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Abstract

Alternative splicing (AS) of pre-mRNA splicing is a highly regulated process with1

diverse phenotypic effects ranging from changes in AS across tissues to numerous2

diseases. The ability to predict or manipulate AS has therefore been a long time3

goal in the RNA field with applications ranging from identifying novel regulatory4

mechanisms to designing therapeutic targets. Here we take advantage of generative5

model architectures to address both the prediction and design of RNA splicing6

condition-specific outcome. First, we construct a predictive model, TrASPr, which7

combines multiple transformers along with side information to predict splicing in a8

tissue specific manner. Then, we exploit TrASPr as on Oracle to produce labeled9

data for a Bayesian Optimization (BO) algorithm with a custom loss function for10

RNA splicing outcome design. We demonstrate TrASPr significantly outperforms11

recently published models and that it can identify relevant regulatory features which12

are also captured by the BO generative process.13

1 Introduction14

Alternative splicing (AS) occurs when multiple unique mRNA isoforms are produced from a single15

gene, each including or excluding different pre-mRNA exonic or intronic segments. AS greatly16

increases transcriptome complexity such that a single gene can encode many mRNA isoforms, each17

of which include a different subset of pre-mRNA segments. Over 90% of human genes undergo AS,18

with a conservative estimate that at least 35% of human genes switch their dominant isoform across 1619

adult tissues [32, 44, 16]. Changes in the produced isoforms can have significant phenotypic effects:20

Defects in splicing have been associated with numerous diseases [38] while at the molecular level, AS21

has been shown to change protein function by, for example, removing a nuclear localization signal,22

affecting an RNA or DNA binding domain of the encoded protein, or regulating gene expression by23

introducing a poison exon that leads to nonsense mediated decay (NMD) [40, 28].24

Following the discovery of RNA splicing in 1977 [2, 7], decades of work has identified hundreds25

of RNA Binding Proteins (RBPs) that regulate splicing outcome. These RBPs have been shown to26

bind exons and proximal introns, typically up to a few hundred bases away from proximal exons, to27

regulate splicing in a condition specific manner [12]. Consequently, in an influential 2008 review28

article, Chris Burge and Zefeng Wang set a long-term goal for the RNA community to construct a29

predictive ‘splicing code’ that will be able, given a genomic sequence and cellular condition, predict30

the splicing outcome [45]. Splicing outcomes are typically measured as the ratio of isoforms that31

include or exclude a specific RNA segment (e.g., an exon). This ratio is commonly referred to as32

’percent spliced in’ (PSI, or Ψ ∈ [0, 1]), and changes in splicing between cellular conditions or due to33

genetic mutations are expressed as dPSI (∆Ψ ∈ [−1, 1]). In this work, we consider two tasks related34

to splicing: splicing prediction, and splicing sequence design.35
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Splicing prediction. Software to predict splicing was first introduced in 2010, formalizing splicing36

codes as a supervised learning problem for exon e with differential inclusion/exclusion/no-change37

in a specific cellular condition (e.g., tissue) c. Subsequent work defines the learning tasks as a38

prediction task for Ψe,c or ∆Ψe,c,c′ using a variety of modeling approaches, including Bayesian NNs,39

autoencoders, MLPs, CNNs, and RNNs [48, 6, 49, 25]. Importantly for the work described here, the40

best performing tissue specific splicing prediction models to date use hand crafted expert derived41

regulatory features from the genomic sequence of interest, such as RBP binding based on sequence42

motifs, secondary structure, and conservation values [21]. Subsequent models used the genomic43

sequence directly as input (e.g., CNN models) but mostly focused on predicting the effect of genetic44

mutations [6, 50] with only moderate success in tissue specific predictions.45

Sequence design. Sequence design for RNA splicing is a new task, similar to ones involving the46

design of untranslated regions (UTR) in mRNA vaccines for optimal expression [5, 26] or the design47

of alternative polyadenylation [3]. Similar to the latter, we formulate RNA splicing design as a48

constraint optimization problem, where we are required to generate a genomic sequence that would49

have specific splicing outcome characteristics, such as increased exon inclusion in brain. In addition,50

the generated sequence can also be constrained such that it involves for example no more than M51

mutations in N locations compared to the given starting sequence. Applications of such a design task52

can vary from optimizing therapeutics for correcting splicing defects to synthetic biology.53

