
PhoneLM: an Efficient and Capable Small Language Model Family

Anonymous ACL submission

Abstract

The interest in developing small language mod-001
els (SLM) for on-device deployment is fast002
growing. However, the existing SLM design003
hardly considers the device hardware charac-004
teristics. Instead, this work presents a sim-005
ple yet effective principle for SLM design: ar-006
chitecture searching for optimal runtime ef-007
ficiency before pre-training. Guided by this008
principle, we develop PhoneLM SLM family009
(with 0.5B and 1.5B versions), that acheive010
the state-of-the-art capability-efficiency trade-011
off among those with similar parameter size.012
We fully open-source the code, weights, and013
training datasets of PhoneLM for reproducibil-014
ity and transparency, including both base and015
instructed versions. We also release a finetuned016
version of PhoneLM capable of accurate An-017
droid Intent invocation, and an end-to-end An-018
droid demo.019

1 Introduction020

In last few years, the striking progress has been021

made in large language models, attributed to the022

scaling-up ability of transformer. One the other023

hand, we also notice growing interests in small024

language models (SLMs), which typically encom-025

pass sub- or a few billions of parameters and fa-026

cilitate on-device deployments (Lu et al., 2024;027

Yuan et al., 2024). In practice, SLMs have been028

shipped to commercial off-the-shelf devices on a029

vast scale. For instance, the latest Google/Sam-030

sung phones have built-in LLM service (Gemini031

Nano), through which third-party mobile apps can032

freely enjoy LLM capability through text prompts033

or LoRA (Hu et al., 2021). Apple also introduces034

SLMs to facilitate privacy-preserving on-device035

intelligence tasks such as refining text and priori-036

tizing notifications in iOS (Inc., 2024a).037

On-device SLM deployment is extremely chal-038

lenging due to the resource scarce of edge de-039

vices (Xu et al., 2024). While there has been plenty040

(a) Chat (b) Android Intent Invocation

Figure 1: An end-to-end Android demo of PhoneLM’s
capability. (a) shows an example of a user having a
conversation with PhoneLM-1.5B-Instruct; (b) shows an
example of a user invokes an Android intent through
chatting with PhoneLM-1.5B-Call.

of open-sourced SLMs, e.g., Microsoft Phi fam- 041

ily (Microsoft, 2024.04), that are claimed to be de- 042

signed for resource-constrained devices, we found 043

rare evidences supporting it except its relatively 044

small parameter size. Motivated by the absence 045

of a high-level principle for SLM design, we ask 046

a question: beyond using a small parameter size, 047

what else can model developers do to better sup- 048

port on-device deployment with limited resources? 049

In this work, we propose an intuitive yet effec- 050

tive principle for constructing on-device small lan- 051

guage models: searching for an resource-efficient 052

architecture on a given hardware before pre- 053

training. It fundamentally differs from traditional 054

SLM pipeline in that it moves the consideration of 055

resource efficiency ahead of pre-training, while ex- 056

isting practice typically puts performance optimiza- 057

1

4 0 6 0 1 4 08 0 1 0 0 1 2 0

Prefilling Throughput (tokens/s)

5 8

6 0

6 2

6 4

6 6

6 8

7 0

A
v

e
r
a

g
e

A
c
c
u

r
a

c
y

TinyLLaMA-1.1B

OPT-1.3B

StableLM-1.6B

SmolLM-1.7B

Qwen1.5-1.8B

Qwen2.5-1.5BGemma-2B

MiniCPM-2B

PhoneLM-1.5B

2 0 7 03 0 4 0 5 0 6 0

Decoding Throughput (tokens/s)

TinyLLaMA-1.1B

OPT-1.3B

Qwen2.5-1.5BGemma-2B

MiniCPM-2B

StableLM-1.6B

SmolLM-1.7B PhoneLM-1.5B

Qwen1.5-1.8B

Figure 2: The comparison of the average accuracy and runtime performance between PhoneLM-1.5B and SLMs with
similar parameter quantities (1B to 2B). The length of input prompt is 64 tokens. The average accuracy select seven
NLP tasks to reflect the ability of the models (same as table reftab:performance), and the prefill/decode throughput
is tested using the CPU on the Xiaomi 14 mobile phone. The closer the model is to the upper right corner, the
better it is. Solid dots represent that the training data of the model is open source, and hollow dots represent that the
training data of the model is closed source.

