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Measuring few-shot extrapolation with program induction
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Abstract
Neural networks are capable of learning complex
functions, but still have problems generalizing
from few examples and beyond their training dis-
tribution. Meta-learning provides a paradigm to
train networks to learn from few examples, but it
has been shown that its most popular benchmarks
require very limited generalization capabilities.
Program induction lies at the opposite end of the
spectrum: programs are capable of extrapolat-
ing from very few examples, but we still do not
know how to efficiently search for complex pro-
grams. We propose a common benchmark for
both communities, measuring extrapolation from
few examples coming from the execution of small
programs. These are obtained by leveraging a
C++ interpreter on codes from programming com-
petitions; extracting small sub-codes with their
corresponding input-output pairs. Statistical anal-
ysis and preliminary human experiments show the
potential of this benchmark for enabling progress
in few-shot extrapolation.

1. Introduction and motivation
Despite their great successes learning complex functions,
neural networks still require large amounts of data and
have trouble generalizing beyond their training distribution.
In contrast, program induction lies at the opposite end of
both spectrums: we can infer programs from few examples
that extrapolate far beyond the training samples, but these
programs are typically very simple. As a field, we’re trying
to find the best of both worlds: learning complex functions
that generalize broadly from few examples.

Program induction has seen a lot of growing interest, but
there is also a lack of large-scale few-shot program induction
benchmarks. Most datasets are manually created by a small
team of researchers; this creates biases, often assumes a
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Figure 1. Examples of two (relatively simple) tasks coming from
programs in our (meta-)dataset. Each task consists of a type signa-
ture, 10 training input-output pairs, 10 test input-output pairs and
a program that solves them and extrapolates to unseen inputs.

very specific Domain Specific Language (DSL) and limits
the number of total tasks to a few hundreds. There is also,
to the best of our knowledge, no benchmark that allows
testing a broad spectrum of program complexity, from 1-line
programs to 100-line implementations requiring algorithmic
insights. In this work, we present a benchmark containing
such a spectrum of problems, with the hope that it provides
a useful target both now and in the coming years.

We propose to create a wide range of tasks, ranging from
simple one-line programs to complex algorithmic implemen-
tations, by extracting sub-codes from codes online. More
concretely, we leverage a database coming from the popular
website codeforces.com, which has hundreds of prob-
lems and hundreds of thousands of implementations. From
these, we can extract tens of thousands different sub-codes,
each describing its own task. We can obtain input-output
examples for each code by running the entire program on
a set of inputs and recording the input-output example for
each sub-code. C++ is, by far, the most popular language in
these competitions. C++ has the advantage of being typed
and structured, which, as we will see, allows us to more
easily categorize and analyze the difficulty of problems. At
the same time, C++ is also compiled, which makes it quite
hard to collect the evaluation of sub-codes, since that re-
quires running C++ as an interpreted language. Despite this
difficulty, we manage to obtain such evaluations for a broad
subset of the codes, which allows us to create a rich, diverse
meta-dataset with over 10,000 tasks.

Our main contribution is therefore a few-shot benchmark
for the meta-learning and program induction communities
with the following key aspects:

1. The dataset is automated, allowing us to scale to
thousands of real-world tasks and removing some of

codeforces.com
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the biases of manually created datasets. At the same
time, tasks are not random, each coming from a solu-
tion to a task similar to those given in tech interviews.

2. Problems have an accompanying solution in the
form of a code, which can also function as a target
for methods that are learning to search in program
induction.

3. Tasks have a diverse range of difficulty and can
be classified into many different groups: from their
type signatures, to whether the program that generated
them had loops, or its number of lines. This allows us
to measure methods that can only work with very short
programs or with certain input and output types, as well
as complex methods tackling long diverse programs;
all under the same framework.

2. Related work
Related work on the meta-learning community can be found
in appendix A.

Program induction datasets There have been a number
of program induction benchmarks, such as those used in
DreamCoder (1), and FlashFill (2; 3), as well as the Ab-
stract Reasoning Challenge(ARC) (4), a list functions bench-
mark (5), or the SyGus competition (6). Although these
benchmarks contain many interesting problems, they have
been manually created by humans instead of being automat-
ically generated from natural data. This creates significant
bias on the datasets (often being captured by a relatively
simple Domain Specific Language) and restricts the amount
of tasks to a few hundreds to a bit more than a thousand
tasks. In contrast, our benchmark contains more than 6,000
tasks and we estimate we will be able to extend it to around
100k. Such large datasets have been shown to be useful to
learn to search (7); however, in contrast to this work, our
programs are not random, and can thus capture the structure
of real programs. This will allow neural-based methods,
often data-inefficient, to learn to search in these domains
with less need to embed biases into the search.

