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Abstract

Machine learning interatomic potentials (MLIPs) bridge the gap between the accu-
racy of quantum mechanics and the efficiency of classical simulations. Although
universal MLIPs (u-MLIPs) offer broad transferability across diverse chemical
spaces, their high inference costs limit their scalability in large-scale simulations. In
this paper, we propose LightPFP, a knowledge distillation framework designed to
train computationally efficient task-specific MLIPs (ts-MLIPs) tailored for specific
systems by leveraging of u-MLIPs. Unlike prior approaches that only pre-trains
u-MLIPs on large datasets, LightPFP incorporates an additional step where stu-
dent models are pre-trained as well. This dual pre-training strategy significantly
enhances the data efficiency of the student models, enabling them to achieve higher
performance with limited training data. We validate the effectiveness of LightPFP
using Ni3Al Alloy simulation, showcasing its data efficiency, and further compare
its performance against other methods in estimating the mechanical and grain
boundary properties of AlCoCrFeNi high-entropy alloy.

1 Introduction

The development of accurate and efficient machine learning potentials (MLIPs), typically trained
on data labeled by density functional theory (DFT), is critical for enabling large-scale atomistic
simulations in materials science and chemistry. MLIPs can be broadly classified into two paradigms:
universal MLIPs (u-MLIPs) and task-specific MLIPs (ts-MLIPs). The former, e.g., M3GNet [1],
CHGNet [2], Matlantis PFP [3, 4], MACE [5, 6], are trained on vast datasets spanning millions
of diverse structures, covering broad regions of chemical and configurational space. They provide
remarkable capabilities out-of-the-box transferability. In particular, Matlantis PFP, trained on a
diverse and complex DFT database, has been shown to demonstrate its robustness by achieving high
performance across a wide range of materials without fine-tuning, including battery [7–12], MOF [13,
14], ceramics [15, 16], catalyst[17], polymer [18], nanotube [19], atomic layer deposition [20, 21],
Hydrogen storage [22], superconductor [23], Memristor [24]. Despite their versatility, the large
model sizes of u-MLIPs, required to capture diverse chemical systems, can limit their computational
efficiency in large-scale molecular dynamics (MD) simulations. In contrast, ts-MLIPs use simpler
architectures that trade universality for greater computational efficiency. However, the development
of ts-MLIPs remains resource-intensive, requiring significant time and effort for DFT-based dataset
generation and model training.
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Perspective [25] [26] [27] [28] LightPFP (This work)

Teacher is trained from multiple tasks × ✓ ✓ ✓ ✓
Use teacher in data generation ✓ × ✓ ✓ ✓
Enable active learning with teacher’s labels × × ✓ ✓ ✓
Use student pre-training × × × × ✓
Does not require teacher’s fine-tuning × × × × ✓

Table 1: Comparisons of the proposed method with existing works [25–28].
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Figure 1: Schematic diagram of LightPFP.

To address the challenges associated with training ts-MLIPs, knowledge distillation has been intro-
duced as a strategy to train more efficient MLIPs (referred to as "students") by leveraging knowledge
from larger, more general MLIPs (referred to as "teachers") [27, 29, 25, 28, 30, 26]. For instance,
Zhang et al. [28] proposed the DPA-2 framework, where the teacher model is pre-trained on multiple
tasks, similar to the u-MLIP training paradigm. The pre-trained teacher is then finetuned on task-
specific DFT-labeled data by modifying its descriptor and fitting networks. Finally, active learning
is employed, iteratively using MD simulations of the finetuned teacher model to gather new data
for training the student model. Similarly, Gardner et al. [27] explored distillation from foundation
models (e.g., MatterSim [31], MACE [5], OrbNet [32]) into task-specific MLIPs (e.g., PaiNN [33],
ACE [34]). Their approach involves first conducting fine-tuning on the teacher (u-MLIP) model,
followed by using the teacher to generate task-specific data for training the student model.

