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Abstract
We address the challenge of actively ranking a
set of items/players with varying values/strengths.
The comparison outcomes are random, with a
greater noise the closer the values. A crucial re-
quirement is that, at each iteration of the algo-
rithm, all items must be compared once, i.e., an
iteration is a perfect matching. Furthermore, we
presume that comparing two players with closely
matched strengths incurs no cost and, in contrast,
a unit cost is associated with comparing players
whose strength difference is more substantial. Our
secondary objective is to determine an optimal
matching between players based on this cost func-
tion: we propose and analyze an algorithm that
draws on concepts from both AKS sorting net-
works and bandit theory. Our algorithm achieves
both objectives with high probability, and the total
cost is optimal (up to logarithmic terms).

1. Introduction
Background and motivation: Sorting through pairwise
comparisons is a foundational challenge in computer sci-
ence, extending its significance to diverse applications
(Bengs et al., 2021). However, in many practical scenar-
ios, these comparisons inherently possess a random nature.
For instance, consider the assessment or ranking of players
in games or sports, such as Chess, where Elo scores are
employed (Elo, 1978). In such cases, when two players or
teams engage repeatedly, the outcome is not consistently
identical; the proximity of their values or strengths corre-
sponds to a likelihood of winning converging toward 1/2.

Consequently, the task of ranking items or players based
on these noisy, random comparisons has evolved into a
critical objective (Minka et al., 2018; Bengs et al., 2021).
Microsoft’s TrueSkill software, for instance, is employed to
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match and rank thousands of Xbox gamers by leveraging
their historical performance records, reflecting the outcomes
of past matches (Herbrich et al., 2006; Minka et al., 2018). A
noteworthy challenge arises from the dual nature of ranking
and proposing engaging matches, both of which, though
complementary, can be challenging to harmonize.

On one hand, the ranking process necessitates the explo-
ration of potential comparisons. Merely pairing two play-
ers with each other, for instance, does not provide insights
into how these players compare with others in the broader
context. On the other hand, this exploration may result in
matches between players with substantially different values.
While informative for ranking purposes, such deterministic
comparisons may lack interest for the involved players, as
the outcome tends to be predictable, with one player con-
sistently prevailing. Recognizing this challenge, platforms
aim to rank players while concurrently pairing individuals
of relatively similar skills (Minka et al., 2018). These prin-
ciples align with the broader framework of “active ranking”
(Falahatgar et al., 2017b; Zoghi et al., 2017; Szörényi et al.,
2015; Saha & Gopalan, 2019; Ren et al., 2019).

The majority of active ranking algorithms hinge on deter-
mining the minimum number of comparisons (sample com-
plexity) required to produce the accurate ranking with a
predetermined confidence level (Falahatgar et al., 2017b;a;
2018; Ren et al., 2019).

However, a common trait of these algorithms is their ten-
dency to leave certain players unpaired. Typically, the algo-
rithm repetitively compares players who are challenging to
discriminate, with these individuals being selected multiple
times (Ren et al., 2019). Conversely, players with signifi-
cantly greater (or lesser) strength than the majority are often
left unpaired after a few games.

This characteristic proves undesirable in the context of video
games, where a player left unattended for numerous rounds
may disengage from the platform. To address this concern,
we introduce an additional constraint on active ranking al-
gorithms. Specifically, at each iteration (or round), these
algorithms are required to pair all N players (equivalently,
perform N/2 comparisons in parallel). In essence, the algo-
rithm, at each round, selects a perfect matching of players
based on the outcomes of previous rounds, collects the re-
sults of all pairs, and proceeds to the next round.
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Acknowledging that players generally prefer matchups
against opponents of comparable skill levels, we assign a
cost to each proposed pair, set to 0 if the difference in values
between the players in the pair is small and 1 if the differ-
ence is substantial. Consequently, the cost of a matching is
the sum of the costs associated with its pairs.

Model and notations: We consider a scenario involv-
ing N items or players (for simplicity, we assume that
N is even), each associated with an unknown ranking de-
noted as (r(1), r(2), . . . , r(N)). The primary objective is
to discern this ranking through pairwise noisy comparisons.
Specifically, when two items, i and j, are paired, the out-
come of the comparison is “i beats j” with a probability
of p(i, j) and “j beats i” with a complementary probabil-
ity of p(j, i) = 1 − p(i, j). For the sake of simplicity, we
assume the absence of ties, although this would not pose a
significant challenge. An implicit, albeit crucial, assump-
tion underlying this framework is the independence of re-
sults from queried comparisons (Falahatgar et al., 2017a;b;
Heckel et al., 2019; Saha & Gopalan, 2019).

To reconstruct the ranking from the comparison results,
we introduce a structure on the matrix p(i, j). The ini-
tial assumption is that p(i, j) > 1/2 if i has a better rank
than j, denoted as r(i) < r(j). Consequently, the key pa-
rameters in noisy ranking are the ε(i, j) = p(i, j) − 1/2,
the additional probability of i winning against j. Notably,
ε(j, i) = −ε(i, j) and ε(i, j) ≥ 0 whenever r(i) < r(j).
The magnitude of |ε(i, j)| is interpreted as the “skill gap”
between players i and j. We shall consider the standard fol-
lowing assumptions on the ε(i, j) matrix (Yue et al., 2012):

Assumption 1.1. Strong Stochastic Transitivity (SST)
(Tversky & Russo, 1969) For any i, j, k ∈ [N ], if r(i) <
r(j) < r(k), then ε(i, k) ≥ max(ε(i, j), ε(j, k)).

Assumption 1.1 posits that if player i is stronger than j
(ε(i, j) ≥ 0) and player j is stronger than k (ε(j, k) ≥
0), then it is easier for player i to beat k than j. This
assumption is commonplace and satisfied in various models,
with additional details provided in Appendix A.

Assumption 1.2. Stochastic Triangle Inequality (STI) If
r(i) < r(j) < r(k), then ε(i, k) ≤ ε(i, j) + ε(j, k).

Assumption 1.2 reflects a “local skill ordering”: when play-
ers i and j exhibit minimal differences in strength (i.e.,
0 ≤ ε(i, j), ε(j, k) ≪ 1), player i should not be signifi-
cantly stronger than player k. Further discussion on this
assumption is provided in Appendix A.

To learn the true ranking r(·), the algorithm sequentially
selects, at each round t, a perfect matching Mt, i.e., a
partition of the player set into pairs. In other words,
Mt = {{gt,1, gt,2}, {gt,3, gt,4}, . . . , {gt,N−1, gt,N}},
where {gt,1, gt,2, . . . , gt,N} = {1, 2, . . . , N}. Henceforth,

we refer to “perfect matchings” simply as “matchings”.

Example (Bradley-Terry-Luce model): The Bradley-
Terry-Luce model (BTL) (Bradley & Terry, 1952; Chetrite
et al., 2017; Corff et al., 2018; Diel et al., 2020; Chen et al.,
2022; Gao et al., 2023) serves as a well-established para-
metric model for defining p(i, j). In this model, each player
possesses a corresponding strength denoted as θi, and the
probability p(i, j) is given by the formula exp(θi)

exp(θi)+exp(θj)
.

It is straightforward to verify that BTL adheres to both As-
sumption 1.1 and 1.2. More generally, the winning excess
probabilities can be expressed as ε (i, j) = F (θi − θj),
where F , referred to as the “Model function,” is any non-
decreasing Lipschitz function satisfying F (−x) = −F (x)
and F (+∞) ≤ 1

2 .

Matching Cost: As previously mentioned, one of the
motivating examples pertains to efficient matchmaking in
video games (Minka et al., 2018; Herbrich et al., 2006). The
objective is to devise a matchmaking system that selects
a matching Mt at each round. For the sake of simplicity,
we assume a fixed set of players, all eager to participate in
each round against an opponent with a sufficiently similar
skill level; otherwise, they express dissatisfaction (if the
game is perceived as too easy or too hard). The platform’s
dual aim is to rank players while minimizing the number of
dissatisfaction. To model this, we consider a fixed known
threshold ε∗, such that players i and j are content with their
pairing if, and only if, |ε(i, j)| ≤ ε∗. Specifically, the cost
of a matching M is the sum of the costs associated with the
generated pairings, i.e., CM =

∑
i,j∈M 1{|ε(i, j)| > ε∗}.

Problem statement and objectives: An algorithm, at
each round t, selects a matching Mt and observes the
outcomes of the induced random comparisons (and only
those). The overarching objectives are to sequentially and
adaptively choose matchings M1,M2, . . . ,Mt so that, after
some (random) number of rounds T , the algorithm provide
two key outputs, correct with a probability of at least 1− δ,
where δ ∈ (0, 1) is a predetermined confidence parameter.
The first one is an estimated ranking r̂(·) and the second
one, a matching M̂∗ minimizing the matching cost.

The algorithm’s performance is evaluated based on either
the sample complexity (the number of rounds T needed, or
equivalently, the number of comparisons NT/2) or alterna-
tively the cumulative regret, defined as:

R(δ) =

T∑
t=1

CMt
− TC∗, (1)

where C∗ = minM∈M CM . It is important to note that T
is a random stopping time determined by the algorithm, not
a fixed budget of comparisons.
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Main Results: Our main contributions are threefold:

The first contribution is an algorithm that outputs a weak-
ened version r̂ of the ranking, termed (ε, δ)-PAC ranking. In
essence, any two items such that ε(i, j) > ε satisfy r̂(i) <
r̂(j), in which case r̂ is said to ε-correct, with high probabil-
ity i.e. larger than 1− δ. The sample complexity (number
of comparisons) is O(Nε2 log

3 N log(N/δ)), and the time

complexity (number of rounds) is O( log
3 N log(N/δ)

ε2 ).

The second contribution utilizes the aforementioned algo-
rithm to obtain the exact ranking in O( log

3(N) log(N/δ)
mini ∆2

i
)

rounds where ∆i = ε(σ(i), σ(i + 1)) where σ(i) denotes
the i-th ranked player, i.e., σ = r−1.

The third contribution establishes that the latter algorithm
can be employed to learn an optimal matching, with
an additional regret term (hiding log log terms) of order
O
(∑

i
log(N/δ)

∆2
ε,i

)
, where ∆ε∗,i = ∆i − ε∗.

1.1. Related works

Active ranking, exact and PAC: The first related algo-
rithm (Feige et al., 1994) is tailored for the case of N totally-
ordered elements, where comparisons between any two of
them have the same known probability of error α < 1/2. Its
sample complexity is of order O(N log(N/δ)

(1/2−α)2 ) to retrieve an
exact ranking with a probability greater than 1− δ.

