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Abstract

To harness the power of large language models001
in safety-critical domains we need to ensure002
the explainability of their predictions. How-003
ever, despite the significant attention to model004
interpretability, there remains an unexplored do-005
main in explaining sequence-to-sequence tasks006
using methods tailored for textual data. This007
paper introduces SyntaxShap, a local, model-008
agnostic explainability method for text gener-009
ation that takes into consideration the syntax010
in the text data. The presented work extends011
Shapley values to account for parsing-based012
syntactic dependencies. Taking a game theo-013
ric approach, SyntaxShap only considers coali-014
tions constraint by the dependency tree. We015
adopt a model-based evaluation to compare016
SyntaxShap and its weighted form to state-of-017
the-art explainability methods adapted to text018
generation tasks, using diverse metrics includ-019
ing faithfulness, complexity, coherency, and020
semantic alignment of the explanations to the021
model. We show that our syntax-aware method022
produces explanations that help build more023
faithful, coherent, and interpretable explana-024
tions for predictions by autoregressive models.1025

1 Introduction026

Language model (LM) interpretability has become027

very important with the popularity of generative AI.028

Despite the great results achieved by the most re-029

cent LMs, there is still a large range of tasks where030

the models fail, e.g., capturing negations (Truong031

et al., 2023). Therefore, it is crucial to get a bet-032

ter understanding of the LM reasoning and develop033

faithful explainability methods. As many LMs have034

little transparency and their use is restricted to API035

calls, model-agnostic explainability methods have036

become the most practical techniques for gaining037

better insights into LMs.038

The SHapley Additive exPlanations (SHAP)039

framework is popular for generating local explana-040

1Code and data are anonymously available here

tions thanks to its solid theoretical background and 041

general applicability (Shapley et al., 1953). How- 042

ever, regarding sequence-to-sequence tasks such as 043

next token generation, the usage of SHAP-based 044

methods has not been explored in depth (Mosca 045

et al., 2022). We address this gap and develop a 046

coalition-based explainability method inspired by 047

Shapley values for text generation explanation. 048

Our explainability method (in Figure 1) con- 049

siders syntactic word dependencies (de Marneffe 050

et al.). The syntax is important as next-word pre- 051

dictions in autoregressive LMs underlie implicit 052

incremental syntactic inferences, i.e., LMs implic- 053

itly capture dependencies in text data (Eisape et al., 054

2022). In this paper, we investigate if dependency 055

parsing trees can be used in the explainability pro- 056

cess as syntactic relational graphs and help shed 057

light on the influence of words on the model’s pre- 058

diction given their syntactic role in the sentence. 059

We evaluate the explanations on diverse metrics. 060

First, we adapt fidelity, one of the most popular 061

model-based evaluation metrics in xAI (eXplain- 062

able AI), to the text generation task and introduce 063

two new metrics to test whether the generated ex- 064

planations are faithful to the underlying model. 065

Second, we introduce two qualitative evaluation 066

metrics that capture the explanation quality with 067

regard to human expectations, i.e., the coherency 068

of explanations and their semantic alignment. Our 069

evaluation procedure compares our method Syn- 070

taxShap to state-of-the-art explainability methods. 071

Explanations produced by our method of the next 072

token generation by two popular autoregressive 073

models are more faithful, coherent, and semanti- 074

cally aligned compared to state-of-the-art SHAP- 075

based methods that do not explicitly consider the 076

word dependency for text generation tasks. 077

To summarize, our contributions are (1) Syn- 078

taxShap, a new SHAP-based explainability method 079

that incorporates dependency tree information, (2) 080

quantitative metrics that address LM’s stochastic- 081
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Figure 1: Given an input sentence, an autoregressive language model (AR LM) predicts the next token. The syntax
of the sentence is extracted using dependency parsing (spaCy (Honnibal and Montani, 2017)). To measure the
importance of the word husband for the model to predict the next token wife, our method (1) extracts multiple
coalitions of words following specific paths in the dependency tree, (2) analyze the contribution of adding husband
to each coalition in the change of probability to predict the next token wife, and (3) average those contributions to
compute its final SyntaxShap value.