In this paper, we propose the LightPFP framework, which utilizes the PFP [3] as a u-MLIP teacher
without fine-tuning to generate training data. Table 1 highlights the key distinctions between this study
and prior work. To the best of our knowledge, previous studies have largely relied on fine-tuning the
u-MLIP as a prerequisite for distillation. Furthermore, the role of student pre-training in enhancing
data efficiency has received limited attention in existing literature. In the evaluation, we demonstrate
the benefits of student pre-training through simulations of Ni3Al alloy systems. Subsequently, we
compare the performance of LightPFP to MTP trained with DFT data, PFP, and MACE-MP-0, to
estimate mechanical and grain boundary properties of AlCoCrFeNi high-entropy alloy.

2 LightPFP

In this section, overview of LightPFP is presented. For the teacher model, we employ PFP [3] based
on TeaNet architecture [35]. PFP and LightPFP are both available in Matlantis [30]. PFP serves as
the source for generating training data, which forms the foundation for training the student model in
LightPFP. As the student model, we adopt the Moment Tensor Potential (MTP), proposed by Novikov
et al. [36], due to its favorable trade-off between accuracy and efficiency [37]. Figure 1 shows the
workflow of LightPFP, which begins by defining a target structure and preparing training data using
the PFP u-MLIP framework. Following a similar approach to PFP, pre-trained students are trained
on diverse chemical systems dataset described in Takamoto et al. [3]. Reptile algorithm [38] is
used for student pre-training (see Appendix B for details). Due to the large dataset’s size, student
pre-training is expected to take some time. Nevertheless, a pre-trained student can be prepared
in advance. LightPFP in Matlantis [4] offers several pre-trained students readily available. MTP
contains learned parameters specific to each element pair. To reduce the model size, we select only
the subset of parameters from the pre-trained MTP that corresponds to the elements present in the
target structure, since other parameters are never utilized and can therefore be omitted. The extracted
MTP is then fine-tuned using PFP-generated data, after which its performance is evaluated.
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Figure 2: Comparison of data efficiency between finetuned pre-trained and scratch-trained student
models.

3 Results

3.1 Ni3Al alloy

We first demonstrate the enhanced data efficiency of pre-trained student models, using the Ni3Al
alloy [39] as an example. To this end, a full dataset containing 1529 structures is prepared through
the comprehensive sampling involving PFP [3] in the relevant configuration space. The sampling
methods comprise static and dynamic samplings. The static method samples static structures by
compressing and deforming its lattice, as well as displacing atomic positions. The dynamic sampling
uses MD simulations with initial configurations of both defect-free and defective bulk structures,
as well as surface structures. The details of sampling parameters are provided in Appendix. C.1
For testing data efficiency, smaller datasets with sizes ranging from 100 to 850 are created by two
methods, subsampling from the full dataset and direct sampling through the decrease of MD steps.
Each size of datasets are created five times to obtain the uncertainties of errors. Structures in the
datasets obtained by subsampling tend to be more widely distributed in configuration space, whereas
direct sampling is closer to common user practice in real situations (i.e. by decreasing MD steps).

We compare the performance of finetuned pre-trained and scratch-trained student models on energy
and force errors, as shown in Figure 2a,b. Across all dataset sizes, the finetuned pre-trained student
models outperform the scratch-trained student models. We note that finetuning pre-trained student
models on 100 structures performs almost as well as on 1529 structures. In addition to the standard
energy and force testings, we validate the performance of student models on different application
tasks, for instance, phonon spectra and surface energies, as shown in Figure 2c,d. Comparable to
the energy and force testings, the performance of finetuned pre-trained models is better than the
scratch-trained models. Similar performance trend can be observed in properties (see Appendix C.4).

Moreover, the performance of finetuned pre-trained student models are more robust in application
tasks whereas scratch-trained models show typical overfitting behavior. The force errors from the
scratch-trained models on the smaller datasets (Figure 2b) are lower than on the larger dataset.
However, the errors on phonon spectra and surface energies are larger (Figure 2c,d). In contrast,
although finetuned pre-trained student models show a similar trend on force testing, their performance
on application tasks are consistently reliable across various dataset sizes.
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Table 2: Comparison of DFT and MLIPs on HEA property calcu-
lation