A major limitation of this algorithm lies in the assump-
tion of a uniform probability of error on any comparison,
known and bounded away from 1/2. In many practical
scenarios, comparisons are prone to errors with different
probabilities, which can be arbitrarily close to 1/2, and their
values are unknown. These limitations were partially miti-
gated in (Falahatgar et al., 2017b;a; Saha & Gopalan, 2019;
Ren et al., 2018) to develop algorithms that find (ε, δ)-PAC
ranking in O(N log(N/δ)

ε2 ) comparisons, achieving optimal
sample complexity (Falahatgar et al., 2017a). Subsequent
improvements (Ren et al., 2019; Saha & Gopalan, 2019;
2020) led to reduced sample complexities, leveraging in-
dividual skill gaps, ultimately reaching a sample complex-
ity of O(

∑ log log(1/∆i)+log(N/δ)
∆2

i
). Unfortunately, these

algorithms are sequential in nature, querying comparisons
one by one without parallelization or matching constraints.
Specifically, they construct a tree-like structure sequentially
exploited for efficient ranking, either with Binary-Insertion-
Sort (Ren et al., 2019) or Quick-Sort (Szörényi et al., 2015).
In both cases, a form of “congestion” arises at the root of the
tree, as every unsorted player must play a substantial num-
ber of times against the root’s player. This is impractical in
real-world applications, as in the video games example, as
it leads to significant waiting times before getting paired.

Our algorithm addresses the problem of (ε, δ)-PAC rank-

ing in the fully parallelized case with a sample complexity
log3(N) of the lower bound for sample complexity and time
complexity (obtained in the uniform error case). The SST
and STI assumptions we consider are relatively mild and
commonly encountered (Falahatgar et al., 2017b;a).

Combinatorial bandits: The matching problem can be
reframed as a specific instance of combinatorial semi-bandit
(Cesa-Bianchi & Lugosi, 2012), a domain that has recently
garnered significant attention and witnessed improvements
in regret minimization across multiple settings (Wang &
Chen, 2018; Giraud et al., 2019; Perrault et al., 2019;
2020a;b; Sentenac et al., 2021; Merlis & Mannor, 2021;
Hou et al., 2023). The combinatorial structure is evident,
as the set of all matchings on a graph with N vertices has
a cardinality of (N)!

2N/2(N/2)!
≃ Ω

((
N
e

)N/2
)

. The main dif-
ference though is that the cost function is quite different.
Nonetheless, the standard algorithms and arguments still
hold (i.e., computing the number of times each action must
be sampled would follow the same line of proof), computing
the regret requires different – but straightforward – computa-
tions. In the ranking from matching problem, combinatorial
bandit algorithms would incur a regret scaling, discarding
log(N) terms, as O

(
N2 log(1/δ)

∆2
min

)
, where ∆min denotes the

expected gap between an optimal matching and the best sub-
optimal matching (Merlis & Mannor, 2020; Kveton et al.,
2015). We refer to Section 2.1 and Appendix E for more
details. In contrast, our algorithm incurs a regret scaling
as O

(
N log(1/δ)

∆2
0

)
, where ∆0 := mini min{∆i,∆ε∗,i} is

another problem parameter that is typically much bigger
than ∆min. We refer to Section 2.1 for such examples.

Parallel Sorting algorithms: Parallel comparison-based
sorting algorithms, suitable for parallel computing, have
been explored early on (Knuth et al., 1973; Batcher, 1968;
Valiant, 1975). A specific class of parallel sorting algorithms
is the “sorting networks” (Knuth et al., 1973; Ajtai et al.,
1983), with the property that no element is involved in multi-
ple comparisons at the same round. This property is crucial
for relevance, as players to be ranked can only engage in
one game at a time. For a comprehensive introduction to
sorting networks, refer to (Knuth et al., 1973).

Various methods exist for constructing sorting networks,
such as Batcher sorting networks (Batcher, 1968). The
sample complexity of Batcher sorting networks is of or-
der O

(
N log2(N)

)
, implying a time complexity of at least

O
(
log2(N)

)
, as there are at most N/2 comparisons simul-

taneously. Another notable sorting network is the AKS-
Paterson sorting network (Ajtai et al., 1983; Paterson, 1990),
with a sample complexity ofO (N log(N)) and a time com-
plexity of O (logN). However, it comes with a hidden
constant, denoted as D, which might be large (Natvig, 1990;
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Seiferas, 2009). Since the AKS sorting network has a time
complexity of O(logN), it enables the ranking of N ele-
ments using only O(logN) matchings.

We shall leverage the AKS-Paterson algorithm as a black-
box to construct a selection scheme for sequentially choos-
ing matchings and finding an (ε, δ)−PAC ranking.

1.2. Organization of the paper

Section 2 is dedicated to the first objective: recovering the
exact ranking. The necessity of this step is illustrated in
Section 2.1, highlighting its role in obtaining an optimal
matching. Subsequently, we delve into the description of
the ranking algorithm in Section 2.2, where we first outline
the relevant properties of AKS-Paterson (Ajtai et al., 1983;
Paterson, 1990) for this problem. We then explain how to
employ AKS-Paterson (or any other sorting network with
O(logN) time complexity) to obtain an (ε, δ)-PAC ranking,
and then how to reach an exact ranking by refining ε further
and further.

In Section 3, we demonstrate how to leverage an exact
ranking to output the optimal matching with a small (almost
minimax optimal) regret.

More general comments, proofs and most pseudocodes are
postponed to the Appendix, due to space limit.

2. Ranking
In this section, we start by giving the general scheme to
obtain an (ε, δ)-PAC ranking by carefully adapting the clas-
sical AKS-Paterson sorting network. Next, we show how
to obtain the exact ranking using additional techniques. We
give a general bound for the sample complexity (number of
comparisons used to retrieve an (ε, δ)-PAC ranking and to
retrieve the exact ranking) that depends on the instance.

2.1. Exact ranking is needed for optimal matching

As the cost function satisfies c(i, j) = 0 if ε(i, j) ≤ ε∗, it
might give the impression that the optimal matching could
be recovered from any (ε∗/2)-correct ranking (or more gen-
erally, by some Ω(ε∗)-correct ranking). Unfortunately, this
is not the case, as proved by the following instances, illus-
trated in Figure 1. This proves that the exact ranking is
(sometimes) necessary; of course, this is not always the case
(for instance if ε(i, j) < ε∗ for all pairs (i, j)).

Given some arbitrarily small parameter η > 0, the instance
is described by ε(1, i) = ε∗ + η/2 for any i > 2, by
ε(1, 2) = ε∗ − η/2; the other gaps all being equal to η,
i.e., ε(i, j) = η, for all j > i > 1.

In this instance, the optimal matching has a cost of 0, it
matches player 1 to player 2. As a consequence, it requires

Figure 1. In this instance, finding the second ranked item is neces-
sary to compute the optimal matching, irrespectively of η

Figure 2. In this instance, checking that a matching is suboptimal
(without using the ranking) can be arbitrarily complex for small η

ranking all N − 1 weakest players (or at least finding the
exact best one) to pair 1 with 2. Notice that ranking the
weakest N − 1 players requires an η-correct ranking.

We also illustrate the complexity of the problem with an-
other simple instance with only 4 vertices (players are
ranked in their index number, i.e., r(i) = i). The skill
gaps are defined, for η ≪ ∆≪ ε∗ as

ε(1, 2) = ε(3, 4) = ε∗ −∆, and ε(2, 3) = ∆+ η

ε(1, 3) = ε(1, 4) = ε(2, 4) = ε∗ + η.

The optimal matching is {1 ∼ 2, 3 ∼ 4}, with a cost of
0. It is not difficult to show that ranking the items and
then finding this matching has a global cost (neglecting all
log terms) of O( 1

∆2 ). On the other hand, if the ranking
is ignored, detecting that the matching {2 ∼ 3, 1 ∼ 4} is
suboptimal has a cost of Ω( 1

η2 ), that can be arbitrarily larger.
A reason behind this result is that the cost of matching is not
monotonous with the cumulative skill gaps of its compari-
son: in this example, the optimal matching has a cumulative
skill gap of 2(ε∗ −∆) ≃ 2ε∗, while the suboptimal one has
a cumulative skill gap of ε∗ + ∆ + 2η ≃ ε∗, hence twice
smaller. This also explains why naı̈ve combinatorial bandit
algorithms would perform poorly.

Once again, we emphasize that it is not always the case
that the exact ranking must be known before finding an
optimal matching. There are many instances of problems
where there are many optimal different matchings. The
trivial example is when all the comparisons are costless,
i.e., |ε(i, j)| < ε∗ for all i, j ∈ [N ]. In that case, the true
ranking is irrelevant. In Appendix D we also show that,
if all ε(σ(i), σ(i + 1)) ⩽ ε∗/2, then any (ε∗/2)-correct
ranking can be used to build an optimal matching. The
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interested reader can check that our algorithms for build-
ing optimal matchings can be adapted to avoid looking for
perfect matchings in these favorable situations.

2.2. PAC ranking

For a detailed presentation of AKS-Paterson sorting net-
work, we refer to (Chvatal; Paterson, 1990). The main prop-
erty of this sorting algorithm is that it has a time complexity
of O(logN). This implies that using O(logN) matchings,
with noiseless comparisons, the algorithm outputs the in-
put list sorted. To handle noise, we will use the subroutine
COMPARE acting as a substitution for the deterministic com-
parison procedure. COMPARE, whose simple pseudocode is
postponed to Appendix F.1 takes as input two players i and
j and two parameters ε and δ), used as a quality requirement
for the performed comparison. Precisely, COMPARE returns
the stronger player with probability at least 1− δ with “con-
fidence”, whenever the gap ε(i, j) is larger than the input
threshold ε. Lemma 2.1 below shows that COMPARE indeed
behaves as described.
Lemma 2.1 (Theoretical Performance of COMPARE). COM-
PARE terminates after b = O(ε−2 log (1/δ)) comparisons
and if ε ≤ |ε(i, j)|, it returns the strongest player and

“Confident” with probability at least 1 − δ. Conversely, if
“confident”, then |ε(i, j)| > ε with probability at least 1− δ.

In the other case, when ε ≥ |ε(i, j)|, COMPARE returns the
best player with probability greater than 1/2.

Lemma 2.2 below is an implication of Lemma 2.1. The
proof is relegated to Appendix C.1. Note that the constant
D present in the following statement is independent of N
and is a characteristic of the AKS-Paterson algorithm: AKS-
Paterson time complexity, see Section 1.1.
Lemma 2.2. Using COMPARE in the AKS-Paterson al-
gorithm as a comparison procedure with the parameters
ε/(2D2 log(n)) and δ′ = δ/(ND logN) outputs a ranking
that is (ε, δ)-PAC in at mostO

(
ε−2N log3 (N) log (N/δ)

)
comparisons, and in O

(
ε−2 log3 (N) log (N/δ)

)
rounds.

This algorithm will be referred to as AKS(ε, δ).

The sample complexity for retrieving an (ε, δ)-PAC rank-
ing is bounded from below by Ω

(
N
ε2 log (N/δ)

)
(Ren et al.,

2018). Thus, using AKS-Paterson algorithm with COM-
PARE as a comparison procedure is at most log3(N) shy
of the lower bound. Conversely, our method yields a time
complexity of O

(
log3(N)

ε2 log (N/δ)
)

, which is much faster
than the state of the art (Falahatgar et al., 2017b; Ren et al.,
2019), requiring O

(
N
ε2 log (N/δ)

)
time complexity.

