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ABSTRACT

An efficient attention implementation is essential for large models due to its
quadratic time complexity. Fortunately, attention commonly exhibits sparsity,
i.e., many values in the attention map are near zero, allowing for the omission
of corresponding computations. Many studies have utilized the sparse pattern to
accelerate attention. However, most existing works focus on optimizing attention
within specific models by exploiting certain sparse patterns of the attention map.
A universal sparse attention that guarantees both the speedup and end-to-
end performance of diverse models remains elusive. In this paper, we propose
SpargeAttn, a universal sparse and quantized attention for any model. Our
method uses a two-stage online filter: in the first stage, we rapidly and accurately
predict the attention map, enabling the skip of some matrix multiplications in
attention. In the second stage, we design an online softmax-aware filter that incurs
no extra overhead and further skips some matrix multiplications. Experiments
show that our method significantly accelerates diverse models, including language,
image, and video generation, without sacrificing end-to-end metrics.

1 INTRODUCTION

Limitation of Existing Work. (L1. Universality) Though existing sparse attention methods Zhang
et al.| (2023)); Xiao et al.| (2024a)); [Fu et al.| (2024); Zhu et al.| (2024); Xiao et al. (2025 2024b);
Ribar et al.| (2024)); Singhania et al.|(2024); Jiang et al.| (2024)); [FlexPrefill| (2025)); |Gao et al.| (2024);
Kitaev et al.| (2020); [Pagliardini et al.| (2023)) already demonstrate promising results, their universality
remains limited. They are typically developed for specific tasks, like language modeling, using
patterns such as sliding windows or attention sink. However, the attention pattern varies significantly
across tasks (see examples in Fig. [5), making these methods hard to generalize. (L2. Usability)
Moreover, it is difficult to implement both accurate and efficient sparse attention for any input. This
is because accuracy demands precise prediction of the sparse regions in the attention map, while
efficiency requires the overhead of this prediction to be minimal. However, current methods are
difficult to effectively satisfy both of the requirements simultaneously.

Goal: We aim to design a training-free sparse attention operator that accelerates all models without
metrics loss. Our approach: We develop SpargeAttn, a training-free sparse attention that can
be adopted universally on various tasks, including language modeling and text-to-image/video. We
propose three main techniques to improve the universality, accuracy, and efficiency. First, we propose
a universal sparse mask prediction algorithm, which constructs the sparse mask by compressing each
block of @, K to a single token. Importantly, we compress selectively based on the similarity of
tokens within the block, so the algorithm can accurately predict sparse masks universally across
tasks. Second, we propose a sparse online softmax algorithm at the GPU warp level, which further
omits some PV products by leveraging the difference between global maximum values and local
maximum values in online softmax. Third, we integrate this sparse approach into the 8-bit quantized
SageAttention framework for further acceleration.

*Equal contribution.
"Corresponding author.
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Result. We evaluate SpargeAttn on a variety of generative tasks, including language modeling and
text-to-image/video, with comprehensive performance metrics on the model quality. SpargeAttn
can robustly retain model end-to-end performance while existing sparse attention baselines incur
degradation. Moreover, SpargeAttn is 2.5x to 5x faster than existing dense and sparse attention
models.
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Figure 1: Workflow of SpargeAttn.

2 SPARGEATTN

2.1 SPARSE FLASHATTENTION

SpargeAttn adopts the tiling strategy of FlashAttention |Dao| (2024)), and skip computing the
blocks that are filtered out. Consider an attention operation S = QK ' /v/d, P = o(S), O = PV,
where 0(S);; = exp(Si;)/ >, exp(Sik) is the softmax operation. Let N be the sequence length
and d be the dimensionality of each head; the matrices @, K, and V' each have dimensions N X d,
while the matrix S and P is N x N. FlashAttention proposes to tile ), K, and V' from the token
dimension into blocks {Q; }, { K;}, {V;} with block sizes b, by, by, respectively. Then, it uses online
softmax Milakov & Gimelshein|(2018]) to progressively compute each block of O, i.e., O;:

Sij = QK] /Vd, (myj, Pij) = 6(mij—1,S:;), lij = exp(mij_1 —mij)lij—1 + rowsum(P;)
Oij = dlag (exp(mi,j,l — mij)Om-,l + P”ij (1)

where m,; and [;; are b, x 1 vectors, which are initialized to —oo and 0 respectively. The &() is an
operator similar to softmax.: m;; = max{m; j_1,rowmax(S;;)}, 13” = exp(S;; — m;;). Finally,
the output O; can be computed by O; = diag(l;;)~'O;;. Implementing sparse FlashAttention is
intuitive. By skipping certain block matrix multiplications of Q; K| and EjVj, we can accelerate
the attention computation. We formulate sparse attention in the following definitions.