tions after pre-training (e.g., PTQ) but searches for058

an architecture with best capability (e.g., through059

observations on loss curve) (Hu et al., 2024). The060

principle is reasoned with two observations. (1) Ac-061

cording to the scaling law (Kaplan et al., 2020), the062

final model accuracy is not sensitive to the model063

configurations in a wide range; yet our experiments064

in §2 demonstrate the opposite finding for infer-065

ence speed, where the same-sized SLMs (1.5B)066

can run with up to 3.13× speed gap (compared067

with OPT-1.3B) on the same smartphone. (2) The068

cost of pre-training SLMs for different devices will069

be amortized by deploying SLM as a system-level070

service that delivers language ability to third-party071

apps, e.g., Google AICore (Inc., 2024b). In such072

circumstance, the pre-training cost of SLMs for073

each device is one shot, regardless of how many074

applications it serves (Yin et al., 2024).075

Guided by this principle, we develop and re-076

lease PhoneLM for smartphone hardware (e.g.,077

Qualcomm Snapdragon SoC), a family of pre-078

trained and instructed SLMs. It now includes079

5 model variants: PhoneLM-0.5B, PhoneLM-0.5B-080

Instruct, PhoneLM-1.5B, PhoneLM-1.5B-Instruct,081

and PhoneLM-1.5B-Call. The first two are base082

models, while the other three are finetuned for in-083

struction following and system-level function call084

in Android. We also provide a few quantized ver-085

sions to facilitate fast deployments.086

There are three notable features of PhoneLM:087

First, PhoneLM is extremely efficient through ex-088

haustive ahead-of-pretraining architecture search 089

on smartphone hardware. For instance, PhoneLM- 090

1.5B runs at 58 tokens/second on Xiaomi 14 (Snap- 091

dragon 8Gen3 SoC) CPU, which is 1.2× faster than 092

StableLM 2 1.6B and 1.6× faster than SmolLM 093

1.7B with similar parameter size. The prefilling 094

speed of PhoneLM-1.5B even achieves 654 token- 095

s/second on Xiaomi 14 NPU. The underlying ar- 096

chitecture of PhoneLM is against recent SLM de- 097

signs that converge to using SiLU (PhoneLM adopts 098

ReLU) (Elfwing et al., 2018) and a width-height ra- 099

tio between 54.6–88.6 (PhoneLM uses 134.7). Such 100

architecture not only offers speed advantage on 101

CPU, but also facilitates the NPU-friendly quanti- 102

zation (Xu et al., 2025) and sparse activation (Liu 103

et al., 2023). 104

Second, PhoneLM achieves impressive language 105

capability with a small parameter size, as shown in 106

Figure 2. Across 7 typical benchmarks (listed in 107

Table 5), PhoneLM-1.5B scores 67.3% accuracy on 108

average, which is on par with the state-of-the-art 109

SLMs with similar size trained on open datasets 110

(i.e., SmolLM (HuggingFace, 2024.07) 1.7B and 111

DCLM (Toyota, 2024.08) 1.4B). It even achieves 112

better capability than many SLMs trained on propri- 113

etary datasets such as Qwen 1.5 1.8B and StableLM 114

2 1.6B. After finetuned, PhoneLM-1.5B is also capa- 115

ble of having smooth conversations with humans, 116

and controlling smartphones using Android intent 117

through function calls. 118

Third, PhoneLM is fully open-sourced, repro- 119

2

ducible, and demonstrable. PhoneLM is trained on120

only open datasets without any manipulation. We121

release the complete codebase to develop PhoneLM,122

including the data preparation, training, fine-tuning,123

and evaluation procedures. To showcase the capa-124

bility of PhoneLM in an end-to-end manner, we also125

release a demonstrable Android app powered by126

PhoneLM and mllm (Yi et al., 2023) engine. With127

the app, users can chat with PhoneLM on devices or128

invoke OS function calls with human language, as129

shown in Figure 1.130

In a nutshell, PhoneLM achieves the state-of-131

the-art speed-capability tradeoff for smartphones132

among the SLMs trained on open datasets. We133

anticipate PhoneLM, as well as the underlying prin-134

ciple of its development, to bring the community135

to the attentions on the importance of algorithm-136

hardware co-design and co-optimizations in SLMs.137

PhoneLM has risks like being maliciously used to138

generate false content, so we recommend strict ac-139

cess control and monitoring mechanisms.140

2 A Principle for SLM Development141

SLM shall adapt to the target device hardware.142

A key argument of this work is that, unlike on143

clouds, the SLM architecture and development144

shall adapt to the specific hardware for runtime145

efficiency as the first-class concern. Throughout146

this work, the “SLM architecture” mainly refers to147

the hyperparameters of transformer-decoder mod-148

els, including the types of attention (MHA, GQA,149

etc.), activation function of feed forward network150

(FFN), depth and width of the model, etc.151

Motivating experiments. To support the princi-152

ple proposed, we test a bunch of SLMs with 100M153

and 200M parameters using various configurations154

on 2B tokens (dataset is the same as used to train155

PhoneLM). We then compare their loss on the same156

validation dataset. At the same time, we tested the157

inference speeds of these models using the infer-158

ence engine mllm (Yi et al., 2023) on a smartphone159

equipped with the Snapdragon 8Gen3 SoC. The re-160

sults of average metric (introduced in Section 4.2)161

and inference speed (throughput) are shown in fig-162

ure 3. More details of these model architectures163

are shown in appendix A. We fit a quadratic curve164

to the loss of the 100M and 200M models when165

training on the same 2B tokens of data. Overall,166

fewer transformer layers, a larger model hidden167

size, and more attention heads tend to have faster168

inference speeds.169

A key observation is that runtime speed is more 170

sensitive to the SLM architecture than the loss. For 171

a given model size, the range of its runtime speed 172

is much wider than that of the loss. Comparing the 173

SLMs with different sizes (100M and 200M), there 174

is significant overlap of inference speed, but hardly 175

any overlap of loss. In other words, a model with 176

200M parameters is consistently more capable than 177

the one with 100M parameters, but does not always 178

run slower on devices. The speed gap could be as 179

large as 5× under the same model size. With more 180

training tokens, the loss gap would even close up 181

according to our experiments. 182

A principle of SLM development. Based on 183

the insights, we present an intuitive yet effective 184

principle for SLM development: search for the 185

most efficient architecture on given hardware, then 186

pre-train it on datasets with best quality and most 187

quantity as possible. This principle differs from 188

existing approaches that uses model capability as 189

the target metric in SLM architecture search (Hu 190

et al., 2024), leaving runtime optimizations in post- 191

training stages. 192

3 PhoneLM: Smartphone-native SLM 193

Family 194

Following the proposed principle, we developed 195

and trained PhoneLM, a smartphone-native SLM 196

family, with the following notable features: (1) 197

Good runtime performance and capability. (2) Con- 198

venient for smartphone deployment and more suit- 199

able for model inference using NPU. 200

In this section, we present the architecture and 201

training details of PhoneLM. 202

3.1 Architecture 203

Model Size 0.5B 1.5B

Hidden size 1,024 2,560
Intermediate Hidden Size 4,864 6,816
Heads 16 16
Layers 24 19
Vocab size 49,152 49,152
Context Len 2,048 2,048
Training Tokens 1.1T 1.5T

Table 1: PhoneLM hyperparameters and training settings.
Notably, only PhoneLM-1.5B is developed with ahead-
of-pretraining architecture search.

PhoneLM adopts a transformer decoder architec- 204

ture with two variants (0.5B and 1.5B parame- 205

3

400 500 600 700 800 900
Prefilling Throught (tokens/s)

3.6

3.7

3.8

3.9

4.0

4.1

4.2
lo

ss

1
2

3
4 5
6

7
89 10

11

12

1314 15
1617

18

12

3
45

6
7

89
10

11

12
131415 16

17
18 100M

200M

100 200 300 400
Decoding Throught (tokens/s)

1
2

3
4

5

6
7

8
9

10

11

12
13

14

15
16

17
18

12

3
45

6
7

89
10

11

12
13

14

15
16

17
18

100M
200M

Figure 3: The comparison of the throughput and ability of the models with parameter quantities of 100M and 200M.
More details of these model architecture are shown in appendix A

hidden intermediate layers prefilling
(tokens/s)

decoding
(tokens/s)

2048 12288 16 70.75 55.12
2560 7680 18 64.98 60.60
2560 6816 19 81.47 58.08
2048 10240 19 68.52 54.48
1792 10752 21 65.42 50.18
2048 8192 22 67.10 54.04
1792 8960 25 63.29 48.63

Table 2: The throughput of models with multiple struc-
tures of 1.5B parameters on the Xiaomi 14 CPU (Snap-
dragon 8Gen3).

