the need for large-
scale 3D vision—language datasets such as
Referlt3D (Achlioptas et al., 2020) and SceneV-
erse (Jia et al., 2024), it still depends—Iike most
training-free methods (Yuan et al., 2024b; Fang
et al., 2024; Li et al., 2025; Yuan et al., 2024a)—on
a pre-trained 3D detector and point-cloud classi-
fier. VLM-Grounder (Xu et al., 2024) avoids these
components by leveraging strong 2D perception
models (Liu et al., 2023; Kirillov et al., 2023), but

its per-utterance detection cannot be reused across
multiple queries in the same scene, resulting in high
latency. Scene-level 3D object discovery based on
2D models (Gu et al., 2023) may ultimately remove
the remaining dependence on 3D training data.

Ethics Statement

The human involvement in this study was a small
group of volunteer experts who qualitatively anno-
tated some relation encoders. All participants were
fully briefed on the purpose of the research, pro-
vided written informed consent, and were free to
withdraw at any time. No demographic or person-
ally identifiable information was collected, stored,
or reported.
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A Prompts

In this section, we show the prompts we used. List-
ing 1 is the prompt for GPT-40 to convert referring
utterances into symbolic expressions. Listing 2 is
an example of a prompt for relation encoder gen-
eration, containing the task description and an in-
context example. Listing 3 is an example of error
messages. It is synthesized by the test suites and
contains failure cases and optimization guidance.
Listing 4 is the code optimization prompt used in
the ablation study.
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Listing 1: Prompt for semantic parsing.

You are a skilled assistant with expertise in
semantic parsing.

## Task Overview

I will provide you with a sentence that describes
the location of an object within a scene. Your
task is to convert this description into a JSON
format that captures the essential details of
the object.

### The JSON object should include:

- **x"category"*x: string, representing the object's
category.

- **x"relations”x*: a list of relationships between
the object and other elements in the scene.
Each relationship should be represented as a
dictionary with the following fields:
- *xx"relation_name"**: string, specifying the

type of relationship. The relationship can

be:

- xUnaryx: choose from ['corner', 'on the
floor', 'against wall', 'smaller',6 '
larger', 'taller', 'lower',6 'within'].

- *Binaryx*: choose from ['above', 'below',
beside', 'close', 'far',6 'left',6 'right
! 'front', 'behind', 'across'].

- *Ternary*: choose from ['between', 'center
', 'middle'].

Only consider #**simplexx and **generalx*x

relations, donot make complex ones like
"left of a blue box", "with dark
appearance”, "facing the window"”, etc.

You should handle these by logical
structures.

If the relationship is not mentioned in the
list, you should choose the most
appropriate relation above. *xNeverxx
create a new relation name!

- xx"objects"**x: a list of objects involved in
the relationship. Every object in the list
should have the same JSON structure. The
list structure depends on the relationship

type:

- *Unaryx: The list should be empty.

- *Binary*: The list should contain one
object.

- *xTernary*: The list should contain two
objects.

- xx"negative”xx: boolean, indicating if the
object is explicitly described as not
having this relationship. Set this to True
if applicable.

## Guidelines:

- First, generate a plan outlining the object's
appearance and relationships based on the
sentence. Then, use this plan to create the
JSON representation.

## Examples:

### Example 1:

**Sentencexx: The correct whiteboard is the one on a

table.

*xPlanxx: "Correct” does not describe appearance.
The appearances are "whiteboard” and "table",
and the "whiteboard” is on the "table”.

**Parsed JSON#**:

*Tjson
{
"category"”: "whiteboard”,
"relations”: [
{
"relation_name": "above”,
"objects": [
{
"category”: "table”,
"relations”: []
}
]
3
]
}

2 more examples.
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Listing 2: Example prompt for relation encoder genera-
tion.

You are an expert on spatial relation analysis and
code generation.

# Introduction to task

Your task is to write a Python class which can be
used to compute the metric value of the
existence of some spatial relationship between
two objects in a 3D scene given their positions
and sizes. Higher the metric value, higher the
probability of the two objects have that
relation.