Definition 1 (Block Masks). Let M, and M, be binary masks of dimensions [N/b,]| x [N/by],
where each value is either O or 1. These masks determine which computations are skipped in the
sparse attention mechanism.

Definition 2 (Sparse FlashAttention). The computation rules for sparse FlashAttention based on the
masks are defined as follows:

QinT,ﬁijVj are skipped if M,[i, j] = 0. R]VJ is skipped if M, [i, j] = 0. 2)

2.2  SELECTIVE TOKEN COMPRESSION FOR SPARSE PREDICTION

Key idea. Although attention maps vary across models, we observe that various models exhibit a
common trait: Most closer tokens in the query and key matrices of the attention show high similarity
(See Fig. @) Consequently, we first compress blocks exhibiting high self-similarity within ) and K

into tokens. Then, we swiftly compute a compressed attention map P using the compressed @ and K.
Finally, we selectively compute {Q; K jT , P;;V;} for those pairs (4, j) where { P[4, j]} accumulates a
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high score in P. Importantly, compressing only the token blocks with high self-similarity is crucial,
as omitting computations for non-self-similar blocks can result in the loss of critical information
(ablated in Appendix [A.4).

Prediction. As shown in Step1 in Fig.[I] we first compute a mean cosine similarity across tokens
for each block of @) and K. Next, we compress each block into a single token by calculating a mean
across tokens. Then, we compute a compressed QK ' using the compressed () and K. Finally, to
prevent interference from non-self-similar blocks, i.e., the block similarity less than a hyper-parameter
0, we set the corresponding values in S to —oo, and then compute a softmax:

g ={¢;} = {mean(Q;,axis = 0)}, k = {k;} = {mean(K, axis = 0)}, s4; = CosSim(Q;)
si; = CosSim(K;), S[i] = qik"; S[:,j] = —oo, If sx; < 6, P[i] = Softmax(S[i])

where Q; € Rba*? g, € R™*? K; € R%*4 k; € R™? and CosSim(X) = Wﬁg}w

For each row of P, i.e., P[i, :], we select M,][i, :] as the positions of the top values whose cumulative
sum reaches 7, where 7 is a hyper-parameter. Finally, we need to ensure calculations involving
non-self-similar blocks of () or K are not omitted:

Myli, ] =1, If sq; < 0; Myl j]=1, If sp; <0 3)

2.3  SPARSE WARP ONLINE SOFTMAX

Key idea. We can further identify the small enough values in the attention map during the online
softmax process. If all values in E—j are close enough to zero, the IBUVJ can be omitted.
To identify which ]37 i = exp(S,;j —m;, j) (See Sec. contains values small enough to be omitted,
we note that in every inner loop of FlashAttention, the O;,; will be scaled by exp(m; j—1 — m;;) and
then plus the P;;V;:

Miocal =rowmax(Si;), mi; = max{m; j_1, Miocal }

0,; =diag (exp(m j_1 —mi;)) Os j—1 + Pi;V;

If rowmax(S;;) < m;;, then m;; = m, ;_1. Consequently, O;; = O; j_1 + ]BUVJ Furthermore,
if rowmax(S;;) < m; holds ture, then all values in P;; = exp(Si; — mi;) are close to 0. This
results in all values in ]57 7V being close to 0. This condition implies that IBWVJ is negligible when
rowmax(.S;;) is significantly smaller than m;;:
0i; = O; j—1, if max (exp(S;; —my;)) — 0
max (exp(Si; — mij;)) = 0 < max(Migca — Mij) < A

2.4 COMBINED WITH SAGEATTENTION

Since quantization operations and sparse operations are orthogonal, sparse computation can be directly
applied to SageAttention Zhang et al.| (2025b)). Specifically, first, we need to add one judgment at the
beginning of the inner loop of SageAttention to decide whether to skip the whole inner loop once.
Second, we add another judgment before the updating of O;; in the inner loop of SageAttention to

decide whether to skip the computation of EJVJ

3 EXPERIMENT

3.1 SETUP

Models, Datasets, metrics. For details about the models, datasets, and metrics, please refer to

Appendix.

