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ABSTRACT

Machine learning for differential equations paves the way for computationally
efficient alternatives to numerical solvers, with potentially broad impacts in science
and engineering. Though current algorithms typically require simulated training
data tailored to a given setting, one may instead wish to learn useful information
from heterogeneous sources, or from real dynamical systems observations that are
messy or incomplete. In this work, we learn general-purpose representations of
PDEs from heterogeneous data by implementing joint embedding methods for self-
supervised learning (SSL), a framework for unsupervised representation learning
that has had notable success in computer vision. Our representation outperforms
baseline approaches to invariant tasks, such as regressing the coefficients of a
PDE, while also improving the time-stepping performance of neural solvers. Data
augmentation is central to SSL: although simple augmentation strategies such as
cropping provide satisfactory results, our inclusion of transformations correspond-
ing to the symmetry group of a given PDE significantly improves the quality of the
learned representations.

1 INTRODUCTION

Dynamical systems governed by differential equations are ubiquitous in fluid dynamics, climate
science, astrophysics, and beyond. Accurately analyzing and predicting the evolution of such systems
is of paramount importance, inspiring decades of innovation in algorithms for numerical methods and
inverse problems. However, high-accuracy solvers are often computationally expensive. Machine
learning has recently arisen as an alternative method for analyzing differential equations at a fraction
of the cost (Raissi et al., 2019; Karniadakis et al., 2021; Rudy et al., 2017). Typically, the neural
network for a given equation is trained on simulations of that same equation, generated by numerical
solvers that are high-accuracy but comparatively slow (Brunton et al., 2016). What if we instead
wish to learn from heterogeneous data, e.g., data with missing information, or gathered from actual
observation of varied physical systems rather than clean simulations?

For example, we may have access to a dataset of instances of time-evolution, stemming from a family
of partial differential equations (PDEs) for which important characteristics, such as viscosity or
reaction-rate constants, vary and are unknown. In this case, representations learned from such a large,
“unlabeled” dataset could still prove useful in learning to identify unknown characteristics, given only
a small dataset “labeled” with viscosities or reaction constants. Alternatively, the “unlabeled” dataset
may contain evolutions over very short periods of time, or with missing time intervals; possible goals
are then to learn representations that could be useful in filling in these time-steps, or regressing other
quantities of interest.

To tackle these broader challenges, we take inspiration from the recent success of self-supervised
learning (SSL) as a tool for learning powerful representations from large, unlabeled datasets of text
and images (Radford et al., 2021; Caron et al., 2021). Building such representations from and for
scientific data is a natural next step in the development of machine learning for science (Nguyen
et al., 2023). In particular, we focus on the joint embedding framework for SSL, a popular paradigm
for learning visual representations (Bardes et al., 2021; Grill et al., 2020). Here, an encoder aims to
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Figure 1: Pretraining and evaluation frameworks. (Left) Self-supervised pretraining. We generate
augmented solutions x and x′ using Lie symmetries parametrized by g and g′ before passing them
through an encoder fθ, yielding representations y. The representations are then input to a projection
head hθ, yielding embeddings z, on which the SSL loss is applied. (Right) Evaluation protocols for
our pretrained representations y. On new data, we use the computed representations to either predict
characteristics of interest, or to condition a neural operator to improve time-stepping performance.

enforce similarity between embeddings of two augmented versions of a given sample guided by the
principle that representations suited to downstream tasks, such as classification, should be invariant
to the selected augmentations. Thus, data augmentation plays a crucial role in joint embedding
SSL. For symmetries of visual representations, SSL relies on human intuition to build hand-crafted
augmentations (e.g. recoloring and cropping), which must be carefully tuned. In contrast, PDEs are
endowed with a group of symmetries, which preserve the defining equations of the PDE. For example,
solutions to certain PDEs with periodic boundary conditions are preserved by translations in time and
space, but there exist more elaborate equation-specific transformations as well. Brandstetter et al.
(2022) first applied infinitesimal Lie point symmetries to PDE data in a machine learning setting,
demonstrating their effectiveness as an augmentation for learning to time-step. Symmetry groups
are well-studied for common PDE families (Olver, 1979; Ibragimov, 1995), and in general can be
derived using the language of Lie theory.