In the class, you will be given the positions and
sizes of the objects in the scene. The class
should have a method ~forward™ which returns a
tensor of shape (N, N), where element (i, j) is

the metric value of the relation between
object i and object j.

In the 3D scene, x-y plane is the horizontal plane,
z-axis is the vertical axis.

# Introduction to programming environment

Here is an example class for “Left” relation. The
class you write should have the same structure
as the example class.

T T python
class Left:
#

Make sure all tensors are placed on “DEVICE™, which
has been defined in the environment.
The code output should be formatted as a python code
string: python T

# Some helpful tips

(1) You should only use the given variables,
should not introduce new variables.
(2) The metric value should be sensitive to the
input arguments, which means if the arguments
change a little, the value should change a lot.
The metric value should be @ if the two objects
don't have that relation, never set negative
values!
Never treat an object as its center point, you
must consider the size of the bounding box,
just like the example code. Never set an
threshold to determine the relation. The value
of the relation should be continuous and sparse

and you

(3

4)

You should imagine that you are at position (0,

@) to determine the relative positions.

Remember you are *xin** the scene and look

around, not look from the top. So never use the
same way as 2D environment.

(5
(6)

Propose your method first and then generate the code
Think step by step.
Don't use any axis or specific direction as the
reference direction or right direction, your
method should work for any perspectives.

Listing 3: Example error message.

We have run your code on some cases. Here are 3

failure cases:

# Case 1.

Metric value of object tensor([ ©.3992, -0.5619,
0.8831, ©0.3921, 0.3476, ©.1059], device='mps
:0') "above" object tensor([-0.0432, -0.6965,
0.8483, ©0.6526, ©0.4943, 0.3061], device='mps
:0') should be larger than @. Metric value of
object tensor ([ ©.3992, -0.5619, ©0.8831,
0.3921, ©.3476, ©0.1059], device='mps:0') "
above” object tensor([-0.0432, -0.6965,
0.8483, 0.6526, ©0.4943, 0.3061], device='mps

:0') should be higher than the metric value of
object tensor([0.5338, 1.1607, 1.1160, 0.2121,
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©0.3323, 0.8192], device='mps:0') "above" object
tensor ([-0.0432, -0.6965, ©.8483, 0.6526,
0.4943, 0.3061], device='mps:0').
more 2 cases
The first three are the center of the object, the
last three are the size of the object. x-y is

the horizontal plane and z is the vertical axis

After test, the pass rate of your code is too low.
So you MUST check carefully where the problem
is. If you can't find the problem, you should

come up with a new algorithm and re-write your code.

Don't forget the following tips:

(1) You should imagine that you are at position (0,
9, 0) to determine the relative positions.

(2) Remember you are **inxx the scene and look
around, not look from the top. So never use the

same way as 2D environment.

(3) Don't use any of x-axis or y-axis as your
perspective, Your method should work for every
perspective.

(4) The horizontal plane is x-y plane.

Please carefully analyze each of the failure case
and explain why your code failed to pass it.
The reason can be incorrect test case might or
your code might not be able to handle some
specific cases. Please write your analysis for
each of the failure cases.

After the analysis of all cases,
the improved code based on your analysis.
**never*x modify on the class methods and
function parameters.

you should write
But

Some possible improvement ways:
1. Use a new algorithm to calculate the metric value
rather than just modifying the existing code.

2. Consider carefully what other factors might be
relevant to the spatial relationship between
two objects and use them in your calculation.

3. Check the correctness of the input data and the
calculation process.

Listing 4: Prompt for code optimization of variant 2 in
the ablation study.

Reflect on the code above, think carefully how to
make it better. For example, check if you
ignore some factors that may affect the result
or use a wrong method.

you must re-write the code in the same format.
Remeber all the tips!

Then

B Implementation Details

B.1 Semantic Parsing

A semantic parser converts the referring utter-
ance U/ into a JSON-based symbolic expression
&, which encapsulates the spatial relations and cat-
egory names in /. The symbolic expressions have
the following elements:

» Category: A string indicating the category of
the target object referenced in U/.

