
Language-to-Space Programming for Training-Free 3D Visual Grounding

Anonymous ACL submission

001

Abstract002

3D visual grounding (3DVG) is challenging003
due to the need to understand 3D spatial re-004
lations. While supervised approaches have005
achieved superior performance, they are con-006
strained by the scarcity and high annotation007
costs of 3D vision-language datasets. Training-008
free approaches based on LLMs/VLMs elim-009
inate the need for large-scale training data,010
but they either incur prohibitive grounding011
time and token costs or have unsatisfactory012
accuracy. To address the challenges, we in-013
troduce a novel method for training-free 3D014
visual grounding, namely Language-to-Space015
Programming (LASP). LASP introduces LLM-016
generated codes to analyze 3D spatial relations017
among objects, along with a pipeline that eval-018
uates and optimizes the codes automatically.019
Experimental results demonstrate that LASP020
achieves 52.9% accuracy on the Nr3D bench-021
mark, ranking among the best training-free022
methods. Moreover, it substantially reduces023
the grounding time and token costs, offering024
a balanced trade-off between performance and025
efficiency.026

1 Introduction027

The 3D visual grounding (3DVG) task focuses on028

locating an object in a 3D scene based on a refer-029

ring utterance (Liu et al., 2024). Numerous super-030

vised methods have been proposed for 3DVG (Hsu031

et al., 2023; Jain et al., 2022; Huang et al., 2022;032

Chen et al., 2022; Huang et al., 2024; Zhu et al.,033

2023; BAKR et al., 2024; Wu et al., 2023). These034

methods learn representations of referring utter-035

ances, object attributes, and spatial relations from036

large-scale 3D vision-language training datasets037

with high-quality annotations and achieve state-038

of-the-art performance on 3DVG. However, the039

scarcity of 3D vision-language datasets (Chen et al.,040

2020; Achlioptas et al., 2020), coupled with the041

high cost of their annotations, limits these methods’ 042

applicability. 043

Recently, large language models (LLMs) and 044

vision-language models (VLMs) have shown re- 045

markable capabilities in reasoning, code genera- 046

tion, and visual perception. Building on these ad- 047

vancements, open-vocabulary and zero-shot meth- 048

ods (Yang et al., 2024b; Xu et al., 2024; Fang et al., 049

2024; Yuan et al., 2021; Li et al., 2025) are pro- 050

posed. Agent-based methods (Yang et al., 2024b; 051

Xu et al., 2024; Fang et al., 2024) always let LLMs 052

perform numerical reasoning on object locations 053

and in text modality to find the target object (Yang 054

et al., 2024b; Fang et al., 2024), or let VLMs locate 055

targets from scene scan images in visual modal- 056

ity (Xu et al., 2024). These agents achieve superior 057

accuracy compared to other training-free methods, 058

but for one referring utterance, they need to in- 059

put the whole scene information into LLMs/VLMs. 060

Before finding the target object, LLMs/VLMs al- 061

ways generate lengthy responses, containing plan- 062

ning, reasoning, or self-debugging processes. This 063

results in high costs in terms of grounding time 064

and token usage (see Figure 1, Agents block). In 065

contrast, the visual programming method (Yuan 066

et al., 2024b) only inputs the referring utterance 067

into LLMs to generate a short program which calls 068

annotated selection functions. Then the program 069

execution, which is much faster than LLM rea- 070

soning, outputs the target object. As a result, its 071

time and token costs are much lower. However, it 072

has trouble considering multiple spatial relations in 073

the referring utterance simultaneously (Yuan et al., 074

2024a), resulting in relatively low accuracy.(see 075

Figure 1, Visprog. block.) 076

To address the dual challenges of accuracy and 077

costs, we propose LASP, a novel training-free 078

3DVG method that balances the accuracy and 079

grounding costs. (see Figure 1, LaSP block.) 080

Specifically, LASP uses Python codes that are gen- 081

erated and optimized by LLMs as spatial relation 082

1

scene scans

object locations

Chairs are at …, tables are at …
Their distances are …
So the chairs are may be chair_1 and
chair_2. chair_1	is nearer to table_1,
but no object is on the right. Now I
should check chair_2…
Result: The target object is door_1. ✅

accurate

high costs

LLMs

long context

relation
functions

> Loc(“table”)
[table_1]
> Near(table_1)
[chair_1]
> Right(chair_1)
[]
Result: Empty.❌

executor

object locations

low costs

short context

code-as-encoder

test suites
test results

executor

object locationsrelation encoders

> Enc_near(table_1, chair_1)
0.9
> Enc_right(door_1, chair_1)
0.1
> Enc_near(table_1, chair_1)
0.7
> Enc_right(table_1, chair_1)
1.0
0.9 * 0.0 < 0.7 * 1.0
Result: The target object is door_1.
✅

low costs

accurate

no function
annotation

short
context

Agents Visprog.

LaSP Performance

Find	the	door	on	the	right	of	the	chair	near	a	table.

LLMs

not accurate

Figure 1: Accuracy and cost comparison of LASP (ours) with two types of existing training-free 3DVG methods.
Agent-based methods input scene information into LLMs/VLMs to analyze spatial relations, leading to high accuracy
but also high computational costs. Visual programming (Visprog.) only inputs the referring utterance into LLMs
to generate a program and finds the target by program execution. It reduces the costs signicicantly but sacrifices
the accuracy. LASP introduces code-based relation encoders along with its automatic generation pipeline. Spatial
relations are analyzed by code execution instead of LLMs/VLMs reasoning. This approach allows LASP to achieve
accuracy comparable to agent-based methods, while significantly reducing the costs.

encoders. Given the bounding boxes of scene ob-083

jects, the spatial relation encoders generate relation084

features which quantify the spatial relations of ob-085

jects. Moreover, we introduce test suites which can086

evaluate the codes. The test suites not only enable087

us to select better relation encoders from multiple088

LLM responses but also allow LLMs to leverage089

failed test cases to optimize the codes. The relation090

encoders can be seamlessly integrated with a sym-091

bolic reasoning framework similar to (Hsu et al.,092

2023). In our framework, a referring utterance is093

converted to a symbolic expression. Then an ex-094

ecutor aggregates the symbolic expression, relation095

features, and object categories to give the matching096

scores between objects and the referring utterance.097

LASP also prompts VLMs to further distinguish098

objects based on visual information. Compared099

to agent-based methods, LASP only inputs the re-100

ferring utterance into LLMs and one image into101

VLMs, resulting in much lower costs. Compared102

to the visual programming method, LASP has ob-103

viously higher accuracy.104

We evaluate LASP on the widely used105

Nr3D (Achlioptas et al., 2020) datasets. Experi-106

ment results show that LASP achieves 52.9% accu-107

racy on Nr3D, and offers advantages in grounding108

time and token cost compared to previous training-109

free 3D visual grounding methods. Additionally,110

we conduct experiments to demostrate the advan- 111

tages the LLM-desgined codes over human experts 112

and the generalization to other 3D datasets. 113

2 Related Work 114

Training-free 3D Visual Grounding Training- 115

free methods exploit pre-trained LLMs / VLMs 116

for open-vocabulary 3DVG. ZSVG3D (Yuan et al., 117

2024b) uses LLMs to generate programs that 118

call predefined functions to find the target object. 119

CSVG (Yuan et al., 2024a) proposes to replace the 120

programming of ZSVG3D (Yuan et al., 2024b) by 121

constraint satisfaction solving for handling multiple 122

constraints. LLM-Grounder (Yang et al., 2024b), 123

Transcrib3D (Fang et al., 2024) deploy LLM/VLM- 124

based agents that analyze object appearances and 125

locations and find the target. VLM-Grounder (Xu 126

et al., 2024) and SeeGround (Li et al., 2025) mainly 127

rely on VLMs to find the target from scene images 128

by visual prompting. Xu et al. (2024) uses VLMs 129

and images from the scene to figure out the target 130

object. Li et al. (2025) first parses the landmark 131

and perspective of the referring utterance and then 132

uses VLMs to find the target object from rendered 133

images. Compared to these methods, LASP offers 134

a superior results on both accuracy and efficiency. 135

LLM-based Code Generation LLMs demon- 136

strate growing proficiency in generating executable 137

2

LLMs Relation
Encoder

generate

Test Suites
feedback

optimize

symbolic expression

⋅(×) =

Relation Features

Category Features

Executor

referring utterance

VLMs

Candidate Images

The target is …3D Detection
& Classification

desk

chair

near between… chair desknear

Figure 2: Overview of LASP. Off-the-shelf spatial relation encoders are generated and optimized by LLMs before
grounding. At the grounding time, the encoders compute relation features based on object bounding boxes. An
executor uses the relation features, along with category features and the symbolic expression to get some candidate
objects. Then LASP uses VLMs to select the target from their images.