Speed and sparsity metric. We use TOPS (tera operations per second) to evaluate the speed of
sparse attention methods. Specifically, TOPS = O(attn)/t, where O(attn) represents the total
number of operations in a standard attention computation, and ¢ is the latency of attention operation,
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Table 1: End-to-end metrics across text, image, and video generation models. The speed and sparsity
are the average for each layer in the model in real generation tasks described in Sec. The speed

and sparsity of L1ama3. 1 are measured in the Needle-in-a-Haystack task with a 128K sequence
length.

Model (seq_len) |Attention (Sparsity) | Speed (TOPS)T | WikiText (Ppl.) | | Longbench 1 | InfiniteBench 1 | NIAH

Full-Attention 156.9 6.013 38.682 0.6594 0.907
Minference (0.5) 140.1 10.631 28.860 0.5152 0.832
Llama3.1 FlexPrefill (0.5) 240.6 6.476 38.334 0.6460 0.858
(128K) Minference (0.3) 115.7 6.705 34.074 0.6532 0.870
FlexPrefill (0.42) 206.9 6.067 38.334 0.6581 0.878
SpargeAttn (0.54) 708.1 6.020 39.058 0.6638 0.909
Model (seq_len) |Attention (Sparsity) | Speed (TOPS)t | CLIPSIM 1 | CLIP-T 1 | VQA-a 1 | VQA-t 1 | FScore 1
Full-Attention 166.0 0.1819 0.9976 80.384 75.946 5.342
Minference (0.5) 264.6 0.1728 0.9959 70.486 62.410 2.808
CogvideoX |FlexPrefill (0.6) 175.3 0.1523 0.9926 1.5171 4.5034 1.652
(17K) Minference (0.3) 196.9 0.1754 0.9964 77.326 63.525 3.742
FlexPrefill (0.45) 142.0 0.1564 0.9917 7.7259 8.8426 2.089
SpargeAttn (0.46) 507.9 0.1798 0.9974 | 78276 | 74.846 | 5.030
Model (seq_len) | Attention (Sparsity) |  Speed (TOPS)} | FID| | CLIPT | IR 1
Full-Attention 158.2 166.103 31.217 0.8701
Minference (0.5) 151.8 180.650 30.235 0.4084
Flux FlexPrefill (0.48) 47.7 443.928 18.3377 -2.2657
(4.5K) Minference (0.3) 118.9 170.221 31.001 0.7701
FlexPrefill (0.41) 40.9 405.043 19.5591 -2.2362
SpargeAttn (0.38) 280.3 163.982 31.448 0.9207

including the time spent predicting the sparse region of the attention map. We define Sparsity as the

proportion of the Matmul of Q; K; plus Pij V; that are skipped relative to the total number of Q; K;
plus P/ V; in a full attention.

Baselines and Hyperparameters. Currently, sparse attention methods applicable across different
model types are limited. We choose block-sparse MInference Jiang et al.|(2024) and FlexPrefill Flex+
Prefilll (2025) as our baselines. To vary the sparsity of these baselines, we use 30% and 70% for
Mlinference, and use v = 0.95 and 0.99 for FlexPrefill according to their paper. Hyperparameter
determination for SpargeAttn are detailed in Appendix.[A.3]

3.2 QUALITY AND EFFICIENCY EVALUATION

End-to-end metrics. We assess the end-to-end metrics of various models using SpargeAttn
compared to using full attention and baselines. As shown in Table[I] our method incurs almost no
end-to-end metric loss across various models compared to Full-Attention and surpasses baselines
with various sparsity levels in terms of end-to-end accuracy. Fig. [3 and f] show some visible
comparison examples on different image/video generation models, showing that SpargeAttn
incurs no performance loss and outperforms baselines. More results are shown in Appenedix[A.3]

—¥— SpargeAttn+FA2 —e— Minference —— FlashAttn
—— SpargeAttn+Sage Flexprefill —— SageAttn
—e— SpargeAttn+Sage2

900
800
Y 700
O 600
<500
D 400
2300

v 200 ,__——v—/"’/:/_——-——*/.

100

0.1 0.2 0.3 0.4 0.5 0.6
Sparsity
Figure 2: Kernel speed comparison under varying sparsity on RTX4090. Input tensors have a
sequence length of 22K and a head dimension of 128. SpargeAttn+FA2/Sage/Sage2 means deploying
our method on FlashAttention2, SageAttention or SageAttention2 Zhang et al.| (2024a)).
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Attention speed. Table|l|shows that our method achieves faster speeds compared to Full-Attention
and surpasses baselines with various sparsity levels in terms of attention speed. Fig. 2]illustrates the
kernel speeds of various methods across different sparsity. Tabel [2] demonstrates that the overhead of
dynamic sparse block prediction of SpargeAttn is minimal, particularly for long sequences.