* Relations: A list specifying spatial con-
straints relative to the target object. Each entry
in this list contains:

— relation_name: A string identifying

the spatial relation in U/ (e.g., “near,”
“above”).



— anchors: A list of objects that share the
given spatial relation with the target ob-
ject. Each object is represented as its
own JSON entity.

— negative: A boolean value which, if set
to true, denotes that the target object
should not exhibit the specified spatial
relation.

For example, the utterance “chair near the table”
can be represented as:

{"category”: "chair”, "relations":
[{"relation_name": "near",
"objects”": [{"category"”: "table"3}]1}1}

Human-annotated natural language expressions
exhibit diverse descriptions of relations, leading to
a long-tail distribution of relation_name in parsed
expressions. To mitigate this, we define a set of
common relation names and prompt LLM to se-
lect from them for £ instead of using the original
terms from 4. Based on the number of associ-
ated objects, the relations can be categorized into
unary, binary, and ternary (Feng et al., 2024).
For simplicity, attributes that describe properties of
a single object, such as “large” or “at the corner”
are treated as special types of unary relations. The
classifications are in Table 4.

Table 4: Classification of all relations.

Classification Relations

unary large, small, high, low, on the floor,
against the wall, at the corner
binary near, far, above, below,
left, right, front, behind
ternary between

B.2 Features

Category Features The category features are the
matching scores between the objects in the scene
and object categories. (Yuan et al., 2024b) provides
the predicted category for each object. For the cate-
gory feature feategory € RN (N is the number of ob-
jects), we compute the cosine similarity sim € RY
between the category and the predicted labels us-
ing CLIP (Radford et al., 2021). Subsequently, we
define the category feature as:

feategory = softmax(100 - sim)
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Relation Features Relation features, quantify-
ing the probability of spatial relationships between
objects in £, are computed by the code-based re-
lation encoders. For unary relations, the relation
feature fupary € RN (N is the number of objects).
The features of the binary relation fuinary € RV >V
represent the likelihood that there are binary re-
lations between all possible pairs of objects. For
example, frgéfr) quantifies the probability that the
i-th object is near the j-th object. Ternary features
follow an analogous pattern for relations involving
three objects.

We use the object bounding boxes in the scene
to initialize the relation encoders and then call the
forward() function to compute the corresponding
relation feature, f_rel. These relation features are
also cached in a dictionary R for efficient reuse.

Figure 7 shows the spatial relation encoder of
“above”. The class is initialized with the object
3D bounding boxes of the scene and provides two
key methods: _init_param, which computes the
necessary parameters for feature derivation. For in-
stance, in the “near” encoder, it calculates distances
between each pair of objects; forward, which per-
forms numerical operations on parameters and re-
turns the relation feature. Specifically, “above” en-
coder computes objects’ sizes, horizontal and verti-
cal distances between object pairs to compute the
“above” feature.

B.3 Executor

Our executor has a similar design to (Hsu et al.,
2023). Given the symbolic expression £ and fea-
tures, the executor computes the matching score
between objects and the referring utterance /. For
each relation in relations field of &, the cor-
responding relation feature frejaion 1S multiplied
with category feature s feaegory Of its related ob-
jects, yielding intermediate features {f; € RV} X
(where K is the number of relations). Finally, all
intermediate features and feaegory are aggregated
via the element-wise product to compute the final
matching scores between objects and the referring
utterance. See Algorithm 1 for more details.

The detailed execution algorithm is presented
in Algorithm 1, utilizing the precomputed cat-
egory features and relation features. The
Execute function runs recursively to compute the
matching_score € RY (IV is the number of ob-
jects).



class
def __init_ (

object_locations: ) -> None:

.object_locations = object_locations

._init_params()

def _init_params( ) —> None:
.center .object_locations[:, :3] # (x, y, z)
.size .object_locations[:, 3:] # (width, depth, height)
def forward( ) —> torch.Tensor:
Return a tensor of shape (N, N), where element (i, j)

is the feature of the “Above’ relation between object i and object j.
.object_locations.shape[0]
# Calculate bottom of i and top of j

1)