Contributions We present a general framework for performing SSL for PDEs using their corre-
sponding symmetry groups. In particular, we show that by exploiting the analytic transformations
from one PDE solution to another, we can use joint embedding methods to generate useful rep-
resentations from large, heterogeneous PDE datasets. We demonstrate the broad utility of these
representations on downstream tasks, including regressing key parameters and time-stepping, on
simulated physically-motivated datasets. Our approach is applicable to any family of PDEs, harnesses
the well-understood mathematical structure of the equations governing PDE data — a luxury not typi-
cally available in non-scientific domains — and demonstrates more broadly the promise of adapting
self-supervision to the physical sciences. We hope this proof-of-concept will serve as a starting point
for developing foundation models on more complex dynamical systems with our framework.

2 METHODOLOGY

Our approach combines joint embedding methods for SSL with Lie symmetry augmentations. We
expand further on each of these two components below.

Self-Supervised Learning (SSL) The goal of SSL is to learn useful representations from large
unlabeled datasets. In the joint-embedding framework, each input is transformed into two separate
“views”, using augmentations that preserve the underlying information in the data. The augmented
views are then fed through a learnable encoder fθ, producing representations that can be used for
downstream tasks, and finally through a projection head hθ, yielding embeddings on which the SSL
loss — a similarity loss Lsim between the pairs of views, to make their representations invariant to
augmentations — is applied. To avoid trivial solutions (such as the same representation for every
input), a regularization loss Lreg is included as well. It can consist of a repulsive force between
points, or a regularization on the covariance matrix of the embeddings. We illustrate this process
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in Fig. 1. In practice, we use VICReg (Bardes et al., 2021) as our SSL criterion, and provide more
details on the experimental setup in Appendix C. The learned representation can then be leveraged to
solve various tasks of interest, such as predicting the viscosity coefficient from Burgers’ equation in
low-data regimes, without training an entirely new network from scratch.

Augmentations and PDE Symmetry Groups In the joint embedding framework, both symmetric
and noisy augmentations are crucial to the construction of inputs from which to learn representations.
Noise augmentations, such as masking or adding random noise to the input data, force a network to
learn to de-noise the inputs, which improves its ability to generalize to new data (Chen et al., 2020a;
Doersch et al., 2015; Brown et al., 2020). Such noise also helps enforce useful biases into the network,
e.g.,cropping forces the network to learn global representations of the data (Chen et al., 2022). In
parallel, symmetry augmentations enforce the invariance of representations to known symmetry
groups of the data. For PDEs, these symmetry groups can be analytically derived (Appendix B),
and have been categorized for several common PDEs (Olver, 1979). However, implementing these
geometric augmentations also entails new difficulties. For example, they may transform a regular
discretization of pixels to an irregular one. Overall, appropriately parameterizing and sampling from
Lie point symmetries requires care, and we further describe our methodology in Appendix C.

3 EXPERIMENTAL RESULTS

In this section, we empirically validate our framework on systems governed by the Schrödinger
equation and Burgers’ equation. We view these simple models as an encouraging proof of concept,
and an invitation to advance to more challenging dynamical systems.

3.1 SCHRÖDINGER EVOLUTION

We consider time evolution of the Schrödinger equation for a single particle in 1-D. Our task is to
regress coefficients, ck, of the time evolution (see Appendix B for more formal details)

∂

∂t
|ϕ(t)⟩ = −iH |ϕ(t)⟩ , H =

5∑
k=1

ck |ψk⟩ ⟨ψk| , |ϕ(0)⟩ = 1

Z

20∑
k=1

vkbk |ψk⟩ , (1)

where ck, vk ∼ N (0, 1) are drawn i.i.d. Gaussian, Z is a normalization constant, and bk ∼ B(1, 0.5)
are Bernoulli random variables. ψk are orthonormal eigenfunctions of the Mehler kernel (see
Appendix C.2), which form the basis for the Hamiltonian (Mehler, 1866; Kibble, 1945). To make
the task slightly harder, we perturb the labels for ck by i.i.d. Gaussian noise with standard deviation
0.25. As explained in Appendix C.2, augmentations correspond to operations which commute with
H , including scaling of the basis coefficients vkbk → αvkbk for some α ∈ C.

npre : 500 5000
Method nsup : 50 500 50 500

SSL + Linear Head (augmentations) 0.509 0.323 0.604 0.269
SSL + Linear Head (augmentations + crop) 0.682 0.346 0.538 0.323

Baseline (supervised only) 0.970 0.897 0.970 0.897
Baseline (supervised only + augmenting data) 0.702 0.157 0.702 0.157

Table 1: Mean squared error in regressing the five coefficients of the Schrödinger time evolution
(see Eq. (1)). Errors are reported relative to the optimum (a value of 1 is equivalent to the error
of constantly outputting 0 for each ck, and a relative error of 0 implies optimally predicting the
coefficients). See Appendix C.2 for further details.