2.3. Exact ranking

In this section, we leverage the confidence statement of
COMPARE to design Algorithm CASCADINGAKS which

retrieves an exact ranking with high probability (or stated
otherwise a (0, δ)−PAC ranking algorithm). The main intu-
ition is to work by phases s = 1, 2, . . ., where each phase
ends with a εs-correct estimated ranking, for εs = 1

2s . More
specifically, a phase ends with the construction of a clus-
tering of similarly skilled players (two players in different
clusters are correctly ranked with high enough probability),
and the next phase will refine this clustering, until each
cluster is a singleton.

The choices of parameters are εs =
1
2s , with the associated

confidence δs =
6δ

π2s2 . We shall denote by r̂s the estimated
ranking obtained at the end of phase s, that shall be εs-
correct with probability at least 1−

∑s
l=1 δl.

2.3.1. PRELIMINARY LEMMAS

This subsection is devoted to simple, easy-to-state, and to-
prove lemmas that will be useful in the construction and
the refinement of the clustering. Lemma 2.3 explains how
comparisons that are “Confident” allow propagation of this
confidence across the ranking.

Lemma 2.3. Let i, j ∈ [N ] such that r(i) < r(j) and
ε(i, j) > ε. Let r̂ be an ε-correct ranking. Then for all
k ∈ [N ] such that r̂(j) < r̂(k), it holds that r(i) < r(k).

Proof. Suppose for the sake of contradiction that there is
an element k such that r(j) < r(k) and r̂(k) < r̂(i). Then,
since r(i) < r(j), Assumption 1.1 implies that ε(i, k) ≥
ε(i, j) > ε. This contradicts the fact that r̂ is ε-correct.

Lemma 2.4 is a direct consequence of Lemma 2.3; it pro-
vides a simple way to implement a divide-and-conquer strat-
egy for ranking.

Lemma 2.4. Let j1, j2, j3 ∈ [N ] such that r(j1) < r(j2) <
r(j3) and ε(j1, j2) > ε, ε(j2, j3) > ε. Let r̂ be an ε-correct
ranking. Then for all i, k ∈ [N ] such that r̂(i) < r̂(j1) and
r̂(j3) < r̂(k), it holds that r(i) < r(k).

Proof. Applying Lemma 2.3 on (j1, j2) and (j2, j3) gives
the following: for all i, k ∈ [N ] such that r̂(i) < r̂(j1) and
r̂(j3) < r̂(k), it holds that r(i) < r(j2) < r(k).

In the situation described in Lemma 2.4, two elements u and
v satisfying r̂(u) < r̂(i) and r̂(k) < r̂(v) do not need to be
compared. This is the purpose of flagging comparisons as
confident or not, and is a key property in the construction of
the clustering detailed in the following section.

2.3.2. CONSTRUCTION OF A CLUSTERING

In this subsection, we illustrate how to cluster a set of play-
ers [N ]. We call the sub-algorithm performing this task AN-
CHORING and its pseudo-code is given in Section F.2. We
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Figure 3. Illustration of comparisons involving σ̂(i) (Edges)
queried by Anchoring.

shall assume that there was no cluster created yet (this hap-
pens if the skill gaps are all very small). In the subsequent
phases of the main algorithm, this clustering procedure will
be performed independently on each cluster created (as in
standard hierarchical clustering).

The clustering relies on “anchor points”, A1, A2, . . . , AK

(chosen data-adaptively for some integer K ∈ N and of in-
creasing rank in r̂s), such that COMPARE(Ak, Aℓ, εs, δs+1)
is confident, and r̂s(Ak) − r̂s(Aℓ) is not too large, of
order O(max{|Nεs(Ak)|, |Nεs(Aℓ)|)}, where Nε(i) =
{j ∈ [N ], |ε(i, j)| ≤ ε} is the ε-neighborhood of i. The
clustering generated by anchor points is defined by

Ck =
{
i ∈ [N ], r̂s(Ak−1) < r̂s(i) < r̂s(Ak)

}
,

with the convention that r̂s(A0) = 0 and r̂s(AK+1) =
N +1. The anchor points Ak are added to either Ck or Ck+1

depending on their parity, see Algorithms 5 and 6 for details.
A key quantity of a clustering is its maximal weight, defined
as Wr̂(A1, . . . , AK) = maxk∈[K+1] |Ck|.

To find anchor points, we introduce the following graph
Gr̂s , whose vertices set is [N ] and {i, j} is an edge of
Gr̂s if and only if |r̂s(i) − r̂s(j)| = 2m for any in-
teger m ∈ N. Algorithm 3 samples edges of Gr̂s

(following COMPARE procedure) and identify, for each
player i, two different elements ms(i) and Ms(i) such
that m(i) is confidently weaker than i and M(i) is con-
fidently stronger than i. Lemma 2.5 shows that |r̂s(i) −
r̂s(ms(i))| = O(max {|N2εs(i)|, |N2εs(ms(i))|} and
|r̂s(i)− r̂s(Ms(i))| = O(max {|N2εs(i)|, |N2εs(Ms(i))|}.

We illustrate Algorithm 3 behavior in Figure 3. The objec-
tive is to identify elements confidently ranked below/above
σ̂(i). To achieve this, it is compulsory to seek items, in
red, not in Nε(σ̂(i)), whose elements are in white. Since
r̂(i) is an approximate ranking, red and white items can be
intertwined, thus to identify elements confidently ranked
below/above σ̂(i), one must seek far from σ̂(i).

Lemma 2.5. Let r̂ be an ε-correct ranking. Then
Anchoring(N, r̂, ε, δ/(N logN)) has a time complexity of

order O
(

log(N/δ)
ε2 maxi∈[N ] log (|N2ε(i)|)

)
.

It returns a set of anchor points A1, . . . , AK such that

Figure 4. Illustration of the behavior CASCADINGAKS. i is confi-
dently between A2j−1 and A2j+2, but its rank with respect to A2j

and A2j+1 is uncertain.

Wr̂(A1, . . . , AK) = O(maxi∈[N ] |N2ε(i)|).

The proof of this lemma is relegated to Appendix C.2.

2.3.3. FROM (εt, δ)-PAC TO (εt+1, δ)-PAC RANKING

In this section, we describe how the Algorithm CASCADIN-
GAKS builds an εs-correct ranking from a εs-correct one.
The main idea is relatively natural: to improve the estimated
ranking, it applies AKS(εs+1, δs+1) to the different ele-
ments of a partition induced by the clusters (but twice, and
not only once). At a high level, the first iteration of MUL-
TIAKS produces a ranking that is locally εs+1-correct (on
the red cells U1, U2, ... in Figure 4), but not globally, as mis-
rankings between elements of Uj and Uj−1 or Uj+1 could
still exist but not with cells further away: through a second
application of MULTIAKS on the blue cells U ′

1, U
′
2, ... Fig-

ure 4, the mis-rankings left are eliminated. It thus produces
an εs+1-correct ranking r̂s.

The pseudocode is given in Algorithm 1. For the sake of
readability, CASCADINGAKS has been separated into sub-
protocoles, detailed in Appendix F.3. Figure 4 illustrates the
behavior of CASCADINGAKS.
Lemma 2.6. The time complexity of transitioning from stage
s to stage s+ 1 of Algorithm 1 is

O
(

1

ε2s+1

log

(
N

δs+1

)
log3

(
max
i∈[N ]

N2εs+1(i)

))
. (2)

Furthermore, the ranking obtained at the end of stage s is
εs+1-correct with probability at least 1−

∑s+1
l=1 δl.

The instance-dependent bound on the sample complexity
depends on the size of the skill gaps between a player and
those ranked immediately above/below him, as shown by
the following result.
Theorem 2.7. Each player i is involved in at most

O
(

log3 N

min{∆2
i ,∆

2
i−1}

(
log

N

δ
+ log log

1

min{∆i,∆i−1}

))
(3)
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Algorithm 1 CASCADINGAKS(δ)
Input: items {1, . . . , N}, confidence level δ > 0;
Initialize: r̂0 (a random permutation [N ]), s = 1

1: while L ̸= [1, . . . , 1] do
2: εs ← (1/2)s;
3: (A1, . . . , AK)← ANCHORING(N, r̂s−1, εs, δs/3);
4: ℓ = ⌊K+1

2 ⌋;
5: C1, . . . , Ck+1 ← CLUSTERING((A1, .., AK+1), r̂s);
6: (U1, .., Uℓ)← GRP1((A1, .., AK), (C1, .., CK+1));
7: r̂′ = MULTIAKS((U1, . . . , Uℓ), εs, δs/6);
8: C1, . . . , CK+1 ← CLUSTERING((A1, . . . , AK), r̂′);
9: (U ′

1, . . . , U
′
ℓ)← GRP2((A1, . . . , AK), (C′1, . . . , C′K+1));

10: r̂s = MULTIAKS((U ′
1, . . . , U

′
ℓ), εs, δs/6)

11: L = CHECK(εs, δs/3)(r̂s);
12: for i ∈ [N ] do
13: if i is correctly ranked (L[i] = 1) then
14: i can be moved to the gap estimation phase;
15: end if
16: end for
17: s← s+ 1;
18: end while
19: return r̂s

comparisons before its rank can be confidently identified.

For the proof of Theorem 2.7, see Appendix C.4.

Depending on min{∆i,∆i−1}, the rank of player i can be
confidently determined sooner than the exact ranking (Algo-
rithm 1, line 14). Thus CASCADINGAKS can move players
easily ranked (large min{∆i,∆i−1}) to the gap estimation
phase before exact ranking is achieved. Precisely, as soon as
r̂(i−1), r̂(i), r̂(i+1) are confidently ranked, GAPESTIMA-
TION proceeds to estimate the gaps between r̂(i− 1), r̂(i)
and between r̂(i), r̂(i + 1). This is relevant in practice,
but there are instances where this does not happen (see the
discussion in Section 2.1). This motivates the following
corollary whose proof is postponed to Appendix C.4.

Corollary 2.8. Algorithm 1 has a time complexity of

O

(
log3 N

mini∈[N ] ∆
2
i

(
log(

N

δ
) + log log

1

mini∈[N ]∆2
i

))
.

(4)
It returns the true ranking with probability at least 1− δ.

3. Gap estimation and Regret
In this section, we assume that Algorithm 1 has output an
exact ranking, hence the remaining objective is to identify
an optimal matching. Without loss of generality and for the
sake of notations, we can assume that the true ranking is the
identity, r(i) = i.

Lemma 3.1 show that, in the optimal matching, all pairs

with a cost of zero are between two players of adjacent rank
i and j = i+ 1. This implies that it only remains to detect
which of the skill gaps ε(i, i+ 1) are above, or below ε∗.