Property DFT PFP LightPFP MACE-MP-0 MTP-DFT
Equation of State
Volume (Å3/atom) 11.58 11.51 11.51 11.48 11.29
Bulk modulus (GPa) 165.64 165.66 164.35 159.18 162.27
Mechanical Properties (GPa)
Bulk modulus 159.23 165.45 167.81 157.14 169.02
Shear modulus 69.99 65.79 60.42 45.05 58.54
Young’s modulus 183.14 174.27 161.84 123.36 157.44
Average Error – 6.43 6.72 21.5 19.82
Surface Energy (eV/Å2)
Average Error – 0.0058 0.0053 0.0052 0.0036
Grain Boundary Energy (eV/Å2)
Average Error – 0.0081 0.0063 0.0207 0.0095

Figure 3: Equation of states of HEA
calculated by different methods.

3.2 High entropy alloys (HEAs)

We use the Cantor alloy with a face-centered cubic (FCC) lattice, where the composition is 20%
each of Al, Co, Cr, Fe, and Ni. HEAs have attracted attention due to their exceptional mechanical
properties. We employ four models for simulation: PFP [3], MACE-MP-0 [6], MTP trained from
DFT data (MTP-DFT), and LightPFP. Note that LightPFP and MTP-DFT architectures are identical,
resulting in the same inference speed. Data generation for LightPFP using PFP took 24 hours, while
MTP-DFT required 637 hours on a single GPU for PFP-driven molecular dynamics sampling with
DFT labeling. Using ab-initio MD sampling for MTP-DFT would have taken an estimated 60,000
hours, rendering MLIP construction prohibitively expensive. Details of the data generation process
are provided in Appendix D.1. Both LightPFP and MTP-DFT share a similar training time of 1 hour.

Computational efficiency: We benchmarked the molecular dynamics performance on an Nvidia
V100 GPU (16GB). LightPFP and MTP-DFT achieved simulation speeds of 9.8× 10−7 s/step/atom,
which is 66 times faster than PFP (6.5× 10−5 s/step/atom) and 249 times faster than MACE-MP-0
(2.44× 10−4 s/step/atom). The maximum number of atoms that can be simulated on a single GPU
was 716,800—52 times more than PFP (13,824) and 400 times more than MACE-MP-0 (1,792).
MLIPs obtained through LightPFP significantly outperform universal potentials in computational
efficiency.

Property calculation accuracy: We computed important properties of the HEA using four models,
where DFT serves as a ground truth. Calculation details are provided in Appendix D.2. Results
of equation of state calculation are shown in Figure 3, and equilibrium volume and bulk modulus
are listed in Table 2. PFP, LightPFP and MACE-MP-0 have a good agreement with DFT in energy-
volume curve, while MTP-DFT underestimate the equilibrium volume by 2.5%, possibly due to the
insufficient dataset. For elastic properties, PFP, LightPFP, and MTP-DFT closely matched DFT, while
MACE-MP-0 showed larger deviations. This could be due to MACE-MP-0 training data are mainly
equilibrium structures and this may cause potential energy surface softening effect [40]. Next, the
surface energies of seven different crystal planes were evaluated, where the crystal planes are not
included in the training dataset. All models achieved high accuracy, with errors < 0.006 eV/Å². In
terms of average error, performance ranking in descending order is as follows: MTP-DFT, MACE,
LightPFP, and PFP. Finally, we computed formation energies of five grain boundaries (GB) that are
not included in training dataset. LightPFP, PFP, and MTP-DFT demonstrated strong accuracy, with
errors below 0.01 eV/Å², whereas MACE-MP-0 exhibited a larger error. Based on average error, the
models are ranked in descending order of performance as follows: LightPFP, PFP, MTP-DFT, and
MACE-MP-0. Across multiple properties, LightPFP achieved competitive accuracy to other methods.