ters), as detailed in Table 1. PhoneLM featuring206

a context length of 2,048 tokens and utilize the207

tokenizer from SmolLM (HuggingFace, 2024.07),208

which supports a vocabulary size of 49,152. The209

models employ Rotary Position Embedding (RoPE)210

and multi-head attention mechanisms. The model211

adopts RMSNorm in place of LayerNorm as used212

in the traditional Transformer architecture. In their213

feed-forward components, they incorporate Gated214

Linear Units (GLU) mechanisms alongside ReLU215

activation functions.216

Hardware-specific Hyperparameter Search217

for Resource Efficiency. To optimize PhoneLM for218

smartphone deployment, we conducted an exhaus-219

tive hyperparameter search on smartphone hard-220

ware. This search aimed to identify configurations221

that maximize runtime efficiency. Specifically, we222

explored a range of parameters including the num-223

ber of layers, which varied from 15 to 25. We also224

examined the use of multi-head attention (MHA)225

with 16 heads and Grouped Query Attention (GQA)226

with 4 groups. Finally, we evaluated models with227

different ratios of intermediate hidden size to hid-228

den size, ranging between 2 and 5.229

Table 2 summarizes the throughput results for 230

various 1.5B model structures tested on the Xiaomi 231

14 CPU (Snapdragon 8Gen3). Based on these ex- 232

periment, we selected the configuration with the 233

highest inference speed as the final structure for 234

PhoneLM. 235

Activation Function Selection. Unlike recent 236

SLMs that utilize SiLU or GELU, PhoneLM em- 237

ploys ReLU as its activation function. This choice 238

is driven by two main factors. First, calculating 239

ReLU is more efficient on smartphones, particu- 240

larly for NPUs optimized for integer calculations. 241

This efficiency makes ReLU a preferable choice 242

for mobile devices where computational resources 243

are limited. Second, ReLU introduces sparsity into 244

the feed-forward network, which facilitates faster 245

inference through techniques such as coefficient 246

calculation. These techniques, discussed in detail 247

by Song et al. (Song et al., 2023) and Alizadeh 248

et al. (Alizadeh et al., 2023), leverage the sparsity 249

introduced by ReLU to accelerate computations on 250

mobile platforms. 251

Pre-quantized positional embedding. To fur- 252

ther enhance computational efficiency on mobile 253

devices, we apply INT8 quantization to the sin 254

and cos values of RoPE. This linear quantization 255

process scales floating-point values to the INT8 256

range [-128, 127]. Specifically, we first determine 257

the maximum absolute values of sine and cosine 258

functions, then scale the original values by divid- 259

ing them by their respective maximum values and 260

multiplying by 127, followed by rounding to the 261

nearest integer. This approach minimizes accuracy 262

loss while significantly improving computational 263

efficiency on mobile accelerators such as NPUs. 264

4

type dataset token
web DCLM-baseline (Li et al., 2024) 1.35T
code StarCoderData (Li et al., 2023b) 112.75B

math OpenWebMath (Paster et al., 2023) 13.25B
Dolma-algebraic (Soldaini et al., 2024) 12.75B

academic Dolma-arxiv (Soldaini et al., 2024) 29B
total 1.5T

(a) Stable Training Stage
type dataset token
web DCLM-baseline (Li et al., 2024) 10B

code StarCoderData (Li et al., 2023b) 1.575B
The Stack Smol 0.95B

acadamic Dolma-arxiv (Soldaini et al., 2024) 2.325B
Dolma-pes2o (Soldaini et al., 2024) 2.35B

math instruct MathInstruct (Yue et al., 2023) 65.25M

chat instruct
UltraChat (Ding et al., 2023) 1.775B
OpenAssistant 2 (Köpf et al., 2024) 42.25M
OpenHermes (Teknium, 2023) 77.25M

code instruct

Magicoder Evol Instruct (ise uiuc, 2024) 30.25M
CommitPackFT (Muennighoff et al., 2023) 0.35B
Magicoder OSS Instruct (Wei et al., 2023) 43.5M
SlimOrca (Lian et al., 2023) 209.75M

function calling
instruct

APIGen (Liu et al., 2024) 48.25M
Glaive Function Calling (glaiveai, 2024) 57.5M

total 20B

(b) Decay Stage
type dataset token
math instruct MathInstruct (Yue et al., 2023) 65.25M

chat instruct
UltraChat (Ding et al., 2023) 1.775B
OpenAssistant 2 (Köpf et al., 2024) 42.25M
OpenHermes (Teknium, 2023) 77.25M

code instruct

Magicoder Evol Instruct (ise uiuc, 2024) 30.25M
CommitPackFT (Muennighoff et al., 2023) 0.35B
Magicoder OSS Instruct (Wei et al., 2023) 43.5M
SlimOrca (Lian et al., 2023) 209.75M

total 2.59B

(c) Instruct Turning Stage

Table 3: The classification of the datasets used in each
stage and the number of their tokens. The description
of the datasets is in appendix C.

3.2 Pre-training265

The training of PhoneLM has been set up as follows:266

(1) The optimizer is AdamW (Loshchilov, 2017)267

with β1 of 0.9, β2 of 0.95, and ϵ of 1e-8. (2) We268

use Fully Sharded Data Parallel (FSDP) to lever-269

age multi-GPU and multi-node setups efficiently.270

(3) Another critical improvement is the integra-271

tion of Flash Attention 2, an optimized attention272

mechanism. (4) We also use Zero Redundancy Op-273

timizer(ZeRO), a memory optimization technique274

that reduces the models’s memory footprint. (5)275

We use BF16 to accelerate the training process.276

The details of the setting of pre-training stage are277

shown in table 4.278

We use a dataset sourced from open datasets.279

For PhoneLM-0.5B, we use 1.1 trillion tokens, and280

for PhoneLM-1.5B, we use 1.5 trillion tokens. In281

pre-training stage, we apply the weight decay, a282

learning rate warmup, and a cosine learning rate283

decay schedule.284

PhoneLM is totally trained on open-sourced285

datasets without any manipulation, as shown in286

0 200 400 600 800 1000 1200
Training Tokens (Billion)

2

4

6

8

Tr
ai

n
L

os
s

PhoneLM-0.5B Train Loss

#1 Stable Training Stage
#2 Decay Stage
#3 SFT Stage

0 250 500 750 1000 1250 1500
Training Tokens (Billion)

2

4

6

8

Tr
ai

n
L

os
s

PhoneLM-1.5B Train Loss

#1 Stable Training Stage
#2 Decay Stage
#3 SFT Stage

Figure 4: Training loss of PhoneLM-0.5B and PhoneLM-
1.5B. This figure includes the loss in the Pre-training
stage in Section 3.2 and the loss during Instruct Tuning
stage in Section 3.3.

table 3. In the stable training stage, several 287

open-source datasets are used, including DCLM- 288

baseline, StarCoderData, OpenWebMath, Dolma. 289

The details of the training datasets are shown in ap- 290

pendix C. The pre-training loss of PhoneLM family 291

on the pretraining dataset is shown in figure 4 with 292

black line. 293

3.3 Fine-tuning 294

The fine-tuning of PhoneLM base model is similar 295

to MiniCPM (Hu et al., 2024) and Llama 3 (Dubey 296

et al., 2024), which includes two stages: decay 297

stage and Fine-tuning stage. (1) Decay Stage. We 298

use a mixture of the pre-training data and high- 299

quality supervised fine- tuning data, which is about 300

20 billion tokens. In this stage, we use a linear 301

learning rate decay schedule. (2) Fine-tuning Stage. 302

We find it still necessary to conduct a separate Fine- 303

tuning stage. We utilize fine-tuning data similar to 304

that in the decay phase but excludes pre-training 305

data, totaling approximately 2.59 billion tokens. 306

The learning rate for fine-tuning is set to match 307

the final learning rate from the decay stage. The 308

optimizer in the Fine-tuning stage is the same as 309

that in the pre-training stage for acceleration, but 310

with different hyperparameter settings, which are 311

shown in the table 4. 312

Instruct Tuning. In the decay stage, the data 313

mixture contains some dataset from stable training 314

stage, including DCLM-baseline, StarCoderData, 315

5

stage Stable Decay SFT
Datasets (tokens) 1.1TB 20B 2.59B
Learning Rate Scheduler Cosine Linear None
Max Learning Rate 4e-04 8e-05 4e-05
Min Learning Rate 8e-05 4e-05 4e-05
Batch Size 13.5M 1.5M 32M
Epoch 1 1 7
Training Days (A100) 72×10 16×0.6 16×1