This work offers several contributions. First, we propose TrASPr, a new multi-Transformer based54

splicing code model, demonstrating it can achieve state of the art results for tissue-specific splicing55

prediction. Second, we formulate RNA splicing design as an optimization problem involving a deep56

generative model such that Bayesian Optimization (BO) techniques can be utilized for it. Our BO57

algorithm for splicing (BOS), uses TrASPr as an Oracle to optimize a VAE under sequence and58

splicing outcome constraints. We first test TrASPr on RNA splicing data from both mouse and human59

tissues, demonstrating it achieves state-of-the-art prediction accuracy. Then we show TrASPr detects60

condition specific regulatory elements using ENCODE data involving three RBP Knockdown (KD)61

in two human cell lines, and data for tissue-specific regulatory elements from a mini-gene reporter62

assay. Finally, we demonstrate BOS can effectively mutate a given sequence under a limited number63

of mutations to achieve a pre-defined tissue specific splicing outcome.64

2 Background65

2.1 Quantifying AS events66

Splicing codes require training data in the form of quantified AS events across diverse conditions.67

Such AS quantification nowadays is mostly derived from Illumina RNA sequencing reads. Each68

experiments includes millions of these ∼100bp long reads that are mapped back to the genome using69

dedicated tools (e.g., STAR). Dedicated splicing analysis algorithms are then used to first detect70

the AS events, typically from reads spanning across RNA segments, then quantify those in terms71

of Ψ or ∆Ψ as described above. Here we applied the commonly used MAJIQ algorithm [42] to72

quantify AS as it has been shown to compare well to other tools [27] and carries several additional73

benefit important for the task at hand. Specifically, MAJIQ allows for the detection of unannotated74

splice site, splice junctions, exons, and intron retention events. Furthermore, MAJIQ can capture75

complex AS events involving multiple alternative splice junctions. These characteristics are key for76

creating a high-quality train and test samples where such variations are controlled (see details below).77

Specifically, we only78

2.2 Transformer modeling of RNA sequence79

In this work we adapt BERT [9] model to RNA sequences. BERT is a bi-directional transformer-80

based model, which learns contextual relations of tokens in a text [43]. The BERT model can81

be pre-trained on large unlabeled datasets of tokenized text using masked token prediction. Here82

we considered different tokenizing strategies of RNA sequences which are composed of 4 types83

of ribonucleotide bases (‘A’,‘C’,‘G’,‘U’). We settled on overlapping k-mers of length 6 such that84

the sequence “AUUGGCU” is represented by a string containing two tokens, AUUGGC and UUGGCU.85

During pre-training all k-mers that include a specific nucleotide are masked as in for example the86

DNABERT model [22]. However, we found the DNABERT architecture to be unstable and opted to87
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pre-train a lighter BERT model with only six layers as describe below. In addition to all possible88

6-mer combinations of ribonucleotide bases, we include 5 special tokens to represent classification89

([CLS]), padding ([PAD]), separation ([SEP]), mask ([MASK]) and unknown ([UNK]). Finally, we90

extend the vocabulary with additional tokens to capture additional features and information such as91

the tissue type, species and length tokens.92

2.3 Notation93

We measure splicing across c ∈ [1, . . . , C] conditions for events e ∈ [1, . . . , E]. Each AS event e94

has a sequence Se comprised of 4 different regions, each centered around the respective splice site95

Se = {S1
e , S

2
e , S

3
e , S

4
e , }. Similarly each event has a set of features associated with it such as exon96

length, conservation etc. denoted Fe. Splicing quantification for event e in condition c is denoted97