4 Conclusions

We have introduced LightPFP, a distillation framework built on the PFP universal potential. By
utilizing data generated by PFP and integrating a pre-trained student model, LightPFP achieved
significant improvements in data efficiency and inference speed while maintaining high accuracy.
Limitations of this study include the use of only the MTP model as the student and PFP as the teacher,
without exploring alternative choices for either role. In addition, future work could investigate broader
applications and examine different training techniques for the distillation method.
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A Broader Impact

LightPFP is a framework designed for efficient training of MLIPs that can support large-scale simula-
tions. By significantly improving data efficiency, computational scalability, and accuracy, LightPFP
holds potential to accelerate material discovery. For example, breakthroughs enabled by LightPFP

7

http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi


could contribute to the development of carbon-neutral energy solutions and renewable energy sys-
tems, driving sustainable technological progress and improving quality of life globally. However,
similarly to any powerful technology, the potential misuse of material discovery technologies bears
ethical considerations. The same advancements that enable progress in sustainable technology could
be exploited for harmful purposes, such as the creation of weapons or hazardous chemicals. We
discourage the use of LightPFP or related technologies for applications that could negatively impact
society.

B Additional details of student pre-training

B.1 Model architecture

MTPs employ a mathematically rigorous descriptor system based on invariant moment tensors that
encode atomic environments [36]. In MTP, energy can be calculated by the sum of the atomic
energy functions of each atom i in the structure: E =

∑
i Vi, where Vi =

∑
α ξαBα(ni). ξα

denotes a learnable coefficient of MTP, Bα denotes a basis function and ni denotes a set of rij , a
relative coordinate position of atom i to its neighbors. Each basis function Bα comprises of matrix
contractions of moment descriptors Mµ,ν , where µ and ν are non-negative integers. The moment
descriptor Mµ,ν for atom i is defined as:

Mµ,ν(ni) =
∑
j

fµ(rij) rij ⊗ rij ⊗ · · · ⊗ rij︸ ︷︷ ︸
ν times

where rij = rj − ri is the relative position vector to neighbor j within cutoff radius Rcut, “⊗” denotes
a tensor outer product. The function fµ described a radial part depending on µ is expressed as

fµ(|rij |, zi, zj) =
NQ∑
β=1

c(β)µ,zi,zjQ
β(|rij |)

where c
(β)
µ,zi,zj is a learnable parameter, z indicates the atomic type, the radial function Qβ(|rij |)

is the combination of Chebyshev polynomials of the first kind and cutoff function, and NQ is the
number of polynomials.

Moment descriptors are contracted to form rotationally-invariant basis functions Bα(ni) that pre-
serve SO(3) symmetry, enabling accurate representation of complex many-body interactions. The
formulation of MTP achieves high data efficiency—basis functions span a complete polynomial space
while avoiding explicit angular dependence, enabling accurate fits with small training sets [36, 37].
With training data, we fit MTP to learn the parameters ξ = {ξi, ..., ξnB

}, where nB is the number of
basis, and c = {c(β)µ,zi,zj}, where the number of coefficients nc depends on number of fµ, element
pairs including the pair of itself, and NQ: nc = nfµ × nelem-pair ×NQ.

In this study, the pre-trained MTP model employed in this study utilizes 77 basis functions Bα(ni).
For each element pair, we employ 4 radial part functions fµ, where each function comprises 16 Cheby-
shev polynomials Qβ . Consequently, each element pair is characterized by 64 (16×4) parameters.
The cutoff distance Rcut was set to 6 angstroms.

B.2 Training method

We employed a comprehensive dataset to train PFP, a universal potential-based graph neural net-
works. This dataset comprises 86 different elements, covering nearly the entire periodic table and
encompassing both equilibrium structures and numerous disordered structures that deviate from
equilibrium states. The dataset includes not only bulk phases but also complex structures such as
surfaces, adsorption configurations, and clusters. This comprehensive coverage is the fundamental
reason why PFP exhibits broad applicability across diverse materials simulations. For dataset details,
please refer to Takamoto et al. [3].

However, compared to PFP [3], moment tensor potentials (MTPs) are compact models with limited
parameters and constrained expressive power, typically applicable only to single materials systems.
Consequently, using MTPs to fit all datasets simultaneously presents significant challenges. Therefore,
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Task index Dataset description
1 Single substance structures
2 Bulk structures with two elements
3 Crystal structures from materials project database
4 Structures with random atomic position
5 Bulk structures with defects
6 Single molecules
7 Structures composed by multiple molecules
8 Molecules with element substitution
9 Adsorption structures of surfaces and molecules

10 Random combinations of surfaces and molecules
11 Slabs
12 Clusters

Table 3: Task definitions for Reptile meta learning algorithm based on datasets trained for PFP [3].

our MTP pre-training strategy aims to optimize the model to facilitate subsequent fine-tuning for
individual tasks, instead of maximizing accuracy across all datasets. To achieve this objective, we
employed the Reptile meta-learning algorithm [38].