ity and qualitative metrics to account for human082

semantic expectations, and (3) an evaluation of083

the explanation quality on two autoregressive LMs.084

Our work opens multiple new research directions085

for future work.086

2 Related Work087

Explainability in Linguistics Syntax and seman-088

tics play an important role in explaining LM out-089

comes from a linguist perspective. Multiple at-090

tempts were made to explore the role of syntactic091

and semantic representations to enhance LM pre-092

dictions. Ek et al. (2019) look at the role of syntac-093

tic and semantic tags for the specific task of human094

sentence acceptability judgment. They show that095

syntactic tags significantly influence the predic-096

tions of the LM. In recent years, there has been an097

increasing interest in methods that incorporate syn-098

tactic knowledge into Machine Translation (Am-099

bati, 2008). In addition, Eisape et al. (2022) has100

shown that next-word predictions from autoregres-101

sive neural LMs show remarkable sensitivity to102

syntax. However, there has been no attempt to ac-103

count for the syntax in explanations of those LMs104

for text generation tasks (Mosca et al., 2022). For105

this reason, we propose to incorporate syntax-based106

rules to explain AR LM text generation.107

SHAP-based explainability in NLP One way to108

categorize model-agnostic post-hoc explainability109

methods is to separate them into perturbation-based110

and surrogate methods (Zhao et al., 2023). Among111

the most popular surrogate models are LIME and112

SHAP. The Shapley-value approach (Shapley et al.,113

1953) provides local explanations by attributing 114

changes in predictions for individual data inputs 115

to the model’s features. Those changes can be 116

combined to obtain a better global understanding 117

of the model structure. For text data, available 118

approaches seem mostly tailored to classification 119

settings (Kokalj et al., 2021; Chen et al., 2020). 120

Shapley values and complex dependencies One 121

underlying assumption of SHAP is feature inde- 122

pendence. Confronted with more diverse types of 123

data inputs, newer methods offer the possibility to 124

account for more complex dependencies between 125

features. Frye et al. (2020) propose Asymmetric 126

Shapley values (ASV), which drop the symmetry 127

assumption and enable the generation of model- 128

agnostic explanations incorporating any causal de- 129

pendency known to be present in the data. Follow- 130

ing up with this work, Heskes et al. (2020) propose 131

Causal Shapley values to account more specifically 132

for causal structures behind feature interactions. 133

Chen et al. (2019) construct coalitions based on a 134

graph structure, grouping features with their neigh- 135

bors or connected nodes. When it comes to text 136

data, words present strong interactions, and their 137

contribution heavily rely on the context. There- 138

fore, feature attributions for textual data should 139

be specifically tailored to account for those com- 140

plex dependencies. HEDGE is one example of a 141

SHAP-based method addressing the context depen- 142

dencies specific to text data (Chen et al., 2020). It 143

hierarchically builds clusters of words based on 144

their interactions. While their objective is to clus- 145

ter words to minimize the loss of faithfulness, i.e., 146
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prediction change, we propose a new strategy to147

create coalitions of words that respect the syntactic148

relationships dictated by the dependency tree. This149

way, we take into consideration the syntactic depen-150

dencies that are the basis of linguistics and which151

were proven essential for next-word predictions152

from autoregressive LMs (Eisape et al., 2022).153

3 SyntaxShap Methodology154

3.1 Objective155

Given a sentence of n words x = (x1, ..., xn) and156

ŷ = (ŷ1, ..., ŷm) the m generated words by an au-157

toregressive LM f , the objective is to evaluate the158

importance of each input token for the prediction ŷ.159

We focus on explaining the next token, i.e., m = 1.160

Let fy(x) be the model’s predicted probability that161

the input data x has the next token y. Our method162

produces local explanations.163

3.2 Shapley values approach164

We adopt a game theory approach to measure the165

importance of each word xi to the prediction. The166

Shapley value approach was first introduced in co-167

operative game theory (Shapley et al., 1953) and168

computes feature importance by evaluating how169

each feature i interacts with the other features in a170

coalition S. For each coalition of features, it com-171

putes the marginal contribution of feature i, i.e., the172

difference between the importance of all features in173

S, with and without i. It aggregates these marginal174

contributions over all subsets of features to get the175

final importance of feature i.176

3.3 Syntax-aware coalition game177

Our work focuses on incorporating syntax knowl-178

edge into model-agnostic explainability. We adopt179

a coalition game approach that accounts for these180

syntactic rules. As illustrated in Figure 1, Syn-181

taxShap computes the contribution of words only182

considering allowed coalitions S constraint on the183

dependency tree structure. We define a coalition S184

as a set of words or features {xi, i ∈ [1, n]} from185

the input sentence x. Given a dependency tree with186

L levels, li ∈ [1, L] corresponds to the level of187

word xi in the tree and nl > 0 the number of words188

at level l in the tree. To compute the contribution189

of the words in the tree, SyntaxShap only considers190

the allowed coalitions S =
⋃L

l=0Sl, where Sl is191

the set of allowed coalitions at level l. We pose192

the default S0 = {S0} and S0 = {} is the null193

coalition.194

Notations Let Xl be the set that contains all the 195

words at level l, X<l the one that contains all the 196

words before level l in the tree, and P(Xl) the 197

powerset, i.e. the set of all subsets of Xl. 198

Definition (Set of coalitions at level l) The set of 199

coalitions Sl at level l is defined as: 200

Sl =
⋃

σ∈P(Xl)

X<l ∪ σ 201

Property At each level of the tree, each coalition 202

S ∈ Sl respects two properties: 203

∀i ∈ [1, n] s.t. li > l, xi /∈ S. (1) 204

∀i ∈ [1, n] s.t. li < l, xi ∈ S. (2) 205

Given the tree-based coalitions, we can compute 206

the contribution of each token in the input sentence 207

to the model’s prediction. The contribution of fea- 208

ture xi at level li on the dependency tree to the 209

model output ŷ is defined as: 210

ϕi =
1

Ni

∑
S∈
(

li−1⋃
p=0

Sp

)⋃
S

\i
li

[fŷ(S ∪ {xi})− fŷ(S)] (3) 211

where Ni corresponds to the number of allowed 212

coalitions at level li that do not contain feature xi, 213

and S
\i
l corresponds to the set of coalitions at level 214

l that exclude word xi, i.e., 215

S
\i
l =

⋃
σ∈P(Xl)