Ψe,c ∈ [0, 1] and differential splicing as ∆Ψe,c,c′ ∈ [−1, 1] accordingly. However we frequently98

drop the event e or condition c index for brevity.99

3 Related work100

The first splicing code model used boosted decision trees, learned from over 1000 putative regulatory101

featured derived from the literature [1]. While that first model had only ∼3700 exon skipping AS102

events to learn from, subsequent models took advantage of more samples from RNA-Seq data that had103

became available to train Bayesian and deep learning models [48, 47, 4, 6, 50]. The best performance104

on tissue specific splicing prediction was achived in [21] using a similar set of pre-defined regulatory105

features that were first condensed using an AutoEncoder, then combined in a MLP. Subsequent works106

aimed to learn a code directly from the genomic sequence using a variety of architectures. MT-Splice107

for example used a CNN based architecture with 64 length-9 filters while the more recent Pangolin108

[50] employed a ResNet architecture originally introduced in the SpliceAI model for detecting cryptic109

splice site [20]. Both MT-Splice and Pangolin focused on predicting mutations that affect splicing110

outcome and reported moderate accuracy for tissue-specific splicing prediction.111

The RNA splicing design task is new and possibly the only directly related work is Deep Exploration112

Networks (DEN) by [29]. DEN involves a VAE which generates genomic sequence, the generated113

sequence is then evaluated by a prediction model for the desired task (e.g., splicing outcome Ψ)114

which is combined, via a hyper parameter λ, with a second target function that penalizes generated115

sequences too close to previously generated ones. While similar in spirit, DEN is quite different116

than the work presented here. First, DEN models the genomic sequence as one long position weight117

matrix (PWM) that is later collapsed into a specific sequence. The VAE itself is based on a feed118

forward network and the prediction models are either a CNN or a linear model of k-mer counts as119

in [34]. The splicing task in that work is also different, involving alternative 5’ splice site selection120

with two relatively short regions downstream of each 5’ splice site. Finally, the data used for training121

and testing the DEN for the above task is distinctly different, based on a large pool of approximately122

13,000 synthetic sequences tested in cell lines.123

4 Data124

To pretrain the basic BERT RNA model described above, we extract 1.5 million sequences around125

splice sites from the GENCODE human pre-mRNA transcripts database. Each sequence was cut126

to be 400 bases long and centered around the splice site. These sequences are then converted into127

6-mers tokens and fed as input to the BERT model.128

Similar to previous work, we focus on predicting the inclusion levels of cassette exons. To evaluate129

performance we use two main datasets. The first is from the mouse genome project (MGP)[23] and130

involves six mouse tissues (Heart, Spleen, Thymus, Lung, Liver and Hippocampus) with 4-6 replicates131

each. We also used the same train/test data split used in [21] so that the results can be compared132

directly to their model. The second dataset is GTEx[8] from which we select six representative133

tissues/conditions: Heart (Atrial Appendage), Brain (Cerebellum), Lung, Liver, Spleen, and EBV134

transformed lymphocytes. Note that some conditions are shared between the datasets. This ensures135

that our model sees sequences from different species but similar tissues. For all tissues and tissue136

pairs in these datasets, we processed the RNA-Seq using MAJIQ (see Section 2.1) to detect cassette137
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events with high-confidence quantification for their Ψe,c,∆Ψe, c, c′. In total, we collect E=11346138

and E=18278 events from the MGP and GTEx datasets.139

Test set filtering. The high number of events in our data is partially due to the fact the cassette140

exons extracted from MAJIQ’s splice graphs may be overlapping (e.g., different splice sites used to141

define the skipped exon). This may be useful for training on diverse exon/intron definitions but care142

must be taken to avoid information leakage to the test data. This is especially important for large143

models that can easily memorize genomic sequences [36]. We handle this issue in two ways. First,144

we fully hide two chromosomes (8, 14 for GTEx and 4, 11 for MGP) for testing, and discard test145

exons that are too similar to training exons. Sequence similarity was assessed using BLAT [24] with146

filters for percent identify, difference in length, and the estimated similarity p-value. We consider two147

filter settings. First, we denote a set of ‘Permissive’ filters as used in [21], These settings included148

maxLenDiff=5, minPval=0.0001 and minIdentity=95. Because we are using significantly more149

complex models, we introduce a second set of filters we denote ‘Strict’ with maxLenDiff=100,150

minPval=0.001 and minIdentity=80. This accounts for short exons with high similarity but that151

diverge enough relative to their short length to not achieve a significant p-value.152