Lemma 3.1. Let V = {1, . . . , N} and E the set of edges
such that G = (V,E) is a graph verifying: if {i, j} ∈ E,
then, for every k and l such that i ≤ k, l ≤ j, {k, l} ∈ E.
Then the matching obtained by traversing the graph from 1
to N , matching i to i+ 1 whenever possible, is a matching
with maximal size.

This lemma will be applied on the ε∗-adjacency graph
Gε∗ = ([N ], Eε∗) defined by: the edge (i, j) belongs to
Eε∗ if and only if ε(i, j) ≤ ε∗. The maximal matching of
this graph is an optimal matching with respect to the cost
function. The fact that G satisfies the condition of Lemma
3.1 is a direct consequence of Assumption 1.1

The pseudo-code of Algorithm GAPESTIMATION learn-
ing the ε∗-adjacency is given in Appendix F.5, as it is
quite similar to standard multi-armed bandit techniques
(and more precisely on best arm identification). The main
idea is to start from the graph E0 = ([N ], E0) with
E0 = {(i, i+ 1), i ∈ [N − 1]} and to sequentially remove
edges once the algorithm detects that they do not belong to
Gε∗ with high probability. This creates a nested sequence of
graphs Gt = ([N ], Et), i.e., such that Eε∗ ⊂ Et+1 ⊂ Et,
with high probability. The algorithm, using the subprotocol
SAMPLEMATCHING, whose pseudo-codes is postponed to
Appendix F.4, chooses at stage t a maximal matching of Gt

(completed arbitrarily into a perfect matching of [N ]).

The main intuition is the following. Each time the matching
selected contains an edge {i, i + 1} ∈ Et that does not
belong to Eε∗ , the regret might increase by one, but this can
only happen finitely many times. Indeed, after some time,
the algorithm will eventually learn that {i, i+ 1} ̸∈ Eε∗ . It
only remains to control when this happens, using a variant
of LIL-UCB (Jamieson et al., 2014).

An edge {i, i+ 1} is removed from Et as soon as

p̂i,i+1(t)−
1

2
≥ ε+ u(Ti,i+1(t), δ), where

Ti,i+1(t) =

t∑
s=1

1{{i, i+ 1} was sampled at step s}

× 1{{i, i+ 1} ∈ Es}

is the number of times the selected matching contains the
pair {i, i+ 1} that belonged (erroneously) to Es, p̂i,i+1(t)
is the empirical frequency of wins of player i against i+ 1

and u(n, δ) = 2

√
log(

2n log(t)
δ )

t . This algorithm yields the
guarantees given in the following Lemma 3.2.

Lemma 3.2. With probability at least 1−δ, for any i ∈ [N ]

7
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such that ∆ε∗,i := ∆i − ε∗ > 0, it holds

sup
t

Ti,i+1(t) ≤
32

∆2
ε∗,i

log
(2N

δ
log

32

∆2
ε∗,i

)
. (5)

The lemma is a consequence of the law of iterated loga-
rithm, see (Jamieson et al., 2014), and its proof is somewhat
standard in multi-armed bandit literature, hence omitted. It
yields the following regret bound.
Corollary 3.3. The regret of learning an optimal matching
is upper-bounded by

O

 ∑
i∈[N−1],ε(i,i+1)>ε∗

1

∆2
ε∗,i

log
(N
δ
log

1

∆2
ε∗,i

) . (6)

Proof. Lemma 3.2 provides an upper bound on the number
of comparisons between i and i + 1 required to learn that
∆i > ε∗ and that this comparison is costly.

Let us assume that those comparisons are indeed costly
(otherwise, there is no issue) and that the algorithm keeps
sampling it after learning it. Since the graph Et contains
Eε∗ , the estimated cost of SampleMatching is smaller than
the cost of the optimal matching. Consequently, any costly
edge willingly put in the matching (line 6 of SampleMatch-
ing) corresponds to one costly edge of the optimal matching.

Hence the total regret is the number of times a costly edge
is sampled while belonging to the current edge set Et.

3.1. Wrapping up and Minimax Optimality

By combining Theorem 2.7 and Corollary 3.3, we get the
following Theorem 3.4. It is minimax optimal (up to poly-
log term) in the sense that, for any given values of ∆i and
∆ε∗,i, there exists an instance (satisfying both assumptions
1.1 and 1.2) where this bound cannot be improved (up to the
log3 term). We however acknowledge that the regret can be,
in some instances, lower than the above bound and refer to
Section D).
Theorem 3.4. The regret of learning an optimal matching
without knowing the ranking is upper bounded by

O
( ∑

i∈[N−1]:∆i>ε∗

1

∆2
ε∗,i

log

(
N

δ
log(

1

∆2
ε∗,i

)

)

+
∑

i∈[N−1]

1

∆2
i

log(
N

δ
log

1

∆2
i

)

)
. (7)

The optimality proof relies on the following three 4-vertices
instances, where η1 < η2 ≪ ε∗, illustrated in Figure 5:

Instance A: ε(1, 2) = ε(3, 4) = ε∗ + η1 and ε(2, 3) = η2
Instance B: ε(1, 2) = ε(3, 4) = ε∗ − η1 and ε(2, 3) = η2
Instance C: ε(1, 3) = ε(2, 4) = ε∗ − η1 and ε(3, 2) = η2.

and the other ε(i, j) are all strictly bigger than ε∗. Straight-
forward computations show that the optimal matching in
Instance A is{2 ∼ 3, 1 ∼ 4} with a cost 1. In Instance
B (resp. C), on the other hand, the optimal matching is
{1 ∼ 2, 4 ∼ 3} (resp. {1 ∼ 3, 4 ∼ 2}), for a cost of 0. In
all instances, any other matching has an additional cost of
at least 1. Notice that in instances B and C, computing the
optimal matching requires the true ranking (no matter η).

Standard online learning arguments (Kaufmann et al., 2016;
Bubeck et al., 2013) yield that in order to distinguish be-
tween Instances A and B/C, one must sample an edge {1, 2}
or {3, 4} Ω( log(1/δ)

η2
1

) times. And the ranking of 2 or 3, to

distinguish between instances B and C, requires Ω( log(1/δ)
η2
2

)

samples of the edge {2, 3}. An interesting feature of this
example is that it illustrates that even though matching play-
ers 2 to 3 has no direct cost (as the skill gap is very small),
this pairing induces some “indirect” but unavoidable loss to
other players, that are matched in unbalanced games.

As a consequence, distinguishing between A and B/C incurs
a cost of Ω( log(1/δ)

η2
1

) in Instance A, while distinguishing

between B and C incurs a cost of Ω( log(1/δ)
η2
2

) in both In-
stances B and C. In particular, if the choice of the instance
is made uniform at random, the expected cost is of order
Ω
(

log 1/δ
η2
1

+ log 1/δ
η2
2

)
. Duplicating this 4-vertices example,

independently N/4 times, gives a regret that has to scale as

R(δ) ≥ Ω
(
N

logN/δ

η21
+N

logN/δ

η22

)
= Ω

( ∑
i∈[N−1],ε(i,i+1)>ε∗

1

∆2
ε∗,i

log
(N
δ

)
+
∑
i∈[N ]

1

∆2
i

log
(N
δ

))
.

This construction can be generalized to any values of ∆ε∗,i

and ∆i, by adapting values of η1 and η2 per 4- instances.

4. Conclusion and future work
We designed an algorithm with time complexity optimal for
ranking and optimal matching, but up to log3 N . A natural
research direction would be to close this gap. Moreover,
these algorithms are based on the AKS sorting network and
suffer from its drawback, a large constant hidden in the O.
Avoiding AKS network, with the same result, is another
exciting challenge.

Impact Statement This paper presents work whose goal
is to advance the field of Machine Learning and Sorting.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
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Figure 5. The 3 different instances and their optimal matching
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A. Discussion of Assumptions 1.1 and 1.2
The main results of the different algorithms rely on Assump-
tions 1.1 and 1.2 that we restate here for completeness.

Assumption A.1. Strong Stochastic Transitivity (SST). For
any i, j, k ∈ [N ], if r(i) < r(j) < r(k) then:

ε(i, k) ≥ max{ε(i, j), ε(j, k)}. (8)

Assumption A.2. Stochastic Triangular inequality (STI).
For any i, j, k ∈ [N ], if r(i) < r(j) < r(k) then:

ε(i, k) ≤ ε(i, j) + ε(j, k). (9)

Consequences of (SST) (SST) have two main conse-
quences:

1. There is a ranking r that is consistent with
(ε(i, j))i,j∈[N ].

2. If r(i) < r(j) < r(k) and ε(i, j) > ε∗ then ε(i, k) >
ε∗.

Consequence 1 can be obtained with less restrictive assump-
tions like Weak Stochastic transitivity (WST), the minimum
assumption required for the existence of a ranking consistent
with the skill gaps (ε(i, j))i,j∈[N ].

Assumption A.3. Weak Stochastic transitivity (WST). For
any i, j, k ∈ [N ], if ε(i, j) ≥ 0 and ε(j, k) ≥ 0 then
ε(i, k) ≥ 0.

If only A.3 holds, even though a ranking exists and is con-
sistent with the skill gaps, its existence is not useful.

Indeed, to decide whether a given player i has an opponent j
with |ε(i, j)| ≤ ε∗, the gaps between i and any other player
must be estimated, which yields a sample complexity of
Ω
(∑

i<j
1

ε2(i,j)

(
log log 1

ε2(i,j) + log (1/δ)
))

(Ren et al.,
2019).

It should be noted that models where every element i has a
“strength parameter” θi and there is an increasing function
F such that ε(i, j) = F (θi − θj) and F (0) = 0, which
are called parametric models, all satisfy the assumption
(SST). Among notable parametric models is the Bradley-
Terry-Luce (BTL) model (Bradley & Terry, 1952), where F
is the logistic function. Elo ranking system (Elo, 1978) is
based on (BTL) model.

Consequences of (STI) The consequences of forgoing
STI have been elucidated (Falahatgar et al., 2017a): there is
an instance of verifying (SST) where any (1/4, 1/8)-PAC
ranking algorithm requires Ω(N2) comparisons, see (Fala-
hatgar et al., 2017a) Theorem 7. It is perhaps convenient to
recall that (STI) implies that [Lemma 19(Falahatgar et al.,
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2017b)] the following holds without conditions on the or-
dering of i, j, k:

(ε(i, j) ≤ ε1) & (ε(j, k) ≤ ε2) =⇒ ε(i, k) ≤ ε1 + ε2
(10)

BTL and STT/STI Notice that the Bradley-Terry-Luce
model (BTL) also verifies the (STI) condition. Indeed: con-
sider i, j, k three elements such that θi ≤ θj ≤ θk. The
(BTL) model indicates that ε(i, j) = F (θi − θk), where
F (x) = 1/(1 + exp(−x)). To show that (BTL) verifies
(STI), it remains to show that ε(k, i) ≤ ε(k, j) + ε(j, i).
This follows from the fact that F is concave on T+. Con-
sider τ(x) = F (x)

x the rate of change of F between 0 and x.
Since F is concave, this rate is decreasing. It follows that
τ(θk − θi) ≤ min (τ(θk − θj), τ(θj − θi)). Hence

ε(k, i) = τ(θk − θi)(θk − θi)

≤ τ(θk − θj)(θk − θi) + τ(θj − θi)(θj − θi)

= ε(k, j) + ε(j, i).