The Reptile algorithm operates by iteratively sampling tasks from a task distribution and updating
model parameters to enhance the model’s ability to rapidly adapt to new tasks. In our implementation,
we partitioned the complete dataset into 12 specific tasks based on structural types, as detailed in
Table 3. During each inner loop iteration, we select a task (i.e., a dataset containing specific structural
types such as single molecules) to train the MTP model. Given the substantial size of each task’s
dataset, we limit training to one epoch per inner loop before proceeding to the parameter update. The
model parameters are then updated according to the following formula:

δθ = θi − θ,

θ ← θ + βδθ,

where θ represents the MTP parameters, θi denotes the parameters after the i-th inner loop, and β
is a hyperparameter in the Reptile algorithm that controls the magnitude of the meta-update step
during training. In our implementation, β is set to 0.5. We iteratively repeat the task sampling and
inner-loop/meta-update procedures for 100 iterations until convergence of energy, forces, and stress
is observed across all datasets.

We employed the Adam optimization method with a learning rate of 1×10−3. The model was trained
for 1 epochs with a batch size of 256. Total pre-training time was approximately 100 hours.

B.3 Parameter extraction from pre-trained student

Our pre-trained student model contains 86×86×4×16 training parameters for the radial function c
and additional 77 coefficients for the basis functions ξ. The modular structure of MTP enables
selective parameter extraction during inference or fine-tuning, significantly enhancing computational
efficiency. The extraction procedure is straightforward, depending on elements used for the task. For
example, when handling a material containing only H and O elements, we can extract the relevant
subset of the radial function parameter tensor—specifically a 2×2×4×16 matrix corresponding to
these elements, while maintaining the coefficients of the basis function unchanged. Consequently,
although the pre-trained model may contain numerous parameters, it automatically reduces to a
compact, element-specific model equivalent in size to those trained from scratch for the particular
material system.

C Additional details on Ni3Al experiments

C.1 Training dataset generation

We use the Ni3Al crystal structure downloaded from materials project [41] (mp-2593) as an input
structure to generate datasets. A full dataset containing 1529 Ni3Al structures is generated following
the static and dynamic sampling methods.
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The static methods are compression, deformation of lattices, and displacement of atomic positions. In
the compression method, the lattice constants of the input structure are isotropically scaled from 95%
to 105% with an interval of 0.5%. Atomic positions are scaled along with the lattice constants. In the
deformation method, a supercell consisting 2× 2× 2 replication of the unit cell of the input structure
are first created. Then, for 6 independent components of strain tensors with strains from -0.02 to 0.02
with an interval of 0.005 are applied to the supercell to generate new structures. In the displacement
of atomic positions, we generate 20 structures by randomly picking one atom and displacing it from
the equilibrium position along x, y, or z axis by 0.5 angstrom.

The dynamic method uses molecular dynamics (MD) with initial configurations of both defect-free
bulk structure and bulk structure with vacancies, as well as surface structures. For defect-free
bulk structure (the input structure), we create 2 × 2 × 2 supercells and perform 20000 steps MD
simulations with an sampling interval of 100 at the temperatures of 500 K, 1000 K, and 1500 K. The
same condition are applied to the MD simulations, however, with 10000 MD steps for 3 × 3 × 3
and with 2000 MD steps for 4 × 4 × 4 supercells. For bulk structures with vacancies, we create
three 2 × 2 × 2 supercells and randomly delete one atom. The structures are then subject to MD
simulations with 2000 MD steps while other simulation parameters remain the same as above. Similar
MD simulations with 1000 MD steps were repeated again for three 3× 3× 3 with one vacancy. For
surface structures, we generate 6 surface structures by cutting the input structure along (111), (110),
(100), (221), (211), and (210) directions. The six surface structures are then used to perform 1000
steps MD simulations with sampling temperature of 300 K, 600 K, 900 K and an sampling interval of
100.