Test data for mutations and knockdown analysis. To evaluate the capability of TrASPr and BOS153

to predict or suggest mutations, we curated two other sets of experimental data. The first one is the154

RBP Knockdown (KD) experiments from ENCODE [19]. ENCODE data involves two types of cell155

lines (K562, HepG2) in which various RBP were knocked down, followed by RNA-Seq experiments156

to measure the KD effect on the transcriptome. Since the ENCODE RNA-Seq data has been shown157

to exhibit strong batch effects we first performed batch correction using MOCCASIN [39]. Here, we158

focused on three well studied RBPs (TIA1, PTBP1, QKI) for which there is relatively better sequence159

motif definitions (i.e., which sequences these RBP are likely to bind) and better experimental binding160

assays (eCLIP) which indicate regions where these RBPs were found to bind the RNA sequences.161

To assess whether the splicing code is learning direct regulation by these RBPs we searched for162

occurrences of these RBPs sequence motifs. Then we filtered those motif locations to be in AS events163

which had those in the intronic regions proximal to the alternative exon. We furthered filtered those164

for AS events that had eCLP binding peaks for those RBPs and that their inclusion level was indeed165

affected upon the RBP KD experiment (|∆Ψ| > 0.15)). This set of AS events served as putative166

targets of the above RBPs. We then ’removed’ the effect of these RBPs on the set of AS targets by167

randomly mutating the identified binding motifs. We repeated this process 5 times with different168

random mutations and the prediction results where then averaged and compared to the wild type169

(WT) sequence prediction. These in-silico predictions of RBPs effects where then compared to those170

observed in the actual KD experiment. Finally, we also included experiments from a mini-gene171

reporter assay where the effect of mutating several regions upstream of exon 16 of the mouse Daam1172

gene where tested [1].173

5 Methods174

Our method involves three main components depicted in Fig. 1: An elaborate data processing175

pipeline discussed above, a transformer based splicing prediction model (TrASPr), and a Bayesian176

Optimization algorithm (BOS) to design RNA with desired properties. We now turn to describe the177

two latter modeling components in order.178

5.1 TrASPr179

5.1.1 Pre-training RNA splice site BERT model180

The foundation model for TrASPr is a 6 layer BERT model which is pretrained on human RNA splice181

sites (Fig. 1b). Following the pretraining step, as in [22], TrASPrtakes an RNA sequence converted182

to 6-mer tokens as input, but instead of using the BERT default max length, we feed the model with183

400 bases long sequences where the splice site (either 5’ or 3’ splice site, as shown in the cartoon) is184

in the center.185

For pre-training, we follow BERT in randomly choosing 15% of tokens, but additionally mask the186

surrounding k tokens for each one to account for our overlapping 6-mer tokenization. We used187

standard masked autoencoding training, calculating the loss from the original 15% of tokens that188
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a) b)

c) d)

Figure 1: Pipeline and structures of our model. a) Data curation pipeline. b) Pre-training stage. c)
Fine-tuning TrASPr. d) BOS structure and flow.

were masked. We pretrain for 110k steps with a batch size of 40. The learning rate was set to 4e-4189

and we used a linear scheduler with 10k warm-up steps.190

5.1.2 The TrASPr model and fine-tuning191

Here, we describe finetuning our TrASPr model from the pretrained model described above, as192

depicted in Fig 1c. For any given AS event e, the input to TrASPr is a sequence composed of four193

sequences Se = {Si
e}4i=1 such that each Si

e covers the exonic and intronic regions surrounding one194

of the four splice sites involved in the exon skipping AS event e. Each Si
e is fed through a matching195

pre-trained transformer T i, which also accepts additional event features Fe = {Fe,i} (see below).196

