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Abstract
Traditional algorithms for training multi-billion
parameter models require clusters of GPUs con-
nected via proprietary high-bandwidth network-
ing equipment. Modern low-bandwidth training
algorithms such as DiLoCo and SPARTA promise
to remove this bandwidth constraint. However,
running these experiments currently demands
multi-node hardware and complex orchestration.
We introduce EXO Gym, an open-source library
that emulates up to M virtual workers on N physi-
cal accelerators, letting researchers prototype and
benchmark distributed-training strategies from a
single workstation. Communication behaviour
is encapsulated in modular Strategy classes,
so new optimizers, sparsity schedules or com-
pression schemes can be expressed in a few lines
of code and evaluated with full telemetry (loss,
wall-clock, GPU utilization, bytes transferred).
In experiments, EXO Gym reproduces published
DiLoCo scaling on language models, extends the
algorithm to convolutional networks, and enables
a rapid sweep over SPARTA sparsity rates that
would cost weeks on cloud resources. By col-
lapsing the infrastructure barrier, EXO Gym puts
exploratory distributed training within reach of
small teams and paves the way for broader, faster
progress in open-source AI.

1. Introduction
Open-source software forms the bedrock of modern com-
puting. Because anyone can inspect and improve the code,
defects get fixed fast and new features appear quickly. That
process often yields systems that are more robust and secure
than proprietary alternatives, with the Linux kernel and the
Apache HTTP server acting as prime examples. For the
same reason, firms such as Meta and Google have opened
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key internal projects - PyTorch (Paszke et al., 2019) and
Kubernetes (Authors, 2014) - to the public, turning private
prototypes into global infrastructure.

Artificial intelligence research has not followed the same
path. At the time of writing, the top 5 strongest models on
GPQA Diamond and SWE Bench (complex benchmarks
for graduate level science understanding and software engi-
neering tasks respectively) are all closed source (Vellum AI,
2025). Their creators are large companies that can afford
to train at vast scale. Parameter counts, data volume, and
inference-time compute all grow together. Increasing scale
is almost certainly a necessary condition in continuing to
create more and more intelligent systems (Kaplan et al.,
2020). This is because general methods, trained using large
amounts of compute, inevitably outperform hand-crafted
methods (Sutton, 2019). The infrastructure required to meet
this scale of computation demands high-end GPUs (almost
exclusively from NVIDIA) and specialized networking gear
(NVLink and InfiniBand). Building a frontier-class cluster
now costs billions of dollars. Smaller groups without access
to these resources struggle to reproduce state-of-the-art, or
advance the frontier of AI research.

Open-source AI has fundamental differences compared to
open-source software. In open-source software, the re-
quired infrastructure is often limited to having a functioning
computer. However, in AI training any model remotely
close to the frontier requires a large amount of highly con-
nected GPUs. Even when training code is open-source, the
compute budget needed to run it shuts out independent re-
searchers. Good ideas die because their authors cannot test
them. Due to this large barrier to entry, open-source AI is
dominated by a handful of small labs who usually release
their models as open-weight. Meta’s Llama (Touvron et al.,
2023) and Alibaba’s Qwen (Bai et al., 2023) are recent
examples of this.

The aggregate raw compute required to train ever-larger
models already exists, but it is scattered across hundreds of
millions of edge devices instead of being concentrated in
data-centre GPU clusters. Consumer hardware is becoming
astonishingly powerful. For example, Apple’s 2025 Mac
Studio with the M3 Ultra chip can be configured with a
32-core CPU, an 80-core GPU and up to 512 GB of unified
memory-specifications that rival a small supercomputer just
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a few years ago. Yet these devices rarely share a high-
bandwidth, low-latency interconnect; most connect only
through the public Internet. The typical fixed-broadband
connection in the United States delivers about 200 Mb/s
(0.025 GB/s), whereas NVIDIA’s current NVLink 5.0 fabric
offers up to 900 GB/s of peer-to-peer bandwidth per GPU
- a gap of roughly 35,000×. This bandwidth gulf makes
existing distributed-training schemes such as Distributed
Data Parallel (Li et al., 2020) impractical on edge devices,
because they rely on sharing multi-gigabyte gradient tensors
between accelerators every training step.

Recent work shows that high bandwidth is not always es-
sential. Algorithms such as DiLoCo (Douillard et al., 2023),
SPARTA (Beton et al., 2025), Streaming DiLoCo (Douillard
et al., 2025), and DeMo (Peng et al., 2024) cut the commu-
nication load by orders of magnitude. DiLoCo has been
shown to scale succesfully to 10-billion-parameter language
models (Jaghouar et al., 2024). Yet many open questions
remain: can these methods be used to train architectures
other than language models, such as convolutional neural
nets, diffusion models, or protein language models? If so,
which optimizer perform best in these cases? Can DiLoCo
be combined with different compression methods? Are
there more effective ways to perform the averaging step?
Experimentation in this domain is scarce because setting
up multi-node tests is tedious and expensive. A “Gym-for-
distributed-training” - a simulator and launcher that lets you
prototype low-bandwidth algorithms - could replicate the
impact OpenAI Gym (Brockman et al., 2016) had on RL and
catalyse the future breakthroughs (in much the same way
Gym was instrumental in the creation of proximal policy
optimization (Schulman et al., 2017)).