We use the VICReg loss for SSL pretraining with npre ∈ {500, 5000} unlabeled samples (see
Appendix C.1 for more details). The downstream supervised task is provided with labels for
nsup = 500 (10%) or nsup = 50 (1%) of these samples. Results in Table 1 show that the SSL
pretraining is quite effective when the ratio of unlabeled to labeled samples is very large. The baseline
method only outperforms SSL pretraining when it is provided with augmentations of many labeled
samples. One explanation is that in this contrived problem, augmentations are very powerful: they
produce exact solutions, which are distributed similarly to the input distribution before augmentations.
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Figure 2: Regression of kinematic viscos-
ity. When using Lie point symmetries
(LPS) during pretraining, we are able to
improve performance over the supervised
baselines, even when using an unlabled
dataset size that is half the size of the la-
beled one. As we increase the amount
of unlabeled data that we use, the perfor-
mance improves, further reinforcing the
usefulness of self-supervised representa-
tions.

3.2 BURGERS’ EQUATION

We now consider the time evolution of Burgers’ equation in one dimension, for which background
can be found in Appendix B. It is defined as

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(2)

in its viscous form. Our goal is to leverage Lie point symmetries and joint embedding SSL to learn
useful representations (i.e., to pretrain an encoder neural network) from a large dataset of time
evolutions, with different kinematic viscosities, ν, and initial conditions. This encoder will be frozen
and produce features, which allow one to infer the kinematic viscosity using a simple linear layer on
a new set of realizations of Eq. (2), or to improve time-stepping with neural solvers. Crucially, we
leverage the task of regressing ν as an indicator of the quality of the learned representation: we select
and use for time-stepping the representation from which the kinematic viscosity can be regressed the
most accurately on a validation set. See Appendix C for details.
Kinematic viscosity regression After pretraining an encoder on a large dataset (not annotated
with viscosities), we freeze its weights and use the features to train a linear model on a smaller,
labeled dataset of only 2000 samples. We compare to a supervised model (encoder and linear
head) trained on the same labeled dataset. Figure 2 shows that, while using only a cropping
augmentation already provides satisfactory results, using Lie point symmetries matches the supervised
performance with relatively little unlabeled data. Performance further improves with the quantity
of unlabeled data. Note that the SSL augmentations do not improve the supervised baseline as
opposed to Brandstetter et al. (2022). Indeed, we only use augmentations which do not require
to know ν, which brings marginal gain in the supervised setting according to Brandstetter et al.
(2022). Additionally, our datasets are bigger hence may not benefit as much from data augmentation.

Training samples 2000

CNN baseline 0.13± 0.02
CNN (conditioned) 0.12± 0.02

Table 2: Normalized mean square error
(NMSE) while time-stepping Burgers’
equation after 20 training epochs. The
NMSEs are averaged across 3 runs.

Time-stepping We explore whether the same representa-
tion can improve time-stepping neural operators. A neural
operator typically uses a sequence of time steps (the “time
history”) of the equation to predict a future sequence of
time steps. We compute a representation of the input time
steps using our frozen encoder, and add it as a new channel.
This concatenated input is fed to a CNN to predict the next
sequence of timesteps, as in Brandstetter et al. (2022). As
shown in Table 2, conditioning the CNN operator with our
representation slightly reduces the error.

4 CONCLUSION

This work leverages Lie point symmetries for self-supervised representation learning from PDE data.
Our preliminary experiments with Burgers’ equation and the Schrödinger equation demonstrate the
usefulness of the resulting representation for sample or compute efficient estimation of characteristics
and time-stepping. Following this initial work, many exciting directions remain. Learning equiv-
ariant representations with SSL could be helpful for time-stepping, perhaps directly in the learned
representation space. In future work, we plan to apply our methodology to more challenging tasks
and datasets, such as the Navier-Stokes equation. We hope that our approach will provide a practical
toolkit for learning from a wide variety of dynamical systems data.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, 2020.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. NeurIPS, 34, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Xiaolong He, Youngsoo Choi, William D Fries, Jon Belof, and Jiun-Shyan Chen. glasdi: Parametric
physics-informed greedy latent space dynamics identification. arXiv preprint arXiv:2204.12005,
2022.

Nail H Ibragimov. CRC handbook of Lie group analysis of differential equations, volume 3. CRC
press, 1995.

George E. Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021. URL https:
//doi.org/10.1038/s42254-021-00314-5.

WF Kibble. An extension of a theorem of mehler’s on hermite polynomials. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, volume 41(1), pp. 12–15. Cambridge University
Press, 1945.

Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. In Computer
graphics forum, volume 38(2), pp. 59–70. Wiley Online Library, 2019.

Zengyi Li, Yubei Chen, Yann LeCun, and Friedrich T Sommer. Neural manifold clustering and
embedding. arXiv preprint arXiv:2201.10000, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

6

https://arxiv.org/abs/2302.03580
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5


Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

F Gustav Mehler. Ueber die entwicklung einer function von beliebig vielen variablen nach
laplaceschen functionen höherer ordnung., 1866.
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A RELATED WORK

Machine Learning for PDEs Recent work on machine learning for PDEs has considered both
invariant prediction tasks Ramezanizadeh et al. (2019) and time-series modelling Fries et al. (2022);
He et al. (2022). In the fluid mechanics setting, models learn dynamic viscosities, fluid densities,
and/or pressure fields from both simulation and real-world experimental data Syah et al. (2021);
Vinuesa & Brunton (2022); Raissi et al. (2020). For time-dependent PDEs, prior work has investigated
the efficacy of convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph
neural networks (GNNs), and transformers in learning to evolve the PDE forward in time Bar-Sinai
et al. (2019); Adeli et al. (2022); Wu et al. (2022); Equer et al. (2023). This has invoked interest in the
development of reduced order models and learned representations for time integration that decrease
computational expense, while attempting to maintain solution accuracy. Learning representations of
the governing PDE can enable time-stepping in a latent space, where the computational expense is
substantially reduced Kim et al. (2019). Recently, for example, Lusch et al. have studied learning the
infinite-dimensional Koopman operator to globally linearize latent space dynamics Lusch et al. (2018).
Kim et al. have employed the Sparse Identification of Nonlinear Dynamics (SINDy) framework to
parameterize latent space trajectories and combine them with classical ODE solvers to integrate
latent space coordinates to arbitrary points in time Fries et al. (2022). Nguyen et al. have looked at
the development of foundation models for climate sciences using transformers pre-trained on well-
established climate datasets Nguyen et al. (2023). Other methods like dynamic mode decomposition
(DMD) are entirely data-driven, and find the best operator to estimate temporal dynamics Schmid
(2010). Recent extensions of this work have also considered learning equivalent operators, where
physical constraints like energy conservation or the periodicity of the boundary conditions are
enforced Baddoo et al. (2021).

Self-supervised learning All joint embedding self-supervised learning methods have a similar
objective: forming representations across a given domain of inputs that are invariant to a certain set of
transformations. Contrastive and non-contrastive methods are both used. Contrastive methods (Chen
et al., 2020a; He et al., 2020; Chen et al., 2020b; 2021; Yeh et al., 2021) push away unrelated pairs of
augmented datapoints, and frequently rely on the InfoNCE criterion (Oord et al., 2018), although
in some cases, squared similarities between the embeddings have been employed HaoChen et al.
(2021). Clustering-based methods have also recently emerged (Caron et al., 2018; 2020; 2021), where
instead of contrasting pairs of samples, samples are contrasted with cluster centroids. Non-contrastive
methods (Grill et al., 2020; Chen & He, 2020; Bardes et al., 2021; Zbontar et al., 2021; Ermolov
et al., 2021; Li et al., 2022; Bardes et al., 2022) aim to bring together embeddings of positive samples.
However, the primary difference between contrastive and non-contrastive methods lies in how they
prevent representational collapse. In the former, contrasting pairs of examples are explicitly pushed
away to avoid collapse. In the latter, the criterion considers the set of embeddings as a whole,
encouraging information content maximization to avoid collapse. For example, this can be achieved
by regularizing the empirical covariance matrix of the embeddings. While there can be differences in
practice, both families have been shown to lead to very similar representations (Garrido et al., 2022;
Cabannes et al., 2023). An intriguing feature in many SSL frameworks is the use of a projector neural
network after the encoder, on top of which the SSL loss is applied. The projector was introduced
in Chen et al. (2020a). Whereas the projector is not necessary for these methods to learn a satisfactory
representation, it is responsible for an important performance increase. Its exact role is an object of
study (Mialon et al., 2022; Bordes et al., 2022).

B DERIVING SYMMETRY GROUPS

Symmetry augmentations enforce invariance of the representations to known symmetry groups of the
data. The guiding principle is that inputs that can be obtained from one another via transformations of
the symmetry group should share a common representation. In images, such symmetries are known a
priori and correspond to flips, resizing, or rotations of the input. In PDEs, these symmetry groups
can be derived as Lie groups commonly denoted as Lie point symmetries, and have been categorized
for many common PDEs Olver (1979). An example of the form of such augmentations is given in
Figure 3 for a simple PDE which rotates a point in 2-D space. In this example, the PDE exhibits both
rotational symmetry and scaling symmetry of the radius. For arbitrary PDEs, such symmetries can be
derived as explained in more detail below.