(a) PhoneLM-0.5B
stage Stable Decay SFT
Datasets (tokens) 1.5TB 20B 2.59B
Learning Rate Scheduler Cosine Linear None
Max Learning Rate 4e-04 4e-05 2e-05
Min Learning Rate 4e-05 2e-05 2e-05
Batch Size 9M 9M 128M
Epoch 1 1 8
Training Days (A100) 64×35 64×0.2 64×1

(b) PhoneLM-1.5B

Table 4: Training settings

and Dolma. Then it contains some high-quality316

fine-tuning data,which is used in Fine-tuning stage.317

The fine-tuning datasets are shown in table 3, in-318

cluding APIGen, Stack Smol, UltraChat, MathIn-319

struct, OpenAssistant 2, OpenHermes, Commit-320

PackFT, OSS-Instruct, and SlimOrca. The details321

of these datasets are shown in appendix C. The322

pre-training loss of Decay Stage and Fine-tuning323

Stage is shown in figure 4 Since we continue fine-324

tuning the model after the decay stage, the loss325

drops significantly at the beginning of each epoch.326

Function Call Tuning. To enhance the model’s327

capability in smartphone operation, we fine-tuned328

the PhoneLM on the DroidCall (Xie et al., 2024)329

dataset, a synthetic dataset specifically focused on330

Android intent invocations generated by GPT-4.331

The DroidCall dataset includes 10k samples cov-332

ering simple, parallel, and nested function call pat-333

terns for common Android operations. We use334

LoRA to fine-tune PhoneLM, adding adapter to all335

linear layers within both the attention layers and336

MLP layers The fine-tuning process was config-337

ured with an initial learning rate of 1.41e-5, uti-338

lizing a rank (r) of 8 and an alpha value of 16. A339

linear learning rate scheduler was employed with a340

warmup ratio of 0.1. To ensure a minimal computa-341

tional load and to increase inference speed, we used342

a minimalist prompt, which essentially only in-343

cluded function information and user queries. The344

final function calling model was derived from the345

optimal checkpoint of the fine-tuning process. The346

details of prompt construction are shown in ap-347

pendix E.348

200 400 600 800 1000 1200
Training Tokens (Billion)

40

60

80

M
at

ri
c

Sc
or

e(
%

)

PhoneLM-0.5B

0 200 400 600 800 1000 1200 1400 1600
Training Tokens (Billion)

40

60

80

M
at

ri
c

Sc
or

e(
%

)

PhoneLM-1.5B

ARC-e
ARC-c

HellaSwag
WinoGrande

PIQA
SciQ

BoolQ

Figure 5: PhoneLM’s performance across training itera-
tions on standard zero-shot tasks

4 Experiment Results 349

We evaluate PhoneLM on a wide range of common- 350

sense reasoning and problem-solving tasks and 351

compare it to several existing open-source language 352

models with similar model sizes. 353

4.1 Baselines and Tasks 354

We compare the PhoneLM family models with sev- 355

eral existing open-source language models of simi- 356

lar model sizes. Table 5 lists all models used in the 357

experiments. Gray text indicates models trained on 358

datasets that are not publicly available, while black 359

text denotes models trained on publicly available 360

datasets. 361

To evaluate the capabilities of PhoneLM, we 362

used 7 datasets from two domains: commonsense 363

reasoning and problem solving. The common- 364

sense reasoning datasets are HellaSwag (Zellers 365

et al., 2019), Winogrande (Sakaguchi et al., 2020), 366

PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), 367

and BoolQ (Clark et al., 2019). The problem solv- 368

ing ones are ARC Easy and ARC Challenge (Clark 369

et al., 2018). Detailed descriptions are in the Ap- 370

pendix B. 371

We adopt the benchmark lm_eval (EleutherAI, 372

2024) to evaluate the models after the stable train- 373

ing stage. The primary evaluation metric is accu- 374

racy, which is the ratio of correct predictions to 375

the total number of examples. For commonsense 376

reasoning and problem-solving tasks, accuracy re- 377

flects the model’s ability to choose correct options 378

or offer accurate solutions. In line with previous 379

practices, the models are evaluated in a zero-shot 380

setting for these tasks. Our findings indicate that 381

6

Name Size Date Training
tokens HellaSwag WinoGrande PIQA SciQ BoolQ ARC

Easy
ARC

Challenge Average

Pythia (EleutherAI, 2023.03b) 410M 23.03 207B 40.6 53.7 66.9 72.4 60.3 45.9 24.5 52.04
OPT (Facebook, 2022.05a) 350M 22.05 180B 36.8 52.3 64.3 68.5 57.6 40.1 23.7 49.04
BLOOM (BigScience, 2022.11a) 560M 22.11 350B 36.9 51.7 65.0 71.7 53.3 41.8 23.7 49.16
MobiLlama (MBZUAI, 2024.02) 500M 24.02 1.25T 51.1 53.4 70.9 76.4 55.7 46.0 26.6 54.30
OpenELM (Apple, 2024.04) 450M 24.04 1.5T 54.0 58.0 72.3 79.4 55.8 48.1 27.6 56.46
SmolLM (HuggingFace, 2024.07) 360M 24.07 600B 53.5 56.8 71.5 84.2 55.4 63.8 36.0 60.17
SmolLM2 (Allal et al., 2024) 360M 24.12 4T 56.3 58.6 71.9 86.4 61.4 68.3 37.7 62.94
Qwen1.5 (Alibaba, 2024.02) 500M 24.02 2.4T 49.2 55.7 69.5 82.5 49.5 52.3 29.4 55.44
Qwen2.5 (Team, 2024) 500M 24.09 12T 52.2 56.3 70.0 90.5 61.7 58.3 31.8 60.11
Cerebras-GPT (Cerebras, 2023.03b) 590M 23.03 371B 32.3 49.8 62.8 68.2 59.2 41.2 23.5 48.14
PhoneLM 500M 24.11 1.1T 54.0 57.9 73.3 85.1 60.7 60.4 31.6 60.43