End-to-end speedup. Table [3| shows the end-to-end latency on CogvideoX, Mochi, and
Llama3.1 using SpargeAttn. Notably, SpargeAttn achieves 1.83x speedup on Mochi.

Table 2: Overhead (ms) of sparse block Table 3: End-to-end generation latency using

prediction in SpargeAttn. SpargeAttn.
Seq Len|Prediction|Full Attention|Overhead Model | GPU |OriginalSageAttn|SpargeAttn
8k 0.251 6.649 3.78% CogvideoX [RTX4090, 87s 68 s 53s
16k 0.487 26.83 1.82% Mochi L40 1897 s 1544 s 1037 s
32k 0.972 106.68 0911% Llama3.1 (24K)[RTX4090 4.01 s 3.53s 2.6s
128k 8.764 1696.2 0.516% Llama3.1 (128K) L40 52s 42s 29.98 s
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A APPENDIX

A.1 VISUAL EXAMPLES
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A.2 MODELS, DATASETS, AND METRICS

Models. We validate the effectiveness of SpargeAttn across diverse representative models
from language, image, and video generation. Specifically, we conduct experiments on L1ama3. 1

(8B) Dubey et al| (2024) for text-to-text, CogvideoX (2B) and Mochi (2024)) for text-to-
video, F1ux |Black Forest Labs|(2023)(.1-dev) and Stable-Diffusion3.5 (large)|Stability Al

(2023) for text-to-image.

Datasets. The Text-to-text model is evaluated on four zero-shot tasks: WikiText
to assess the model’s prediction confidence, Longbench and En.MC of
InfiniteBench [Zhang et al.| (2024b) for a comprehensive assessment of long context understanding
capabilities, and the Needle-in-a-Haystack task to assess the model’s retrieval
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ability. Text-to-video models are evaluated using the open-sora|[Zheng et al.|(2024c) prompt sets.
Text-to-image models are assessed on COCO annotations |Lin et al.| (2014).

End-to-end metrics. For L1ama3. 1, we use perplexity (ppl.)Jelinek et al.|(1977) for WikiText,
Longbench score Bai et al.|(2024)), and retrival accuracy for the Needle-in-A-Haystack task [Kamradt
(2023)). For text-to-video models, following [Zhao et al.| (2025)), we evaluate the quality of generated
videos on five metrics: CLIPSIM and CLIP-Temp (CLIP-T)Liu et al.| (2024) to measure the text-video
alignment; VQA-a and VQA-t to assess the video aesthetic and technical quality, and Flow-score
(FScore) for temporal consistency Wu et al.| (2023)). For text-to-image models, generated images
are compared with the images in the COCO dataset in three aspects: FID |Heusel et al.[|(2017) for
fidelity evaluation, Clipscore (CLIP) Hessel et al.|(2021) for text-image alignment, and ImageReward
(IR) Xu et al.| (2024)) for human preference.

A.3 HYPER-PARAMETERS DETERMINATION FOR MODEL LAYER

Based on the method description in Sec. and[2.3] our method incorporates three hyper-parameters:
T € (0,1), 8 € (—1,1), and A < 0. The parameter determination process for each attention
layer in any model is straightforward. We aim to identify a set of hyperparameters that not only
maximize attention sparsity but also constrain the attention error across five different model inputs.
To evaluate attention accuracy, we employ a strict error metric, the Relative L1 distance, defined as
L1 =510 — 0’|/ >_|0|. The process begins by setting two L1 error thresholds /; and Is, e.g.,
l; = 0.05,1l2 = 0.06. We first conduct a grid search for 7 and 6 to identify the optimal pair that
maximizes sparsity while ensuring L1 < [;. Subsequently, we perform another grid search for A to
find the optimal value that further maximizes sparsity while maintaining L1 < [s.

In our experiments, we use (I; = 0.08,l, = 0.09) for Llama3.1, (I; = 0.05,l; = 0.06) for
CogvideoX and Mochi, and (I; = 0.07,l; = 0.08) for Stable-Diffusion3.5 and Flux.