.center[:, 2].view(N,

height_i = .sizel:, 2]1.view(N,

bottom_of_i = 1) - height_i / 2

top_of_j = .center[:, 2].view(1, N) + .size[:, 2].view(1, N) / 2
# Vertical proximity
.abs(bottom_of_i — top_of_j)

vertical_proximity .exp(—

/ (height_i / 2))

# Center distances

abs( center[:, 0].view(N, 1)
))

.center[:, 1].view(N,

))

center_dist_x =
- center[:, 0].view(1,
center_dist_y = abs ( 1)
- center[:, 1].view(1,
# Combined sizes

1) +

1) +

) /2
) /2

combined_size_x ( .size[:, @]l.view(N, .size[:, 0].view(1,

combined_size_y = ( .sizel:, 1l.view(N, .sizel:, 1l.view(1,

# Horizontal alignment

horizontal_alignment exp(-(center_dist_x / combined_size_x) —

(center_dist_y / combined_size_y))

# Combine the metrics with a weight emphasizing more on vertical proximity

relation_metric = vertical_proximity * horizontal_alignment

# Remove self-relations by zeroing the diagonal
relation_metric.fill_diagonal_(@)

return relation_metric

Figure 7: Example of spatial relation encoder.

Figure 8: The graph representation for in context exam-
ple selection.

B.4 Code Generation and Optimization

Detailed algorithm of code generation and opti-
mization is shown in Algorithm 2.

B.5 In Context Example Selection

The selection of in-context examples is based on
relevance. We represent the selection in a graph
Figure 8, where an edge from node A to node B
means that the encoder for relation A is used as an
in-context example when generating for relation B.

B.6 Hyperparameters and Hardware

For code optimization (Section 3.3.3), we set
Nsample and Nijge, to 5, topy to 3. We mainly
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Algorithm 1: Executor
Require : symbolic expression F, category
features C', relation features R
Output :matching_score
1 f_category <— C[E["category"]]
2 matching_score < f_category
3 foreach item_rel € E["relations”] do

4 n_rel < item_rel["name”]

5 f_rel < R[n_rel]

6 anchors < item_rel["anchors”]

7 if n_rel € Unary_Relations then

8 | f« f_rel

9 else if n_rel € Binary_Relations
then

10 a < Execute(anchors|0])

1 f« f_rel-a

12 elseif n_rel € Ternary_Relations
then

13 a_1 < Execute(anchors|0])

14 a_2 + Execute(anchors[1])

15 pattern < "ijk,j,k — 1"

16 f <«

einsum(pattern, f_rel ,a_1,a_2)

17 f < softmax(f)

18 | if E["negative"”] then

19 | f <« max(f) — f

20 matching_score <
matching_score - f

Output :matching_score

use gpt-40-2024-08-06 model with a tempera-
ture of 1.0 and top_p of 0.95. For a fair com-
parison, we use the object classification results
from ZSVG3D (Yuan et al., 2024b) for the eval-
uation of ReferIt3D. For VLM decision-making,
we use the same temperature and top_p values as
VLM-Grounder (Xu et al., 2024). The thresholds
for VLM decision (Section 3.4) are 0.9 for Nr3D.
We conduct all experiments on a single NVIDIA
GeForce RTX 4090 GPU. Please see the supple-
mentary materials for the source code.

C Additional Quantitative Results

NS3D We show evaluation results in NS3D(Hsu
et al., 2023) in Table 1 . NS3D can only learn con-
cepts (e.g. relation name, category name) from the
training set and its parsing results of Nr3D contain
more than 5,000 concepts, resulting in a long-tailed



Algorithm 2: Code Generation and Opti-
mization
Require

:relation name R,
relation name G, code
library L, test cases C,
LLM LLM, test suites 7',
initial prompt prompt

Output :best_code

Hyperparameters : search iteration /V,

sample number M,

optimizing example

number topy

example < retrieve(G, R)
init_prompt < prompt 4 example
Fi,...,Fy < LLM(R, init_prompt)
forj < 1...Mdo

L accj,err; < T(Fj)

R W N -

// Test each
code.