code (Roziere et al., 2023) for precise mathematical138

reasoning (Li et al., 2024), robotics control (Liang139

et al., 2023), tool use (Gupta and Kembhavi, 2023;140

Yuan et al., 2024b) or data cleaning (Zhou et al.,141

2024). Recent work further explores code refine-142

ment via environmental feedback, such as RL train-143

ing trajectories (Ma et al., 2024) or real-world ex-144

ecution errors (Le et al., 2022; Chen et al., 2024).145

In the 3DVG area, (Yuan et al., 2024b; Fang et al.,146

2024) also uses code to process spatial relations,147

but LASP advances this paradigm by introducing148

the spatial relation encoders and test suites to auto-149

matically optimize codes.150

3 Method151

3.1 Problem Statement152

3D visual grounding tasks involve a scene, denoted153

as S, represented by an RGB-colored point cloud154

containing C points. Associated with this is an ut-155

terance U that describes an object within the scene156

S. The objective is to identify the location of the157

target object T in the form of a 3D bounding box.158

In the ReferIt3D dataset (Achlioptas et al., 2020),159

bounding boxes for all objects are provided, mak-160

ing the visual grounding process a task of matching161

these bounding boxes to the scene S.162

3.2 Grounding Pipeline163

The framework of LASP is shown in Figure 2.164

Prior to grounding, relation encoders are generated165

by LLMs, and objects in 3D scenes are detected166

and classified. A semantic parser converts the re-167

ferring utterance U into a symbolic expression E ,168

which encapsulates the spatial relations and cate-169

gory names in U . Category features, quantifying170

how well each object matches the category, are de-171

rived from the classification results. Our spatial172

relation encoders are Python code generated by 173

LLMs. Relation features, quantifying the probabil- 174

ity of spatial relationships between objects in E , are 175

computed by the relation encoders by explicit geo- 176

metric calculations. For example, f (i,j)
near quantifies 177

the probability that the i-th object is near the j-th 178

object. Our executor has a similar design to (Hsu 179

et al., 2023). Given the symbolic expression E and 180

features, An executor uses the E , relation features, 181

and category features to calculate the matching 182

scores between all objects and the referring objects 183

based on the symbolic expression. Objects with 184

higher matching scores are selected as the candi- 185

dates. Then LASP employs VLMs to find the target 186

object from the images of these candidates. Please 187

see Appendix B for more details. 188

3.3 Spatial Relation Encoders 189

Sizes and positions of objects in 3D scenes inher- 190

ently determine spatial relations. For example, the 191

near relation depends on pairwise distances, while 192

large is determined by object volumes. In LASP, 193

each spatial relation encoder is a Python class that 194

can compute its associated relation features given 195

the object bounding boxes. 196

As illustrated in Figure 3, the spatial relation 197

encoders come from many optimization iterations. 198

There are several phases in one iteration: (1) re- 199

trieving in-context examples based on the semantic 200

similarities of relations (Section 3.3.1); (2) gener- 201

ating multiple codes from LLMs; and (3) testing 202

codes through test suites (Section 3.3.2). When test 203

failures occur, the test suites automatically synthe- 204

size error messages that contain failure cases. The 205

codes with highest pass rates and their error mes- 206

sages are then given to LLMs for code optimization 207

(Section 3.3.3). 208

3

✅ 30 passed
❎ 10 failed

Relation: above
Target: object 2
Anchor: object 5

Distractor: object 6
…

f	=	above_feature
assert	f[2,	5]	>	f[6,	5]

…	

prompt + in-context example

sample2 sample3sample1

✅ 32 passed
❎ 8 failed

✅ 0 passed
❎ 40 failed

failure cases: …
object bboxes: …
Improve your
code to pass
them.

❌ discard

failure cases: …
object bboxes: …
Improve your
code to pass
them.

sample1 …

Test Suite

Test Results

Error Messages
Top-K Selection

Code Optimization

N iterations

 Test Cases

sample2 sample5 sample6

Figure 3: Overview of the generation and optimization
process of relation encoders.

3.3.1 In Context Example209

Adding in-context example into the prompt can210

improve the response quality from LLMs (Brown211

et al., 2020). To reduce human annotation and pro-212

vide suitable in-context example for different re-213

lation encoders’ generation, we retrieve generated214

codes as in-context example. For example, relation215

encoders for “near” and “far” may both compute216

pairwise distances but differ only in the numerical217

processing, so the codes for “near” can be used as218

the in-context example for the generation of “far”.219

Please see Appendix B.5 for the details.220

3.3.2 Test Suites221

To increase the probability of getting high-222

quality codes, we sample multiple responses from223

LLMs (Wu et al., 2025b) and design test suites224

that can evaluate the codes by testing their pass225

rates on a series of test cases. Take the relation226

“above” as an example. We collect 37 triplets227

(less than 100 for most relations) in the format228

of [target object ID], [distractor ID],229

[anchor object ID] from the training set, with230

each triplet serving as a test case. In relation231

feature fabove, if the element f (distractor,anchor)232

is larger than f (target,anchor), the test is deemed233

to have failed, and an error message looks like234

[target bbox] is above [anchor bbox] So235

feature value of [target bbox] "above"236

[anchor bbox] should be larger than237

the feature value of [distractor bbox]238

"above" [anchor bbox]. is synthesized. An239

example of such an error message is in Section A. 240

3.3.3 Code Generation and Optimization 241

For any relation, we begin by prompting the LLMs 242

with the task description, the relation name, and 243

the retrieved in-context example (Section 3.3.1). 244

Then we sample Nsample codes from LLMs, where 245

Nsample is a configurable hyperparameter. Next, 246

each generated code is tested using the test suites. 247

We select the topk codes that have the highest pass 248

rates on the test cases and subject them to an op- 249

timization phase. During the optimization phase, 250

LLMs receive the initial prompt, the code to be op- 251

timized, and the error message produced by the test 252

suites. Then LLMs are asked to revise the codes ac- 253

cording to failure cases in the error message. This 254

test and optimization procedure is repeated for up 255

to Niter iterations. Ultimately, we adopt the code 256

that achieves the highest pass rate across all test 257

cases. The detailed optimization and selection al- 258

gorithm is shown in Algorithm 2. 259

3.4 Visual Decision Module 260

The visual information, like color or shape in ut- 261

terances, is also essential for accurate grounding, 262

particularly for natural datasets like Nr3D (Achliop- 263

tas et al., 2020). When two candidate objects share 264

a similar class and spatial position, visual informa- 265

tion is required to distinguish between them. 266

Following VLM-Grounder (Xu et al., 2024), we 267

incorporate GPT-4o to identify the target object 268

from a set of candidates by utilizing 2D images 269

from ScanNet (Dai et al., 2017) as additional con- 270

text. Specifically, we select the top five objects hav- 271

ing the highest scores based on the matching scores 272

from the executor and retain those whose logits 273

exceed a chosen threshold as candidates. Eight im- 274

ages most relevant to candidate objects from scan 275

images of ScanNet (Dai et al., 2017) are selected 276

based on the projected area size of candidate ob- 277

jects. They are stitched together in 4× 2 grids and 278

annotated with object IDs. Finally, we prompt GPT- 279

4o to identify the target object from the stitched 280

images. By integrating these visual cues, the VLM 281

decision module effectively disambiguates candi- 282

dates that appear similar in terms of category and 283

spatial attributes, yielding more accurate grounding 284

results. An example is in Figure 9 (we only show 6 285

of them for clarity). 286

4

Table 1: Performances on Nr3D. †: For VLM-Grounder (Xu et al., 2024), we use the results on a 250-sample subset
reported in its original paper. Results of Transcrib3D in GPT-4o are reported by concurrent SORT3D (Zantout et al.,
2025). ∗: We re-run ZSSVG3D (Yuan et al., 2024b) in GPT-4o.

Method Overall Easy Hard View Dep. View Indep.
Supervised
ViL3DRef (Chen et al., 2022) 64.4 70.2 57.4 62.0 64.5
BUTD-DETR (Jain et al., 2022) 54.6 60.7 48.4 46.0 58.0
SAT (Yang et al., 2021) 49.2 56.3 42.4 46.9 50.4
Training-free, predicted label
ZSVG3D∗ (Yuan et al., 2024b) 40.2 49.1 31.1 37.8 41.6
SeeGround (Li et al., 2025) 46.1 54.5 38.3 42.3 48.2
VLM-Grounder† (Xu et al., 2024) 48.0 55.2 39.5 45.8 49.4
LASP w/o VLM 50.7 58.7 43.0 45.6 53.2
LASP 52.9 60.7 45.3 49.2 54.7
Training-free, ground-truth label
CSVG (Yuan et al., 2024a) 59.2 59.2 44.5 53.0 46.4
Transcrib3D (Fang et al., 2024) 65.6 - - 63.3 66.7
LASP w/o VLM 65.7 75.6 56.2 58.7 69.1
LASP 67.8 76.3 59.6 61.6 71.0

4 Experiments287

4.1 Experimental Settings288

Dataset We mainly conduct experiments on the289

Nr3D subset of ReferIt3D (Achlioptas et al., 2020)290

dataset. ReferIt3D has 2 subsets: Nr3D and291

Sr3D. The Nr3D subset utterances contain human-292

annotated utterances and the Sr3D contains synthe-293

sized ones. Based on the number of same-class dis-294

tractors, the dataset can be categorized into “easy”295

and “hard” subsets. The easy subset has a single296

distractor, and the hard subset has multiple dis-297

tractors. The dataset can also be split into “view298

dependent” and “view independent” subsets accord-299

ing to the referring utterance. Ground truth object300

bounding boxes are given in the ReferIt3D default301

evaluation setting. Therefore, the metric is an exact302

match between the predicted bounding box and the303

target bounding box.304

Baselines We compare LASP against both super-305

vised and training-free methods, evaluating accu-306

racy, grounding time, and token cost. The super-307

vised baselines include SAT (Yang et al., 2021),308

BUTD-DETR (Jain et al., 2022), Vil3DRef (Chen309

et al., 2022). The training-free approaches include310

ZSVG3D (Yuan et al., 2024b), Transcrib3D (Fang311

et al., 2024), VLM-Grounder (Xu et al., 2024),312

CSVG (Yuan et al., 2024a) and SeeGround (Li313

et al., 2025). On the Nr3D dataset, Tran-314

scrib3D (Fang et al., 2024) and CSVG (Yuan et al., 315

2024a) use ground-truth object labels, providing an 316

advantage over methods which rely on predicted 317

labels; therefore, we compare LASP with them in 318

their specific settings. 319

4.2 Quantitative Results 320

Accuracy Table 1 presents the accuracy com- 321

parison on Nr3D. Compared to other training-free 322

baselines, LASP achieves higher overall accuracy 323

than both ZSVG3D (Yuan et al., 2024b), VLM- 324

Grounder (Xu et al., 2024) and SeeGround (Li 325

et al., 2025). LASP also surpasses one early super- 326

vised method, SAT (Yang et al., 2021) and further 327

narrows the gap in overall performance relative to 328

the supervised method BUTD-DETR (Jain et al., 329

2022), especially on the view-dependent (VD) sub- 330

set. However, it still lags behind other more recent 331

supervised methods (Chen et al., 2022), which are 332

trained on large-scale 3D vision-language datasets. 333

We further evaluate LASP in the experimental set- 334

tings of (Fang et al., 2024; Yuan et al., 2024a), in 335

which ground truth object labels are utilized for 336

more accurate category-level object recognition. 337

CSVG (Yuan et al., 2024a) uses the same spatial 338

functions as ZSVG3D (Yuan et al., 2024b), result- 339

ing a lower accuracy. Transcrib3D (Fang et al., 340

2024) can produce natural language reasoning pro- 341

cesses according to the specific utterance, offering 342

5

on door’s right desk on door’s right above door’s right desk target

Figure 4: Visualization of the grounding process. Anchor (the door) is marked with red circles. Objects that
strongly match the below conditions are highlighted in green, with brighter shades indicating higher matching
scores.