X<l ∪ (σ\{xi}). 216

Property Given the number nl of words (or nodes) 217

at level l of the tree, each word at the same level 218

shares the same number of updates, i.e., allowed 219

coalitions, i.e., ∀xi s.t. li = l, Ni = N l and Nl can 220

be expressed as: 221

Nl =

l−1∑
p=0

2np + 2nl−1 − l (4) 222

Proof To compute Nl in equation 4, we proceed 223

recursively starting from the root nodes. The depen- 224

dency has L levels starting from level l = 1. We 225

postulate a hypothetical level 0 where the null coali- 226

tion S0 = {} can be formed. At level 1, there is 227

the root node of the tree, i.e. n1 = 1. The number 228

of coalitions is |S1 = {{xroot}}| = 1. Let nl be 229

the number of nodes at level l. The number of com- 230

binations of nl features is 2nl . Since we already 231

counted the null coalitions at the hypothetical level 232
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0, we don’t count it in the allowed coalitions Sl at233

level l. We arrive at the final number of coalitions234

|Sl| = 2nl − 1. Now, let’s say we have a word x at235

level l. This word can join all allowed coalitions at236

level < l — there are 1+
∑l−1

p=1(2
np−1) — and all237

the coalitions of the words at level l where x does238

not appear — there are 2nl−1 − 1. In conclusion,239

we find that the number of allowed coalitions for240

word x at level l is:241

Nl = 1 +

l−1∑
p=1

(2np − 1) + 2nl−1 − 1242

=
l−1∑
p=0

2np + 2nl−1 − l243

We pose n0 = 0, the number of nodes on the hy-244

pothetical level 0, to start the sum at p = 0 for245

simplification.246

Our strategy of building tree-based coalitions247

drops the efficiency assumption of Shapley values248

but preserves the symmetry axioms for the words at249

the same level of the dependency tree, as well as the250

nullity and additivity axioms. Appendix B.1 details251

the four shapley axioms and discusses which ones252

SyntaxShap respects or violates. Note that this does253

not undermine the quality of the explanations since254

the axioms were shown to work against the goals of255

feature selection in some cases (Fryer et al., 2021).256

3.4 Weighted SyntaxShap257

In the context of text data and syntactic depen-258

dencies, we assume that words at the top of the259

tree should be given more importance since they260

are the syntactic foundations of the sentence and261

usually correspond to the verb, subject, and verb262

qualifiers. Therefore, we propose SyntaxShap-W, a263

variant of our method that weighs words according264

to their position in the tree. The weights are tree-265

level-dependent and correspond to the inverse of266

the word level for which contribution is computed,267

i.e., wl = 1/l. The contribution of a word xi at268

level li can be expressed as:269

ϕi =
wli

Ni

∑
S∈
(

li−1⋃
p=0

Sp

)⋃
S

\i
li

[fŷ(S ∪ {xi})− fŷ(S)] (5)270

4 Evaluation271

This section describes our model-based evaluation272

procedure that encompasses both quantitative and273

qualitative analysis of the explanations. While pre- 274

vious works only focus on the faithfulness of ex- 275

planations to assess their quality, we also propose 276

to consider human qualitative expectations. 277

4.1 Quantitative evaluation 278

To analyze if the explanations are faithful to the 279

model, we adopt fidelity the most common model- 280

based metric in xAI (Carvalho et al., 2019), which 281

looks at the top-1 prediction and propose two new 282

variants that balance the LM’s probabilistic nature 283

by considering the top-K predictions. 284

Fidelity Fidelity measures how much the expla- 285

nation is faithful to the model’s initial prediction 286

for the next token. By keeping the top t% words 287

in the input sentence, fidelity calculates the aver- 288

age change in the prediction probability on the 289

predicted word over all test data as follows, 290

Fid(t) =
1

N

N∑
i=1

(fŷ(xi)− fŷ(x̃
(t)
i )) (6) 291

where x̃(t)i is the masked input sentence constructed 292

by keeping the t% top-scored words of xi, ŷ is 293

the predicted token given input xi, i.e. ŷ = 294

argmaxy′ fy′(xi), and N is the number of exam- 295

ples. Usually, the missing words are replaced by 296

the null token, but we also propose an alternative fi- 297

delity Fidrand by replacing the missing words with 298

random words from the tokenizer vocabulary. 299

Probability divergence@K The probability di- 300

vergence at K corresponds to the average difference 301

in the top K prediction probabilities on the pre- 302

dicted class over all test data. It can be expressed 303

as follows, 304

div@K =
1

N

N∑
i=1

K∑
k=0

(fŷk(xi)− fŷk(x̃i
(t))) (7) 305

where ŷk is the top kth prediction given input xi. 306

We choose K = 10 because most of the sentences 307

can be completed with multiple possible words that 308

are synonyms or semantically consistent with the 309

input sentence. 310

Accuracy@K The accuracy at K corresponds 311

to the average ratio of common top K predictions 312

between the full and masked sentences: 313

acc@K =
1

N

N∑
i=1

∣∣∣{ŷk, k≤K} ∩ {ỹ(t)k , k≤K}
∣∣∣

K

(8)

314
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where ỹ(t)k is the top kth prediction given input x̃(t)i .315