¢ max_acc < max({accy, ..
7 best_code + Fargmax(

. accy})

{acei,...,acepr })

8 TopK « SelectTopK ({(F}, accj)}iL,, K)
9 fori < 2...Ndo
10 results < ||
1 forj«—1...Kdo
12 (Fold, €r7rod) < TopK[j]
13 prompt . <
init_prompt 4+ Fuq + erroud

14 Fi,...,Fy < LLM(R, prompt,.s)
15 fork < 1...M do
16 L results.append(F})
17 eval_results « []
18 foreach Fj, € results do
19 accy, erry < T(Fy)
20 if acc, = 1 then
21 L return Fj,
22 if acc, > max_acc then
23 max_acc <— accg
24 L best_code < Fj
25 eval_results.append((Fk, accy, errk))
26 TopK <«

SelectTopK(eval_results, K)

27 L < L U {best_code}
28 return best_code

problem. So it selects a subset containing 1,041 test
examples, which only contains the same concepts
as Sr3D, the dataset it is mainly trained on. On
the NS3D subset, LASP achieves 60.2% accuracy,

Figure 9: An example of stitched images for VLM
prompting. Object ID is annotated on each object’s
position. VLMs can figure out the target “red" box from
the two candidates and output its ID.

Table 5: Performance on Sr3D.

Method Sr3D
BUTD-DETR 67.0
NS3D 62.7
NS3D(w/ GT Object Label) 96.9
Transcrib3D (w/ GT Label) 98.4
LASP (w/o VLM) 62.0
LASP (w/o VLM, w/ GT Object Label)  95.1

NS3D(Hsu et al., 2023) have a accuracy of 52.7%,
which shows the advantage of LASP for processing
natural grounding tasks.

Sr3D  We show evaluation results on Sr3D, a sub-
set of ReferIt3D (Achlioptas et al., 2020) in Table 5.
If using predicted object labels, LASP has close
accuracy to NS3D (Hsu et al., 2023). Even not
using training data of Sr3D, LASP still achieves
comparable performance with NS3D (Hsu et al.,
2023) on both settings (w/ and w/o GT labels). If
using GT object labels, the accuracy of our method
(w/o VLM) on Sr3D is 95.3%, and the performance
of NS3D and (Fang et al., 2024) are 96.9% and
98.4%. So we believe that the bottleneck of Sr3D
performance is object detection and classifica-
tion rather than spatial relation understanding
because its relation annotation is synthesized by
relatively simple functions. So we mainly focus on
natural benchmarks (Nr3D) which have complex
and real spatial relations.

D Additional Qualitative Results

D.1 Effect of Code Optimization

We show the change between the initial response
and the final code after multiple rounds of sampling
and iterative refinement in Figure 10. The initial



def forward(self) —> torch.Tensor:
N = self.object_locations.shape[0]
height_i = self.size[:, 2].view(N, 1)

+
+ bottom_of_i = self.center[:, 2].view(N, 1) - height_i / 2
+ top_of_j = self.center[:, 2].view(1, N)

+ + self.size[:, 2].view(1, N) / 2

centers_i = self.centers.unsqueeze(1)
sizes_i = self.sizes.unsqueeze(1)
centers_j = self.centers.unsqueeze(0)
sizes_j = self.sizes.unsqueeze(0)

+ vertical_proximity = torch.exp(-torch.abs(bottom_of_i - top_of_j)
+ / (height_i / 2))

- vertical_distance = centers_i[..., 2] - centers_j[..., 2]
- - (sizes_il..., 1] + sizes_jl..., 11) / 2

center_dist_x = torch.abs(self.center[:, @].view(N, 1)
- self.center[:, 0].view(1, N))

center_dist_y = torch.abs(self.center[:, 1].view(N, 1)
- self.center[:, 1].view(1, N))

o+ o+

, 0l.view(N, 1)
/2
, 1l.view(N, 1)
/2

combined_size_x = (self.size
+ self.size[:, 0].view(1, N)
combined_size_y = (self.size

[:
)
[:
+ self.size[:, 1].view(1, N))

+ o+ o+ o+

+

horizontal_alignment = torch.exp(-(center_dist_x / combined_size_x) -
(center_dist_y / combined_size_y))
relation_feature = vertical_proximity * horizontal_alignment