The latent space representation from each transformer T i, captured by their respective CLS tokens,197

are concatenated together along with the feature set Fe and fed into a 2 hidden layer MLP with width198

3080 and 768.199

Event features. The additional feature set Fe includes the exon and intron length information as200

binned tokens, as well as the tissue type. We additionally include conservation values generated201

based on PhastCons score[37] for each k-mer in the sequence. Exons generally have significantly202

higher conservation values, as these reflect selection pressure due to non splicing related function203

(coding for proteins). We therefore used the mean of all conservation scores to fill the exon regions204

but kept the original scores for the introns.205

Supervision. We follow [21] and define targets based on measuring both splicing outcomes and206

changes in splicing outcome for an event e in two different conditions c, c′. Specifically, the target207

variables included:208

TΨe,c = E[Ψe,c], T∆Ψ+c,c′ = |max(ϵ, E[∆Ψc,c′ ])|, T∆Ψ−c,c′ = |min(ϵ, E[∆Ψc,c′ ])|

Here E[Ψe,c], E[∆Ψc,c′ ] represent the posterior expected values for PSI and dPSI as estimated by209

MAJIQ from the RNA-Seq experiments [42]. The T∆Ψ+c,c′ target captures events with increased210
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inclusion level between tissue c and c’ while T∆Ψ−c,c′ captures events with increased exclusion,211

forcing the model to focus its attention on those. To avoid gradient issue, we use random small212

number between 0.001 and 0.002 as ϵ. For all of those target variables we use the cross-entropy loss213

function which performed better than regression. In the fine-tuning step, we train the model with214

2e-5 learning rate and batch size of 32 for 10 epochs.215

5.2 Sequence design for splicing outcomes.216

Beyond supervised learning, we also demonstrate that TrASPr can be leveraged to solve sequence217

design problems. Given a sequence Se = (s1, ..., sn), TrASPr measures the probability that the218

splice site in the center of Se is included in some tissue c, Ψc(Se). This value can directly be used as219

the basis for optimization problems, where we seek to design new sequences S̃e that differ from Se220

only slightly, but exhibit altered splicing outcomes. Formally, we define these optimization problems:221

argmin
S̃e

Ψc(S̃e) s.t. lev(S̃e, Se) ≤ τ or argmax
S̃e

Ψc(S̃e) s.t. lev(S̃e, Se) ≤ τ (1)

Here, lev(S̃e, Se) denotes the Levenshtein distance between S̃e and Se. Solving the minimization222

problem is equivalent to finding a small perturbation (up to edit distance τ ) of Se that reduces223

inclusion in the target tissue c by as much as possible. The maximization problem corresponds to224

increasing inclusion. In practice, we add additional constraints that ∀c′ ̸= c, Ψc′(S̃e) cannot be225

reduced below 0.05. This additional constraint prevents an optimization routine from destroying226

splicing to such an extent that all inclusion levels are driven to zero.227

To solve these optimization problems, we adapt recent work in latent space Bayesian optimization228

(LSBO) for black-box optimization problems over structured and discrete inputs [30, 41, 14, 31, 46,229

35, 15, 17, 18]. LSBO solves structured optimization problems using two primary components: (1) a230

deep autoencoder (VAE) model, and (2) a Bayesian optimization routine.231

Variational autoencoders for LSBO. In LSBO, we train a DAE that assists in reducing the discrete232

optimization problem over sequences S to a continuous optimization problem over the latent space233

of the VAE, Z ⊂ Rd. Leveraging the same data used to train TrASPr, we train a 6 layer Transformer234

encoder Φ : S → P(Z) and 6 layer Transformer decoder Γ : Z → P(S) [43]. The encoder Φ(Se)235

maps sequences Se onto a distribution over real-valued, continuous latent vectors z. The decoder236