4.2 Qualitative evaluation316

Coherency Coherency describes how similar the317

explanation is w.r.t. similar next generated token.318

In other words, given a pair of input sentences with319

a slight variation in the syntax but a strong change320

in semantics (e.g., differing only by a negation),321

we expect similar explanations for similar model’s322

predictions and dissimilar ones when the model is323

sensitive to the perturbation.324

Semantic alignment An important criterion to325

evaluate a textual explanation is whether it is326

aligned with human expectations. As humans, we327

intuitively expect the language model to draw little328

attention to tokens in the input sentence which se-329

mantic substance is not reflected in the prediction.330

This semantic alignment can be measured for some331

semantically rich tokens that are decisive for text332

generation, e.g., the negation. Given a decisive to-333

ken in input sentences and a model’s prediction that334

does not semantically account for it, we compare335

methods on the importance rank attributed to this336

token. An explainability method is semantically337

aligned if this rank is high, i.e., the decisive token338

is not important for the model’s prediction.339

5 Experiments340

We evaluate SyntaxShap and SyntaxShap-W on341

various criteria such as faithfulness and their com-342

putational complexity in section 5.2, the coherency343

in section 5.3, and the semantic alignment of their344

explanations in section 5.4.345

5.1 Experimental setting346

For the evaluation, we use three datasets, i.e., the347

Generics KB2 (Generics) (hug, 2020), ROCStories348

Winter20173 (ROCStories) (Mostafazadeh et al.,349

2017), and Inconsistent Dataset Negation2 (Nega-350

tion) (Kalouli et al., 2022). They have the following351

characteristics: (1) The Generics dataset contains352

high-quality, semantically complete statements; (2)353

The ROCStories dataset contains a collection of354

five-sentence everyday life stories; (3) The Nega-355

tion dataset contains disjoint sentence pairs, i.e.,356

a sentence and its negated version. For evalua-357

tion purposes, we first separate the stories of the358

ROCStories dataset into single sentences and re-359

move the last token from sentences in the three360

2published at the ACL Anthology, CC BY 4.0 License
3publicly available, no license

Generics ROCStories Negation
Depd. Dist. µ 1.96 2.12 1.4
Depd. Dist. σ 0.46 0.47 0.30
# Tokens Mean 9.80 9.83 5.54
# Unique Tokens 3548 2082 99

Table 1: Dataset descriptives.

datasets. We use the TextDescriptives component 361

in spaCy to measure the dependency distance of 362

the analyzed sentences following the universal de- 363

pendency relations established by de Marneffe et al. 364

and compute the average number of tokens per sen- 365

tence as well as the number of unique tokens in the 366

three datasets. As shown in Table 1, sentences in 367

the Generics and ROCStories datasets have more 368

complex syntactic structures, and the sentences are 369

longer than in the Negation dataset. We decide not 370

to include the Negation dataset in the quantitative 371

analysis because it becomes difficult to compare 372

explainability approaches when a small number of 373

tokens – less than six – are removed from short 374

phrases without disrupting the sentence’s overall 375

meaning. Nevertheless, it is the most suited dataset 376

to compare xAI methods on coherency and seman- 377

tic alignment since it contains sentences with little 378

syntactic variations but great semantic ones, en- 379

abling fine-grained qualitative analysis. 380

To assess the performance of our method, we use 381

two autoregressive LMs: GPT-2 model (Radford 382

et al., 2019) consisting of 117M parameters and 383

Mistral 7B (Jiang et al., 2023) with 7B parameters. 384

We reproduce our experiments on four different 385

seeds and convey mean and variance of our results. 386

Our methods SyntaxShap and SyntaxShap-W are 387

compared against the Random baseline, and two 388

other explainability baselines LIME (Ribeiro et al., 389

2016) and the NaiveShap, a naive SHAP-based ap- 390

proach that computes all coalitions, adapted for 391

the problem of next token generation and text 392

data. We also compare them against Partition, a 393

faster version of KernelSHAP that hierarchically 394

clusters features. Its implementation is based on 395

HEDGE (Chen et al., 2020), a SHAP-based method 396

that builds hierarchical explanations via divisive 397

generation, respecting some pre-computed word 398

clustering, and is particularly suited for text data. 399

5.2 Faithfulness 400

In this section, we evaluate the faithfulness of our 401

explanations to Random, LIME, the NaiveShap, 402

and Partition on the full datasets with sentence 403

lengths between 5 and 20 tokens. NaiveShap is 404
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(a) Mistral 7B, Generics dataset.
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(b) Mistral 7B, ROCStories dataset.

Figure 2: Faithfulness of the explanations of Mistral 7B predictions by the methods Random, LIME, Partition, and
our methods SyntaxShap and SyntaxShap-W. The scores were averaged on 858 instances for Generics dataset and
1046 instances for ROCStories. NaiveShap scores were not displayed here as they are limited to sentences with less
than 10 tokens (See Appendix C).

Generics ROCStories
Random 0.687±0.005 0.657±0.002

LIME 0.686±0.003 0.663±0.004

Partition 0.687±0.005 0.661±0.007

SyntaxShap 0.615±0.007 0.590±0.005

SyntaxShap-W 0.638±0.002 0.609±0.005

(a) Mistral 7B model.

Generics ROCStories
Random 0.578±0.003 0.576±0.002

LIME 0.579±0.007 0.587±0.002

NaiveShap 0.518±0.002 0.517±0.002

Partition 0.550±0.004 0.542±0.006

SyntaxShap 0.512±0.002 0.497±0.002

SyntaxShap-W 0.556±0.007 0.536±0.003

(b) GPT-2 model.