8
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𝑡 = 0
𝑡 = 1

𝑡 = 2

Example: symmetries and invariances of
𝜕𝑦
𝜕𝑡 = 𝛼𝑥

𝜕𝑥
𝜕𝑡 = −𝛼𝑦

rotational symmetry

scaling 
symmetry

rotation speed
(invariant quantity)

Figure 3: Illustration of the PDE symmetry group and invariances of a simple PDE, which rotates
a point in 2-D space. The PDE symmetry group here corresponds to scalings of the radius of the
rotation and fixed rotations of all the points over time. A sample invariant quantity is the rate of
rotation (related to the parameter α in the PDE) which is fixed for any solution to this PDE.

Symmetries of differential equations carry a Lie group structure and transformations correspond to
smooth maps. It is typically easier to derive the symmetries of a system of differential equations
via their infinitesimal generators. By using these infinitesimal generators, one can replace nonlinear
conditions for the invariance of a function under the group transformation by an equivalent linear
condition of infinitesimal invariance under the respective generator of the group action Olver (1979).

In what follows, we give an informal overview to the derivation of Lie point symmetries. Full
details and formal rigor can be obtained in Olver (1979); Ibragimov (1995) among others. Lie
point symmetries of differential equations can be performed from compositions of one parameter
transforms, which are commonly used to describe dynamical systems Zeidler (2012). Each one
parameter transform corresponds to a given infinitesimal generator in the Lie algebra of the group.
To map between a Lie group operation and its corresponding infinitesimal generator, we can take the
derivative of the single parameter group operation at the identity:

vg|(x,u) =
d

dt
g(t) · (x, u)

∣∣∣∣
t=0

, (3)

where g(0)·(x, u) = (x, u) and vg is a vector field in the Lie algebra denoting the flow or infinitesimal
change at any given coordinates (x, u).

In our setting, we consider a differential equation that has a set of p independent variables x =
(x1, x2, . . . , xp) and q dependent variables u = (u1, u2, . . . , uq) which are coordinates in Rp and
Rq , respectively. Any given function has a corresponding graph Γf of the function

Γf = {(x, f(x)) : x ∈ Ω} ⊂ Rp × Rq. (4)

Additionally, g ∈ G is a group operation that maps solutions of a given PDE at one point to solutions
of another PDE at a different set of points. Since all transformations are local and smooth, one can
ensure transformations maintain the validity of a solution in some region near the identity of the
group.

To map from the infinitesimal generator back to the corresponding group operation, one can apply
the exponential map

exp(tv) · (x, u) = g(t) · (x, u) (5)

where exp : g → G. Here, exp (·) maps from the Lie algebra, g, to the corresponding Lie group, G.
This exponential map can be evaluated using various methods. For example, in the case of matrix Lie
groups, the exponential map can be evaluated using its corresponding Taylor series:

exp (εM) =

∞∑
k=0

εkMk

k!
= I + εM +

1

2
ε2M2 + . . . (6)

where ε ∈ R and I is the identity.

9
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To derive the infinitesimal generator of a given PDE, we need to define the prolongation of a vector
field. The n-th prolongation of a given graph, Γf , expands or “prolongs” the graph of a solution
to a larger space to include derivatives up to the n-th order. Here, we show how to perform the
prolongation of a vector field to this higher-dimensional space, which is often referred to as the
jet-space, M (n), where M (n) ⊂ Rp × U (n).

To evaluate the n-th prolongation of the vector field, as previously, assume we have p independent
variables (x1, . . . , xp) and q dependent variables (u1, . . . , uq) which are a function of the dependent
variables. Note that we use superscripts to denote a particular variable, while derivatives with respect
to a given variable are denoted via subscripts corresponding to the indices. For example, the variable
u1x1x1x2 denotes the third order derivative of u1 taken twice with respect to the variable x1 and once
with respect to x2. Using this notation, the prolongation of a vector field is defined as the operation

pr(n) v
∣∣
(x,u(n))

=
d

dϵ

∣∣∣∣
ϵ=0

pr(n) [exp(ϵv)] (x, u(n)). (7)

To calculate the above, we can evaluate the formula on a vector field written in a generalized form.
I.e., any vector field corresponding to the infinitesimal generator of a symmetry takes the general
form

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

ϕα(x, u)
∂

∂uα
. (8)

Throughout, we will use Greek letter indices for dependent variables and standard letter indices for
independent variables. Then, we have that

pr(n) v = v +

q∑
α=1

∑
J

ϕJα(x, u
(n))

∂

∂uαJ
, (9)

where J is a tuple of dependent variables indicating which variables are in the derivative of ∂
∂uα

J
.