B. Short reminder of AKS sorting network
In this section, we present a comprehensive overview of the
AKS sorting network (Ajtai et al., 1983; Paterson, 1990).
For a more accessible yet detailed exposition of the algo-
rithm, we direct readers to (Chvatal). The organization of
this section unfolds as follows: we commence by provid-
ing a brief introduction to sorting networks, a category of
sorting algorithms well-suited for parallel computing. Sub-
sequently, recognizing the intricacy of the AKS algorithm,
we initially introduce an algorithm known as Halver-Sort.
Although slower than the AKS sorting network, Halver-Sort
serves as a more easily graspable precursor. We then delve
into the step-by-step transformations required to transition
from Halver-Sort to the AKS sorting network, elucidating
the performance gains achieved through this process.

B.1. Sorting networks

A sorting network, as introduced by Batcher (Batcher, 1968),
possesses a noteworthy characteristic: the predetermined
set of comparisons it is designed to perform is independent
of the input data, rendering the algorithm ”oblivious”. This
property is particularly advantageous when leveraging par-
allel computing for sorting, as it minimizes communication
between processors responsible for the comparisons.

In the context of sorting a list l of size N , envision containers
C1, C2, . . . , CN , representing memory slots to store the list
l. Initially unsorted, the goal is for Ci to contain the i-th
smallest element at the end, resulting in C1 containing the
smallest and CN the largest.

A sorting network entails a specified scheme of compar-
isons ((Ci1 , Cj1) , . . . , (Cit , Cjt) , . . .), where each pair

(Cit , Cjt) indicates a comparison instruction for the val-
ues inside the respective containers. If Cjt is observed to
be smaller than Cit , the containers exchange their contents.
Importantly, the choice of the comparison scheme remains
independent of the input list.

Note that if {it, jt} ∩ {it+1, jt+1} = ∅, the corresponding
comparisons are deemed independent, allowing parallel exe-
cution. Likewise, comparisons can be grouped into batches
of independent comparisons, facilitating simultaneous exe-
cution. Naturally, the batch size cannot exceed N/2.

For any sorting network, the comparisons can be organized
into batches, with the number of batches D representing the
time required for the algorithm to conclude if each batch is
processed in unit time. Thus, D serves as the depth of the
sorting network.

It is well-established that any comparison-based sorting al-
gorithm demands at least O(N logN) comparisons to sort
a list of size N . As sorting networks fall under the cate-
gory of comparison-based algorithms, they too necessitate
O(N logN) comparisons. Furthermore, given that each
batch has a size of at most N/2, it follows that any sorting
network has a depth of Ω(logN). This optimal depth is
matched by the AKS sorting network, which will be eluci-
dated below.

For an in-depth exploration of sorting networks, we refer
readers to (Knuth et al., 1973).

B.2. Halver-Sort

In this section, we introduce a sorting algorithm termed
Halver-Sort. The algorithm utilizes a comparison network,
specifically a perfect halver denoted as H . When provided
with an input list of size 2m, this perfect halver H partitions
the list into two sublists, each of size m. The first sublist
comprises the larger m values, while the second contains
the smaller m values. Employing this network, we devise
an algorithm that constructs a binary tree. At each node, the
algorithm utilizes H to split the list into superior and inferior
lists of equal sizes, forwarding these lists to the respective
child nodes. Notably, this algorithm bears a resemblance to
QuickSort (Hoare, 1962); however, in Halver-Sort, it is as if
the pivot is consistently the median, ensuring the division
of the list into two equal-sized sublists. Consequently, each
element steadily traverses the binary tree until reaching its
corresponding leaf.

Regrettably, a perfect halver H is proven to have a minimum
depth of at least 1

2 logm. Consequently, when considering
the depth of the binary tree (bounded by O(logN)), the
overall depth amounts toO(log2 N). Subsequently, we will
explore how deviating from the perfect halving property in
favor of approximate halving, as defined below, can lead to
a substantial acceleration of O(logN).
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B.3. AKS

There are two primary modifications required to transform
Halver-Sort into the AKS sorting network. The first entails
constructing an (2N, ε)-halver, which is permitted to make
errors. Formally, an (2N, ε)-halver is defined as follows:

Definition B.1. An (2N, ε)-halver is a network of compara-
tors that, given a list of 2N values, outputs two lists BL and
BR such that:

• For k ∈ [N ], at most εk of the k largest values among
the input are assigned to BL

• For k ∈ [N ], at most εk of the k smallest values among
the input are assigned to BR

A proof and construction of an ε-halver, along with its con-
stant depth independent of N (though dependent on ε), is
provided by (Ajtai et al., 1983; Paterson, 1990).

The second modification addresses the adaptation neces-
sary to accommodate the imperfections introduced by the
non-perfect halver, which may lead to errors in the halving
procedures. At a high level, the concept involves using an
ε-halver to identify a fraction of BR, which ideally con-
sists of the weakest values in BR, referred to as FL in the
subsequent definition.

Consider the binary tree employed in Halver-Sort. While
each node in Halver-Sort contains a perfect halver, in AKS,
some elements may take incorrect turns but are later singled
out and redirected upward in the tree to rectify the error.

The error correction is achieved through a sophisticated
module known as a (2N, 2f, εB , εf )-Separator, defined as
follows:

Definition B.2. A (2N, 2f, εB , εF )-separator is a (2a, εB)-
halver such that there are designated block FL and FR of
output wires such that

FL ⊂ BL (11)
FR ⊂ BR (12)

|FL| =|FR| = f (13)

and satisfying the following properties: ∀k ∈ {1, . . . , a}

1. the network places at most ϵF k of its smallest inputs
outside of FL (that is in BL − FL )

2. the network places at most ϵF k of its largest inputs
outside of FR (that is in BL − FL )

The blocks FL and FR play a crucial role in error correction.
With appropriately calibrated modules within a binary tree,
involving choices for εB , εf , and f , it can be demonstrated
that AKS indeed performs sorting.

For a comprehensive yet accessible presentation of the AKS
sorting network, we recommend referring to (Chvatal).

C. Omitted Proofs
C.1. Proof of Lemmas 2.1 and 2.2

For convenience, Lemma 2.1 is restated here:
Lemma C.1 (Theoretical Performance of COMPARE). COM-
PARE terminates after b = O(ε−2 log (1/δ)) comparisons
and returns the more preferred item with probability at least
1/2. Further, if ε ≤ |ε(i, j)|, then COMPARE returns the
stronger player and ”Confident” with probability at least
1 − δ, and, if ”Confident” is returned, that implies that
ε(i, j) > ε with probability at least 1− δ

Proof. W.l.o.g, assume that ε(i, j) > 0, then COMPARE ter-
minates after b = ⌈2ε−2 log(1/δ)⌉ = O(ε−2 log 1/δ)
comparisons. Since the algorithm is symmetric and
ε(i, j) > 0, then COMPARE returns j with probability
smaller than 1/2. Now, suppose that ε < ε(i, j), It remains
to prove that COMPARE returns i and that it is ”Confident”
with probability at least 1 − δ. Let E be the event that
p̂i,j < 1/2 + 2ε. Then, by Chernoff bound

P(E) ≤ exp
(
−2 (ε)2 b

)
≤ δ (14)

If E does not happen, then COMPARE returns i (the stronger
player) and ”Confident”. This holds with probability at least
1− δ/2

For convenience, we restate the Lemma 2.2
Lemma C.2. Using COMPARE in the AKS-Paterson
algorithm as a comparison procedure with the pa-
rameters ε/(2D log(N)) and δ′ = δ/(N log3 N),
the ranking retrieved is (ε, δ)-PAC in at most
O
(
ε−2N log (N) log (N/δ)

)
comparisons.

To prove this lemma, the only used property of AKS-
Paterson algorithm is that it is a network of compara-
tors, meaning that it can be expressed as a finite sequence
(Mt, Lt, Rt)t, where Mt is a perfect bipartite matching be-
tween elements Lt ⊂ [N ] and those of Rt ⊂ [N ].

Let σ0 be an arbitrary ordering (σ(i) is the element in po-
sition i). σ̂1(and subsequently rt) is obtain as follows: if
i ∈ L1 and j ∈ R1 are paired in M1, then σ̂0(i) and σ0(j)
are compared(For now, comparisons are noiseless). After
the comparison: σ1(j) gets the larger value and σ1(i) gets
the smaller one. In summary, positions in [N ] with indices
in R1 receive the larger values and elements with indices
in L1 receive the smaller values. σt is built similarly, by
induction.

Hence, σt is the ranking resulting from applying the t first
element of the sequence (Mt, Lt, Rt). Let σ̂t the ranking
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resulting from applying the same sequence, but with a faulty
comparator: COMPARE (with parameters (ε, δ) ) instead of
a perfect comparison. Then we have the following lemma:

Lemma C.3. The following bounds hold that:

|ε(σ̂t(i), σt(i))| ≤ tε. (15)

and this, simultaneously on all i ∈ [N ], with probability at
least 1− δtN/2

Proof. At time t, tN/2 comparisons have been queried to
construct σ̂t. Hence, all queries of COMPARE are simultane-
ous correct with a probability at least 1 − δtN/2. For the
rest of the proof, suppose that all the queries of COMPARE
are correct. The proof is by induction: for t = 0: σ̂0 = σ0

(no comparison queried yet).

Let t ∈ N. Suppose that equation 15 hold for t. Let i ∈
Lt+1 and j ∈ Rt+1 be two indices that are paired in Mt+1.

W.l.o.g, suppose that ε(σt(i), σt(j)) > 0, so much that
σt+1(i) = σt(j) and σt+1(j) = σt(i). σ̂t(i) and σ̂t(j) are
compared using COMPARE.

If σ̂t+1(i) = σ̂t(j) and σ̂t+1(j) = σ̂t(i),
then Equation 15 trivially holds for i and j be-
cause ε(σ̂t(i), σt(i)) = ε(σ̂t+1(i), σt+1(i)) and
ε(σ̂t(j), σt(j)) = ε(σ̂t+1(j), σt+1(j)).

If instead σ̂t+1(i) = σ̂t(i) and σ̂t+1(j) = σ̂t(j), this means
that ε(σ̂t(i), σ̂t(j)) ≤ ε. It follows from equation 10 (which
is a consequence of assumption 1.2) that

ε(σ̂t+1(i), σt+1(i)) = ε(σ̂t(i), σt(j) (16)
≤ ε(σ̂t(i), σ̂t(j)) + ε(σ̂t(j), σt(j))

(17)

≤ ε+ tε = (t+ 1)ε (18)

Moreover, ε(σt(j), σt(i)) < 0, hence the same reasoning
yields

ε(σt+1(i), σ̂t+1(i)) = ε(σt(j), σ̂t(i)) (19)
≤ ε(σt(j), σt(i)) + ε(σt(i), σ̂t(i))

(20)

≤ tε (21)

In summary |ε(σt+1(i), σ̂t+1(i))| ≤ (t+1)ε. The same rea-
soning applied to j yields |ε(σt+1(j), σ̂t+1(j))| ≤ (t+ 1)ε.
Hence the lemma.