Our new library, EXO Gym, makes it easy to test low-
bandwidth training algorithms without needing to provision
expensive and complex infrastructure. It lets users emulate
M virtual nodes on N real devices, where M ≥ N . For
example, 4 nodes could be emulated on a single Mac Studio,
or 24 nodes could be emulated using 8 Nvidia RTX 4090
GPUs. Researchers can prototype low-bandwidth ideas
without hand-crafting cluster scripts or renting cloud ma-
chines for weeks. By lowering cost and complexity, EXO
Gym puts distributed training within reach of small teams
and, we hope, accelerates the next wave of open-source AI
innovation.

The source code is available at https://github.com/
exo-explore/gym.

2. Low-Bandwidth Training
Over the past year, a growing body of low-communication
algorithms shows that you can train large models without
requiring specialized high-bandwidth interconnects between

all accelerators in a cluster. Prior to this, training over
a low-bandwidth network using established methods for
training multi-billion parameter models was impractical, as
demonstrated in the motivating example in Table 1.

DiLoCo (Douillard et al., 2023) revisits the classical fed-
erated averaging idea but equips it with a large inner
loop (AdamW (Kingma & Ba, 2017)) and a momentum-
based outer loop (Nesterov SGD (Nesterov, 1983)). The
DiLoCo paper demonstrates an 8-worker training run on
the C4 (Dodge et al., 2021) corpus achieving equal perfor-
mance to data-parallel training, whilst performing 500×
lower communication.

Following on from this, Prime Intellect introduced
OpenDiLoCo, an open-source implementation of DiLoCo
for training LLMs over the internet. In real-world tests that
stretched across two continents and three cloud providers,
this ensured 90–95 % GPU utilization and cleanly scaled to
billion-parameter models, proving that DiLoCo’s communi-
cation pattern survives hostile internet latencies.

SPARTA (Beton et al., 2025) showed than you can extend
the synchronization interval even further by each worker
randomly averaging a small proportion (e.g. 0.05%) of its
weights with its peers. Because SPARTA communicates
parameters instead of gradients, the exchange can be per-
formed totally asynchronously. Combined with DiLoCo it
acts as a regularizer, enabling a 100× longer DiLoCo in-
terval (H = 10,000) with no wall-clock penalty and even
allowing higher learning-rates.

The follow-on paper Streaming DiLoCo (Douillard et al.,
2025) removes the last high-bandwidth bursts by (i) synchro-
nizing one fragment of the model at a time, (ii) overlapping
that transfer with continued compute, and (iii) quantizing the
outer gradients to 4-bit. Together these tweaks preserve task
performance while driving inter-worker bandwidth down by
two orders of magnitude relative to data-parallel baselines.

DeMo attacks the same problem from an optimizer stand-
point. By letting the slow components of the momentum
vector drift locally and only synchronizing a compact “fast”
Fourier/DCT signature each step, it slashes traffic several
orders of magnitude yet still matches or beats AdamW on
large-scale LLM pre-training - all without assuming any
particular topology.

3. EXO Gym
EXO Gym is a lightweight, open-source simulator for con-
ducting research into low-bandwidth training. It allows
for spawning multiple virtual workers on a single physical
device, letting you prototype and benchmark new commu-
nication schemes without scaling out physically. A single
Trainer object augments any torch.nn.Module and
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Table 1. 7B model training time and viability for different networking configurations on a training corpus equivalent to 1000 books.

Scenario Training Time Viability

Single GPU 1,000 minutes (16.7 hours) Baseline – predictable sequential processing
2 GPUs (Data Center) 505 minutes (8.4 hours) Excellent – nearly perfect 2× speed-up due to fast network
2 GPUs (Internet) 10,500 minutes (7.3 days) Impractical – slow network makes synchronization extremely costly
DiLoCo (H=500) 520 minutes (8.7 hours) Game-changing - matches data center performance over slow networks

1
2 train_data, val_data = ...
3 model = ...
4
5 trainer = LocalTrainer(model, train_data, val_data)
6
7 from exogym.strategy.diloco import DiLoCoStrategy
8 strategy = DiLoCoStrategy(
9 optim_spec=’adamw’

10 H=200,
11 )
12
13 trainer.fit(
14 num_epochs=1,
15 max_steps=5000,
16 strategy=strategy,
17 num_nodes=4,
18 device=’mps’,
19 )

Listing 1. EXO Gym makes running distributed training
experiments simple.

torch.utils.Dataset with a train method that
consumes a Strategy class. Communication behavior
is fully configurable through these swappable Strategy
classes, which specify the optimizer, synchronization rule,
cadence, and any sparsity or compression applied to gradient
exchanges.