Γ(z) (probabilistically) reverses this process. The parameters of Φ and Γ are trained so that roughly237

we have Γ(Φ(Se)) ≈ Se. Because we only care ultimately about the output sequence S̃e, here238

we abuse notation and denote the most probable sequence output from the decoder as Γ(z). For239

optimization, the advantage the VAE provides is the ability to optimize over latent vectors z rather240

than directly over sequences Se. This is because, for any z proposed by an optimization algorithm,241

we can evaluate Ψc(Γ(z)). We therefore search for a z̃ such that S̃e := Γ(z̃) is a high quality solution242

to the optimization problem.243

Bayesian optimization. With the optimization problems in Equation 1 reduced to continuous244

problems over z̃ ∈ Z , we can now apply standard continuous black-box optimization algorithms.245

Bayesian optimization [13] is among the most well studied of these approaches in the machine246

learning literature. In iteration n of Bayesian optimization, we have a dataset Dn = {(zi, yi)}ni=1247

for which yi = Ψc(Γ(zi)) is the known objective value. We train a surrogate model of the objective248

function using this data–most commonly a Gaussian process [33]–and use this surrogate to inform a249

policy–commonly called an acquisition function–that determines what latent vectors zn+1 to consider250

next. In this paper, we use LOL-BO [30] as our base, off-the-shelf LS-BO algorithm. To accommodate251

the constraints in Equation 1, we modify LOL-BO to utilize SCBO [11] rather than TuRBO [10] as252

the underlying optimization routine. As with the objective, the Levenshtein constraint is evaluated on253

decoded latent vectors: levZ(z, z′) = lev(Γ(z),Γ(z′)).254

6 Results255

In this section, we compare TrASPr with state-of-art methods on predicting condition specific splicing256

changes, assess its ability to predict the effect of changes in trans (RBP KD) or cis (mutations in a257

mini-gene reporter assay) using in-silico, then assess the ability of our proposed generative algorithm258

BOS to propose sensible sequences for a user defined splicing outcome.259
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Figure 2: Comparison of PSI prediction results on GTEx dataset. Scatterplots show the prediction vs.
RNA-Seq values for TrASPr (left, pearson 0.81) and Pangolin (right, pearson 0.173).

6.1 Predicting exon inclusion levels across tissues260

We first evaluate TrASPr on the task of predicting Ψ using human GTEx data, comparing to Pangolin.261

Pangolin uses the SpliceAI model architecture [20] and was originally trained on data from four262

species, each with four tissues. Pangolin model is unable to define specific splicing events such as263

cassette exons. Instead it uses a 10Kb sequence window and predicts a ’splice usage’ value for the264

position in the center, constructing a separate model for each tissue. To make Pangolin comparable,265

we feed the 3’ and 5’ splice site of each alternative exon e, then calculate the average of these two.266

Performance was evaluated on shared tissues and test chromosomes as used in [50]. Our model267

achieved significantly higher Pearson correlation for PSI prediction (0.81 vs 0.17 see Fig 2), even268

though the training set is smaller due to only using overlapping tissues. Taking a closer look both269

models work well on most of low PSI cases. However, Pangolin performance suffered on some high270

inclusion cases, assigning low inclusion values. This result might be because of condition specific271

regulation, because the relevant sequence context is outside the 10kb fixed window used by Pangolin,272

or because other splicing signals in that window ’confused’ the model with respect to quantifying273

the inclusion of the cassette exon. We note that as mentioned by the authors in [50], predictions for274

tissue specific splicing changes were not very accurate and we therefore not include them here.275

Next we turned to assess tissue specific differential splicing predictions. We compared TrASPr276

against a previous model that used the same target function but employed manually curated features277

parsed through an AutoEncodeer and several layers of MLP (denoted ’AE+MLP feature model’) [21].278

This curated feature set was only available for the MGP dataset and so we assessed performance279

on this data using the same train and test set definitions as by the authors. Fig 1 and Table 1 show280