Proof. Lemma 2.2 is a direct consequence of Lemma C.3:
for ε′ = ε/(2D logN) and δ′ = δ/(DN logN), the re-
trieved ranking r̂ verifies the following relation with respect
to the true ranking r:

∀i ∈ [N ], |ε(σ(i), σ̂(i))| ≤ ε/2 (22)

Let i < j ∈ [N ] two positions. Let σ̂(i) and σ̂(j) be the
players at those ranks according to σ̂ (the rank of player
σ̂(i) is i). It is sufficient to show that ε(σ̂(j), σ̂(i)) ≤ ε to
conclude that r̂ is indeed ε-correct. The Equation 10 and
Lemma C.3 yield:

ε(σ̂(j), σ̂(i)) ≤ ε(σ̂(j), σ(j)) (23)
+ ε(σ(j), σ(i)) (24)
+ ε(σ(i), σ̂(i)) (25)

≤ ε

2
+ 0 +

ε

2
= ε (26)

Hence the lemma.

C.2. Proof of Lemma 2.5

For convenience, the Lemma 2.5 is restated:

Lemma C.4. Let r̂ be an ε-correct ranking. Then
Anchoring(N, r̂, ε, δ) has a time complexity of order

O
(

log(N/δ)
ε2 maxi∈[N ] log (|N2ε(i)|)

)
.

It returns a set of anchor points A1, . . . , AK such that
Wr̂(A1, . . . , AK) = O(maxi∈[N ] |N2ε(i)|). Both these
claims hold simultaneously with probability at least 1− δ

The proof of Lemma 2.5 relies on the following observation:

Lemma C.5. Let r̂ be a an ε-correct ranking. Let i ∈ [N ]
and j ∈ Nε(i). Then:

|r̂(i)− r̂(j)| ≤ |N2ε(i)| (27)

Proof. First, notice that since r̂ is ε-correct, |r̂(i)− r(i)| ≤
|Nε(i)|. Indeed, to shift the rank of i with s, at least s
misrankings are needed. Since i cannot be misranked with
other elements than those of Nε(i), the shift s ≤ |Nε(i)|.
Similarly for every element j ∈ Nε(i), we have that |r̂(j)−
r(j)| ≤ |Nε(j)|.

Moreover, for every j ∈ Nε(i), it holds that Nε(j) ⊂
N2ε(i). This is a direct consequence of Assumption 1.2.
Now, notice that |r̂(i)− r̂(j)| counts the number of elements
ranked between i and j in r̂. Since r̂ is ε-correct, there is
two types of elements that are between i and j in r̂:

• Elements that are between i and j in the true ranking
r: these are included in Nε(i) because j ∈ Nε(i).

• Elements that are mismatched with respect to either i
or j: these are elements of Nε(i) and Nε(j) which are
both included in N2ε(i).

Hence, every element ranked between i and j in r̂ is an
element of N2ε(i) Hence, for every j ∈ Nε(i), it holds that
|r̂(i) − r̂(j)| ≤ |N2ε(i)|. This concludes the proof.

Now, the proof of Lemma 2.5 is presented
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Proof. First, Anchoring(N, r̂, ε, δ) queries at most
2N logN times COMPARE, with each query having a
confidence of δ

2N logN . It follows from a union bound that
all queries are simultaneously correct with probability at
least 1− δ. For the rest of the proof, assume it is the case.

There are two claims to the lemma:

1. Prove that Anchoring(N, r̂, ε, δ/(N logN))
finds an anchoring (A1, A2, . . . , AK) satisfying
Wr̂(A1, . . . , AK) = O(maxi∈[N ] |N2ε(i)|).

2. Prove that the comparisons queried can be organized
into O

(
log(N/δ)

ε2 maxi∈[N ] log |N2ε(i)|
)

matchings,
proving the upper bound on the time complexity.

To prove the first claim, make use of Lemma C.5. In-
deed, if z = ⌊1 + log(|N2ε(i)|)⌋ and m(i) and M(i)
are two elements such that r̂(i) − r̂(M(i)) = 2z , and
r̂(i) − r̂(m(i)) = −2z . Since 2z > |N2ε(i)|, m(i) and
M(i) are both outside of Nε(i) making comparing them to
i a confident comparison.

Now, consider the following anchoring:

• A1 = r̂−1(1)

• Ai+1 = m(Ai)

this anchoring has a weight function of

Wr̂(A1, . . . , AK) = max
i∈[K]

|Ci| ≤ max
i∈[K]

2|N2ε(Ai)| (28)

This is because |Ci| ≤ 2max{|N2ε(Ai−1)|, |N2ε(Ai)|}. In
conclusion, the anchoring (A1, . . . , AK) constructed satis-
fies the claim Wr̂(A1, . . . , AK) = O

(
maxi∈[N ] |N2ε(i)|

)
.

This prove the first claim.

The second claim states that Algorithm 3 has a time com-
plexity of O

(
log(N/δ)

ε2 maxi∈[N ] log |N2ε(i)|
)

. First, it fol-
lows from the first claim that every element i will encounter
an opponent that is confidently stronger than him (M(i))
and one that is confidently weaker than him (m(i)) at stage
z = ⌊1 + log |N2ε(i)|⌋ of Algorithm 3 at the latest. Hence,
at stage zm = ⌊1 + maxi∈[N ] log |N2ε(i)|⌋, every element
i has either encountered corresponding opponents m(i) and
M(i), or either r̂(i) − 2z < 1 or r̂(i) + 2Z > N . In both
cases, L[i] = U [i] = 1 for all i ∈ [N ] (step 3 in Algorithm
3), hence Algorithm 3 halts at stage zm at the latest.

Now, it remains to show that each stage costs O( log(N/δ)
ε2 )

matchings. we proceed as follows: W.l.o.g., suppose that
r̂ = Id. Recall that at stage z, Algorithm 3 queries com-
parisons between elements i, j such that |i− j| = 2z . It is
sufficient to show that all the queries of stage can be covered
with only 2 matchings. The proof of that is as follows:

[N ] is divided into consecutive segments Sk = {2z+1(k−
1) + 1, . . . , 2z+1k} for k ∈ {1, . . . , P = ⌊N/(2z+1)⌋}
of size 2z+1 each, with the last segment being
SP+1 = 2z+1P + 1, . . . , N (possibly empty). For
k ≤ P , segment Sk is divided into two halves: a left
half

SL
k = {2z+1(k − 1) + 1, . . . , 2z+1k + 2z} (29)

and right half

SR
k = {2z+1k + 2z + 1, 2z+1k}. (30)

SP+1 is also divided into

SL
P+1 = {2z+1(P ) + 1, . . . ,min{N, 2z+1(P + 1) + 2z}}

(31)
and

SR
P+1 = {2z+1(P + 1) + 2z + 1, . . . , N} (32)

whenever it makes sense. The following properties are
straightforward:

• There is no queries involving elements that are both in
the same set SR

k or SL
k for any k = 1, . . . , P + 1.

• If a comparison between i and j is queried with i ≤ j,
then there is a k ∈ [P + 1]] such that i ∈ SR

k and
j ∈ SL

k+1 or i ∈ SL
k and j ∈ SR

k .

• Elements of SL
1 and SR

P+1 are involved in one query
each.

If we match the elements of SL
k to those of SR

k in increasing
order, we get a perfect matching on [N ] \ SP+1 totaling to
⌊N/2z+1⌋ queries of COMPARE. Notice that in this way,
all queries of COMPARE that involve elements of SL

1 are al-
ready addressed. If SP+1 has more than 2z elements, match
elements of SL

P+1 with those of SP+1 in an increasing order
corresponding to the queries. Match what is left arbitrar-
ily. Notice that this way, all queries between elements of
SL
P+1 and those of SR

P+1 are addressed. In particular, all
queries involving SR

P+1 are addressed too. If SP+1 has 2z

or less elements, match arbitrarily. In summary, all queries
involving elements between SL

k and elements of SR
k for all

k ∈ [P + 1].

The leftover queries (involving elements from SR
k with ele-

ments from SL
k+1, for k ∈ [P ]) are addressed now in a sim-

ilar way. Elements of SR
k are matched with those of SL

k+1

in increasing order. Since no queries involving elements of
SL
1 are left for this stage z, they can be matched arbitrarily.

It remains to indicate the way in which elements of SR
P are

matched. They are matched to those of SL
P+1 whenever

possible. Match potential leftover arbitrarily. This way, all
queried comparisons of stage z have been addressed.
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In conclusion, we separated the queries of COMPARE,
queried by Algorithm 3 in a single stage into two matchings.
Since each comparisons is performed O

(
logN/δ

ε2

)
times by

COMPARE, each matching is repeated O
(

logN/δ
ε2

)
too, im-

plying a time complexity of logN/δ
ε2 per stage of Algorithm

3, hence the second claim.

C.3. Proof of Lemma 2.6

For convenience, Lemma 2.6 is restated:

Lemma C.6. The time complexity of transitioning from
stage s to stage s+ 1 of Algorithm 1 is

O
(

1

ε2s+1

log

(
N

δs+1

)
log3

(
max
i∈[N ]

N2εs+1
(i)

))
. (33)

Furthermore, the ranking obtained at the end of stage s is
εs+1-correct with probability at least 1−

∑s+1
l=1 δl.

Proof. This lemma is composed of two claims:

1. At the end of stage s, the ranking r̂s is εs-correct with
probability at least 1−

∑s
l=1 δl.

2. The time complexity of stage s is

O
(

1

ε2s
log

(
N

δs

)
log3

(
max
i∈[N ]

N2εs−1(i)

))
. (34)

The proof is conducted through induction Suppose that r̂s
is indeed εs-correct.

First(line 3), Algorithm 1 generates anchors (A1, . . . , AK)
that provides a clustering of maximum cluster size of
O
(
maxi∈[N ] |N2εs−1

|
)
. This step have a time complex-

ity of O
(

log(N/δ)
εs

maxi∈[N ]|N2εs−1|(i)

)
, and is sound with

probability at least 1− δs/3.

Now that a clustering is available, Algorithm 1 con-
structs (Uj)j as indicated in line 6. We have that
|Uj | ≤ |Cj | + |Cj | + 2 = O

(
maxi∈[N ] |N2εs−1

(i)|
)
.

Hence, line 7 would have a time complexity of
O
(

log(N/δs)
ε2s

log3(maxi∈[N ] |N2εs−1
(i)|)

)
. This step is

correct with a probability at least 1− δs/6: this is because
Algorithm F.3, is correct with a probability at least 1− δ/6
(using a union bound).