(a) 0.5B
Name Size Date Training

tokens HellaSwag WinoGrande PIQA SciQ BoolQ ARC
Easy

ARC
Challenge Average

Pythia (EleutherAI, 2023.03a) 1.4B 23.03 207B 52.0 57.2 71.1 79.2 63.2 53.9 28.3 57.84
OPT (Facebook, 2022.05b) 1.3B 22.05 180B 53.7 59.0 71.0 78.1 57.2 51.3 28.0 56.90
BLOOM (BigScience, 2022.11b) 1.1B 22.11 350B 43.0 54.9 67.2 74.6 59.1 45.4 25.6 52.83
TinyLlama (Unknown, 2023.12) 1.1B 23.12 3B 59.1 58.9 73.0 82.3 58.6 55.7 31.0 59.80
MobileLLaMA (Meituan, 2023.12) 1.4B 23.12 1.3T 56.1 59.4 73.0 81.9 56.7 55.8 30.3 59.03
MobiLlama (MBZUAI, 2024.02) 1B 24.02 1.25T 62.2 59.3 74.8 82.8 60.3 56.4 31.7 61.07
OpenELM (Apple, 2024.04) 1.1B 24.04 1.5T 64.8 61.7 75.6 83.6 63.6 55.4 32.3 62.43
DCLM (Toyota, 2024.08) 1.4B 24.08 4.3T 53.6 66.3 77.0 94.0 71.4 74.8 41.2 68.33
SmolLM (HuggingFace, 2024.07) 1.7B 24.07 1T 49.6 60.9 75.8 93.2 66.0 76.4 43.5 66.49
SmolLM2 (Allal et al., 2024) 1.7B 24.12 11T 71.5 65.9 77.5 90.9 72.4 73.3 47.6 71.30
Qwen1.5 (Alibaba, 2024.02) 1.8B 24.02 2.4T 60.9 60.5 74.2 89.4 66.5 59.1 34.7 63.61
Qwen2.5 (Team, 2024) 1.5B 24.09 7T 50.0 64.9 76.3 72.7 94.2 80.9 49.2 69.74
Galactica (Facebook, 2022.11) 1.3B 22.11 106B 41.0 54.4 63.8 87.7 62.0 58.6 30.5 56.86
StableLM2 (StabilityAI, 2024.01) 1.6B 24.01 2T 68.8 64.1 75.1 76.9 80.0 60.3 39.2 66.34
Cerebras-GPT (Cerebras, 2023.03a) 1.3B 23.03 371B 38.4 51.9 66.8 73.0 59.3 45.8 25.3 51.50
MiniCPM (OpenBMB, 2024.04) 1B 24.04 1.2T 67.5 63.7 75.1 91.0 70.5 62.9 38.1 66.97
MiniCPM (OpenBMB, 2024.04) 2B 24.04 1.2T 67.2 63.9 76.1 92.5 74.6 69.0 42.7 69.43
Gemma (Google, 2024.02) 2B 24.02 3T 71.4 65.2 78.4 91.4 69.9 72.3 42.0 70.09
Gemma2 (Google, 2024.07) 2B 24.07 2T 55.0 68.7 78.7 96.0 73.6 80.3 46.9 71.31
Llama3.2 (Dubey et al., 2024) 1B 24.09 9T 63.7 59.9 74.5 88.5 63.5 60.4 36.4 63.84
PhoneLM 1.5B 24.11 1.5T 66.9 63.0 77.3 88.8 65.5 69.7 39.9 67.31

(b) 1.5B

Table 5: Benchmark Score of PhoneLM. Models with gray text indicate that their training datasets are not publicly
available.

PhoneLM outperforms the baselines in many tasks382

and achieves the highest average scores among383

most open-source models.In the Appendix B, we384

also evaluate these models on other tasks.385

4.2 Capability386

The capability for 7 standard zero-shot tasks of387

PhoneLM are presented in table 5. It can be seen388

from table 5(a) that PhoneLM-0.5B achieves the389

highest average accuracy on these 7 tasks. Except390

for the two tasks of ARC-e and ARC-c, where391

PhoneLM-0.5B performs lower than SmolLM,392

PhoneLM-0.5B demonstrates the strongest perfor-393

mance on other tasks among models with simi-394

lar parameter counts. For PhoneLM-1.5B, which is395

shown in table 5(b), it performs better than other396

open-source models on most tasks. Combining all397

the tasks, it can be seen that PhoneLM performs398

better than other models with the same number of399

parameters in commonsense reasoning tasks and400

problem solving tasks.401

In figure 5, the accuracy of PhoneLM-0.5B and402

PhoneLM-1.5B are plotted against training itera-403

tions for 7 standard zero-shot tasks. We observe404

an overall increase in accuracy with longer training405

durations across most tasks.406

4.3 Instruction and Function Call 407

Instruction Following Evaluation. We have at- 408

tached examples of PhoneLM-1.5B-Instruction in 409

several scenarios, including "Reasoning", "Knowl- 410

edge", "Programming and Logic Building", "In- 411

novative Thinking", "Translation", and "Creativity 412

and Imagination" in Appendix D. 413

Function call Evaluation. To assess the model’s 414

intrinsic function calling capabilities, we designed 415

structured prompts to systematically guide the 416

chat model in executing function calls. Follow- 417

ing the fine-tuning methodology outlined in Sec- 418

tion 3.3, we adapted the PhoneLM and evaluated 419

multiple mainstream models on the DroidCall 420

benchmark (Xie et al., 2024). The experimental 421

results, as shown in Table 6, demonstrate the effec- 422

tiveness of our approach. 423

4.4 On-device Runtime Cost 424

Hardware and framework. To benchmark 425

PhoneLM models on the Android smartphone, we 426

used a Xiaomi 14 with a Qualcomm Snapdragon 8 427

Gen 3 SoC and 16GiB of RAM. The smartphone 428

was set to performance mode for stable results. The 429

inference engine is mllm (Yi et al., 2023). For CPU 430

experiments, 4 threads were used. The weights of 431

7

0 200 400 600 800 1000
Prompt lengths (tokens)

50

75

100

125

150

T
hr

ou
gh

pu
t (

to
ke

ns
/s

)
Prefilling

0 200 400 600 800 1000
Prompt lengths (tokens)

20

40

60

80

T
hr

ou
gh

pu
t (

to
ke

ns
/s

)

Decoding

TinyLLaMA-1.1B
OPT-1.3B
PhoneLM-1.5B
StableLM-1.6B
SmolLM-1.7B
Qwen1.5-1.8B
Gemma-2B
MiniCPM-2B

Figure 6: PhoneLM’s throughput. This figure illustrates the comparison of throughput between PhoneLM and other
models with similar parameter sizes on the Xiaomi 14 mobile phone, under varying input prompt lengths. All
models were inferred using the mobile phone’s CPU with 4 threads.

Model Accuracy Soft Accuracy
Qwen2.5-Coder-1.5B 50.0 63.5
Qwen2.5-1.5B-Instruct 58.5 75.3
Phi-3.5-mini-instruct 62.0 77.7
MiniCPM3-4B 70.0 85.7
Gemma-2-2b-it 56.5 75.8
TinyLlama-1.1B-Chat-v1.0 18.0 18.7
Llama-3.2-1B-Instruct 36.0 43.8
Llama-3.2-3B-Instruct 47.5 57.9
GPT-4o-mini 71.0 86.1
PhoneLM-1.5B-Instruct 17.5 17.8
PhoneLM-1.5B-Call 75.0 86.1

Table 6: Performance comparison of different models
on the DroidCall test set. Accuracy: A sample is correct
only if all predicted functions and parameters exactly
match ground-truth calls; accuracy is the ratio of fully
correct samples to the total. Soft Accuracy: It evaluates
partial correctness by averaging per-call scores, where
each score reflects the ratio of correctly predicted pa-
rameters to the total required.