Each ϕJα(x, u
(n)) is calculated as

ϕJα(x, u
(n)) =

∏
i∈J

Di

(
ϕa −

p∑
i=1

ξiuαi

)
+

p∑
i=1

ξiuαJ,i, (10)

where uαJ,i = ∂uαJ/∂x
i and Di is the total derivative operator with respect to variable i defined as

DiP (x, u
(n)) =

∂P

∂xi
+

q∑
i=1

∑
J

uαJ,i

∂P

∂uαJ
. (11)

After evaluating the coefficients, ϕJα(x, u
(n)), we can substitute these values into the definition of the

vector field’s prolongation in Eq. 9. This fully describes the infinitesimal generator of the given PDE,
which can be used to evaluate the necessary symmetries of the system of differential equations. An
example for Burgers’ equation, a canonical PDE, is presented in the following.

B.1 EXAMPLE: BURGERS’ EQUATION

Burgers’ equation is a PDE used to describe convection-diffusion phenomena commonly observed in
fluid mechanics, traffic flow, and acoustics Nee & Duan (1998). The PDE can be written in either its
“conservative“ form or its “viscous” form. In deriving the symmetry groups for Burgers’ equation, it
is more convenient to work with the former,

ut = uxx + u2x. (12)

Following the notation from the previous section, p = 2 and q = 1. Consequently, the symmetry
group of Burgers’ equation will be generated by vector fields of the following form

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ ϕ(x, t, u)

∂

∂u
, (13)

10
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where we wish to determine all possible coefficient functions, ξ(t, x, u), τ(x, t, u), and ϕ(x, t, u)
such that the resulting one-parameter sub-group exp (εv) is a symmetry group of Burgers’ equation.

To evaluate these coefficients, we need to prolong the vector field up to 2nd order, given
that the highest-degree derivative present in the governing PDE is of order 2. The 2nd prolongation
of the vector field can be expressed as

pr(2) v = v + ϕx
∂

∂ux
+ ϕt

∂

∂ut
+ ϕxx

∂

∂uxx
+ ϕxt

∂

∂uxt
+ ϕtt

∂

∂utt
. (14)

Applying this prolonged vector field to the differential equation in Eq. 12, we get the infinitesimal
symmetry criteria that

pr(2) v[∆(x, t, u(2))] = ϕt − ϕxx + 2uxϕ
x = 0. (15)

To evaluate the individual coefficients, we apply Eq. 10. Next, we substitute every instance of ut
with u2x + uxx, and equate the coefficients of each monomial in the first and second-order derivatives
of u to find the pertinent symmetry groups. Table 3 below lists the relevant monomials as well as
their respective coefficients.

Table 3: Monomial coefficients in vector field prolongation for Burgers’ equation.

Monomial Coefficient

1 ϕt = ϕxx

ux 2ϕx + 2(ϕxu − ξxx) = −ξt
u2
x 2(ϕu − ξx)− τxx + (ϕuu − 2ξxu) = ϕu − τt

u3
x −2τx − 2ξu − 2τxu − ξuu = −ξu

u4
x −2τu − τuu = −τu

uxx −τxx + (ϕu − 2ξx) = ϕu − τt
uxuxx −2τx − 2τxu − 3ξu = −ξu
u2
xuxx −2τu − τuu − τu = −2τu
u2
xx −τu = −τu

uxt −2τx = 0
uxuxt −2τu = 0

Using these relations, we can solve for the coefficient functions. For the case of Burgers’ equation,
the most general infinitesimal symmetries have coefficient functions of the following form:

ξ(t, x) = k1 + k4x+ 2k5t+ 4k6xt (16)

τ(t) = k2 + 2k4t+ 4k6t
2 (17)

ϕ(t, x, u) = (k3 − k5x− 2k6t− k6x
2)u+ γ(x, t) (18)

where k1, . . . , k6 ∈ R and γ(x, t) is an arbitrary solution to Burgers’ equation. These coefficient
functions can be used to generate the infinitesimal symmetries. These symmetries are spanned by the
six vector fields below:

v1 = ∂x (19)

v2 = ∂t (20)

v3 = ∂u (21)

v4 = x∂x + 2t∂t (22)

v5 = 2t∂x − x∂u (23)

v6 = 4xt∂x + 4t2∂t − (x2 + 2t)∂u (24)

as well as the infinite-dimensional subalgebra: vγ = γ(x, t)e−u∂u. Here, γ(x, t) is any arbitrary
solution to the heat equation. The relationship between the Heat equation and Burgers’ equation can
be seen, whereby if u is replaced by w = eu, the Hopf–Cole transformation is recovered.