Datasets leveraging competitive programming codes
We take the programs scraped by (8) and Dr.Repair (9)
from codeforces.com. However, their goals are signif-
icantly different from ours. Whereas we make the tasks
easier by considering sub-codes and creating thousands of
few-shot learning tasks, they learn to go from line-by-line
pseudo-code to code (8) or learn to debug programs (9).
Even though the origin of the data is the same, our end-
product is orthogonal to theirs. (10) is probably closest
to our benchmark, manually describing the function of a
bit more than 2000 codes with a problem statement. There
are two problems with this approach: first, since it is much

easier to describe what the code does than defining a task
that the code solves, most statements resemble pseudo-code,
which turns the task into something closer to translation.
Second, because codes are manually annotated, it is hard to
scale to tens of thousands of tasks.

3. Description of the dataset
We anonymize the name of our dataset because it contains
the name of our institution.

3.1. Description of the data
In competitive programming there are different problems,
each with a short text describing the requirements of the
target program. There are also multiple test-cases (some
public, some private) that the submitted program has to
satisfy. For each problem we have many hundreds of codes
that solve it; meaning we have a pair of (code, test-cases)
such that the entire code satisfies the test-cases.

For each code we can obtain sub-codes: valid continuous
segments of code contained in the original code. To be valid,
a sub-code has to be correctly parenthesised: start and end
at the same level of indentation and never go to a level above
than the starting one in the indentation hierarchy.

Given a sub-code we can generate the data for a task; con-
sisting of 20 input-output pairs (10 training, 10 test). We
obtain these by running the entire code and observing the
intermediate values at every line. Therefore, a task consists
of: (1) a type signature describing the types of inputs and
outputs, (2) 20 pairs of input-outputs examples, 10 for train-
ing and 10 for test, (3) a code that solves these pairs and
extrapolates to other inputs. Note that the input distribution
is far from random, as it is affected by previous computa-
tions in the overall program. Figure 1 shows the example of
two tasks.

3.2. Overview of the implementation

In this section we provide an overview of how we ob-
tained the data. This helps provide a better understand-
ing on the data distribution, explaining how we obtain
the input-output pairs as well as some limitations of our
pipeline(further explained in appendix B), which constrain
some of the problems in our dataset. We obtain the original
raw codes from SPoC and DrRepair (8; 9), which scraped
codeforces.com. In their case, they are interested in
analyzing the code itself and executing the entire program
(which can be done by compiling it as usual). This gives us
around 300,000 codes to 700+ programming problems.

To interpret C++ we use the Cling C++ interpreter (11).
Cling performs an elaborate incremental just-in-time com-
pilation that keeps modifying the abstract syntax tree before
executing the new piece of code. This allows us to execute

codeforces.com
codeforces.com
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Figure 2. Overview of input-output type signatures with at least 20 different sub-problems. Most tasks involve few inputs and output
either integers or booleans. Some perform string or array manipulations.

pieces of code and check the values of variables in between.
Since they have to be compiled, the given pieces of code
have to be self-contained: functions have to be defined en-
tirely before being fed to Cling and loops and if statements
have to be given as a block. This severely restricts the type of
sub-codes that we can obtain with raw Cling, since we can-
not inspect the intermediate values within loops or functions.

We implement a work-around to be able to obtain in-
termediate values for loops and if statements. First, we
standardize all codes changing for loops to while loops plus
extra instructions and ensure all loops and if statements are
properly bracketed. Once this processing is done, we create
an emulator that, instead of feeding the entire while/if
statement to Cling, it first calls its condition and then calls
the appropriate code depending on whether the condition
is satisfied. Note that these if/while conditionals are often
very interesting quantities, and we also include them as
tasks even though there is no explicit boolean variable
created in the original code.

Competitive programming codes interact with the terminal,
receiving inputs and outputting results, which Cling cannot
handle. We therefore implement a wrapper that simulates
this communication. Since console outputs often contain
interesting results, we also store them as program outputs.
Furthermore, whenever we have an uninitialized variable
(”int a;”) or a variable initialized within an if statement that
wasn’t evaluated for a particular test, we mark it as ’null’.

Finally, we often have codes that are implemented differ-
ently, but end up producing the same results. Detecting
these occurrences is hard to do for arbitrary programs, and
often expensive, but we only need to do it once during
the creation of the dataset. Moreover, it can also be
approximated by checking whether two programs solve the
test-cases of one another. We have currently standardized
each program by making variable names depend on their
order of appearance instead of their original name. Going
forward, we plan on removing further symmetries (such
as swapping a pair of lines whose order does not affect the
output or removing lines that do not affect the final output)
by expressing programs as graphs.

3.3. Statistical analysis

Figure 2 shows the most popular signatures. As expected,
most involve integer manipulations as well as classification
problems from few variables. There are other signatures
that involve array(list) and string manipulations, often con-
ditioned on other variables like integers or individual charac-
ters. These are interesting as they often require to generalize
to longer computations as well as bigger data structures.
Finally, there are other types that are more complex such as
matrices or list of strings.