Table 2: The div@10 scores of explainability methods
for the Mistral 7B model. Explanations are sparse at
threshold t = 0.5, i.e. we keep 50% of the top words.
We report the mean and variance after running exper-
iments on four different random seeds. The methods
introduced in this paper are shaded.

omitted for Mistral 7B since computations become405

intractable for sentences with > 10 tokens. See406

Appendix D.1 for the comparison with NaiveShap407

on the filtered datasets.408

For both models, Mistral 7B and GPT-2 in409

Figure 2 and Figure 3, our methods SyntaxShap410

and SyntaxShap-W produce more faithful explana-411

tions than the trivial random algorithm, the LIME412

method adapted to NLP tasks, and Partition, the413

state-of-the-art shapley-based local explainability414

method for text data. Therefore, building coalitions415

based on syntactic rules gives more faithful expla- 416

nations than when minimizing a cohesion score, 417

preserving the strongest word interactions. For 418

GPT-2 model in Figure 3, NaiveShap generates 419

explanations as faithful as SyntaxShap. However, 420

SyntaxShap has the advantage of being much faster, 421

with a computational complexity of O(nL2n/L) 422

against O(n2n) for NaiveShap, where n is the num- 423

ber of words in the input sentence and L the tree 424

depth. This is a huge advantage when explaining 425

long sentences with more than 10 tokens or when 426

the LM has a high inference time. We refer to 427

Appendix B.2 for the comparison of NaiveShap 428

and SyntaxShap complexities and to Appendix D.2 429

where we show how the number of tokens affects 430

NaiveShap computations. 431

SyntaxShap(-W) generates more faithful expla-
nations than the random baseline, LIME, and
Partition. Although it does not beat the Naive-
Shap method, it can scale to longer sentences
and its computation is faster.

432

5.3 Coherency 433

In this section, we explore whether SyntaxShap 434

produces coherent explanations with the model un- 435

derstanding. For this evaluation, we use Mistral 436

7B and run a perturbation analysis using sentence 437

pairs from the Negation dataset. We use a sample 438

of 72 sentence pairs (with and without the negation 439

not and with varying usage of with and without) 440

whereby for 20 pairs, the model predicts the same 441
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(a) GPT-2, Generics dataset
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(b) GPT-2, ROCStories dataset

Figure 3: Faithfulness of the explanations of GPT-2 predictions by the methods Random, LIME, NaiveShap,
Partition, and our methods SyntaxShap and SyntaxShap-W. The scores were averaged on 1434 instances for
Generics dataset and 1318 instances for ROCStories.

Figure 4: An example of attribution values of the
SyntaxShap-W method for two sentence pairs with dif-
ferent and similar next token predictions.

next token. An example of two sentence pairs is442

shown in Figure 4. For pairs with equal predic-443

tions (e.g., A mom is not a and A mom is a with an444

equal next token prediction super), we expect more445

similar attribution ranks than for pairs with differ-446

ent predictions (e.g., A person has no right and A447

person has died). To evaluate the coherency, we

Figure 5: Coherency of explainability methods for the
Mistral 7B model on sentence pairs varying by the used
negation. SyntaxShap and SyntaxShap-W produce more
similar attribution scores for sentence pairs where the
model predicts the same next token compared to sen-
tence pairs with different next token predictions.

448
first represent the attribution scores as rank vectors.449

We then separate pairs with equal predictions and450

different predictions into two distinct groups and451

measure the cosine similarity between rank vectors452

of each pair within each group, whereby negation453

words are excluded to get equal-length vectors. The454

average difference in cosine similarity between the455

two groups for each explainability method is dis- 456

played in Figure 5. It shows that SyntaxShap and 457

SyntaxShap-W produce more similar attributions 458

for sentence pairs that predict the same next token 459

and more diverse attributions for sentence pairs 460

with different next token predictions. 461

Given a pair of sentences with and with-
out a negation, which theoretically have two
disjoint semantic meanings, the similarity of
SyntaxShap(-W)’s token attribution values for
each sentence better reflect the degree of simi-
larity of the next token predictions than LIME,
NaiveShap, and Partition.

462

5.4 Semantic alignment 463

We explore here if the generated explanations are 464

aligned with human semantic expectations. To be 465

able to answer this question, we analyze cases 466

where there is a negation in a sentence, but the 467

model’s prediction does not reflect it, e.g., A father 468

is not a father.To realize this experiment, we ex- 469

tract negative instances, i.e., that contain the token 470

not, no, or without, from the Negation dataset. We 471

label those where the model, GPT-2 or Mistral 7B. 472

predicts wrong next tokens, i.e., semantically mis- 473

aligned with the negation. We report the average 474

importance score of the negation tokens in each of 475

the 15 labeled instances. Figure 6 shows the results 476

for Mistral 7B: SyntaxShap and SyntaxShap-W 477

rank the importance of negations as 3rd or greater 478

in 80% of the cases. They give low importance to 479

the negation tokens when the model is not able to 480

7



capture them. LIME and the naive computation481

of Shapley values by NaiveShap assigns 3rd rank482

or greater for 60% of the negations. Partition is483

the worst at reflecting the irrelevance of negations,484

ranking them as 1st or 2nd in 60% of the cases.485

Figure 6: Importance rank distribution of negation to-
kens not, no, and without when the model does not
capture the negations in the predicted next token.

SyntaxShap(-W) assigns lower importance
ranks to input tokens which semantic is not
captured in the model’s prediction compared
to LIME, NaiveShap, and Partition.