11
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C EXPERIMENTAL DETAILS

C.1 VICREG LOSS

Here, we discuss the loss function used to train our models, VICReg (Bardes et al., 2021). We define
our embedding matrices as Z,Z ′ ∈ RN×D. Next, we define its similarity criterion, Lsim, as

Lsim(u, v) = ∥u− v∥22,
which we use to match our embeddings and make them invariant to the transformations. In order to
avoid a collapse of the representations, we use the original variance and covariance criteria to define
our regularisation loss, Lreg, as

Lreg(Z) = λC C(Z) + λV V (Z), with

C(Z) =
1

d

∑
i ̸=j

Cov(Z)2i,j and

V (Z) =
1

d

d∑
j=1

max

(
0, 1−

√
Var(Z·,j)

)
.

The variance criterion, V (Z), ensures that all dimensions in the representations are used, while also
serving as a normalization of the dimensions. The goal of the covariance criterion is to decorrelate
the different dimensions, and thus, spread out information across the embeddings.

The final criterion is

LVICReg(Z,Z
′) = λinv

1

N

N∑
i=1

Lsim(Zi,inv, Z
′
i,inv) + Lreg(Z

′) + Lreg(Z).

For all studies conducted in this work, we use the default values of λC = λinv = 25 and λV = 1,
unless specified.

C.2 EXPERIMENTS ON QUANTUM MECHANICS

Inputs to this task are the wavefunction of randomly drawn solutions, |ϕ(t)⟩, drawn at 8-time intervals
from t = 0 to t = 0.7. Input states span over the top eigenfunctions of the Mehler kernel, visually
shown in Figure 4. This eigenbasis takes the form

ψk(x) =
Hk(x) exp(−x2/2)√

2kk!
√
π

, (25)

where Hk(x) are the Hermite polynomials. These are eigenfunctions of the quantum harmonic
oscillator operator, Dx, defined as (Kibble, 1945)

Dxϕ =
∂2ϕ

∂x2
− x2ϕ. (26)

In this study, we use bra-ket notation to indicate the possible solutions of the quantum toy problem.
For complex-valued functions, ϕ ∈ L2(X), for some domain X, |ϕ⟩ embeds the function in a Hilbert
space. The bra-ket notation allows access to an inner product of the complex Hilbert space with the
notation

⟨ϕ|ψ⟩ =
∫
ϕ(x)ψ(x)dx. (27)

For any solution |ϕ(t)⟩, we divide by the norm of the coefficients Z =
√∑20

k=1(vkbk)
2 to ensure all

input states have norm 1. Since input states are in the same basis as the Hamiltonian, time evolution
takes the simple form

|ϕ(t)⟩ = exp(−iHt) |ϕ(0)⟩ = 1

Z

20∑
k=1

vkbk exp(−ickt) |ψk⟩ . (28)

12
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Figure 4: Top 5 eigenfunctions in the Mehler basis shown here for wavefunctions in the quantum
mechanics model.

At each time interval, we sample the values of |ϕ(t)⟩ at 100 uniform locations equally-spaced
between x = −5 and x = 5. Therefore, inputs have shape 8× 100. As the above is a linear equation,
augmentations correspond to operations which commute with H . Namely, any constant scaling of
the coefficients vkbk → αvkbk for some α ∈ C will also be a valid solution of the time evolution.

|ϕ(t)⟩ = 1

Z

20∑
k=1

vkbk exp(−ickt) |ψk⟩ → |ϕ′(t)⟩ = 1

Z ′

20∑
k=1

αkvkbk exp(−ickt) |ψk⟩ , (29)

where |ϕ′(t)⟩ is also a valid solution, and αk ∈ C is a scaling with random phase and norm drawn
i.i.d. from a standard Gaussian distribution. Augmentations are applied by estimating the overlap of a
given solution in the basis of |ψk⟩ and applying the phases. In addition to the augmentation above,
we also consider crops, which crop the data in the time dimension by taking a slice of size 6 across
the time dimension.