Table 2: Grounding time and token costs. LASP has sig-
nificant advantage, especially when compared to agent-
based methods (VLM-Grounder (Xu et al., 2024) and
Transcrib3D (Fang et al., 2024)).

Method Time/s Token

ZSVG3D 2.4 2.5k
VLM-Grounder 50.3 8k
Transcrib3D 27.0 12k
CSVG 4.0 4.0k
SeeGround 9.0 2.6k
LASP (w/o VLM) 2.1 1.2k
LASP 7.7 (+5.6) 3.1k (+1.9k)

more flexibility. So that it achieves a close accu-343

racy as LASP. For SeeGround (Li et al., 2025) and344

CSVG (Yuan et al., 2024a), we use the results re-345

ported in the original paper in Table 1. For a fair346

comparison, We evaluate LASP and SeeGround (Li347

et al., 2025) using the same VLMs (Yang et al.,348

2024a) on Nr3D subset, the overall accuracy are349

40.7% of SeeGround and 48.8% of LASP.350

Grounding Costs Table 2 compares the average351

grounding time and token costs of training-free352

methods on a randomly sampled subset of Nr3D.353

For every referring utterance, Transcrib3D (Fang354

et al., 2024) calls the LLMs for many turns until355

the target object is found and the context keeps356

growing, which exhibits significantly higher time357

and token consumption (27.0s and 50.3k tokens).358

In contrast, all codes of LASP are generated be-359

fore grounding and reused. So for every referring360

utterance, LASP calls the LLMs (for parsing) and361

VLMs for only once. VLM-Grounder (Xu et al., 362

2024) inputs all scan images into VLMs, but the 363

executor of LASP can filter out most of the ob- 364

jects so LASP only needs to input one image into 365

VLMs. As a result, LASP maintains a large re- 366

duction in grounding time and token consump- 367

tion compared to them. LASP (without VLMs) 368

and ZSVG3D (Yuan et al., 2024b) only need one 369

LLM call for each referring utterance, so they 370

have similar grounding costs, but LASP demon- 371

strates a significant improvement in accuracy over 372

ZSVG3D (Yuan et al., 2024b). CSVG (Yuan et al., 373

2024a) needs to call LLMs three times for an ut- 374

terance, causing longer time costs. SeeGround (Li 375

et al., 2025) and LASP call both LLMs and VLMs 376

once for an utterance, thus have a similar time 377

costs. 378

Above quantitative results underscore the abil- 379

ity of LASP to balance accuracy and efficiency: 380

LASP achieves competitive accuracy compared to 381

the most accurate training-free methods while of- 382

fering substantial computational costs. 383

4.3 Qualitative Results 384

Visualization Figure 4 visualizes a grounding 385

process of LASP, demonstrating how the final 386

grounding result is constructed through the com- 387

bination of multiple features of conditions in the 388

referring utterance. The example referring utter- 389

ance is “When facing the door, it’s the shelf above 390

the desk on the right”. It can be understood as fol- 391

lowing four steps in the figure. First, the feature of 392

objects on door’s right, f1, is identified using 393

the category feature “door” and the relation fea- 394

6

In Front Class
def forward(self) -> torch.Tensor:
+ centers = self.centers
+ sizes = self.sizes
+ N = centers.size(0)
+ dist_ij = torch.norm(vec_ij, dim=-1)
+ vec_ij = centers[:, None, :2] - centers[None, :, :2]

- N = self.object_locations.size(0)
- x_min_i = self.x_min.view(N, 1)
- x_max_i = self.x_max.view(N, 1)
- x_min_j = self.x_min.view(1, N)
- x_max_j = self.x_max.view(1, N)

+ front_orientation = vec_ij / (dist_ij[..., None] + 1e-8)
+ projection_length = torch.sum(vec_ij * front_orientation, dim=-1)
+ mask = (torch.eye(N, device=DEVICE) == 0) & (projection_length > 0)

- overlap_in_x = torch.minimum(x_max_i, x_max_j)
 - torch.maximum(x_min_i, x_min_j)
- overlap_mask = overlap_in_x > 0
- y_min_j = self.y_min.view(1, N)
- y_max_i = self.y_max.view(N, 1)
- frontness = y_min_j - y_max_i
- frontness_mask = frontness > 0

+ size_factors = torch.norm(sizes[:, None, :2], dim=-1)
 + torch.norm(sizes[None, :, :2], dim=-1)

+ relation_feature = torch.zeros((N, N), device=DEVICE)
+ relation_feature[mask] = torch.exp(-projection_length[mask]
 / (size_factors[mask] + 1e-8))

- relation_feature = torch.where(overlap_mask & frontness_mask,
 torch.exp(-frontness), torch.tensor(0.0, device=DEVICE))

update parameter

update algorithm

add factor

Figure 5: The LLM-based optimization of “front" rela-
tion encoder.

ture “right”. Next, the feature of desk on door’s395

right is computed by multiplying the category fea-396

ture “desk” and the f1. Objects above on door’s397

right desk are identified by relation feature fabove398

and the previous feature; the target “shelf” is found399

by multiplying fshelf . More visualization results400

can be found in Figure 11.401

Cross-Dataset Generalization Although LASP402

requires no pre-training on large-scale 3D datasets,403

it does exploit a small subset of the ReferIt3D404

corpus (Achlioptas et al., 2020) during optimiza-405

tion, whereas other training-free approaches use406

no external data at all. To probe the generaliza-407

tion ability of our relational encoders, we further408

evaluate on GRScenes (Wang et al., 2024), a high-409

quality indoor 3D scene dataset. We manually an-410

notate 40 referring expressions across five scenes411

and adopt a naïve baseline that randomly selects412

an object from the same semantic category as the413

target. LASP attains an overall accuracy of 90.0%,414

while the random baseline achieves only 15.6%.415

These results demonstrate that, even when opti-416

mized solely with ScanNet (Dai et al., 2017) and417

ReferIt3D (Achlioptas et al., 2020) language, our418

relational encoders transfer robustly to previously419

unseen environments. Qualitative visualizations420

are provided in Appendix D.6.421

Table 3: Accuracy on GRScenes (Wang et al., 2024).

Method View Dep. View Indep.

LASP 87.5% 91.7%
Random 15.4% 15.7%

Comparison with Human Annotations Eu- 422

reka (Ma et al., 2024) demonstrates that LLMs can 423

surpass human experts in reward-function design. 424

For 3D visual grounding, ZSVG3D (Yuan et al., 425

2024b) relies on manually crafted spatial-relation 426

functions, whereas LASP achieves substantially 427

higher performance. Because the two pipelines dif- 428

fer considerably, it is non-trivial to directly reuse 429

their code in LASP. To quantify the gap, we evalu- 430

ate LLM-generated programs and human-written 431

functions on Nr3D (Achlioptas et al., 2020). Substi- 432

tuting the automatically synthesized functions with 433

human-designed ones causes the overall accuracy 434

of LASP to fall sharply to 44.0%. These results 435

highlight the advantages our generated codes over 436

manual annotations. 437

Optimization Quality By analyzing failed test 438

cases, LLMs can iteratively refine relation encoders 439

across multiple dimensions. Figure 5 illustrates 440

the difference between the initial LLM-generated 441

implementation (in red) and the optimized ver- 442

sion (in green) using the relation “front” as an ex- 443

ample. The optimized version incorporates both 444

distances and directional vectors between object 445

centers, rather than relying solely on axis-aligned 446

bounding box coordinates. It also replaces simple 447

X-axis overlap and Y-axis comparison with vector 448

projection, enabling the detection of “front” rela- 449

tions in arbitrary directions;. Additionally, object 450

size is used as a normalization factor, enhancing the 451

accuracy and robustness of the relation prediction. 452

4.4 Ablation Study 453

We conduct ablation studies to investigate the im- 454

pact of various components during the code gen- 455

eration and optimization processes by evaluating 456

three different variants. Variant 1 ablates all three 457

key components: optimization, error messages, and 458

in-context examples. In this variant, we directly 459

prompt LLMs to generate multiple codes and se- 460

lect the one with the highest pass rate on unit tests. 461

Variant 2 adds optimization processes and ablates 462

the error message by replacing it with a general 463

optimization instruction that doesn’t contain any 464

failure case; variant 3 only ablates in-context exam- 465

7

1 2 3 4 5 6
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Ac

cu
ra

cy
Right

1 2 3 4 5 6

0.6

0.7

0.8

0.9

1.0
Below

1 2 3 4 5 6

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Between

LaSP
Variant 1
Variant 2
Variant 3

1 2 3 4 5 6
Optimization Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Left

1 2 3 4 5 6
Optimization Iteration

0.92

0.94

0.96

0.98

1.00
Above

1 2 3 4 5 6
Optimization Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Corner

Figure 6: Ablation study on different variants. The x-axis stands for the number of optimization iterations. The
y-axis stands for the normalized accuracy on corresponding Nr3D subsets.