The code in Listing 1 demonstrates how Trainer is used
to perform a distributed training simulation on a regular
torch model and dataset, and Listing 2 demonstrates how
the SPARTA strategy is implemented in EXO Gym.

EXO Gym reduces the iteration speed and cost for re-
searchers investigating novel low-bandwidth training algo-
rithms. This includes:

• Algorithm designers seeking rapid iteration. Swap-
ping in a new synchronization rule, optimizer, or com-
pression schedule takes only a few lines of code, en-
abling fast A/B testing across model families.

• Experimentalists exploring configuration space. Be-
cause virtual nodes are cheap to spawn, users can
sweep over parameters—such as the SPARTA spar-
sity rate p or DiLoCo’s inner-loop length H - identify-
ing optimal configurations that would be prohibitively
costly to evaluate on real hardware.

4. Example Use-Cases
In this section we explore some of the early experiments we
have run using EXO Gym:

4.1. SPARTA on Multiple Nodes

We have used EXO Gym to evaluate Sparse Parameter Av-
eraging (SPARTA). This method consists of exchanging a
small fraction of model parameters among workers at each
timestep, with the full algorithm shown in Algorithm 1.
Figure 1 shows how we can use EXO Gym to effortlessly
simulate the effect on training performance of varying the
proportion of parameters exchanged p on 4 nodes, without
needing a physical multi-accelerator setup.

Algorithm 1 Sparse Parameter Averaging (SPARTA)
1: Require: Data shards {D1, . . . , Dk}, frequency H ∈

R, sparsity rate p ∈ R
2: for step t = 1, . . . , T do
3: Sample indices P(t) according to sampling strategy
4: for worker k = 1, . . . ,K in parallel do
5: θ

(t)
k ← AdamW(θ(t−1)

k , D
(t)
k )

6: AllReduce(θ̃(t)j ← θ
(t)
k,j , j ∈ P(t))

7: Update θ
(t)
k with θ̃(t) at the sampled indices

8: end for
9: end for 1

K

∑K
k=1 θ

(T )
k

4.2. Training a CNN Using DiLoCo

EXO Gym also supports running training experiments with
DiLoCo. While the original DiLoCo study focused exclu-
sively on language models, we employed EXO Gym to
benchmark its performance on convolutional neural net-
works (CNNs). Figure 2 shows that on a single node, reach-
ing an evaluation loss below 2.5 requires approximately
6,000 steps; with two nodes, we achieve the same loss in
under 4,000 steps.

5. Future Directions
Future work will explore:

Pipeline parallel. Beyond data-parallel training, we will
implement pipeline and tensor parallel strategies to mirror
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1
2 class SPARTAGradient(Strategy):
3 def step(self):
4 self.optim.step()
5
6 if self.config.num_nodes > 1:
7 with torch.no_grad():
8 for name, param in self.model.named_parameters():
9 indices_mask = self.index_selector.get_indices(param, self.iteration)

10
11 broadcast(indices_mask, src=0)
12 sparse_data = param.data[indices_mask]
13 all_reduce(sparse_data, op=dist.ReduceOp.SUM)
14 sparse_data /= dist.get_world_size()
15
16 param.masked_scatter_(indices_mask, sparse_data)
17
18 self.iteration += 1
19 super().step()

Listing 2. Defining a Strategy class in EXO Gym.

Figure 1. Training a language model using SPARTA on 4 nodes.

the parallelism modes used in large-scale, state-of-the-art
training runs.

Communication modeling. We aim to introduce config-
urable network simulators that capture variable latencies
and bandwidths - e.g., high-bandwidth islands of accelera-
tors linked by lower-bandwidth interconnects - to evaluate
algorithm resilience under realistic network conditions.

Fault simulation. To better emulate deployments on het-
erogeneous, consumer-grade devices, we will simulate com-
mon failure modes (dropped packets, unexpected node out-
ages, dynamic performance drops), enabling robust eval-
uation of distributed algorithms in the face of real-world
faults.

6. Conclusion
Recent advancements in low-bandwidth training methods
are breaking the constraint of needing massive clusters of

Figure 2. Training a CNN using DiLoCo simulated across two
nodes.

expensive accelerators to train frontier models. However,
the development of these novel algorithms is restricted to a
select few labs with the requisite infrastructure required for
empirical testing. EXO Gym is a simulation library that al-
lows people to test novel low-bandwidth training algorithms.
Internally, we have validated this tool by using it as the ba-
sis for all of our experimental research, such as Beton et al.
(2025). We hope that by making this resource open source,
researchers will be able to design and test novel algorithms
without being restricted by lack of access to compute.

Impact Statement
“This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.”
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