Figure 3 shows the difficulty of our tasks along three differ-
ent axis. First, 30% of problems contain either if-statements
or loops that require generalizing to up to 10 times more
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Figure 3. (Left) Ratio of number of maximum number of lines executed for a test input vs maximum number of lines executed for a
training input; showing the requirement to generalize to longer executions. (Center) Depth of indentation execution (nested loops and if
statements), which often significantly affects the difficulty of program induction. (Right) number of times each integer in [-100,100]
appears as an input or output on a test-case; note the logarithmic y-axis.

Figure 4. Two examples of difficult problems tested by humans:
the first was solved by 1/5 and the second was not solved by anyone.
The program on the left of figure 1 was solved by all 5 subjects.

operations than those needed for training examples. Con-
ditional execution (characterized by indentation in C++) is
often very hard for program induction techniques. Most
programs have a single level of indentation (no conditional
execution), but some require multiple up to 4 levels of nested
execution. Finally, we observe that most input and outputs
involve small positive integers (note the logarithmic y axis),
but many involve larger numbers. It is worth noting that
these can extend up to ±2 · 109.

4. Preliminary human baselines
Humans can infer programs from few examples and extrap-
olate them beyond the training distribution, but also have a
limited search capacity and cannot mentally execute large
programs. To assess the difficulty of our dataset, we choose
a random subset of 30 problems such that the number of
executed lines was at most 5. We tested 5 humans with
some prior C++ exposure in high school, but who did not
necessarily major in Computer Science.

Subjects saw 10 test-cases and had to describe the program
(in natural language) that they believed generated the data.
Out of all 30 problems, 13 problems were solved by all 5
subjects, and 10 were solved by some, but not all subjects.
Each subject solved between 14 and 19 problems. These

results are encouraging because they show that most prob-
lems (at least 25/30 ≈ 83%) are feasible to infer, with a
significant fraction (1/3) being non-trivial. Even for tasks
solved by everyone, it is likely that this is still far from
what most methods can achieve at the moment, providing a
challenging benchmark for the meta-learning and program
induction communities.

Figure 5. Fraction of problems solved by humans after seeing n
examples; most problems only require a couple of examples, with
significant progress until 5 examples.

5. Discussion
We present a new benchmark for few-shot extrapolation
and program induction. We hope this sparks progress in
making algorithms that (learn to) search complex program
spaces from few examples. The structure of this dataset
also enables other interesting problems, such as informing
the search by surrounding code (since tasks come from sub-
codes of bigger implementations) as well as text describing
the task of the overall code. Finally, it provides a scalable
benchmark containing both very simple and very complex
problems, all under a single framework to catalyze progress
in program induction in the coming years.
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A. Extra related work
Meta-learning meta-learning (12; 13; 14) aims at learn-
ing priors from many tasks so as to generalize to a new
task from few amounts of data; for a nice recent survey
see (15). The three main paradigms in meta-learning have
been optimization-based approches, MAML being the pri-
mary example (16), model-based approaches that tailor to a
particular application (often image classification) (17) and
architecture-based approaches that use LSTMs, transform-
ers, GNNs, etc to encode the dataset before making a pre-
diction (18; 19; 20). Most of these methods assume that the
input form is uniform and do not typically generalize outside
broadly outside the data distribution (21), especially non-
optimization-based approaches (22). Given that we know
tasks are generated by pieces of code, this makes it close
to AutoML (23), which often searches through code-like
representations to optimize machine learning models.

Related datasets Few-shot learning benchmarks have al-
lowed great progress in meta-learning. The two most popu-
lar ones are in few-shot classification for computer vision:
miniImageNet (24) and Omniglot (25). Other notable few-
shot classification benchmarks have been proposed such as
tieredImageNet (26), SlimageNet (27), CUB-200 (28) and
meta-dataset (29). There have also been pushes to increase
the generality of meta-reinforcement learning benchmarks
to include completely different virtual environments (30; 31)
as well as learning an entire RL loss functions that general-
ize between them (32).

B. Further comments on current limitations
and future work

There are a few practical limitation with the implemented
pipeline that restrict some codes from being added to our
database. This does not affect the correctness of our tasks,
but slightly biases the distribution of codes in our bench-
mark with respect to the distribution of codes in competitive
programming as a whole.

In the current version of the dataset (we plan to expand it
with even more tasks) we discard codes that contain func-
tions, as Cling cannot analyze them line-by-line. Therefore
we cannot obtain sub-codes from pieces of functions. We
are currently discarding codes that have functions; however,
in the future we will add codes that contain functions, treat-
ing them as individual instructions that cannot be split. To
restrict the size of the overall dataset as well of the interme-
diate pipeline, we currently remove test-cases that surpass
106 bits=125KB.

Programs in our tasks consist of contiguous segments of
code where the output variable is modified on the last line

and input variables are all variables involved in this partic-
ular segment. However, this implies that current programs
contain lines or variables that do not necessarily affect the
input. Understanding these relations requires static analysis
and we plan to do it in the near future.