the linear and embedding layers were quantized432

to 4-bit, while activation values remained in fp32433

during runtime. For NPU experiments, we used434

Qualcomm’s QNN (Inc., 2024c) framework and435

methods from mllm-NPU (Xu et al., 2025).436

Evaluation. We provide two separate measure-437

ments for token throughput: prefilling and decod-438

ing. In the benchmark experiments of the model,439

we set different prompt lengths ranging from 32 to440

1024 tokens and generate 100 tokens in an autore-441

gressive manner to measure the throughput in the442

prefilling stage and the decoding stage. We repeat443

5 times for each model and take the average result.444

We use key-value caching in all experiments.445

Results. Figure 6 shows CPU benchmark re-446

sults. PhoneLM-0.5B has higher prefilling through-447

put than most 0.5B models except SmolLM-360M,448

and its decoding throughput surpasses all mod-449

els. PhoneLM-1.5B outperforms models larger than450

1.3B in both prefilling and decoding throughput. 451

Throughput decreases as prompt length increases 452

due to higher self-attention computational load. 453

Figure 2 compares throughputs at 64 tokens prompt 454

length against average metrics. Models in the upper 455

right corner exhibit better performance and speed. 456

Notably, PhoneLM-1.5B achieves 654 tokens/sec- 457

ond prefilling throught on Xiaomi 14 NPU, outpac- 458

ing Qwen2.5-1.5B at 602 tokens/second. 459

4.5 An End-to-end Android Demo 460

We also have an end-to-end Android demo applica- 461

tion for PhoneLM-1.5B based on mllm. This demo 462

contains two invocations: chat and Android intent 463

invocation. The screenshots of this application are 464

shown in figure 1. Figure 1(a) shows an exam- 465

ple of a user having a conversation with an An- 466

droid application with PhoneLM-1.5B-Instruct built 467

in. Figure 1(b) shows the Android intent invocation 468

ability of the PhoneLM-1.5B-Call model. In this ex- 469

ample, after understanding the user’s "Wake me up 470

at 8:00", the model uses the Android alarm-setting 471

Intent to set an alarm for 8 o’clock. 472

5 Conclusions 473

This work presents PhoneLM, an efficient, capa- 474

ble, and fully open-sourced small language family. 475

PhoneLM is built atop a unique principle: search- 476

ing for a runtime-efficient transformer architecture 477

ahead of pre-training. We also release an end-to- 478

end demo using PhoneLM for intent invocations on 479

Android OS in a fast and accurate performance. 480

The goal of PhoneLM is to advance the development 481

and research on small language models towards 482

more practical on-device deployment. 483

8

6 Limitations484

Our approach tested 14 metrics (7 in the main text485

and 7 in the appendix), but only covered two types486

of tasks: commonsense reasoning and problem-487

solving. Metrics for other tasks applicable to lan-488

guage models were not experimented upon.489

The Instruct model proposed in this paper lacks490

quantitative experimental metrics, primarily due to491

the absence of an effective method to evaluate the492

model’s instruction-following capability.493

Additionally, the third-party models compared in494

our experiments were SLMs released up to Decem-495

ber 2024, thus excluding several SLMs launched496

in 2025.497

References498

Alibaba. 2024.02. Qwen 1.5. https://huggingface.499
co/alibaba/Qwen-1.5.500

Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko,501
Karen Khatamifard, Minsik Cho, Carlo C Del Mundo,502
Mohammad Rastegari, and Mehrdad Farajtabar. 2023.503
Llm in a flash: Efficient large language model504
inference with limited memory. arXiv preprint505
arXiv:2312.11514.506

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch,507
Gabriel Martín Blázquez, Lewis Tunstall, Agustín508
Piqueres, Andres Marafioti, Cyril Zakka, Leandro509
von Werra, and Thomas Wolf. 2024. Smollm2 - with510
great data, comes great performance.511

Apple. 2024.04. Openelm. https://huggingface.512
co/apple/OpenELM.513

BigScience. 2022.11a. bigscience/bloom-560m.514
https://huggingface.co/bigscience/515
bloom-560m.516

BigScience. 2022.11b. bigscience/bloomz-1b1. https:517
//huggingface.co/bigscience/bloomz-1b1.518

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jian-519
feng Gao, and Yejin Choi. 2020. Piqa: Reasoning520
about physical commonsense in natural language. In521
Proceedings of the AAAI Conference on Artificial522
Intelligence.523

Cerebras. 2023.03a. cerebras/cerebras-gpt-524
1.3b. https://huggingface.co/cerebras/525
Cerebras-GPT-1.3B.526

Cerebras. 2023.03b. cerebras/cerebras-gpt-527
590m. https://huggingface.co/cerebras/528
Cerebras-GPT-590M.529

Christopher Clark, Kenton Lee, Ming-Wei Chang,530
Tom Kwiatkowski, Michael Collins, and Kristina531
Toutanova. 2019. Boolq: Exploring the surprising532
difficulty of natural yes/no questions. In Proceedings533

of the 2019 Conference of the North American Chap- 534
ter of the Association for Computational Linguistics: 535
Human Language Technologies. 536

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 537
Ashish Sabharwal, Carissa Schoenick, and Oyvind 538
Tafjord. 2018. Think you have solved question an- 539
swering? try arc, the ai2 reasoning challenge. In 540
arXiv preprint arXiv:1803.05457. 541

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi 542
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun, 543
and Bowen Zhou. 2023. Enhancing chat language 544
models by scaling high-quality instructional conver- 545
sations. arXiv preprint arXiv:2305.14233. 546

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 547
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 548
Akhil Mathur, Alan Schelten, Amy Yang, Angela 549
Fan, et al. 2024. The llama 3 herd of models. arXiv 550
preprint arXiv:2407.21783. 551

EleutherAI. 2023.03a. Eleutherai/pythia-1.4b. https: 552
//huggingface.co/EleutherAI/pythia-1.4b. 553

EleutherAI. 2023.03b. Eleutherai/pythia-410m. https: 554
//huggingface.co/EleutherAI/pythia-410m. 555

EleutherAI. 2024. Language model evaluation harness. 556

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018. 557
Sigmoid-weighted linear units for neural network 558
function approximation in reinforcement learning. 559
Neural networks, 107:3–11. 560

Facebook. 2022.05a. facebook/opt-125m. https:// 561
huggingface.co/facebook/opt-125m. 562

Facebook. 2022.05b. facebook/opt-1.3b. https:// 563
huggingface.co/facebook/opt-1.3b. 564

Facebook. 2022.11. facebook/galactica-1.3b. https: 565
//huggingface.co/facebook/galactica-1.3b. 566

glaiveai. 2024. glaive function calling. 567

Google. 2024.02. Gemma. https://huggingface. 568
co/google/Gemma. 569

Google. 2024.07. Gemma-2. https://huggingface. 570
co/google/Gemma-2. 571

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 572
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 573
2021. Measuring massive multitask language under- 574
standing. arXiv preprint arXiv:2009.03300. 575

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 576
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 577
and Weizhu Chen. 2021. Lora: Low-rank adap- 578
tation of large language models. arXiv preprint 579
arXiv:2106.09685. 580

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu 581
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxi- 582
ang Huang, Weilin Zhao, et al. 2024. Minicpm: 583
Unveiling the potential of small language models 584
with scalable training strategies. arXiv preprint 585
arXiv:2404.06395. 586