ples. For relatively simple relations like “small”,466

the generated codes can pass all unit tests in the467

first generation, so there is no following optimiza-468

tion, so we choose to analyze six relations that469

required multiple optimization iterations. For the470

relations that no in-context example is used (“left”,471

“above”, and “corner”), variant 3 is identical to the472

full method, so we only report variant 1 and 2 for473

these relations. To control for the impact of the474

initial generation, we use the same responses of the475

first iteration across variant 2 and 3.476

Figure 6 illustrates the results of the ablation477

study; different variants are represented by lines478

of different colors. The horizontal axis represents479

the number of iterations. The vertical axis shows480

the normalized accuracy on test examples associ-481

ated with the relation. The effect of optimization is482

evident in variant 1: without optimization, LLMs483

fail to produce accurate relation encoders for most484

relations, except “corner” and “between”. Variant 2485

demonstrates the effect of optimization: by incorpo-486

rating simple optimization, the accuracies improve487

on some relations compared to variant 1. However,488

without the detailed error message, LLMs still can’t489

generate accurate encoders for most relations. The490

results of variant 3 highlight the effect of error 491

messages: by using specific failure cases in error 492

messages, LLMs are able to generate more accurate 493

spatial relation encoders for most relations. For re- 494

lations “right”, “between” and “below” which use 495

in-context examples, the accuracies of variant 3 are 496

significantly lower than LASP in the first iteration, 497

underscoring the impact of in-context examples. 498

5 Conclusion 499

In this paper, we present LASP, a training-free 500

method for 3D visual grounding that uses Python 501

codes to encode spatial relations, along with a au- 502

tomatic generation pipeline. Leveraging the rich 503

spatial knowledge in LLMs, LASP eliminates the 504

need for large-scale 3D vision–language datasets. 505

We introduce novel test suites that evaluate LLM- 506

generated codes and guide their optimization. Ac- 507

cording to the test results and feedback, supe- 508

rior codes are selected and optimized iteratively 509

by LLMs, yielding more accurate spatial relation 510

encoders. Experimental results demonstrate that 511

LASP achieves competitive accuracy compared 512

to previous training-free methods while offering 513

promising advantages in time and token costs. 514

8

Limitations515

We acknowledge that LASP has limitations in the516

following respects.517

Performance Limitations518

Although we have made progress in balancing ac-519

curacy and efficiency, there is still a noticeable520

gap between training-free methods and recent su-521

pervised models that jointly learn object detection522

and spatial reasoning (Zhu et al., 2023; Wu et al.,523

2025a; Arnaud et al., 2025). Current training-free524

approaches—including ours—focus mainly on spa-525

tial reasoning while relying on off-the-shelf 3D526

detectors and object classifiers. Designing more ac-527

curate, lightweight 3D perception modules tailored528

for referring tasks therefore remains an important529

research direction.530

System Limitations531

Symbolic expression. Our symbolic representa-532

tion captures object categories and pairwise spa-533

tial relations, but it struggles with ordinal or non-534

relation phrases such as “second from the left.” A535

possible solution is incorporating order constraints,536

as in CSVG (Yuan et al., 2024a).537

Relation coverage. For simplicity we restrict our-538

selves to frequent relations (near, above, left, etc.).539

Low-frequency relations are omitted from the cur-540

rent analysis, which may hide weaknesses on those541

cases. Building 3DVG benchmarks with a wider542

range of challenging relations would enable deeper543

evaluation.544

Scene representation. We simply model a scene545

as a set of 3D bounding boxes and ignore shapes,546

orientations, and functional zones (e.g., bathrooms).547

Enriching the scene graph with such information548

and developing stronger encodings for LLMs and549

VLMs are promising directions.550

Dependence on Pre-trained 3D Models551

While LASP removes the need for large-552

scale 3D vision–language datasets such as553

ReferIt3D (Achlioptas et al., 2020) and SceneV-554

erse (Jia et al., 2024), it still depends—like most555

training-free methods (Yuan et al., 2024b; Fang556

et al., 2024; Li et al., 2025; Yuan et al., 2024a)—on557

a pre-trained 3D detector and point-cloud classi-558

fier. VLM-Grounder (Xu et al., 2024) avoids these559

components by leveraging strong 2D perception560

models (Liu et al., 2023; Kirillov et al., 2023), but561

its per-utterance detection cannot be reused across 562

multiple queries in the same scene, resulting in high 563

latency. Scene-level 3D object discovery based on 564

2D models (Gu et al., 2023) may ultimately remove 565

the remaining dependence on 3D training data. 566

Ethics Statement 567

The human involvement in this study was a small 568

group of volunteer experts who qualitatively anno- 569

tated some relation encoders. All participants were 570

fully briefed on the purpose of the research, pro- 571

vided written informed consent, and were free to 572

withdraw at any time. No demographic or person- 573

ally identifiable information was collected, stored, 574

or reported. 575

References 576

Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed 577
Elhoseiny, and Leonidas Guibas. 2020. ReferIt3D: Neural 578
Listeners for Fine-grained 3D Object Identification in Real- 579
world Scenes. In ECCV, pages 422–440. Springer. 580

Sergio Arnaud, Paul McVay, Ada Martin, Arjun Majumdar, 581
Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan 582
Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent- 583
Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita 584
Prasad, Mrinal Kalakrishnan, Michael Rabbat, Nicolas 585
Ballas, Mido Assran, and 3 others. 2025. Locate 3d: Real- 586
world object localization via self-supervised learning in 3d. 587
Preprint, arXiv:2504.14151. 588

Eslam Mohamed BAKR, Mohamed Ayman Mohamed, Mah- 589
moud Ahmed, Habib Slim, and Mohamed Elhoseiny. 2024. 590
Cot3DRef: Chain-of-thoughts data-efficient 3d visual 591
grounding. In The Twelfth International Conference on 592
Learning Representations. 593

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, 594
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, 595
Pranav Shyam, Girish Sastry, Amanda Askell, and 1 others. 596
2020. Language models are few-shot learners. Advances 597
in neural information processing systems, 33:1877–1901. 598

Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. 599
2020. ScanRefer: 3D Object Localization in RGB-D 600
Scans using Natural Language. In ECCV, pages 202–221. 601
Springer. 602

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, 603
Cordelia Schmid, and Ivan Laptev. 2022. Language con- 604
ditioned spatial relation reasoning for 3d object ground- 605
ing. Advances in neural information processing systems, 606
35:20522–20535. 607

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny 608
Zhou. 2024. Teaching large language models to self-debug. 609
In The Twelfth International Conference on Learning Rep- 610
resentations. 611

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, 612
Thomas Funkhouser, and Matthias Nießner. 2017. Scannet: 613
Richly-annotated 3d reconstructions of indoor scenes. In 614
Proceedings of the IEEE conference on computer vision 615
and pattern recognition, pages 5828–5839. 616

9

https://arxiv.org/abs/2504.14151
https://arxiv.org/abs/2504.14151
https://arxiv.org/abs/2504.14151
https://openreview.net/forum?id=ORUiqcLpV6
https://openreview.net/forum?id=ORUiqcLpV6
https://openreview.net/forum?id=ORUiqcLpV6
https://openreview.net/forum?id=KuPixIqPiq

Jiading Fang, Xiangshan Tan, Shengjie Lin, Igor Vasiljevic,617
Vitor Guizilini, Hongyuan Mei, Rares Ambrus, Gregory618
Shakhnarovich, and Matthew R Walter. 2024. Transcrib3d:619
3d referring expression resolution through large language620
models. In 2024 IEEE/RSJ International Conference on621
Intelligent Robots and Systems (IROS), pages 9737–9744.622
IEEE.623

Chun Feng, Joy Hsu, Weiyu Liu, and Jiajun Wu. 2024.624
Naturally supervised 3d visual grounding with language-625
regularized concept learners. In Proceedings of the626
IEEE/CVF Conference on Computer Vision and Pattern627
Recognition, pages 13269–13278.628

Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy629
Jatavallabhula, Bipasha Sen, Aditya Agarwal, Corban630
Rivera, William Paul, Kirsty Ellis, Ramalingam Chellappa,631
Chuang Gan, Celso de Melo, Joshua B. Tenenbaum, Anto-632
nio Torralba, Florian Shkurti, and Liam Paull. 2023. Con-633
ceptgraphs: Open-vocabulary 3d scene graphs for percep-634
tion and planning. 2024 IEEE International Conference on635
Robotics and Automation (ICRA), pages 5021–5028.636

Tanmay Gupta and Aniruddha Kembhavi. 2023. Visual pro-637
gramming: Compositional visual reasoning without train-638
ing. In Proceedings of the IEEE/CVF Conference on Com-639
puter Vision and Pattern Recognition, pages 14953–14962.640

Joy Hsu, Jiayuan Mao, and Jiajun Wu. 2023. Ns3d: Neuro-641
symbolic grounding of 3d objects and relations. In Pro-642
ceedings of the IEEE/CVF Conference on Computer Vision643
and Pattern Recognition, pages 2614–2623.644

Haifeng Huang, Yilun Chen, Zehan Wang, Rongjie Huang,645
Runsen Xu, Tai Wang, Luping Liu, Xize Cheng, Yang646
Zhao, Jiangmiao Pang, and Zhou Zhao. 2024. Chat-scene:647
Bridging 3d scene and large language models with object648
identifiers. In The Thirty-eighth Annual Conference on649
Neural Information Processing Systems.650

Shijia Huang, Yilun Chen, Jiaya Jia, and Liwei Wang. 2022.651
Multi-view transformer for 3d visual grounding. In Pro-652
ceedings of the IEEE/CVF Conference on Computer Vision653
and Pattern Recognition, pages 15524–15533.654