+ +

- overlap_x = torch.clamp((sizes_i[..., @] + sizes_j[..., 0]) / 2
- - torch.abs(centers_i[..., 0] - centers_j[..., 0]), min=0)
- overlap_y = torch.clamp((sizes_il..., 2] + sizes_jl[..., 2]) / 2

- torch.abs(centers_i[..., 1] - centers_j[..., 1]), min=0)

horizontal_overlap_area = overlap_x * overlap_y
relation_feature = torch.where(vertical_distance > 0,
horizontal_overlap_area / (1 + vertical_distance),
torch.tensor (0.0, device=DEVICE))

Figure 10: Example of code optimization result on rela-
tion encoder of “above”.

output only passes 18 test cases out of 37. After 3
iterations of sampling and optimization, we get the
the relation encoder as the right one. It passes all 37
test cases. By transitioning from a strict geometric
overlap calculation to a continuous, exponential-
based measure for both vertical and horizontal dis-
tances, the optimized code now captures nuances
in “above” relation more robustly. This improved
formulation inherently handles scenarios where ob-
jects are close but not strictly overlapping, and it
provides a more stable gradient for training. Con-
sequently, the updated model passes all test cases
by offering a smoother, more differentiable metric
that better aligns with real-world spatial relations
and passes more test cases.

D.2 Relation Constraints

LARC (Feng et al., 2024) proposes that certain spa-
tial relations are symmetric, like “near” or “far”,
meaning that if object A is “near” B, then B should
also be “near” A. Consequently, the features of
these relations should be symmetric. Conversely,
other relations are inherently asymmetric, such as
“left” or “right”. For these relations, if a feature
element is positive (indicating the presence of the
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spatial relation), its corresponding symmetric ele-
ment should be negative (indicating the absence of
the reverse spatial relation).

LARC (Feng et al., 2024) leverage large lan-
guage models (LLMs) to annotate these constraints
and apply an auxiliary loss to enforce them dur-
ing training. In contrast, while LASP does not
explicitly train or use specialized instructions to
create these constraints, we observe that some
LLM-generated relation encoders inherently pro-
duce relation features that satisfy these constraints.
Moreover, for certain relations, these constraints
are guaranteed due to the deterministic execution
of the code. In Figure 13, we present four relation
features for a scene:

* Features for “near” and “far” are guaranteed
to be symmetric.

* For asymmetric features such as “left” and
“right” if f; ; > 0, itis guaranteed that f;; =
O. 2

D.3 Condition Level Accuracy

Our parsed symbolic expressions typically include
one or more spatial conditions for the target ob-
ject. However, some conditions in the referring
utterance may be redundant.

For instance, if the referring utterance is find
the monitor on the floor and under the desk,” and
all monitors ”on the floor” are also “under the desk,”
then one of these two conditions is redundant. This
means that even if the method fails to process one
of the conditions, it can still provide the correct
grounding result. To better understand LASP’s ca-
pability, we evaluate it on utterances containing a
single condition. We categorize objects of the same
class into groups. Within each group, we collect
the conditions for each object from the parsed ex-
pressions. Each condition is represented in JSON
format, such as: "relation”: ..., "anchors”:
[...]. These conditions are executed seamlessly
to identify the best-matching object. We compute
the average precision and recall for all condition-
level matches. LASP achieves an average precision
of 67.5% and an average recall of 66.9%.

D.4 More Visualization Results

We visualize more grounding examples in Fig-
ure 11. The first row illustrates the grounding pro-
cess for the kitchen cabinet close to the
fridge and beside the stove. In the process,
the stove, objects beside the stove, and the objects



near the fridge are sequentially grounded, culmi-
nating in the target kitchen cabinet highlighted in
green. The second row shows the grounding pro-
cess for right trash can below the sink.
Starting with the objects below the sink, followed
by the objects on the right of the sink, and finally
combining these conditions to highlight the target
trash can in green.