Smaller datasets for testing data efficiency are generated by two methods, subsampling and direct
sampling. In the subsampling methods, datasets with sizes of 100, 200, 400, and 800 are generated by
randomly sampling from the full dataset with 1529 structures. For each size, five datasets are created
for obtaining the uncertainty on testing tasks. In the direct sampling method, dataset generation is
performed by applying the previously used static and dynamic sampling approaches, but with the
number of MD steps in all MD simulations reduced to fractions of 1/16, 1/8, 1/4, and 1/2 of the
original.

C.2 Model training setups

Finetuned student models were trained on the pre-trained model described in Appendix B.2. MTP
architecture is identical to that of pre-trained student. Both scratch-trained student models and
finetuned student models are training in the same manner.

We split the dataset into 90% for training and 10% for validation, using the validation set both to select
the model with the lowest validation loss and to assess validation errors. Optimization was performed
using Adam [42] with a batch size of 128, following a three-stage training procedure. n the first stage
(125 epochs), the loss coefficients for energy, forces, and stress were set to (10−5, 10, 10−5). In the
second stage (250 epochs), they were adjusted to (1, 0.1, 10). In the third stage (125 epochs), the
loss coefficients were automatically determined to balance the three losses. Specifically, we first
computed the total validation loss of the second-stage model using the stage-two coefficients as loss
weight. The coefficient for the energy loss was then calculated as the total weighted validation loss
divided by three and further divided by the energy loss from stage two. The coefficients for forces
and stress were calculated analogously, each using their respective loss from stage two.

The total training spanned 500 epochs. In all stages, mean squared loss was used for energy, force,
and stress loss training. A linear warmup learning rate scheduler was applied, increasing the learning
rate from zero to its stage-specific maximum during the first 20% of epochs in each stage, and then
linearly decaying it to approach zero by the final epoch. The learning rates for stage 1, stage 2, and
stage 3 were set to 0.1, 0.01, and 0.01, respectively. Training can be done on a single GPU within
half an hour for each setting.

C.3 Property calculation

We calculate errors for energies, forces, stresses, lattice length, elastic tensors, elasticities, phonon
frequencies, surface energies, and vacancy formation energies. For clarity, only the errors for energies,
forces, phonon frequencies, and surface energies, are present in the main body. All results are
shown in Figure 4. The error calculations are detailed below. All of them are difference between the
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predictions of student models and those of PFP. The mean absolute errors of energies, forces, and
stresses are evaluated on the validation set (10% of input datasets). Lattice length tests are performed
through the geometry optimization of the Ni3Al crystal structure (mp-2593), and the relative errors
are averaged over three lattice lengths (a, b, and c). Elastic tensors and elasticity are calculated
through the geometry optimization of the crystal structure and the linear fitting between strain and
stress. The errors of elastic tensors are averaged over six elastic tensor components. The elasticity
errors are the averaged errors over bulk modulus, shear modulus, Young’s modulus, and Poisson’s
ratio. The error of phonon spectra is the average over the errors of phonon energies at each wave
vector in phonon spectra. The error of surface energy is the average over the errors of different
facets up to largest index of 2. Vacancy formation energies are calculated by systematically removing
each atom from the initial Ni3Al structure and referring to the potential energy of the pristine bulk
structure.

C.4 Comparison of pre-trained and scratch-trained student

Due to space constraints, we report only a subset of all properties we evaluated in the main body of
the paper. Here, we present all the properties used to compare pre-trained and scratch-trained students
in Figure 4. A similar trend is observed across all properties: the pre-trained student consistently
achieves superior performance and exhibits greater training stability.
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Figure 4: Comparison of data efficiency between finetuned pre-trained and scratch-trained student
models.
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D Additional details on high entropy alloy experiments