9

https://huggingface.co/alibaba/Qwen-1.5
https://huggingface.co/alibaba/Qwen-1.5
https://huggingface.co/alibaba/Qwen-1.5
https://huggingface.co/apple/OpenELM
https://huggingface.co/apple/OpenELM
https://huggingface.co/apple/OpenELM
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/cerebras/Cerebras-GPT-1.3B
https://huggingface.co/cerebras/Cerebras-GPT-1.3B
https://huggingface.co/cerebras/Cerebras-GPT-1.3B
https://huggingface.co/cerebras/Cerebras-GPT-590M
https://huggingface.co/cerebras/Cerebras-GPT-590M
https://huggingface.co/cerebras/Cerebras-GPT-590M
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-410m
https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/galactica-1.3b
https://huggingface.co/facebook/galactica-1.3b
https://huggingface.co/facebook/galactica-1.3b
https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2
https://huggingface.co/google/Gemma
https://huggingface.co/google/Gemma
https://huggingface.co/google/Gemma
https://huggingface.co/google/Gemma-2
https://huggingface.co/google/Gemma-2
https://huggingface.co/google/Gemma-2

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei587
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,588
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,589
Maosong Sun, and Junxian He. 2023. C-eval: A590
multi-level multi-discipline chinese evaluation suite591
for foundation models. In Advances in Neural Infor-592
mation Processing Systems.593

HuggingFace. 2024.07. Smollm. https://594
huggingface.co/huggingface/SmolLM.595

Apple Inc. 2024a. ios 18. https://www.apple.com/596
ios/ios-18/.597

Google Inc. 2024b. Google ai edge sdk for gemini nano.598
https://developer.android.com/ai/aicore.599

Qualcomm Inc. 2024c. Qualcomm neu-600
ral processing sdk for ai. https://601
www.qualcomm.com/developer/software/602
neural-processing-sdk-for-ai.603

ise uiuc. 2024. Magicoder evol instruct.604

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B605
Brown, Benjamin Chess, Rewon Child, Scott Gray,606
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.607
Scaling laws for neural language models. arXiv608
preprint arXiv:2001.08361.609

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,610
Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jer-611
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,612
et al. 2022. The stack: 3 tb of permissively licensed613
source code. arXiv preprint arXiv:2211.15533.614

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,615
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,616
Abdullah Barhoum, Duc Nguyen, Oliver Stan-617
ley, Richárd Nagyfi, et al. 2024. Openassistant618
conversations-democratizing large language model619
alignment. Advances in Neural Information Process-620
ing Systems, 36.621

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai622
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-623
win. 2023a. Cmmlu: Measuring massive multi-624
task language understanding in chinese. Preprint,625
arXiv:2306.09212.626

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi,627
Matt Jordan, Samir Gadre, Hritik Bansal, Etash628
Guha, Sedrick Keh, Kushal Arora, Saurabh Garg,629
Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean630
Mercat, Mayee Chen, Suchin Gururangan, Mitchell631
Wortsman, Alon Albalak, Yonatan Bitton, Mari-632
anna Nezhurina, Amro Abbas, Cheng-Yu Hsieh,633
Dhruba Ghosh, Josh Gardner, Maciej Kilian, Han-634
lin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal,635
Gabriel Ilharco, Giannis Daras, Kalyani Marathe,636
Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao637
Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song,638
Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke639
Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi640
Pouransari, Alexander Toshev, Stephanie Wang, Dirk641

Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jit- 642
sev, Thomas Kollar, Alexandros G. Dimakis, Yair 643
Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal 644
Shankar. 2024. Datacomp-lm: In search of the 645
next generation of training sets for language mod- 646
els. Preprint, arXiv:2406.11794. 647

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 648
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 649
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 650
2023b. Starcoder: may the source be with you! 651
arXiv preprint arXiv:2305.06161. 652

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pent- 653
land, Austin Cook, Chanvichet Vong, and "Teknium". 654
2023. Slimorca: An open dataset of gpt-4 augmented 655
flan reasoning traces, with verification. 656

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. 657
Truthfulqa: Measuring how models mimic human 658
falsehoods. arXiv preprint arXiv:2109.07958. 659

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang 660
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang, 661
Yuandong Tian, Christopher Re, et al. 2023. Deja 662
vu: Contextual sparsity for efficient llms at infer- 663
ence time. In International Conference on Machine 664
Learning, pages 22137–22176. PMLR. 665

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, 666
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao, 667
Zhiwei Liu, Yihao Feng, et al. 2024. Apigen: 668
Automated pipeline for generating verifiable and 669
diverse function-calling datasets. arXiv preprint 670
arXiv:2406.18518. 671

I Loshchilov. 2017. Decoupled weight decay regulariza- 672
tion. arXiv preprint arXiv:1711.05101. 673

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fang- 674
ming Liu, Xiwen Zhang, Nicholas D Lane, and 675
Mengwei Xu. 2024. Small language models: Sur- 676
vey, measurements, and insights. arXiv preprint 677
arXiv:2409.15790. 678

MBZUAI. 2024.02. Mobillama. https:// 679
huggingface.co/mbzuai/MobiLlama. 680

Meituan. 2023.12. Mobilellama. https:// 681
huggingface.co/meituan/MobileLLaMA. 682

Microsoft. 2024.04. microsoft/phi-3-mini. https:// 683
huggingface.co/microsoft/phi-3-mini. 684

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai 685
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam 686
Singh, Xiangru Tang, Leandro von Werra, and 687
Shayne Longpre. 2023. Octopack: Instruction tun- 688
ing code large language models. arXiv preprint 689
arXiv:2308.07124. 690

OpenBMB. 2024.04. Minicpm. https:// 691
huggingface.co/openbmb/MiniCPM. 692

Keiran Paster, Marco Dos Santos, Zhangir Azer- 693
bayev, and Jimmy Ba. 2023. Openwebmath: An 694
open dataset of high-quality mathematical web text. 695
Preprint, arXiv:2310.06786. 696

10

https://huggingface.co/huggingface/SmolLM
https://huggingface.co/huggingface/SmolLM
https://huggingface.co/huggingface/SmolLM
https://www.apple.com/ios/ios-18/
https://www.apple.com/ios/ios-18/
https://www.apple.com/ios/ios-18/
https://developer.android.com/ai/aicore
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://https://huggingface.co/Open-Orca/SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/microsoft/phi-3-mini
https://huggingface.co/microsoft/phi-3-mini
https://huggingface.co/microsoft/phi-3-mini
https://huggingface.co/openbmb/MiniCPM
https://huggingface.co/openbmb/MiniCPM
https://huggingface.co/openbmb/MiniCPM
https://arxiv.org/abs/2310.06786
https://arxiv.org/abs/2310.06786
https://arxiv.org/abs/2310.06786

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-697
vatula, and Yejin Choi. 2020. Winogrande: An ad-698
versarial winograd schema challenge at scale. In699
Proceedings of the AAAI Conference on Artificial700
Intelligence.701

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan702
LeBras, and Yejin Choi. 2019. Socialiqa: Com-703
monsense reasoning about social interactions. arXiv704
preprint arXiv:1904.09728.705