Ayush Jain, Nikolaos Gkanatsios, Ishita Mediratta, and Kate-655
rina Fragkiadaki. 2022. Bottom Up Top Down Detection656
Transformers for Language Grounding in Images and Point657
Clouds. In ECCV, pages 417–433. Springer.658

Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang, Xuesong659
Niu, Tengyu Liu, Qing Li, and Siyuan Huang. 2024. Scen-660
everse: Scaling 3d vision-language learning for grounded661
scene understanding. In European Conference on Com-662
puter Vision (ECCV).663

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,664
Chloé Rolland, Laura Gustafson, Tete Xiao, Spencer665
Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dol-666
lár, and Ross B. Girshick. 2023. Segment anything. 2023667
IEEE/CVF International Conference on Computer Vision668
(ICCV), pages 3992–4003.669

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio670
Savarese, and Steven Chu Hong Hoi. 2022. Coderl: Mas-671
tering code generation through pretrained models and deep672
reinforcement learning. Advances in Neural Information673
Processing Systems, 35:21314–21328.674

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol675
Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-Fei, Fei676

Xia, and brian ichter. 2024. Chain of code: Reasoning with 677
a language model-augmented code emulator. In Forty-first 678
International Conference on Machine Learning. 679

Rong Li, Shijie Li, Lingdong Kong, Xulei Yang, and Junwei 680
Liang. 2025. Seeground: See and ground for zero-shot 681
open-vocabulary 3d visual grounding. In IEEE/CVF Con- 682
ference on Computer Vision and Pattern Recognition. 683

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Haus- 684
man, Brian Ichter, Pete Florence, and Andy Zeng. 2023. 685
Code as policies: Language model programs for embod- 686
ied control. In 2023 IEEE International Conference on 687
Robotics and Automation (ICRA), pages 9493–9500. IEEE. 688

Daizong Liu, Yang Liu, Wencan Huang, and Wei Hu. 2024. 689
A survey on text-guided 3d visual grounding: elements, 690
recent advances, and future directions. arXiv preprint 691
arXiv:2406.05785. 692

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao 693
Zhang, Jie Yang, Chun yue Li, Jianwei Yang, Hang Su, 694
Jun-Juan Zhu, and Lei Zhang. 2023. Grounding dino: Mar- 695
rying dino with grounded pre-training for open-set object 696
detection. In European Conference on Computer Vision. 697

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An 698
Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, 699
Linxi Fan, and Anima Anandkumar. 2024. Eureka: Human- 700
level reward design via coding large language models. In 701
The Twelfth International Conference on Learning Repre- 702
sentations. 703

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, 704
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda 705
Askell, Pamela Mishkin, Jack Clark, and 1 others. 2021. 706
Learning transferable visual models from natural language 707
supervision. In International conference on machine learn- 708
ing, pages 8748–8763. PMLR. 709

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, 710
Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Ro- 711
main Sauvestre, Tal Remez, and 1 others. 2023. Code 712
llama: Open foundation models for code. arXiv preprint 713
arXiv:2308.12950. 714

Hanqing Wang, Jiahe Chen, Wensi Huang, Qingwei Ben, Tai 715
Wang, Boyu Mi, Tao Huang, Siheng Zhao, Yilun Chen, 716
Sizhe Yang, Peizhou Cao, Wenye Yu, Zichao Ye, Jialun 717
Li, Junfeng Long, ZiRui Wang, Huiling Wang, Ying Zhao, 718
Zhongying Tu, and 3 others. 2024. Grutopia: Dream gen- 719
eral robots in a city at scale. In arXiv. 720

Changli Wu, Jiayi Ji, Haowei Wang, Yiwei Ma, You Huang, 721
Gen Luo, Hao Fei, Xiaoshuai Sun, Rongrong Ji, and 1 722
others. 2025a. Rg-san: Rule-guided spatial awareness 723
network for end-to-end 3d referring expression segmenta- 724
tion. Advances in Neural Information Processing Systems, 725
37:110972–110999. 726

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and 727
Yiming Yang. 2025b. Inference scaling laws: An empirical 728
analysis of compute-optimal inference for LLM problem- 729
solving. In The Thirteenth International Conference on 730
Learning Representations. 731

Yanmin Wu, Xinhua Cheng, Renrui Zhang, Zesen Cheng, and 732
Jian Zhang. 2023. Eda: Explicit text-decoupling and dense 733
alignment for 3d visual grounding. In Proceedings of the 734
IEEE/CVF Conference on Computer Vision and Pattern 735
Recognition, pages 19231–19242. 736

10

https://api.semanticscholar.org/CorpusID:263134620
https://api.semanticscholar.org/CorpusID:263134620
https://api.semanticscholar.org/CorpusID:263134620
https://api.semanticscholar.org/CorpusID:263134620
https://api.semanticscholar.org/CorpusID:263134620
https://openreview.net/forum?id=t3BhmwAzhv
https://openreview.net/forum?id=t3BhmwAzhv
https://openreview.net/forum?id=t3BhmwAzhv
https://openreview.net/forum?id=t3BhmwAzhv
https://openreview.net/forum?id=t3BhmwAzhv
https://api.semanticscholar.org/CorpusID:257952310
https://openreview.net/forum?id=vKtomqlSxm
https://openreview.net/forum?id=vKtomqlSxm
https://openreview.net/forum?id=vKtomqlSxm
https://api.semanticscholar.org/CorpusID:257427307
https://api.semanticscholar.org/CorpusID:257427307
https://api.semanticscholar.org/CorpusID:257427307
https://api.semanticscholar.org/CorpusID:257427307
https://api.semanticscholar.org/CorpusID:257427307
https://openreview.net/forum?id=IEduRUO55F
https://openreview.net/forum?id=IEduRUO55F
https://openreview.net/forum?id=IEduRUO55F
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn

Runsen Xu, Zhiwei Huang, Tai Wang, Yilun Chen, Jiang-737
miao Pang, and Dahua Lin. 2024. Vlm-grounder: A vlm738
agent for zero-shot 3d visual grounding. In 8th Annual739
Conference on Robot Learning.740

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen741
Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng742
Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin,743
Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei744
Zhang, Jianxin Ma, and 43 others. 2024a. Qwen2 technical745
report. Preprint, arXiv:2407.10671.746

Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil Madaan,747
Madhavan Iyengar, David F Fouhey, and Joyce Chai. 2024b.748
Llm-grounder: Open-vocabulary 3d visual grounding with749
large language model as an agent. In 2024 IEEE Inter-750
national Conference on Robotics and Automation (ICRA),751
pages 7694–7701. IEEE.752

Zhengyuan Yang, Songyang Zhang, Liwei Wang, and Jiebo753
Luo. 2021. SAT: 2D Semantics Assisted Training for 3D754
Visual Grounding. In ICCV, pages 1856–1866.755

Qihao Yuan, Jiaming Zhang, Kailai Li, and Rainer Stiefel-756
hagen. 2024a. Solving zero-shot 3d visual ground-757
ing as constraint satisfaction problems. arXiv preprint758
arXiv:2411.14594.759

Zhihao Yuan, Jinke Ren, Chun-Mei Feng, Hengshuang Zhao,760
Shuguang Cui, and Zhen Li. 2024b. Visual programming761
for zero-shot open-vocabulary 3d visual grounding. In762
Proceedings of the IEEE/CVF Conference on Computer763
Vision and Pattern Recognition, pages 20623–20633.764

Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Sheng765
Wang, Zhen Li, and Shuguang Cui. 2021. InstanceRefer:766
Cooperative Holistic Understanding for Visual Grounding767
on Point Clouds through Instance Multi-level Contextual768
Referring. In ICCV, pages 1791–1800.769

Nader Zantout, Haochen Zhang, Pujith Kachana, Jinkai Qiu,770
Ji Zhang, and Wenshan Wang. 2025. Sort3d: Spatial object-771
centric reasoning toolbox for zero-shot 3d grounding using772
large language models. Preprint, arXiv:2504.18684.773

Fan Zhou, Zengzhi Wang, Qian Liu, Junlong Li, and Pengfei774
Liu. 2024. Programming every example: Lifting pre-775
training data quality like experts at scale. arXiv preprint776
arXiv:2409.17115.777

Ziyu Zhu, Xiaojian Ma, Yixin Chen, Zhidong Deng, Siyuan778
Huang, and Qing Li. 2023. 3d-vista: Pre-trained trans-779
former for 3d vision and text alignment. In Proceedings780
of the IEEE/CVF International Conference on Computer781
Vision (ICCV), pages 2911–2921.782

A Prompts783

In this section, we show the prompts we used. List-784

ing 1 is the prompt for GPT-4o to convert referring785

utterances into symbolic expressions. Listing 2 is786

an example of a prompt for relation encoder gen-787

eration, containing the task description and an in-788

context example. Listing 3 is an example of error789

messages. It is synthesized by the test suites and790

contains failure cases and optimization guidance.791

Listing 4 is the code optimization prompt used in792

the ablation study.793

Listing 1: Prompt for semantic parsing.
You are a skilled assistant with expertise in 794

semantic parsing. 795
796

Task Overview 797
I will provide you with a sentence that describes 798

the location of an object within a scene. Your 799
task is to convert this description into a JSON 800
format that captures the essential details of 801

the object. 802
803

The JSON object should include: 804
- **" category "**: string , representing the object 's 805

category. 806
- **" relations "**: a list of relationships between 807

the object and other elements in the scene. 808
Each relationship should be represented as a 809
dictionary with the following fields: 810
- **" relation_name "**: string , specifying the 811

type of relationship. The relationship can 812
be: 813
- *Unary*: choose from ['corner ', 'on the 814

floor ', 'against wall ', 'smaller ', ' 815
larger ', 'taller ', 'lower ', 'within ']. 816

- *Binary *: choose from ['above ', 'below ', ' 817
beside ', 'close ', 'far ', 'left ', 'right 818
', 'front ', 'behind ', 'across ']. 819