TrASPr significantly outperformed the AE+MLP model in identifying both differentially included281

and differentially excluded events, especially in terms of AUPRC (every pair of tissues is a point in282

the scatter plot with blue crosses and brown minuses each denoting evaluation on a set of differentially283

included or excluded events respectively). However, when we applied a more stringent filtering284

criteria on the test set TrASPr performance degraded while, surprisingly, AE+MLP performance285

improved. The degraded performance of TrASPr may be due to the fact the model was able to relate286

mouse and human AS events that are somewhat similar, but the fact performance for AE+MLP model287

improved may point to some specific characteristics of the stricter dataset that may have made it288

easier to predict using the pre-defined feature set.289
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Figure 3: Comparison of dPSI prediction
results on MGP dataset

AE+MLP
feature Model TrASPr

Filter Default
AUPRC 0.4861 0.4438 0.6079 0.6038
Spearman 0.5503 0.6867
AUROC 0.8712 0.8502 0.8895 0.8892
Filter Strict
AUPRC 0.5388 0.4874 0.5579 0.5176
Spearman 0.5962 0.5917
AUROC 0.8909 0.8766 0.8740 0.8695

Table 1: Results on MGP dataset com-
pared with AE+MLP feature model

7



0.0 0.2 0.4 0.6 0.8 1.00.1
|dPSI|

0.0

0.2

0.4

0.6

0.8

1.0
0.89

Pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
Ground truth

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

KD > 0.15 KD < -0.15
Ground truth direction

0

10

20

30

40

Co
un

t

Correct
No Change
Wrong

Figure 4: TrASPr prediction results on ENCODE dataset. Figures from left to right: (a) CDF
of the difference between TrASPr predicted PSI and the ground truth on wile-type cases from
GTEx+ENCODE test set. (b) TrASPr PSI prediction on wild-type AS events compared to RNA-
Seq ground truth. Brown and purple indicates AS events whose inclusion are increased/decreased
respectively upon RBP KD. (c) TrASPr dPSI direction prediction results for the events in (b). Blue,
grey and red color bar means correct, no change, and wrong direction prediction respectively.

6.2 Predicting the effect of RBP KD and mutations290

We next turned to assess TrASPr ability to predict the effect of RBP KD and mutations. For this291

we first retrained the model using ENCODE data described in Section 4. First we assessed whether292

TrASPr is able to accurately predict exon inclusion in those new conditions. As shown in Figure 4a,293

TrASPr was able to predict Ψ within 10% accuracy in almost 90% of the test cases, indicating the294

model was able to learn inclusion levels in those cell lines. Next, we focused on the set of putative295

RBP cassette exons targets shown in Figure 4b, where brown and purple represent events whose296

inclusion levels went up or down upon KD respectively. We find the WT Ψ predictions for these297

correlated well with the experimental results (pearson’s 0.65), and therefore continued with mutating298

the specific sequence motifs suspected to be the binding sites for the three RBPs of interest.299

Before we could evaluate predictions for in-silico mutations we first needed to assess the significance300

of any given prediction. To achieve this, we randomly mutated sequences in the same set of exons,301

selected from the same distribution of distances as the original motifs (the distance can greatly affect302

the null distribution), but made sure non of these randomly chosen regions hit any of the ’real’ motifs.303

We then used the 95 percentile of effects observed in this set as our threshold to call changes. The304

results of the in-silico mutagenesis experiment are summarized in Figure 4c. The left stacked bar305

shows cases whose PSI increased after RBP KD and the right bar shows decrease PSI cases. The306

correct(blue) and wrong(red) indicates if the predicted direction is the same as the label and no307

change(grey) means predicted dPSI was below the 95% cutoff described above. Overall, TrASPr308

performed well on most of the positive direction cases but predicted around half of negative direction309

cases as no change. The correlation coefficient for the dPSI effects was 0.34 with an associated310

p-value of 0.0192. The fraction of correctly called changes was over 50% with a p-value of 0.0001311

(TNOM based test).312

Finally, we assess TrASPr predictions for mutations introduced in a mini-gene reporter assay around313

a neural specific exon 16 in the mouse Daam1 gene. Similar to the ENCODE RBP analysis, we find314