486

6 Discussion487

Addressing stochasticity The traditional faith-488

fulness metrics like fidelity, AOPC (Samek et al.,489

2016; Nguyen, 2018) or log-odds (Shrikumar et al.,490

2017; Chen et al., 2019) scores take a determin-491

istic approach to evaluate explanations computed492

on stochastic predictions. This paper evaluated493

autoregressive LMs that adopt top-k sampling to494

randomly select a token among the k tokens with495

the highest probability. To account for this stochas-496

ticity, we proposed additional evaluation metrics,497

div@K and acc@K, that consider not only the final498

prediction but the top-K predictions, balancing the499

model’s probabilistic nature. Nevertheless, further500

methods that address the stochastic nature of the501

models should be designed in future research.502

Integrating linguistic knowledge To ensure that503

the explainability methods produce meaningful ex-504

planations that mimic autoregressive LM behav-505

ior, we need to go beyond the faithfulness type506

of evaluation and consider further explainability507

aspects. In this paper, we study explanations on508

other dimensions related to semantic interpretation509

and coherency of explanations. There is potential510

for more linguistically tailored evaluation methods511

in the future. The motivation is as follows. The512

next token prediction task can be seen as a multi-513

class classification with a large number of classes.514

The classes have diverse linguistic properties, i.e.,515

tokens have different roles in the sentence, some 516

being more content- and others function-related. 517

We might want to consider these different roles 518

when evaluating the quality of explanations. On 519

the one hand, with controlled perturbations on the 520

input sentences, we can evaluate the role of seman- 521

tics and syntax on the next token prediction task. 522

On the other hand, when computing the explana- 523

tion fidelity, we might consider prediction changes 524

from one category of tokens (e.g., function words) 525

to another (e.g., content words), which would give 526

us a more linguistic-aware explanation quality as- 527

sessment. 528

Considering humans When designing evalua- 529

tion methods, we need to consider humans since, 530

ideally, they should understand model behavior 531

from the produced explanations. There is one main 532

concern, though. As prior work has shown (Sev- 533

astjanova and El-Assady, 2022), LM explainabil- 534

ity can suffer from human false rationalization of 535

model behaviors. We typically expect the expla- 536

nations to align with our mental models of lan- 537

guage.However, LMs learn language differently 538

from humans; thus, explanations can theoretically 539

differ from our expectations. Thus, future work 540

should design evaluation methods that clearly show 541

the importance of the words for the model and the 542

reasons why this importance (potentially) does not 543

align with human expectations. 544

7 Conclusion 545

We proposed SyntaxShap - a local, model-agnostic 546

syntax-aware explanability method. Our method is 547

specifically tailored for text data and meant to ex- 548

plain text generation tasks by autoregressive LMs, 549

whose interpretability in that context has not yet 550

been addressed. SyntaxShap is the first SHAP- 551

based method to incorporate the syntax of input 552

sentences by constraining the construction of word 553

coalitions on the dependency trees. Our experi- 554

mental results demonstrate that SyntaxShap and 555

its weighted variant can improve explanations in 556

many aspects: they generate more faithful, coher- 557

ent, and semantically rich explanations than the 558

standard model-agnostic explainability methods in 559

NLP. This study addresses a pressing and signif- 560

icant issue regarding the explainability of autore- 561

gressive models, contributing to an ongoing dia- 562

logue in the research community. 563
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8 Limitations564

Long sentences and limited compute power565

One limitation of this paper is the limited com-566

puting power to explain long sentences for cer-567

tain methods and models. For example, to run568

the naive implementation of Shapley values that569

has a complexity of O(n2n) and a number n of570

tokens between 3 and 20, some sentences require571

up to 21 million computation steps! Given our572

Linux machine with 2 GPUs NVIDIA RTX A6000573

with 4 GB RAM per CPU, computations for sen-574

tences with more than 10 tokens for the Mistral575

7B model were intractable. We could only include576

NaiveShap results for sentences with less than 10577

tokens (see Appendix D.1). As the length of the578

sentences increases, the computation complexity579

of SyntaxShap does, too, and we might reach the580

same limitation as NaiveShap. In addition, we581

limit our analysis to one input sentence because582

we work on one dependency tree at a time. How-583

ever, our method can be scaled to text with multiple584

sentences or a paragraph by breaking it down into585

multiple dependency trees and running SyntaxShap586

in parallel. However, by doing this, we might lose587

sentence correlations.588

Incorrect dependency tree Our method heav-589

ily relies on the dependency tree, assuming it cor-590

rectly captures the syntactic relationships between591

the words. However, the Python module spaCy592

sometimes generates arguable dependencies from593

the perspective of linguists, and its accuracy drops594

when implemented for languages other than En-595

glish. Therefore, SyntaxShap is, for now, only596

meant to be used for English grammatically non-597

convoluted sentences to limit the uncertainty com-598

ing from the construction of the dependency tree599

itself.600

Tokenization and word segmentation An im-601

portant limitation is related to the tokenization602

of the sentences. The tokenization might break603

down words into multiple tokens. However, Syn-604

taxShap computation is based on a dependency tree605

in which nodes must be words. Here, we have not606

addressed this problem. We choose to only include607

the ones where no word is split by the tokenizer608

(see Appendix C). For future work, we suggest609

modifying the tree parsing to allow for duplicated610

nodes. This token dependency tree will have tokens611

of the same word as separate nodes in this tree with612

similar roles.613

9 Ethics Statement 614

The data and resources utilized in this study are 615

openly available and widely used by numerous ex- 616

isting works. The datasets employed consist of 617

factual statements devoid of subjective judgments 618

or opinions. It is acknowledged that pre-trained 619

LMs, such as GPT-2 and Mistral 7B, may inher- 620

ently inherit biases as highlighted in previous re- 621

search (Radford et al., 2019), potentially influenc- 622

ing the generated next token. For example, certain 623

tokens like beautiful may tend to appear more fre- 624

quently in contexts associated with female charac- 625

teristics. While the primary objective of this study 626

is to produce explanations that faithfully represent 627

the model’s predictions, it is recognized that these 628

explanations may also carry inherent biases. It is 629

imperative to acknowledge that the results gener- 630

ated by our approach may not always align with hu- 631

man mental models and could potentially be used in 632

applications that have the potential to cause harm. 633
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A Textual data775