- *Ternary *: choose from ['between ', 'center 820
', 'middle ']. 821

Only consider ** simple ** and ** general ** 822
relations , donot make complex ones like 823
"left of a blue box", "with dark 824

appearance", "facing the window", etc. 825
You should handle these by logical 826
structures. 827

If the relationship is not mentioned in the 828
list , you should choose the most 829
appropriate relation above. **Never** 830
create a new relation name! 831

- **" objects "**: a list of objects involved in 832
the relationship. Every object in the list 833
should have the same JSON structure. The 834
list structure depends on the relationship 835
type: 836
- *Unary*: The list should be empty. 837
- *Binary *: The list should contain one 838

object. 839
- *Ternary *: The list should contain two 840

objects. 841
- **" negative "**: boolean , indicating if the 842

object is explicitly described as not 843
having this relationship. Set this to True 844
if applicable. 845

846
Guidelines: 847
- First , generate a plan outlining the object 's 848

appearance and relationships based on the 849
sentence. Then , use this plan to create the 850
JSON representation. 851

852
Examples: 853

854
Example 1: 855
** Sentence **: The correct whiteboard is the one on a 856

table. 857
**Plan **: "Correct" does not describe appearance. 858

The appearances are "whiteboard" and "table", 859
and the "whiteboard" is on the "table". 860

** Parsed JSON **: 861
```json 862
{ 863

"category ": "whiteboard", 864
"relations ": [ 865

{ 866
"relation_name ": "above", 867
"objects ": [ 868

{ 869
"category ": "table", 870
"relations ": [] 871

} 872
] 873

} 874
] 875

} 876
``` 877

878
... 2 more examples. 879

11

https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2504.18684
https://arxiv.org/abs/2504.18684
https://arxiv.org/abs/2504.18684
https://arxiv.org/abs/2504.18684
https://arxiv.org/abs/2504.18684

Listing 2: Example prompt for relation encoder genera-
tion.
You are an expert on spatial relation analysis and880

code generation.881
882

Introduction to task883
Your task is to write a Python class which can be884

used to compute the metric value of the885
existence of some spatial relationship between886
two objects in a 3D scene given their positions887
and sizes. Higher the metric value , higher the888
probability of the two objects have that889

relation.890
891

In the class , you will be given the positions and892
sizes of the objects in the scene. The class893
should have a method `forward ` which returns a894
tensor of shape (N, N), where element (i, j) is895
the metric value of the relation between896

object i and object j.897
898

In the 3D scene , x-y plane is the horizontal plane ,899
z-axis is the vertical axis.900

901
Introduction to programming environment902

903
Here is an example class for `Left ` relation. The904

class you write should have the same structure905
as the example class.906

907
```python908
class Left:909

# ...910
```911
Make sure all tensors are placed on `DEVICE `, which912

has been defined in the environment.913
The code output should be formatted as a python code914

string: "```python ... ```".915
916

Some helpful tips917
918

(1) You should only use the given variables , and you919
should not introduce new variables.920

(2) The metric value should be sensitive to the921
input arguments , which means if the arguments922
change a little , the value should change a lot.923

(3) The metric value should be 0 if the two objects924
don 't have that relation , never set negative925
values!926

(4) Never treat an object as its center point , you927
must consider the size of the bounding box ,928
just like the example code. Never set an929
threshold to determine the relation. The value930
of the relation should be continuous and sparse931
.932

(5) You should imagine that you are at position (0,933
0) to determine the relative positions.934

(6) Remember you are **in** the scene and look935
around , not look from the top. So never use the936
same way as 2D environment.937

...938
939

Propose your method first and then generate the code940
. Think step by step.941

Don 't use any axis or specific direction as the942
reference direction or right direction , your943
method should work for any perspectives.944

Listing 3: Example error message.
We have run your code on some cases. Here are 3945

failure cases:946
947

Case 1.948
949

Metric value of object tensor ([0.3992 , -0.5619,950
0.8831 , 0.3921 , 0.3476 , 0.1059] , device='mps951
:0') "above" object tensor ([-0.0432 , -0.6965,952
0.8483 , 0.6526 , 0.4943 , 0.3061] , device='mps953
:0') should be larger than 0. Metric value of954
object tensor ([0.3992 , -0.5619, 0.8831 ,955
0.3921 , 0.3476 , 0.1059] , device='mps:0') "956
above" object tensor ([-0.0432 , -0.6965,957
0.8483 , 0.6526 , 0.4943 , 0.3061] , device='mps958
:0') should be higher than the metric value of959
object tensor ([0.5338 , 1.1607 , 1.1160 , 0.2121 ,960

0.3323 , 0.8192] , device='mps:0') "above" object 961
tensor ([-0.0432 , -0.6965, 0.8483 , 0.6526 , 962

0.4943 , 0.3061] , device='mps:0'). 963
964

more 2 cases ... 965
966

The first three are the center of the object , the 967
last three are the size of the object. x-y is 968
the horizontal plane and z is the vertical axis 969
. 970

After test , the pass rate of your code is too low. 971
So you MUST check carefully where the problem 972
is. If you can 't find the problem , you should 973

come up with a new algorithm and re-write your code. 974
975

Don 't forget the following tips: 976
(1) You should imagine that you are at position (0, 977

0, 0) to determine the relative positions. 978
(2) Remember you are **in** the scene and look 979

around , not look from the top. So never use the 980
same way as 2D environment. 981

(3) Don 't use any of x-axis or y-axis as your 982
perspective , Your method should work for every 983
perspective. 984

(4) The horizontal plane is x-y plane. 985
986

Please carefully analyze each of the failure case 987
and explain why your code failed to pass it. 988
The reason can be incorrect test case might or 989
your code might not be able to handle some 990
specific cases. Please write your analysis for 991
each of the failure cases. 992

993
After the analysis of all cases , you should write 994

the improved code based on your analysis. But 995
never modify on the class methods and 996
function parameters. 997

998
Some possible improvement ways: 999
1. Use a new algorithm to calculate the metric value 1000

rather than just modifying the existing code. 1001
2. Consider carefully what other factors might be 1002

relevant to the spatial relationship between 1003
two objects and use them in your calculation. 1004

3. Check the correctness of the input data and the 1005
calculation process. 1006

Listing 4: Prompt for code optimization of variant 2 in
the ablation study.
Reflect on the code above , think carefully how to 1007

make it better. For example , check if you 1008
ignore some factors that may affect the result 1009
or use a wrong method. 1010

Then you must re-write the code in the same format. 1011
Remeber all the tips! 1012

B Implementation Details 1013

B.1 Semantic Parsing 1014

A semantic parser converts the referring utter- 1015

ance U into a JSON-based symbolic expression 1016

E , which encapsulates the spatial relations and cat- 1017

egory names in U . The symbolic expressions have 1018

the following elements: 1019

• Category: A string indicating the category of 1020

the target object referenced in U . 1021

• Relations: A list specifying spatial con- 1022

straints relative to the target object. Each entry 1023

in this list contains: 1024

– relation_name: A string identifying 1025

the spatial relation in U (e.g., “near,” 1026

“above”). 1027

12

– anchors: A list of objects that share the1028

given spatial relation with the target ob-1029

ject. Each object is represented as its1030

own JSON entity.1031

– negative: A boolean value which, if set1032

to true, denotes that the target object1033

should not exhibit the specified spatial1034

relation.1035

For example, the utterance “chair near the table”1036

can be represented as:1037

{"category": "chair", "relations":1038

[{"relation_name": "near",1039

"objects": [{"category": "table"}]}]}1040

Human-annotated natural language expressions1041

exhibit diverse descriptions of relations, leading to1042

a long-tail distribution of relation_name in parsed1043

expressions. To mitigate this, we define a set of1044

common relation names and prompt LLM to se-1045

lect from them for E instead of using the original1046

terms from U . Based on the number of associ-1047

ated objects, the relations can be categorized into1048

unary, binary, and ternary (Feng et al., 2024).1049

For simplicity, attributes that describe properties of1050

a single object, such as “large” or “at the corner”1051

are treated as special types of unary relations. The1052

classifications are in Table 4.1053

Table 4: Classification of all relations.

Classification Relations

unary large, small, high, low, on the floor,
against the wall, at the corner

binary near, far, above, below,
left, right, front, behind

ternary between

B.2 Features1054

Category Features The category features are the
matching scores between the objects in the scene
and object categories. (Yuan et al., 2024b) provides
the predicted category for each object. For the cate-
gory feature fcategory ∈ RN (N is the number of ob-
jects), we compute the cosine similarity sim ∈ RN

between the category and the predicted labels us-
ing CLIP (Radford et al., 2021). Subsequently, we
define the category feature as:

fcategory = softmax(100 · sim)

Relation Features Relation features, quantify- 1055

ing the probability of spatial relationships between 1056

objects in E , are computed by the code-based re- 1057

lation encoders. For unary relations, the relation 1058

feature funary ∈ RN (N is the number of objects). 1059

The features of the binary relation fbinary ∈ RN×N 1060

represent the likelihood that there are binary re- 1061

lations between all possible pairs of objects. For 1062

example, f (i,j)
near quantifies the probability that the 1063

i-th object is near the j-th object. Ternary features 1064

follow an analogous pattern for relations involving 1065

three objects. 1066

We use the object bounding boxes in the scene 1067

to initialize the relation encoders and then call the 1068

forward() function to compute the corresponding 1069

relation feature, f_rel. These relation features are 1070

also cached in a dictionary R for efficient reuse. 1071

Figure 7 shows the spatial relation encoder of 1072

“above”. The class is initialized with the object 1073

3D bounding boxes of the scene and provides two 1074

key methods: _init_param, which computes the 1075

necessary parameters for feature derivation. For in- 1076

stance, in the “near” encoder, it calculates distances 1077

between each pair of objects; forward, which per- 1078

forms numerical operations on parameters and re- 1079

turns the relation feature. Specifically, “above” en- 1080

coder computes objects’ sizes, horizontal and verti- 1081

cal distances between object pairs to compute the 1082

“above” feature. 1083

B.3 Executor 1084

Our executor has a similar design to (Hsu et al., 1085

2023). Given the symbolic expression E and fea- 1086

tures, the executor computes the matching score 1087

between objects and the referring utterance U . For 1088

each relation in relations field of E , the cor- 1089

responding relation feature frelation is multiplied 1090

with category feature s fcategory of its related ob- 1091

jects, yielding intermediate features {fi ∈ RN}Ki=1 1092

(where K is the number of relations). Finally, all 1093

intermediate features and fcategory are aggregated 1094

via the element-wise product to compute the final 1095

matching scores between objects and the referring 1096

utterance. See Algorithm 1 for more details. 1097

The detailed execution algorithm is presented 1098

in Algorithm 1, utilizing the precomputed cat- 1099

egory features and relation features. The 1100

Execute function runs recursively to compute the 1101

matching_score ∈ RN (N is the number of ob- 1102

jects). 1103

13

class Above:

def __init__(

self,

object_locations: torch.Tensor) -> None:

self.object_locations = object_locations

self._init_params()

def _init_params(self) -> None:

self.center = self.object_locations[:, :3] # (x, y, z)

self.size = self.object_locations[:, 3:] # (width, depth, height)

def forward(self) -> torch.Tensor:

"""

Return a tensor of shape (N, N), where element (i, j)

is the feature of the `Above` relation between object i and object j.