TrASPr correctly predicts the effect of mutations in 7 out of 9 the cases (p-value 0.0012), as shown315

in Fig 5a. Here too, we find the model correctly predicts increased inclusion but the two mutations316

decreasing inclusion of exon 16 were not predicted correctly. We note these cases both involved317

region 11 (marked in red) which the model failed to capture.318

6.3 Assessing BOS sequence generation319

We used TrASPr as an Oracle for our BOS algorithm to generate AS event sequences with edit320

distances from an original sequence of no more than τ = 30. First, we asked BOS to increase the321

inclusion levels of lowly included cassette exons from Figure 4b. From the generated 214 sequences322

with increased inclusion (dPSI>0.2), our BOS algorithm significantly increased PSI(dPSI>0.5) for 46323

of them. Most of the mutations were introduced around the relatively weak splice sites surrounding324

these AS events, which made biological sense. Scanning for the known motifs we found BOS also325

generated 15 cases where the known RBP regulatory motifs (TIA1, PTBP1 or QKI) were mutated326

to increase inclusion. When assessing BOS on the daam1 exon 16 we again found many of the327

mutations increased inclusion by affecting the splice sites as expected (Figure 5b). However, zooming328
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Figure 5: TrASPr dPSI prediction results on Daam1 gene. Figures from left to right: (a) TrASPr
dPSI direction prediction results on 9 mutation regions of Daam1 gene. (b) Overall distribution of
mutation hits generated by BOS. (c) Distribution of mutation hits among experiment regions.

in on the upstream intron we found BOS frequently mutated the validated regulatory regions avoiding329

the region of small/little effect (green) and the area that caused decreased inclusion (red).330

To assess the efficiency of BOS, we compared its efficay on reducing Ψ for a given sequence with331

a baseline method which randomly mutated 3, 6, 15 and 30-mers in different regions. We then332

calcualted how many of these mutations actually changed the PSI by at least 0.2 based on the TrASPr333

oracle. In the end, the best setting(30-mers) successfully generated 177 out of 4392 sequences(4.03%).334

BOS generated 12,066 successful sequences(dPSI>0.2) with only ∼40k trials(>25%), significantly335

outperforming the baseline. Overall, these preliminary results indicate that BOS is able to efficiently336

capture regulatory elements in a given sequence, including both splice site signals as well as deep337

intronic elements, then capitalize on those to generate sequences matching a given splicing target338

function.339

7 Discussion340

In this study, we offer two main contributions. First, we propose a new tissue specific splicing code341

model, TrASPr. TrASPr leverages recent advances in LLMs utilizing Transformer based architecture.342

The architecture of TrASPr allows it on one hand to benefit from the Transformer attention mechanism343

while at the same time, by utilizing several Transformers each focused on a specific region, keep the344

model’s attention on areas most relevant for splicing regulation without resorting to extremely large345

models. We demonstrated TrASPr was able to significantly improve performance in both PSI and346

dPSI predictions on several datasets compared to previous state of the art. These included CNN based347

models as well as models utilizing expert derived regulatory features that were fed into a DL model.348

The second contribution in this study is in formulating the design of RNA sequences with specific349

splicing characteristics as a Bayesian Optimization problem. We then proposed the BOS algorithm,350

which uses TrASPr as an oracle, to solve this design problem with biologically plausible mutations.351

The RNA design task can be leveraged for synthetic biology studies and for therapeutic design352

(e.g., which sequence to target with ASO therapy or with prime editing). We showed BOS can353

effectively propose sequences that exhibit the desired splicing changes, mutating both core splicing354

signals and intronic regulatory elements.355

It is important to keep in mind that the labels used for assessing the prediction tasks presented356

here are inherently noisy and limited in number. For example, RNA-Seq quantifcations are noisy357

measurement, as are the RBP binding assays (eCLIP). The RBP regulatory motifs are crude as358

well. This means many targets might be missed while the changes upon RBP KD can be due to359

indirect affects (e.g., another RBP affected by the KD) or other sequence motifs. Thus, the work360

presented here should be viewed more as a proof-of-concept outlining exciting directions for future361

developments rather than a finished product. Specifically, combining the models we propose with362

high-throughput mutagensis experiments appears as an exciting direction to explore.363
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