A similar reasoning is applied to line 10. As will be
shown later, |C′j | ≤ |Cj+1| + |Cj | + |Cj−1|. It follows that
maxj |U ′

j | = O
(
maxi∈[N ] |N2εs−1

(i)|
)
. Hence, with the

same reasoning as for step 1, the time complexity of step 1 is
shown to also be O

(
log(N/δs)

ε2s
maxi∈[N ] log

3 |N2εs−1(i)|
)

.
This step is also correct with probability at least 1− δs/6.

The last step of the stage is the checking step (halting condi-
tion). It also is correct with probability at least 1− δs/3.

Hence, the stage s has a time complexity of
O
(

log(N/δs)
ε2s

log3(maxi∈[N ] |N2εs−1
(i)|)

)
. All the

steps of stage s are simultaneously correct with probability
at least 1− δs.

To conclude the proof, it remains to show that if all the steps
of stage s are correct, then the ranking r̂s obtained is indeed
εs-correct. We will show the following claims that hold for
any set of anchors A1, ..., AK :

1. r̂′ is εs-correct on Uj .

2. r̂′ is εs−1-correct on [N ].

3. ∀j ∈ {1, . . . , ⌊K+1
2 ⌋}, ∀(i1, i2) ∈ C′2j × [N ];

(r̂′(i1) < r̂′(i2)) & (ε(i1, i2) < −εs) =⇒ i2 ∈
C2j+1.

4. r̂s is indeed εs-correct.

The third claim simply means that the only remaining mis-
rankings preventing ranking r̂′ from being εs-correct are be-
tween elements of C′2j and C′2j+1 for j ∈ {1, . . . , ⌊K+1

2 ⌋}.

1) r̂′ is εs-correct on Uj by direct application of Lemma 2.2.

2) Since each r̂′ is εs-correct on each Uj , it is εs−1-correct
too, for comparisons between elements i1 ∈ Uj1 and i2 ∈
Uj2 (j1 ̸= j2), εs−1-correctness is inherited from r̂s−1.
(elements in Uj according to r̂s are the same as according
to r̂s−1.)

3) The remaining misrankings are narrowed down as fol-
lows:

• There is no misrankings between elements of C′2j and
those of C′l for l ∈ [⌊K+1

2 ⌋] \ {2j − 2, . . . , 2j + 2}.
This is a direct application of Lemma 2.4.

• Elements i ∈ C′2j−2 satisfy r(i1) < r(A2j−1): this is
a direct application of Lemma 2.3 on (A2j−2, A2j−2)
and r̂′ (since it is εs−1-correct).

Let (i1, i2) ∈ C′2j−2 × C′2j . Either (r(i1) < r(i2)), in
which case there is nothing to prove because r̂′ and
r are in agreement, or (r(i2) < r(i1)): Recall that
elements in i2 ∈ C′2j verify ε(i2, A2j−1) < εs (be-
cause r̂′ is εs-correct on Uj and A2j−1 ∈ Uj). If
(r(i2) < r(i1) < r(A2j−1)), then it follows from As-
sumption 1.1 that ε(i2, i1) ≤ ε(i2, A2j−1) ≤ εs. This
means that i1 and i2 are not misranked for a precision
εs, thus eliminating misrankings between elements of
C′2j and those of C′2j−2.

Misrankings between elements of C′2j and those of
C′2j+2 are eliminated with the same reasoning.
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• Misrankings between elements of C′2j and those of
C′2j−1 are automatically eleminited since r̂′ is εs - cor-
rect on Uj , which includes C′2j and C′2j−1.

Hence, the only remaining misrankings are potentially be-
tween elements of C′2j and those of C′2j+1.

4) Step 1 corrects these potential misrankings, as it applies
AKS with a precision εs on U ′

j which contains C′2j and
C′2j+1.

Hence, after step 1, the algorithm will have eliminated all
potential misranking preventing r̂s from being εs-correct.
Hence, r̂s is indeed εs-correct. This is true provided that
all the steps are simultaneously correct. This happens with
probability at least 1− 2δs/3.

The proof is concluded by induction: For s = 0, r̂s is ε0 =
1/2-correct with probability 1 (every permutation is such).
Let s ∈ N, Suppose that at the end of the stage s, we have r̂s
is εs-correct with probability at least 1−

∑s
l=1 2δs/3. Then,

as shown, r̂s+1 is (εs+1)-correct with probability at least
1−2δs+1/3 given that r̂s is εs-correct. Since r̂s is εs-correct
with probability at least 1 −

∑s
l=1 2δl/3, through a union

bound, r̂s+1 is proven to be εs+1-correct with probability at
least 1−

∑s+1
l=1 2δs/3.

C.4. Proofs of Theorem 2.7 and Corollary 2.8

Theorem C.7. Each player i is involved in at most

O
(

log3 N

min{∆2
i ,∆

2
i−1}

(
log

N

δ
+ log log

1

min{∆i,∆i−1}

))
(35)

comparisons before its rank can be confidently identified.

Proof. Let i ∈ [N ]. if ε2s < min
{
∆2

i ,∆
2
i−1

}
, then i will

be flagged at step 1 as correctly ranked. Hence, i is involved
in at most:

s∑
l=1

logN/δl
ε2l

log3(N) ≤ log3(N)

s∑
l=1

4l log
π2Nl2

6δ

(36)

≤ 2 log3(N)4s log
π2Ns2

6δ
(37)

= O(log3(N)4s log
Ns2

δ
) (38)

For s = ⌈log( 1
min{∆i,∆i−1} )⌉, i is correctly ranked and

would have been involved in at most:

O
(

log3 N

min{∆2
i ,∆

2
i−1}

(
log

N

δ
+ log log

1

min {∆i,∆i−1}

))
(39)

Corollary C.8. Algorithm 1 has a time complexity of

O

(
log3 N

mini∈[N ] ∆
2
i

(
log(

N

δ
) + log log

1

mini∈[N ]∆2
i

))
.

(40)
It returns the true ranking with probability at least 1− δ

Proof. If εs < log 1
mini∈[N] ∆i

, then r̂s is εs-correct, hence
it corresponds to the true ranking (no gap is small enough
to induce an error). The probability of error of Algorithm 1
is upper bounded by (union bound):

∞∑
l=1

P({an error occured at stage l}) ≤
∞∑
l=1

6δ

π2l2
= δ

(41)
Hence, Algorithm 1 retrieves the exact ranking in the
claimed time complexity with probability at least 1− δ.

D. Going beyond worst cases
The underlying concept behind thresholding the “cost” of
a matching stems from the idea that obtaining an exact
ranking is prohibitively expensive and that games do not
have to be exactly balanced (i.e., ε(i, j) exactly equal to 0)
to be interesting. Unfortunately, and as discussed above,
thresholding does not allow bypassing the exact ranking
retrieval process, and in general, obtaining the exact ranking
is unavoidable (as instances exist where the exact matching
is unique, and retrieving it implies retrieving the ranking,
see also Section 2.1).

However, there are also many situations, obviously not the
worst-case ones, where retrieving an optimal matching is
nearly as costly as obtaining a ε∗-correct ranking. One
typical such situation is given in Theorem D.2. We proceed
to prove and illustrate this result in the remainder of this
section.

W.l.o.g., we suppose in this section that the items are
correctly ranked by there index, that is, i < j implies
ϵ(i, j) > 0.

For any estimated ranking rϵ, possibly indexed by ϵ, we let
σϵ = r−1

ϵ so any element i is immediately preceded in the
ranking rϵ by j = σε(rε(i)− 1).

The following lemma allows to bound the gap between j
and i when rε is ε-correct, when i− 1 and i are sufficiently
close.
Lemma D.1. Let rε denote a ε-correct ranking and assume
that ε+ ε(i− 1, i)) ≤ ε∗. Then j = σε(rε(i)− 1) satisfies
|ε(j, i)| ≤ ε∗.

Proof. Suppose first that j > i is actually weaker than i so
i and j are improperly compared by rϵ. As rε is ε-correct,
this implies that 0 < ε(i, j) ≤ ε ≤ ε∗.
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Suppose now that j < i is in reality stronger than i. Then
either j = i− 1, so by hypothesis

0 < ε(j, i) = ε(i− 1, i) ⩽ ε∗ ,

or j < i− 1, so j and i− 1 are improperly compared by rε.
In this last case, by Assumption 1.2,

0 < ε(k, i) ≤ ε(k, i−1)+ε(i−1, i) ≤ ε+ε(i−1, i) ≤ ε∗.

Lemma D.1 allows to prove the following theorem that
shows a typical situation where a staisfying matching can
be obtained using only an η-correct ranking.

Theorem D.2. Assume that there exists ε > 0 such that, for
any i ∈ [N − 1], ε(i, i+ 1) ≤ ε∗ − ε. Let rε denote any ε-
correct ranking. Let Mε denote the matching (σε(2i− 1) ∼
σε(2i), i ∈ [N/2]) that pairs the items ranked 2i − 1 and
2i by rϵ. Then Mε is a costless matching: CMε

= 0.

Proof. It is sufficient to prove that, for any i ∈ [N/2],

|ε(σε(2i− 1), σε(2i))| ≤ ε∗.

Fix j = σε(2i), we have ε(j−1, j) ⩽ ε∗−ε by assumption
so by Lemma D.1, σε(2i − 1) = σε(rε(j) − 1) satisfies
|ε(σε(2i− 1), σε(2i))| ≤ ε∗.

A really nice consequence of Theorem D.2 is that, if all
ε(i, i+1) ⩽ ε∗/2, then costless matchings can be built from
any ε∗/2-correct ranking. The condition ε(i, i+ 1) ⩽ ε∗/2
can easily be tested online and it is straightforward to adapt
our sampling policy in this case to prevent it from looking
at a perfect ranking. The details are left to the interested
reader.

A natural question that may arise from the preceeding result
is wether the condition that all ε(i, i + 1) ⩽ ε∗/2 is met
in some examples. It turns out to be typically the case as
shown by the following example. Assume that any i has
a “value” Xi that is a non negative random variable, say
uniform on [0, 1] to fix ideas, sampled independently from
the other Xj . Assume moreover that ϵ(i, j) = Xi−Xj

2 . The
rank r is then the function whose inverse σ = r−1 satisfies

Xσ(1) > . . . > Xσ(n) .

In words, the strongest item is the one with the highest value.
In this setting, the condition

max
i∈[N−1]

ε(σ(i), σ(i+ 1)) ⩽
ε∗

2

is thus met as soon as the maximal spacing between uni-
forms satisfies

max
i∈[N−1]

Xσ(i) −Xσ(i+1) ⩽ ε∗.

The maximal spacing of uniforms has been extensively
studied in probability and precise asymptotics are avail-
able, see (Devroye, 1981) for example, showing that it
scales asymptotically as logN/N . Therefore, as long as
logN
N < cε∗ for some small constant c, the condition

maxi∈[N−1] ε(σ(i), σ(i+ 1)) ⩽ ε∗

2 is met with high proba-
bility in this example.