D.1 Training dataset generation

The composition of HEA is 20% each of Al, Co, Cr, Fe, and Ni. HEAs have attracted significant
attention due to their exceptional mechanical properties. However, their complex multi-element
nature poses challenges for training MLIPs. Datasets are constructed for the training of LightPFP
and MTP-DFT. Given that HEAs are solid solutions composed of five elements without an uniform
configuration, each lattice site exhibits a highly diverse local atomic environment due to elemental
variation. To efficiently sample training data, we adopt a "random substitution" strategy: starting
from a pure Al structure, we randomly replace lattice sites with Co, Cr, Fe, or Ni atoms at a 20%
probability. Molecular dynamics simulations are then used to sample training structures. This process
is repeated many times to diversify the dataset. The initial structures include FCC bulk crystals, slab
structures with Miller indices less than 4, and grain boundaries with Σ values less than 10. The
composition of the LightPFP dataset is shown in Table 2. Using PFP for data sampling took 24 hours,
followed by 1 hour of model training, totaling 25 hours.

The MTP-DFT dataset was generated following the same strategy. PFP-driven molecular dynamics
yielded 1012 structures, which were then calculated using VASP to obtain energies, forces, and
stresses. Notably, since the trained model is intended for use on surfaces and grain boundaries, the
dataset includes corresponding configurations. However, some surfaces and grain boundaries can
only be represented by relatively large atomic models even when their sizes are minimized as much
as possible, such as the (3 1 1) slab (144 atoms) and the Σ9 38.94°/[1 1 0] (2 -2 -1) grain boundary
(140 atoms). These increase the difficulty of DFT calculations, which scale cubically with number
of atoms, highlighting the advantage of using universal potentials for sampling. Constructing this
DFT dataset took 637 hours on a single GPU. Using ab-initio driven molecular dynamics sampling
would have taken an estimated 60,000 hours, making MLIP construction prohibitively expensive.
Subsequently, we spent 1 hour training the MTP-DFT model, similarly to LightPFP.

D.2 Property calculation

We used the four MLIP models to compute important properties of the HEA, with DFT results
serving as ground truth. We began with the equation of state. Starting from the equilibrium crystal
structure, we varied the lattice constant from -5% to +5%, then optimized atomic positions and
lattice parameters at fixed volumes. This yielded energy–volume curves, which were fitted using
the Birch-Murnaghan equation to extract equilibrium volume and bulk modulus. Calculations were
performed on a bulk HEA structure with 256 atoms. We then computed the elastic properties using
the stress–strain methodology [43] to obtain the elastic tensor, from which bulk modulus, Young’s
modulus, and shear modulus were derived. The same bulk HEA structure was used. Surface energies
were also evaluated. The surface structure with low Miller index is collected for training. To test
extrapolation reliability, we selected surfaces with higher Miller indices for evaluation. The surface
formation energy was calculated using the formula:

γsurf =
Esurf − nsurf

nbulk
Ebulk

2Asurf
,

where Esurf is the energy of a slab with two surfaces, Ebulk is the energy of the bulk HEA, nsurf and
nbulk are the atom counts in the surface and bulk structures, and Asurf is the surface area. Given the
randomness of HEA structures, the energies of surface structures and bulk structure are averaged from
5 different configurations that share the same lattice but different arrangement of elements. Finally,
we computed grain boundary formation (GB) energies. The training set included low-mismatch grain
boundaries (CSL

∑
< 10). For testing, we selected several grain boundary structures with

∑
> 10.

The formation energy was calculated using the following equation:

γGB =
EGB − nGB

nbulk
Ebulk

2AGB
,

where EGB and Ebulk are the energy of GB and bulk structures, nGB and nbulk are their atoms counts,
and AGB is the grain boundary area. Again, we averaged over five GB and bulk configurations.
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Table 4: Composition of the high entropy alloy dataset.
Type of Sampling Number of Number of
structure method structures atoms

LightPFP Dataset (labeled by PFP)
crystal substitution+MD 2040 206040
boundary substitution+MD 6200 1083760
slab substitution+MD 1398 66816
Total 9638 1356616

MTP-DFT Dataset (labeled by DFT)
crystal substitution+MD 531 42484
boundary substitution+MD 286 9152
slab substitution+MD 195 8724
Total 1012 60360

D.3 HEA dataset statistics

Table 4 shows the statistics of the high entropy alloy dataset. Although it can be seen that PFP-labeled
dataset is larger than DFT-labeled dataset, the data collection time of PFP is much faster (24 hours)
than DFT (637 hours).