"""

N = self.object_locations.shape[0]

Calculate bottom of i and top of j

height_i = self.size[:, 2].view(N, 1)

bottom_of_i = self.center[:, 2].view(N, 1) - height_i / 2

top_of_j = self.center[:, 2].view(1, N) + self.size[:, 2].view(1, N) / 2

Vertical proximity

vertical_proximity = torch.exp(-torch.abs(bottom_of_i - top_of_j)

/ (height_i / 2))

Center distances

center_dist_x = torch.abs(self.center[:, 0].view(N, 1)

- self.center[:, 0].view(1, N))

center_dist_y = torch.abs(self.center[:, 1].view(N, 1)

- self.center[:, 1].view(1, N))

Combined sizes

combined_size_x = (self.size[:, 0].view(N, 1) + self.size[:, 0].view(1, N)) / 2

combined_size_y = (self.size[:, 1].view(N, 1) + self.size[:, 1].view(1, N)) / 2

Horizontal alignment

horizontal_alignment = torch.exp(-(center_dist_x / combined_size_x) –

(center_dist_y / combined_size_y))

Combine the metrics with a weight emphasizing more on vertical proximity

relation_metric = vertical_proximity * horizontal_alignment

Remove self-relations by zeroing the diagonal

relation_metric.fill_diagonal_(0)

return relation_metric

Figure 7: Example of spatial relation encoder.

left

right

between

front

behind

above

below

near

far

large

small

high

low

Figure 8: The graph representation for in context exam-
ple selection.

B.4 Code Generation and Optimization1104

Detailed algorithm of code generation and opti-1105

mization is shown in Algorithm 2.1106

B.5 In Context Example Selection1107

The selection of in-context examples is based on1108

relevance. We represent the selection in a graph1109

Figure 8, where an edge from node A to node B1110

means that the encoder for relation A is used as an1111

in-context example when generating for relation B.1112

B.6 Hyperparameters and Hardware1113

For code optimization (Section 3.3.3), we set1114

Nsample and Niter to 5, topk to 3. We mainly1115

Algorithm 1: Executor
Require :symbolic expression E, category

features C, relation features R
Output :matching_score

1 f_category← C[E["category"]]
2 matching_score← f_category
3 foreach item_rel ∈ E["relations"] do
4 n_rel← item_rel["name"]
5 f_rel← R[n_rel]
6 anchors← item_rel["anchors"]
7 if n_rel ∈ Unary_Relations then
8 f← f_rel

9 else if n_rel ∈ Binary_Relations
then

10 a← Execute(anchors[0])
11 f← f_rel · a
12 else if n_rel ∈ Ternary_Relations

then
13 a_1← Execute(anchors[0])
14 a_2← Execute(anchors[1])
15 pattern← "ijk,j,k→ i"
16 f←

einsum(pattern, f_rel, a_1, a_2)

17 f← softmax(f)
18 if E["negative"] then
19 f← max(f)− f

20 matching_score←
matching_score · f

Output :matching_score

use gpt-4o-2024-08-06 model with a tempera- 1116

ture of 1.0 and top_p of 0.95. For a fair com- 1117

parison, we use the object classification results 1118

from ZSVG3D (Yuan et al., 2024b) for the eval- 1119

uation of ReferIt3D. For VLM decision-making, 1120

we use the same temperature and top_p values as 1121

VLM-Grounder (Xu et al., 2024). The thresholds 1122

for VLM decision (Section 3.4) are 0.9 for Nr3D. 1123

We conduct all experiments on a single NVIDIA 1124

GeForce RTX 4090 GPU. Please see the supple- 1125

mentary materials for the source code. 1126

C Additional Quantitative Results 1127

NS3D We show evaluation results in NS3D(Hsu 1128

et al., 2023) in Table 1 . NS3D can only learn con- 1129

cepts (e.g. relation name, category name) from the 1130

training set and its parsing results of Nr3D contain 1131

more than 5,000 concepts, resulting in a long-tailed 1132

14

Algorithm 2: Code Generation and Opti-
mization
Require :relation name R,

relation name G, code
library L, test cases C,
LLM LLM, test suites T ,
initial prompt prompt

Output :best_code
Hyperparameters :search iteration N ,

sample number M ,
optimizing example
number topk

1 example← retrieve(G,R)
2 init_prompt← prompt+ example
3 F1, . . . , FM ← LLM(R, init_prompt)
4 for j ← 1 . . .M do
5 accj , errj ← T (Fj) // Test each

code.

6 max_acc← max
(
{acc1, . . . , accM}

)
7 best_code← Fargmax({acc1,...,accM})
8 TopK← SelectTopK

(
{(Fj , accj)}Mj=1,K

)
9 for i← 2 . . . N do

10 results← []
11 for j ← 1 . . .K do
12 (Fold, errold)← TopK[j]
13 promptref ←

init_prompt+ Fold + errold
14 F1, . . . , FM ← LLM(R, promptref)
15 for k ← 1 . . .M do
16 results.append(Fk)

17 eval_results← []
18 foreach Fk ∈ results do
19 acck, errk ← T (Fk)
20 if acck = 1 then
21 return Fk

22 if acck > max_acc then
23 max_acc← acck
24 best_code← Fk

25 eval_results.append
(
(Fk, acck, errk)

)
26 TopK←

SelectTopK(eval_results,K)

27 L← L ∪ {best_code}
28 return best_code

problem. So it selects a subset containing 1,041 test1133

examples, which only contains the same concepts1134

as Sr3D, the dataset it is mainly trained on. On1135

the NS3D subset, LASP achieves 60.2% accuracy,1136

obj_41

obj_24
obj_41

obj_24 obj_41

obj_24

obj_24

obj_24
obj_24

obj_41

obj_41

obj_41

Figure 9: An example of stitched images for VLM
prompting. Object ID is annotated on each object’s
position. VLMs can figure out the target “red" box from
the two candidates and output its ID.

Table 5: Performance on Sr3D.

Method Sr3D
BUTD-DETR 67.0
NS3D 62.7
NS3D(w/ GT Object Label) 96.9
Transcrib3D (w/ GT Label) 98.4
LASP (w/o VLM) 62.0
LASP (w/o VLM, w/ GT Object Label) 95.1

NS3D(Hsu et al., 2023) have a accuracy of 52.7%, 1137

which shows the advantage of LASP for processing 1138

natural grounding tasks. 1139

Sr3D We show evaluation results on Sr3D, a sub- 1140

set of ReferIt3D (Achlioptas et al., 2020) in Table 5. 1141

If using predicted object labels, LASP has close 1142

accuracy to NS3D (Hsu et al., 2023). Even not 1143

using training data of Sr3D, LASP still achieves 1144

comparable performance with NS3D (Hsu et al., 1145

2023) on both settings (w/ and w/o GT labels). If 1146

using GT object labels, the accuracy of our method 1147

(w/o VLM) on Sr3D is 95.3%, and the performance 1148

of NS3D and (Fang et al., 2024) are 96.9% and 1149

98.4%. So we believe that the bottleneck of Sr3D 1150

performance is object detection and classifica- 1151

tion rather than spatial relation understanding 1152

because its relation annotation is synthesized by 1153

relatively simple functions. So we mainly focus on 1154

natural benchmarks (Nr3D) which have complex 1155

and real spatial relations. 1156

D Additional Qualitative Results 1157

D.1 Effect of Code Optimization 1158

We show the change between the initial response 1159

and the final code after multiple rounds of sampling 1160

and iterative refinement in Figure 10. The initial 1161

15

def forward(self) -> torch.Tensor:
 N = self.object_locations.shape[0]
+ height_i = self.size[:, 2].view(N, 1)
+ bottom_of_i = self.center[:, 2].view(N, 1) - height_i / 2
+ top_of_j = self.center[:, 2].view(1, N)
+ + self.size[:, 2].view(1, N) / 2

- centers_i = self.centers.unsqueeze(1)
- sizes_i = self.sizes.unsqueeze(1)
- centers_j = self.centers.unsqueeze(0)
- sizes_j = self.sizes.unsqueeze(0)

+ vertical_proximity = torch.exp(-torch.abs(bottom_of_i - top_of_j)
+ / (height_i / 2))

- vertical_distance = centers_i[..., 2] - centers_j[..., 2]
- - (sizes_i[..., 1] + sizes_j[..., 1]) / 2