A.1 Text generation776

Text generation tasks involve predicting the next777

word in a sequence, like in language modeling,778

which can be considered a simpler form of text gen-779

eration. Other tasks may involve generating entire780

paragraphs or documents. Text generation can also781

be framed as a sequence-to-sequence (seq2seq) task782

that aims to take an input sequence and generate an783

output sequence for machine translation and ques-784

tion answering. Autoregressive models like GPT785

(Generative Pre-trained Transformer) generate text786

one word at a time in an autoregressive manner,787

conditioning each word on the previously gener-788

ated words. In this paper, we focused on the next789

token generation task given one single sentence as790

input. We work with factual sentences from Gener-791

ics and ROCStories datasets, which often expect a792

semantically rich final token to complete the clause.793

Multiple predictions are possible, but only a few794

are correct. Here is an example of a sentence in the795

Generics dataset: Studio executive is an employee796

of a film. The GPT-2 model predicts studio as the797

next token with the random seed 0. We can expect798

other predictions like company, firm, or corpora-799

tion. But the number of possibilities is still very800

limited.801

A.2 Dependency parsing802

Dependency parsing is a natural language pro-803

cessing technique that involves analyzing the804

grammatical structure of a sentence to identify the805

relationships between words (de Marneffe et al.).806

It involves constructing a tree-like structure of807

dependencies, where each word is represented808

as a node, and the relationships between words809

are represented as edges. Each relationship has810

one head and a dependent that modifies the811

head, and it is labeled according to the nature812

of the dependency between the head and the813

dependent. These labels can be found at Universal814

Dependency Relations (de Marneffe et al.).815

Dependency Parsing is a powerful technique816

for understanding the meaning and structure of817

language and is used in various applications, in-818

cluding text classification, sentiment analysis, and819

machine translation. We use the Python module820

spaCy (version 3.7.2) (Honnibal and Montani,821

2017) to generate dependency trees on the input822

sentences. The number of tokens varies from 5823

to 20 tokens for the Generics and ROCStories824

datasets, producing very diverse and complex 825

parsing trees. This diversity enriches our analysis 826

and strengthens our results. The code source for 827

dependency parsing was extracted from https: 828

//stackoverflow.com/questions/7443330/ 829

how-do-i-do-dependency-parsing-in-nltk. 830

B SyntaxShap: characteristics and proofs 831

B.1 SyntaxShap and the Shapley axioms 832

The four axioms satisfied by Shapley values, i.e., 833

efficiency, additivity, nullity, and symmetry, do not 834

generally provide any guarantee that the computed 835

contribution value is suited to feature selection, and 836

may, in some cases, imply the opposite (Fryer et al., 837

2021). We define here new axioms for SyntaxShap 838

values since two of the four Shapley axioms cannot 839

be satisfied by tree-constraint values. 840

Efficiency The evaluation function v(S) in Syn- 841

taxShap is the output probability for the pre- 842

dicted next token given the full input sentence, i.e., 843

v(S) = fŷ(S) where ŷ =argmax(f(x)). Because 844

of the non-linearity of LMs, SyntaxShap evaluation 845

function is non-monotonic. It does not necessarily 846

increase if you add more features. For this reason, 847

SyntaxShap does not satisfy the efficiency axiom. 848

This implies that the SyntaxShap values of each 849

word do not sum up to the SyntaxShap value of the 850

whole sentence. 851

Symmetry SyntaxShap satisfies the axiom of sym- 852

metry at each level of the dependency tree. Any 853

two features xi, xj that are at the same level of the 854

dependency tree, i.e., li = lj , play equal roles and 855

therefore have equal SyntaxShap values: 856

∀i, j s.t. li = lj 857

[∀(S \ {xi, xj})v(S ∪ xi) = v(S ∪ xi)] 858

=⇒ ϕi = ϕj (9) 859

Nullity If feature xi contributes nothing to each 860

submodel it enters, then its SyntaxShap value is 861

zero. 862

[(∀S)v(S ∪ {xi}) = v(S)] =⇒ ϕi = 0 (10) 863

Additivity Given two models f and g, the Syn- 864

taxShap value of those models is a linear combina- 865

tion of the individual models’ SyntaxShap values: 866

ϕi(f + g) = ϕi(f) + ϕi(g) (11) 867

11
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B.2 Computational complexity868

One advantage of the SyntaxShap algorithm is its869

faster computation time compared to the naive870

Shapley values computations. We estimate the871

complexity of each algorithm by approximating872

the total number of computation steps, i.e., formed873

coalitions and updated values, for the traditional874

naive SHAP computation and our method.875

NaiveShap The Shapley value of feature x re-876

quires the 2n−1 coalitions of all features exclud-877

ing x. As we need to update n features, the total878

number of updates is n · 2n−1. The computation879

complexity is, therefore, in O(n2n).880

SyntaxShap The SyntaxShap value of feature x881

at level l requires Nl updates. Considering all the882

features in the input, the total number of compu-883

tations is
L∑
l=1

nl ·Nl. To approximate this number,884

we assume the dependency tree to be balanced and885

pose nl = n/L. In this case, Nl can be re-written886

as:887

Nl =
l−1∑
p=0

2n/L + 2n/L−1 − l888

= l(2n/L − 1) + 2n/L−1889

The total number of computations can now be ap-890

proximated to:891

n

L

L∑
l=1

Nl =
n

L

L∑
l=1

(
l(2n/L − 1) + 2n/L−1

)
892

=
n

L

(
L(L+ 1)