D.5 Effect of Unit tests

To demonstrate the impact of filtering generated
code based on its accuracy on training cases, we
selected six relations and plotted their performance.
The x-axis represents the pass rate on training cases,
while the y-axis shows the number of passed exam-
ples in all relevant test cases.

For straightforward relations such as “near” or
“far”, GPT-40 can pass all unit tests on the first
attempt, so we focus on cases requiring multiple
refinement steps.

The results, shown in Figure 12, indicate that
for five out of six relations (excluding behind),
the code with the highest pass rate on training
cases achieves top-tier performance on the test set.
However, for the behind relation, using the best-
performing code on the training cases results in
about 15 fewer passed test cases compared to using
code with approximately 70% accuracy. Despite
this, it still outperforms code with accuracy below
0.5.

This discrepancy for behind may stem from bi-
ases in the training data collection process. Overall,
selecting code based on its performance on the
training set is effective for achieving strong test set
performance.

D.6 Cross Dataset Results

To validate the scene generalization of our rela-
tion, we select scenes from GRScenes (Wang et al.,
2024) and annotate relation-oriented referring ut-
terances. For evaluation, we directly use the object
categories and bounding boxes. Some examples of
annotated data and results are shown in Figure 14.

E Public Resource Used

In this section, we acknowledge the use of the fol-
lowing public resources for this work:

e Pytorch! ................. Pytorch License

]https://github.com/pytorch/pytorch
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e Referit3D2 ................. MIT License
e GRScenes? ........ CC BY-SA 4.0 License
« ZSVG3D* ... Unknown
e Vil3drel® ..., Unknown

2https://github.com/referit3d/referit3d

Shttps://huggingface.co/datasets/OpenRobotlLab/
GRScenes

4https://github.com/Cureruan/ZSVG3D

Shttps://github.com/cshizhe/vil3dref


https://github.com/pytorch/pytorch
https://github.com/referit3d/referit3d
https://huggingface.co/datasets/OpenRobotLab/GRScenes
https://huggingface.co/datasets/OpenRobotLab/GRScenes
https://github.com/CurryYuan/ZSVG3D
https://github.com/cshizhe/vil3dref

Figure 11: The target objects are: “Stove next to another stove and close to the fridge” (top row) and “Trashcan to

stove

below sink

beside the stove

on the right of sink

the right of and below the sink” (bottom row).

close to fridge

right below sink

target

target

above below behind
500 420
70 °
480
400 °

s | s e s .
2 460 e 3 ° '] 260 ° °
g ! § 380 . " . 5 . * °
2 g 2 . x soof)
ai 440 & . Y] w s M ®e
g s .0 § z ® oo
E 420 ' 'y g 360 E 50 e o
3 . g 14 .
£ £ £ e e
§ 400 S 340 . S |
5 . s . G 40
5 380 5 5
8 8 8
e, £ 320 €
=z ° . 4 . =z 30

340 . 300 °

L]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests Accuracy on Unit Tests Accuracy on Unit Tests
front left corner
200
s (160 ‘lgs
. L L
5175 1% . " 5 C g 3o’
E L K . . E' E 140 R °s,
L] . L]
S 1505 o o ® ofe ° 2 & .
w ° @ 350 @120 e .
% o g g
2125 2 ° ©
FR g . g 100
5 £ 300 e ° £
S 100 g 300p M o S .
s s . s *
g 75 ] 3
2 £ 250 £ o0
5 5 5
Z 5 = z °
. 40
L]
25 - » 200
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Accuracy on Unit Tests

Accuracy on Unit Tests

Accuracy on Unit Tests

Figure 12: Corresponding relation between the unit test pass rate and number of correct examples on test set.
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Figure 13: Relation feature examples. The features of “near” and “far” are symmetric, meaning mutual relationships
hold true in both directions. For “left” and “right,” if an element is positive, its corresponding symmetric element is
zero, ensuring asymmetry. Additionally, all diagonal elements are zero, as self-relations are not considered.
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(c): From the two plants in shelf, pick the right one. (f): Near the electric cooker, there is a plate.

Figure 14: Qualitive results on GRScenes (Wang et al., 2024). The target object is in the green box and the visible
distractors are indicated by the red box.
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