+ center_dist_x = torch.abs(self.center[:, 0].view(N, 1)
+ - self.center[:, 0].view(1, N))
+ center_dist_y = torch.abs(self.center[:, 1].view(N, 1)
+ - self.center[:, 1].view(1, N))

+ combined_size_x = (self.size[:, 0].view(N, 1)
+ + self.size[:, 0].view(1, N)) / 2
+ combined_size_y = (self.size[:, 1].view(N, 1)
+ + self.size[:, 1].view(1, N)) / 2

+ horizontal_alignment = torch.exp(-(center_dist_x / combined_size_x) -
+ (center_dist_y / combined_size_y))
+ relation_feature = vertical_proximity * horizontal_alignment

- overlap_x = torch.clamp((sizes_i[..., 0] + sizes_j[..., 0]) / 2
- - torch.abs(centers_i[..., 0] - centers_j[..., 0]), min=0)
- overlap_y = torch.clamp((sizes_i[..., 2] + sizes_j[..., 2]) / 2
- - torch.abs(centers_i[..., 1] - centers_j[..., 1]), min=0)

- horizontal_overlap_area = overlap_x * overlap_y
- relation_feature = torch.where(vertical_distance > 0,
- horizontal_overlap_area / (1 + vertical_distance),
- torch.tensor(0.0, device=DEVICE))

Figure 10: Example of code optimization result on rela-
tion encoder of “above”.

output only passes 18 test cases out of 37. After 31162

iterations of sampling and optimization, we get the1163

the relation encoder as the right one. It passes all 371164

test cases. By transitioning from a strict geometric1165

overlap calculation to a continuous, exponential-1166

based measure for both vertical and horizontal dis-1167

tances, the optimized code now captures nuances1168

in “above” relation more robustly. This improved1169

formulation inherently handles scenarios where ob-1170

jects are close but not strictly overlapping, and it1171

provides a more stable gradient for training. Con-1172

sequently, the updated model passes all test cases1173

by offering a smoother, more differentiable metric1174

that better aligns with real-world spatial relations1175

and passes more test cases.1176

D.2 Relation Constraints1177

LARC (Feng et al., 2024) proposes that certain spa-1178

tial relations are symmetric, like “near” or “far”,1179

meaning that if object A is “near” B, then B should1180

also be “near” A. Consequently, the features of1181

these relations should be symmetric. Conversely,1182

other relations are inherently asymmetric, such as1183

“left” or “right”. For these relations, if a feature1184

element is positive (indicating the presence of the1185

spatial relation), its corresponding symmetric ele- 1186

ment should be negative (indicating the absence of 1187

the reverse spatial relation). 1188

LARC (Feng et al., 2024) leverage large lan- 1189

guage models (LLMs) to annotate these constraints 1190

and apply an auxiliary loss to enforce them dur- 1191

ing training. In contrast, while LASP does not 1192

explicitly train or use specialized instructions to 1193

create these constraints, we observe that some 1194

LLM-generated relation encoders inherently pro- 1195

duce relation features that satisfy these constraints. 1196

Moreover, for certain relations, these constraints 1197

are guaranteed due to the deterministic execution 1198

of the code. In Figure 13, we present four relation 1199

features for a scene: 1200

• Features for “near” and “far” are guaranteed 1201

to be symmetric. 1202

• For asymmetric features such as “left” and 1203

“right” if fi,j > 0, it is guaranteed that fj,i = 1204

0. ” 1205

D.3 Condition Level Accuracy 1206

Our parsed symbolic expressions typically include 1207

one or more spatial conditions for the target ob- 1208

ject. However, some conditions in the referring 1209

utterance may be redundant. 1210

For instance, if the referring utterance is ”find 1211

the monitor on the floor and under the desk,” and 1212

all monitors ”on the floor” are also ”under the desk,” 1213

then one of these two conditions is redundant. This 1214

means that even if the method fails to process one 1215

of the conditions, it can still provide the correct 1216

grounding result. To better understand LASP’s ca- 1217

pability, we evaluate it on utterances containing a 1218

single condition. We categorize objects of the same 1219

class into groups. Within each group, we collect 1220

the conditions for each object from the parsed ex- 1221

pressions. Each condition is represented in JSON 1222

format, such as: "relation": ..., "anchors": 1223

[...]. These conditions are executed seamlessly 1224

to identify the best-matching object. We compute 1225

the average precision and recall for all condition- 1226

level matches. LASP achieves an average precision 1227

of 67.5% and an average recall of 66.9%. 1228

D.4 More Visualization Results 1229

We visualize more grounding examples in Fig- 1230

ure 11. The first row illustrates the grounding pro- 1231

cess for the kitchen cabinet close to the 1232

fridge and beside the stove. In the process, 1233

the stove, objects beside the stove, and the objects 1234

16

near the fridge are sequentially grounded, culmi-1235

nating in the target kitchen cabinet highlighted in1236

green. The second row shows the grounding pro-1237

cess for right trash can below the sink.1238

Starting with the objects below the sink, followed1239

by the objects on the right of the sink, and finally1240

combining these conditions to highlight the target1241

trash can in green.1242

D.5 Effect of Unit tests1243

To demonstrate the impact of filtering generated1244

code based on its accuracy on training cases, we1245

selected six relations and plotted their performance.1246

The x-axis represents the pass rate on training cases,1247

while the y-axis shows the number of passed exam-1248

ples in all relevant test cases.1249

For straightforward relations such as “near” or1250

“far”, GPT-4o can pass all unit tests on the first1251

attempt, so we focus on cases requiring multiple1252

refinement steps.1253

The results, shown in Figure 12, indicate that1254

for five out of six relations (excluding behind),1255

the code with the highest pass rate on training1256

cases achieves top-tier performance on the test set.1257

However, for the behind relation, using the best-1258

performing code on the training cases results in1259

about 15 fewer passed test cases compared to using1260

code with approximately 70% accuracy. Despite1261

this, it still outperforms code with accuracy below1262

0.5.1263

This discrepancy for behind may stem from bi-1264

ases in the training data collection process. Overall,1265

selecting code based on its performance on the1266

training set is effective for achieving strong test set1267

performance.1268

D.6 Cross Dataset Results1269

To validate the scene generalization of our rela-1270

tion, we select scenes from GRScenes (Wang et al.,1271

2024) and annotate relation-oriented referring ut-1272

terances. For evaluation, we directly use the object1273

categories and bounding boxes. Some examples of1274

annotated data and results are shown in Figure 14.1275

E Public Resource Used1276

In this section, we acknowledge the use of the fol-1277

lowing public resources for this work:1278

• Pytorch 1Pytorch License1279

1https://github.com/pytorch/pytorch

• Referit3D 2 MIT License 1280

• GRScenes 3 CC BY-SA 4.0 License 1281

• ZSVG3D 4 . Unknown 1282

• Vil3drel 5 . Unknown 1283

2https://github.com/referit3d/referit3d
3https://huggingface.co/datasets/OpenRobotLab/
GRScenes

4https://github.com/CurryYuan/ZSVG3D
5https://github.com/cshizhe/vil3dref

17

https://github.com/pytorch/pytorch
https://github.com/referit3d/referit3d
https://huggingface.co/datasets/OpenRobotLab/GRScenes
https://huggingface.co/datasets/OpenRobotLab/GRScenes
https://github.com/CurryYuan/ZSVG3D
https://github.com/cshizhe/vil3dref

below sink on the right of sink right below sink target

stove beside the stove close to fridge target

Figure 11: The target objects are: “Stove next to another stove and close to the fridge” (top row) and “Trashcan to
the right of and below the sink” (bottom row).

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

340

360

380

400

420

440

460

480

500

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

above

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

300

320

340

360

380

400

420

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

below

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

30

40

50

60

70

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

behind

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

25

50

75

100

125

150

175

200

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

front

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

200

250

300

350

400

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

left

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

40

60

80

100

120

140

160

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

corner

Figure 12: Corresponding relation between the unit test pass rate and number of correct examples on test set.

18

0 1 2 3 4 5 6 7 8 9 10 11

0
1

2
3

4
5

6
7

8
9

10
11

near

0 1 2 3 4 5 6 7 8 9 10 11

0
1

2
3

4
5

6
7

8
9

10
11

far

0 1 2 3 4 5 6 7 8 9 10 11

0
1

2
3

4
5

6
7

8
9

10
11

left

0 1 2 3 4 5 6 7 8 9 10 11

0
1

2
3

4
5

6
7

8
9

10
11

right

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 13: Relation feature examples. The features of “near” and “far” are symmetric, meaning mutual relationships
hold true in both directions. For “left” and “right,” if an element is positive, its corresponding symmetric element is
zero, ensuring asymmetry. Additionally, all diagonal elements are zero, as self-relations are not considered.

19

(a): Nightstand	to	the	left	of	the	bed.

(b):	Nightstand	next	to	the	curtain.

(c):	From	the	two	plants	in	shelf,	pick	the	right	one.

(d):	The	chair	directly	in	front	of	the	window.

(e):	A	plant	sitting	on	the	tea	table.

(f):	Near	the	electric	cooker,	there	is	a	plate.

Figure 14: Qualitive results on GRScenes (Wang et al., 2024). The target object is in the green box and the visible
distractors are indicated by the red box.

20

	Introduction
	Related Work
	Method
	Problem Statement
	Grounding Pipeline
	Spatial Relation Encoders
	In Context Example
	Test Suites
	Code Generation and Optimization

	Visual Decision Module

	Experiments
	Experimental Settings
	Quantitative Results
	Qualitative Results
	Ablation Study

	Conclusion
	Prompts
	Implementation Details
	Semantic Parsing
	Features
	Executor
	Code Generation and Optimization
	In Context Example Selection
	Hyperparameters and Hardware

	Additional Quantitative Results
	Additional Qualitative Results
	Effect of Code Optimization
	Relation Constraints
	Condition Level Accuracy
	More Visualization Results
	Effect of Unit tests
	Cross Dataset Results

	Public Resource Used