E. Connections with CombUCB (Kveton et al.,
2015)

In this section, we shall draw some connections between
the online ranking problem and combinatorial bandits, even
though the two problems are quite different. We shall try
as much as possible to use the same notation as (Kveton
et al., 2015), and we will only provide high-level arguments
(as, again, CombUCB analysis does not hold in the rank-
ing problem, where the loss of sampling an edge is not
the expectation of some random variable, but a non-linear
transformation of it).

Formally, a stochastic combinatorial semi-bandit is a tuple
B = (E,Θ, P ), where E = {1, . . . , L} is a finite set of
L items, Θ ⊆ 2E is a non-empty set of feasible subsets
of E, and P is a probability distribution over a unit cube
[0, 1]E . The items in the set E are associated with a vector
of stochastic weights/losses w ∼ P , whose e-th component,
w(e), is the weight of item e. The expected weights of the
items are defined as w̄ = Ew∼P [w]. The loss of choosing
solution A under the realization of the weights w is simply
(this is the where lies the main different between bandit and
ranking)

f(A,w) =
∑
c∈A

w(e). (42)

The maximum number of chosen items is defined as K =
maxA∈Θ |A|.

Let (ws)
t
s=1 be an i.i.d. sequence of t weights drawn from

P . At time s, the learning agents chooses solution As ∈ Θ
based on its observations of the weights up to time s, loses
f (As, ws), and observes the weights of all chosen items at
time s, {(e, ws(e)) : e ∈ As}. The learning agent interacts
with the environment t times and its goal is to minimize
its expected cumulative reward over this time. If the agent
knew P a priori, the optimal action would be to choose the
optimal solution:

A∗ = arg min
A∈Θ

f(A, w̄). (43)

at all steps s. The quality of the agent’s policy is measured
by its expected cumulative regret:

R(t) = E

[
t∑

s=1

R (As, ws)

]
, (44)
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where R (As, ws) = f (A,ws) − f (A∗, ws) is the instan-
tenous regret of the agent at time s.

CombUCB algorithm (Kveton et al., 2015) works as follows:
First, it computes qn upper confidence bound (UCB) on the
expected weight of each item e, which would rewrite in the
ranking problem as follows (since the weight is 0, if the skill
gap is smaller than ε∗

Ut(e) = min
{
1{ŵTt−1(e)(e) + ct−1,Tt−1(e) >

1

2
− ε∗},

1{ŵTt−1(e)(e)− ct−1,Tt−1(e) <
1

2
+ ε∗}

}
,

where ŵs(e) is the average of s observed weights of item
e, Tt(e) is the number of times that item e is observed after
t rounds, and:

ct,s =

√
1.5 log t

s
(45)

is the radius of a confidence interval around ŵs(e) at time t
such that w̄(e) ∈ C(e, s, t) = [ŵs(e)− ct,s, ŵs(e) + ct,s]
holds with high probability. Second, CombUCB calls the
optimization oracle to solve the combinatorial problem on
the UCBs:

At = arg min
A∈Θ

f (A,Ut) . (46)

Finally, CombUCB chooses At, observes the weights of
all chosen items, and updates the estimates of w̄(e) for
these items. In the case at hand, E = {{i, j}, i ̸= j}, so
much that L = N(N−1)

2 , Θ the feasible set is the set of
maximal size matchings, which implies that K = N/2 and
P a product of independent Bernoulli variables such that
ωi,j ∼ Ber (p (i, j)).

Consider the following situation: ε(i, i+ 1) = ε∗ −∆ and
ε(i, i+ k) = ε∗ +∆ if k ≥ 2.

To show that this situation yields a regret of N2 log(N/δ)
∆2

min
, we

can assume that the true edges of the graph G are kept in
the estimated graph. To eliminate another edge, CombUCB
- that does not take into account the ranking structure - must
have sampled it log(N/δ)

∆2 times. This adds up to a total cost

of O(N
2 log(N/δ)

∆2 ). Checking that in this case 2∆ = ∆min

is straightforward.

F. Omitted Pseudo-codes
F.1. Pseudo-code of COMPARE

Algorithm 2 COMPARE(i, j, ε, δ)

Initialize: b← ⌈ 2
ε2 log

2
δ ⌉, wi,j ← 0

1: for t← 1 to b do
2: Compare i and j; Update wi,j ← wi,j + 1 if i wins;
3: end for
4: p̂i,j ← wi,j/b;
5: if p̂i,j > 1/2 then
6: Output i;
7: else
8: Output j;
9: end if

10: if |p̂i − 1
2 | > 2ε then

11: Output “Confident”;
12: else
13: Output “Not Confident”;
14: end if

F.2. Pseudo-codes of ANCHORING
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Algorithm 3 ANCHORING(N, r̂, ε, δ)

Input: r̂: ranking, ε > 0, δ > 0;
Initialize: L = U = [0, . . . , 0] ∈ RN , z = 0, G: Empty
graph (without edge);

1: while L ̸= [1, . . . , 1] or U ̸= [1, . . . , 1] do
2: for i, j ∈ [N ] such that |r̂(i)− r̂(j)| = 2z do
3: (k, string) = COMPARE

(
{i, j}, ε, δ

2N logN

)
;

▷ requires 2 perfect matchings;
4: {ℓ} = {i, j} \ {k};
5: if string =“Confident” then
6: L(k) = 1; U(ℓ) = 1;
7: add the edge {i, j} to the graph G;
8: end if
9: end for

10: for i ∈ [N ] such that r̂(i) < 2z do
11: L(i) = 1;
12: end for
13: for i ∈ [N ] such that r̂(i) + 2z > N do
14: U(i) = 1;
15: end for
16: z=z+1;
17: end while
18: return; argmin

s.t.

{
(A1, . . . , Aℓ) path of G
r̂(Ai) ≤ r̂(Ai+1), ∀i

Wr̂(A1, . . . , Aℓ).

F.3. Sub-protocols used in Algorithm 1

Algorithm 4 CHECK(ε, δ)

Input: a ranking r̂ and its inverse σ̂ = r̂−1

Initialize: L = [0, . . . , 0] ∈ RN ,
1: for i ∈ [N ] do
2: if COMPARE({σ̂(i), σ̂(i + 1)}, 2ε, δ

N+1 ) =
(σ̂(i),“Confident”) and COMPARE({σ̂(i), σ(i −
1)}, 2ε, δ

N+1 ) = (σ̂(i− 1),“Confident”) then
3: L[σ̂(i)] = 1 : σ̂(i) is correctly ranked;
4: end if
5: end for ▷ requires 2 perfect matchings;
6: return L;

Algorithm 5 GRP1((A1, . . . , AK), (C1, . . . , CK+1)

Input: (A1, . . . , AK): Anchors; (C1, . . . , CK+1): Clusters;
Initialize: A0 = σ̂(1), U0 = ∅, C0 = ∅, AK+1 =
σ̂(N).

1: for j ∈ {1, . . . , ⌊|K+1
2 |⌋} do

2: Uj ← C2j−1 ∪ {A2j−1} ∪ C2j .
3: if (size of Uj is odd) and (A2j−2 ̸∈ Uj−1) then
4: Uj ← Uj ∪ {A2j−2}.
5: else if (size of Uj is odd) then
6: Uj ← Uj ∪ {A2j}.
7: end if
8: end for
9: return (U1, . . . , U⌊|K+1

2 |⌋).

Algorithm 6 GRP2((A1, . . . , AK), (C1, . . . , CK+1)

Input: (A1, . . . , AK): Anchors; (C1, . . . , CK+1): Clusters;
Initialize: A0 = σ̂(1), U0 = ∅, C0 = ∅, AK+1 = σ̂(N).

1: U0 = C1
2: if size of U0 is odd then
3: U0 ← U0 ∪ {A1}.
4: end if
5: for j ∈ {1, . . . , ⌊|K+1

2 |⌋} do
6: Uj ← C2j ∪ {A2j} ∪ C2j+1.
7: if (size of Uj is odd) and (A2j−1 ̸∈ Uj−1) then
8: Uj ← Uj ∪ {A2j−1}.
9: else if (size of Uj is odd) then

10: Uj ← Uj ∪ {A2j+1}.
11: end if
12: end for
13: return (U1, . . . , U⌊|K+1

2 |⌋).
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Algorithm 7 CLUSTERING((A1, . . . , AK), r̂)

Input: (A1, . . . , AK): Anchors; r̂: Ranking;
Initialize: A0 = σ̂(1), AK+1 = σ̂(N).

1: for j ∈ {1, . . . ,K + 1} do
2: Cj ←

{
i ∈ [N ], r̂(Aj−1) < r̂(u) < r̂s(Aj)

}
,.

3: end for
4: return (C1, . . . , CK+1).

Algorithm 8 MULTIAKS((U1, . . . , UL), ε, δ)

Input: (U1, . . . , UL): list of sets;
Output: (r̂1, . . . , r̂L) rankings on U1 ∪ . . . ∪ UL

1: for j ∈ {1, . . . , L} do
2: r̂j ← AKS(Uj , ε, δ/L).

▷ This loop is run in parallel
3: end for
4: return (r̂1, . . . , r̂L).

F.4. Pseudocode of SAMPLEMATCHING

Algorithm 9 SAMPLEMATCHING

Input Graph G, ni,i+1 ∈ N, ri,i+1 ∈ N
Output M : maximal matching on G

1: Construct C1, . . . , Ck connected components of G;
2: for j ∈ [k] do
3: Mj = argmin

m max. match. on Cj

max
{i,i+1}∈m

ri,i+1

ni,i+1
−u(ni,i+1);

4: end for
5: M = ∪jMj ;
6: Complete M arbitrarily into a perfect matching of [N ];
7: return M ;

F.5. Pseudo-code of GAPESTIMATION

Algorithm 10 GAPESTIMATION

1: for i ∈ [N − 1] do
2: Set ei,i+1 = 1, ni,i+1 = ri,i+1 = li,i+1 = 0;
3: end for
4: while True do
5: G = ([N ], {ei,i+1});
6: M = SampleMatching(G, (ni,i+1)i, (ri,i+1)i);

▷ requires 1 perfect matching;
7: Query comparisons according to M ;
8: for i ∈ [N − 1] do
9: ni,i+1 ← ni,i+1 + 1 ({i, i+ 1} ∈M);

10: ri,i+1 ← ri,i+1 + 1 (i won against i+ 1);
11: end for
12: for i ∈ [N − 1] do
13: ε̂(i, i+ 1) =

ri,i+1

ni,i+1
− 1

2 ;
14: ei,i+1 = 1{ε̂(i, i+ 1)− u(ni,i+1, δ) ≤ ε∗};
15: li,i+1 = 1{|ε̂(i, i+ 1)− ε∗| > u(ni,i+1, δ)};
16: end for
17: if There is maximal matching M∗ of G whose edges

e ∈M∗ all satisfy le = 1 then
18: return M∗;
19: break;
20: end if
21: end while
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