We train both the SSL and baseline task with a convolutional network network consisting
of the following layers:

ConvNet(
(conv1): Conv1d(8, 8, kernel_size=(5,), stride=(1,), padding=(1,))
(conv2): Conv1d(8, 16, kernel_size=(5,), stride=(1,), padding=(1,))
(pool1): AvgPool1d(kernel_size=(4,), stride=(2,), padding=(0,))
(conv3): Conv1d(16, 32, kernel_size=(5,), stride=(1,), padding=(1,))
(conv4): Conv1d(32, 32, kernel_size=(5,), stride=(1,), padding=(1,))
(pool2): MaxPool1d(kernel_size=8, stride=2, padding=0, dilation=1)
(fc1): Linear(in_features=576, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=128, bias=True)

)

For the baseline supervised network, the last layer only has five output features, corresponding to the
five coefficients to be regressed. The ReLU nonlinearity is used between hidden layers.

We use the VICReg loss (Bardes et al., 2021) with a projector that takes the representation dimension
of either dimension 128 or 256, and projects it into a space of dimension 256, 512, or 1024 with a
single trainable linear layer (we found this choice to be the best as opposed to using a feedforward
network). We used either a batch size of 32 or 256 in the VICReg loss. Representations obtained
via SSL are trained with a linear head on the downstream regression task for up to 2000 epochs.
Supervised data used in this downstream task is augmented in the same fashion as in the SSL task.
We use the AdamW optimizer with default Pytorch hyperparameters. In general, we found that the
performance was highly dependent on the projector and the representation dimension. We performed
hyperparameter tuning on these two parameters along with the batch size. Performance was noticeably
variable during this tuning procedure, and the best performance over hyperparameter options (with
respect to test error on the supervised task) is indicated in the table for each method.
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C.3 EXPERIMENTS ON BURGERS

Representation pretraining We pretrain a representation on subsets of our full dataset containing
10, 000 1D time evolutions from Burgers equation with various kinematic viscosities, ν, sampled
uniformly in the range [0.001, 0.007], and initial conditions using a similar procedure to Brandstetter
et al. (2022). We generate solutions of size 224 × 448 in the spatial and temporal dimensions
respectively, using the default parameters from Brandstetter et al. (2022). We train a ResNet18 (He
et al., 2016) encoder using the VICReg (Bardes et al., 2021) approach to joint embedding SSL, with
a smaller projector (width 512) since we use a smaller ResNet than in the original paper. We use the
following augmentations:

• Crop of size (128, 256), respectively in the spatial and temporal dimension.
• Uniform sampling in [−2, 2] for the coefficient associated to v1.
• Uniform sampling in [0, 2] for the coefficient associated to v2.
• Uniform sampling in [−1000, 1000] for the coefficient associated to v3.
• Uniform sampling in [−1, 1] for the coefficient associated to v4.
• Uniform sampling in [−0.1, 0.1] for the coefficient associated to v5.

We deliberately ignore symmetries that rely on the viscosity of the solution (vγ and v6) to avoid any
leakage with our downstream tasks. We pretrain for 100 epochs using AdamW (Loshchilov & Hutter,
2017) and a batch size of 32. Crucially, we assess the quality of the learned representation via linear
probing for kinematic viscosity regression, which we detail below.

Kinematic viscosity regression We evaluate the learned representation as follows: the ResNet18 is
frozen and used as an encoder to produce features from the training dataset. The features are passed
through a linear layer, followed by a sigmoid to constrain the output within [νmin, νmax]. The learned
model is evaluated against our validation dataset, which is comprised of 2, 000 samples.

Time-stepping We use a 1D CNN solver from Brandstetter et al. (2022) as our baseline. This
neural solver takes Tp previous time steps as input, to predict the next Tf future ones. Each channel
(or spatial axis, if we view the input as a 2D image with one channel) is composed of the realization
values, u, at Tp times, with spatial step size dx, and time step size dt. The dimension of the input is
therefore (Tp + 2, 224), where the extra two dimensions are simply to capture the scalars dx and dt.
We augment this input with our representation. More precisely, we select the encoder that allows for
the most accurate linear regression of ν with our validation dataset, feed it with the CNN operator
input and reduce the resulting representation dimension to d with a learned projection before adding
it as supplementary channels to the input, which is now (Tp + 2 + d, 224).

We set Tp = 40, Tf = 20, and nsamples = 2000. We train both models for 20 epochs fol-
lowing the setup from Brandstetter et al. (2022). In addition, we use Adam with a decaying learning
rate and different configurations of 3 runs each:

• Batch size ∈ [16, 256].
• Learning rate ∈ [0.001, 0.0001].
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