A.4 ABLATION STUDY OF SELE-SIMILARITY JUDGE

To investigate the impact of the self-similarity judge on attention performance, we conduct an
ablation study by removing the self-similarity judge, using five distinct prompts and pre-searched
hyperparameters with [; = 0.05, /3 = 0.06 on both CogvideoX and Mochi models. In most cases,
the presence of highly localized patterns results in a minimal number of non-self-similar blocks,
leading to only minor differences in precision and sparsity when averaging across all tensor cases. To
obtain more meaningful and interpretable insights, we specifically analyze cases where the precision
difference is statistically significant.

To this end, we apply a threshold-based selection criterion, retaining only those cases where the abso-
lute difference between L159™~7%49¢ (precision error with the self-similarity judge) and L1m0—7udge
(precision error without the self-similarity judge) exceeds 0.05. This criterion results in approximately
2% of the tensor cases being retained for further analysis. We employ precision (L1 error) and sparsity
as evaluation metrics to assess the influence of the self-similarity judge on the attention output. The
results are summarized in Table ]

Table 4: Impact of the self-similarity judge on the accuracy and sparsity of attention.

Method \ w/ judge w/o judge filter w/ judge filter w/o judge

|CogvideoX Mochi|CogvideoX Mochi|CogvideoX Mochi|CogvideoX Mochi

L1 error] 0.0316  0.0343| 0.0325 0.0365| 0.0843  0.0555 0.214 0.154
Sparsity 1 0.199 0.301 0.203 0.305 0.242 0.371 0.275 0.392

The findings demonstrate that the self-similarity judge effectively mitigates extreme precision loss
while introducing only a marginal reduction in sparsity. We also evaluate the end-to-end accuracy
result in Table

Table 5: Abalation of self-similarity judge.

Method | VQA-at | VQA-t1 | FScore
W/o. self-sim Judge 34.664 44.722 1.138
With self-sim Judge 54.179 67.219 1.807
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A.5 ADDITIONAL EXPERIMENTS

Table[6] shows results on Mochi and Stable-Diffusion3. 5. Figure[7]shows the visual results
on Needle-in-a-Haystack of L1ama3.1. We believe SpargeAttn could be effectively employed

to linear layer quantization (Hu et al., 2025} hang et al.l2025¢c), RAG systems [277_235])

k)

heterogeneous GPU systems (Jiang et al.}[20254; Jiang et al.; 2025b)), and diffusion models

Table 6: Results on Mochi and Stable-Diffusion3.5. X indicates an inability to generate
results for evaluation.

Model (seq_len) |Attention (Sparsity) | Speed (TOPS)T | CLIPSIM 1 | CLIP-T 1 | VQA-a 1 | VQA-t 1 | FScore
Full-Attention 0.1725 0.9990 56.472 67.663 1.681
Minference (0.5) 202.4 0.1629 0.9891 6.668 50.839 0.653
Mochi FlexPrefill (0.48) 191.3 0.1667 0.9898 0.582 0.0043 X
(22K) Minference (0.3) 147.7 0.1682 0.9889 14.541 42.956 0.833
FlexPrefill (0.4) 171.7 0.1677 0.9909 2.941 0.7413 X
SpargeAttn (0.47) 5824 0.1720 0.9990 54.179 67.219 1.807
Model (seq_len) | Attention (Sparsity) | Speed (TOPS)t | FID | CLIP t | IR 1
Full-Attention 164.2 166.101 32.007 0.9699
Stable— Minference (0.5) 186.4 348.930 18.3024 -2.2678
Diffusion3. s FkmeﬁH(037) 23.1 350.497 18.447 -2.2774
(4.5K) 7| Minference (0.3) 150.3 337.530 18.099 -2.2647
i FlexPrefill (0.35) 22.7 348.612 18.147 -2.2756
SpargeAttn (0.31) 293.0 166.193 32.114 0.9727
Full Attention SpargeAttention

Overall Score: 0.907

Depth (%)

ottt St

Token Limit

Overall Score: 0.909

Depth (%)

1”‘*’\*%"*%&9‘-’&0\ ("0*

Token Limit

Minference
Overall Score: 0.832

ottt St

Depth (%)

Token Limit

Iu4

FlexPrefill
Overall Score: 0.858

Depth (%)

,\uhq“qp*“go*‘qei‘,x\p«*@*

Token Limit

Figure 7: A Needle-in-a-Haystack comparison example on Llama3.1.
SpargeAttn, MInference, and FlexPrefill is 0.5, 0.5, and 0.54.
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