2
(2n/L − 1) + L2n/L−1

)
893

=
n(L+ 1)

2
(2n/L − 1) + n2n/L−1894

The approximation of the computation complexity895

in the case of a balanced tree is O(nL2n/L).896

C Data preprocessing897

SyntaxShap relies on the construction of depen-898

dency trees that capture the syntactic dependencies899

in the sentences. Entities in dependency trees are900

words as defined in the English dictionary. How-901

ever, language tokenizers sometimes split words so902

that the tokenizer vocabulary does not necessarily903

contain the English one. To account for the dis-904

agreement between tokenization and parsing, we fil-905

ter out the sentences that contain words that do not906

belong to the tokenizer’s vocabulary and might be907

split into multiple tokens by the tokenizer. Table 3 908

displays the statistics for the three datasets Nega- 909

tion, Generics, and ROCStories, with the initial 910

number of sentences and the explained sentences af- 911

ter filtering. Our filtering strategy consists of keep- 912

ing only sentences that do not contain punctuations 913

!"#$%&'()*+, -./:;<=>?@[\]^_`{}~ given by 914

the Python module string and where the tokens 915

excluding prefix and suffix tokens, correspond to 916

the words. 917

Negation Generics ROCStories
Initial size 534 5777 2275
GPT-2 filter 366 1434 1318
Mistral filter 332 858 1046

Table 3: Dataset statistics.

Figure 7 displays the length distribution of sen- 918

tences in each dataset after filtering. Negation 919

dataset contains short sentences with less than 6 920

tokens. It is used in our study for experiments on 921

coherency and semantic alignment of explanations. 922

Generics and ROCStories are more complex and 923

realistic. The majority of their input sentences have 924

between 5 and 15 tokens, with a few exceptions of 925

longer sentences. They also have a greater diver- 926

sity of words and syntactic complexity as identified 927

by the dependency distance and token diversity in 928

Table 1. 929

D Additional results 930

D.1 Mistral 7B on the full datasets 931

To compare NaiveShap method with SyntaxShap 932

with Mistral 7B, we have to filter out long sen- 933

tences for which the computation is tractable with 934

our compute power. Table 4 presents the new statis- 935

tics of Generics and ROCStories datasets. We keep 936

approximately 60% of the input sentences for both 937

datasets. Figure 8 displays the performance of 938

SyntaxShap and SyntaxShap-W and the baselines 939

Random, LIME, NaiveShap and Partition. We eval- 940

uate them on the three faithfulness metrics like in 941

section 5.2. NaiveShap shows similar performance 942

on the div@10 and acc@10 scores as our methods 943

SyntaxShap and SyntaxShap-W. We only notice 944

a score difference for the fidelity metric, where 945

NaiveShap generates less faithful explanations for 946

the ROCStories dataset if you only consider the 947

top-1 model prediction. These observations consol- 948

idate the conclusions drawn in section 5.2, namely 949

that both our method and NaiveShap produce better 950
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Figure 7: Number of tokens distribution for the three datasets Inconsistent Negation Dataset (Negation), Generics
KB (Generics) and ROCStories Winter2017 (ROCStories).

explanations on the faithfulness dimension than the951

other three methods.952

Generics ROCStories
Without NaiveShap 858 1046
With NaiveShap 512 608

Table 4: Dataset statistics before and after keeping the
input sentences for which NaiveShap is computationally
tractable. The statistics are for Mistral 7B filtering.

D.2 Number of tokens and faithfulness953

This section analyzes the relationship between the954

number of tokens in the input sentences and the955

performance of the explainability algorithms. We956

vary the number of tokens from 5 to 15 tokens to957

have at least 50 sentences of the same length for958

both Generics and ROCStories and have a decent959

number of inputs to average upon (see the num-960

ber of tokens distribution in Figure 7). Figure 9961

and 10 show that the performance of all methods is962

robust to the increase in the number of tokens. Syn-963

taxShap can be applied to a diverse range of sen-964

tence lengths. Note that for Mistral 7B in Figure 10965

the results of NaiveShap are limited to sentences966

with less than 10 tokens because of NaiveShap in-967

tractable computations with our compute power968

(see section 8).969
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(a) Mistral 7B, Generics dataset.
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(b) Mistral 7B, ROCStories dataset.

Figure 8: Faithfulness of the explanations of Mistral 7B predictions by the methods Random, LIME, NaiveShap,
Partition, and our methods SyntaxShap and SyntaxShap-W, the weighted variant. Long sentences were removed
because of NaiveShap’s intractable computation time. The scores were averaged on 512 instances for Generics
dataset and 608 instances for ROCStories dataset.
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Figure 9: Performance of the explainers for GPT-2 model when varying the number of tokens from 5 to 15.
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Figure 10: Performance of the explainers for Mistral 7B model when varying the number of tokens from 5 to 15.
Naiveshap div@10 scores were only computed for sentences with less than 10 tokens.
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