D.4 Full results.

Due to space constraints, we only report some parts of the evaluation for mechanical properties,
surface energy, and grain boundary energy in the main body of the paper. Figure 6 illustrates the force
error across four different models, while Figure 5 compares inference speed, training time, and the
maximum number of atoms supported by various methods. Table 5 presents the complete comparison
results of DFT and MLIP models on HEA properties. It is important to note that MTP-DFT and
LightPFP share the same model architecture, and thus can support the same maximum number of
atoms.
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Figure 5: (a) Maximum number of atoms on single GPU with PFP, MACE, LightPFP (MTP-DFT
has the same inference speed as LightPFP); (b) Benchmark of inference speed and model building
time cost (time spent for training data generation and fine-tuning) of PFP, MACE, LightPFP, and
MTP-DFT.
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Figure 6: Parity plot of DFT forces and predicted forces by different MLIPs, (a) PFP (b) LightPFP
(c) MACE and (d) MTP-DFT.
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Table 5: Comparison of DFT and MLIP models on HEA properties
Property DFT PFP LightPFP MACE MTP-DFT
Equation of State
Volume (Å3/atom) 11.58 11.51 11.51 11.48 11.29
Bulk modulus (GPa) 165.64 165.66 164.35 159.18 162.27
Mechanical Properties (GPa)
C11 195.2 202.5 196.3 177.2 197.2
C22 211.4 206.9 203.3 183.5 202.7
C33 197.5 206.7 204.3 182.7 203.1
C12 140.9 145.9 151.7 145.9 153.3
C13 142.9 152.9 156.6 148.3 157.6
C23 131.1 137.9 144.9 141.3 148.2
C44 116.5 109.4 106.2 80.2 103.7
C55 124.0 114.2 110.6 84.6 107.1
C66 120.3 112.9 109.9 83.9 106.8
Bulk modulus 159.23 165.45 167.81 157.14 169.02
Shear modulus 69.99 65.79 60.42 45.05 58.54
Young’s modulus 183.14 174.27 161.84 123.36 157.44
Average Error – 7.20 10.65 23.35 12.55
Surface Energy (eV/Å2)
(4, 1, 0) 0.127 0.136 0.133 0.121 0.126
(4, 1, 1) 0.170 0.171 0.165 0.167 0.168
(4, 2, 1) 0.142 0.149 0.148 0.134 0.145
(4, 3, 0) 0.139 0.144 0.143 0.137 0.143
(4, 3, 2) 0.137 0.143 0.145 0.126 0.142
(4, 4, 1) 0.148 0.153 0.153 0.146 0.154
(4, 4, 3) 0.171 0.178 0.175 0.174 0.176
Average Error – 0.0058 0.0053 0.0052 0.0036
Grain Boundary Energy (eV/Å2)
Σ13 22.62/[1 0 0] 0.0559 0.0621 0.0578 0.0424 0.0523
Σ15 48.19/[1 2 0] 0.0794 0.0809 0.0787 0.0602 0.0825
Σ13 147.80/[1 1 1] 0.0378 0.0300 0.0294 0.0206 0.0268
Σ13 67.38/[1 0 0] 0.0584 0.0617 0.0563 0.0332 0.0504
Σ11 129.52/[1 1 0] 0.0955 0.0735 0.0771 0.0670 0.0737
Average Error – 0.0081 0.0063 0.0207 0.0095
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We describe how our method works and provide experimental results that
LightPFP demonstrates good accuracy and efficiency.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We described limitation in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided information in the main body and appendix for reproducing our
results with Matlantis [4].
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We do not have a plan to release the code at this moment because of the usage
of proprietary software Matlantis.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Described in experiment sections and Appendices C and D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars in the data efficiency experiments, which shows that
pre-training the students can be superior. Howver, we did not give error bar in s
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Described in Section 3.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Experiments do not involve human subjects or participants. We also discussed
Broader impact in Appendix A.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Described in Appendix A

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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