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin706
Schwenk, David Atkinson, Russell Authur, Ben Bo-707
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,708
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,709
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson,710
Jacob Morrison, Niklas Muennighoff, Aakanksha711
Naik, Crystal Nam, Matthew E. Peters, Abhilasha712
Ravichander, Kyle Richardson, Zejiang Shen, Emma713
Strubell, Nishant Subramani, Oyvind Tafjord, Pete714
Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh715
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,716
and Kyle Lo. 2024. Dolma: an Open Corpus of Three717
Trillion Tokens for Language Model Pretraining Re-718
search. arXiv preprint.719

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.720
2023. Powerinfer: Fast large language model serv-721
ing with a consumer-grade gpu. arXiv preprint722
arXiv:2312.12456.723

StabilityAI. 2024.01. stabilityai/stablelm-2-zephyr*.724
https://huggingface.co/stabilityai/725
stablelm-2-zephyr.726

Qwen Team. 2024. Qwen2.5: A party of foundation727
models.728

Teknium. 2023. openhermes: An open dataset of syn-729
thetic data for generalist llm assistants.730

Toyota. 2024.08. Dclm. https://huggingface.co/731
TRI-ML/DCLM-1B.732

Unknown. 2023.12. Tinyllama. https://733
huggingface.co/tinyllama.734

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and735
Lingming Zhang. 2023. Magicoder-oss-instruct-75k:736
An open dataset generated by gpt-3.5-turbo-1106.737

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.738
Crowdsourcing multiple choice science questions.739
arXiv preprint arXiv:1707.06209.740

Weikai Xie, Li Zhang, Shihe Wang, Rongjie Yi, and741
Mengwei Xu. 2024. Droidcall: A dataset for742
llm-powered android intent invocation. Preprint,743
arXiv:2412.00402.744

Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang745
Huang, Mengwei Xu, and Xuanzhe Liu. 2025. Fast746
on-device llm inference with npus.747

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, 748
Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao 749
Zhao, Chen Yang, Shihe Wang, et al. 2024. A survey 750
of resource-efficient llm and multimodal foundation 751
models. arXiv preprint arXiv:2401.08092. 752

Rongjie Yi, Xiang Li, Qichen Qiu, Zhenyan Lu, Hao 753
Zhang, Daliang Xu, Liming Yang, Weikai Xie, 754
Chenghua Wang, and Mengwei Xu. 2023. mllm: 755
fast and lightweight multimodal llm inference engine 756
for mobile and edge devices. 757

Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xu- 758
anzhe Liu. 2024. Llm as a system service on mobile 759
devices. arXiv preprint arXiv:2403.11805. 760

Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang, 761
Xin Yuan, Zeling Zhang, Xiang Li, Dingge Zhang, 762
Hanzi Mei, Xianqing Jia, et al. 2024. Mobile founda- 763
tion model as firmware. In Proceedings of the 30th 764
Annual International Conference on Mobile Comput- 765
ing and Networking, pages 279–295. 766

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen- 767
hao Huang, Huan Sun, Yu Su, and Wenhu Chen. 768
2023. Mammoth: Building math generalist models 769
through hybrid instruction tuning. arXiv preprint 770
arXiv:2309.05653. 771

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 772
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 773
machine really finish your sentence? In Proceedings 774
of the 57th Annual Meeting of the Association for 775
Computational Linguistics. 776

A Setting of 100M and 200M models 777

Tested the speed and performance of 100M and 778

200M models, training on data with 20 billion to- 779

kens. The settings are shown in the table 7. 780

B Matrics 781

We also evaluate the models on other following 782

tasks, which contains the following tasks: So- 783

cialIQA, TruthfulQA, MMLU, CMMLU and C- 784

Eval. The following are the datasets used in all 785

experiments: 786

• Commonsense Reasoning Datasets: 787

– HellaSwag (Zellers et al., 2019): Tests narra- 788

tive understanding through plausible sentence 789

completion. 790

– Winogrande (Sakaguchi et al., 2020): Evalu- 791

ates pronoun ambiguity resolution using com- 792

monsense reasoning. 793

– PIQA (Bisk et al., 2020): Focuses on physical 794

commonsense reasoning and object interac- 795

tions. 796

11

https://huggingface.co/stabilityai/stablelm-2-zephyr
https://huggingface.co/stabilityai/stablelm-2-zephyr
https://huggingface.co/stabilityai/stablelm-2-zephyr
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/tinyllama
https://huggingface.co/tinyllama
https://huggingface.co/tinyllama
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://arxiv.org/abs/2412.00402
https://arxiv.org/abs/2412.00402
https://arxiv.org/abs/2412.00402
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm

ID size(M) hidden intermediate layers activation q
heads

kv
heads loss prefilling

(tokens/s)
decoding
(tokens/s)

1 106.73 1280 2096 3 relu 16 16 3.76 916.70 455.32
2 106.73 1280 2096 3 silu 16 16 3.81 877.19 424.08
3 101.42 768 2046 9 relu 16 16 3.70 742.85 258.56
4 101.42 768 2046 9 relu 4 4 3.67 784.94 266.68
5 101.42 768 2046 9 relu 16 4 3.66 871.94 260.37
6 101.42 768 2046 9 silu 16 16 3.69 788.95 260.03
7 101.42 768 2046 9 silu 4 4 3.66 773.27 255.42
8 101.42 768 2046 9 silu 16 4 3.65 853.46 252.71
9 99.54 704 1856 11 relu 16 16 3.65 720.98 228.11

10 99.54 704 1856 11 silu 16 16 3.64 753.61 228.03
11 100.00 576 1536 18 relu 16 16 3.68 601.56 154.59
12 100.00 576 1536 18 relu 4 4 3.59 652.11 164.05
13 100.00 576 1536 18 relu 16 4 3.66 705.54 153.85
14 100.00 576 1536 18 silu 16 16 3.67 614.41 151.98
15 100.00 576 1536 18 silu 4 4 3.58 640.13 160.48
16 100.00 576 1536 18 silu 16 4 3.65 691.67 150.15
17 101.06 448 1184 33 relu 16 16 3.68 469.89 89.48
18 101.06 448 1184 33 silu 16 16 3.67 481.58 87.70

(a) 100M

ID size(M) hidden intermediate layers activation q
heads

kv
heads loss prefilling

(tokens/s)
decoding
(tokens/s)

1 201.32 2048 5460 2 relu 16 16 4.21 726.44 430.06
2 201.32 2048 5460 2 silu 16 16 4.21 552.06 325.93
3 188.76 1536 4096 4 relu 16 16 3.94 706.14 391.36
4 188.76 1536 4096 4 silu 16 16 3.91 683.97 351.09
5 199.78 1024 2688 12 relu 16 16 3.89 559.80 225.88
6 199.78 1024 2688 12 relu 4 4 3.87 533.00 222.27
7 199.78 1024 2688 12 relu 16 4 3.89 546.76 215.04
8 199.78 1024 2688 12 silu 16 16 3.85 461.42 178.95
9 199.78 1024 2688 12 silu 4 4 3.86 427.38 162.85

10 199.78 1024 2688 12 silu 16 4 3.86 412.81 160.71
11 182.20 704 1856 25 relu 16 16 4.02 489.62 144.05
12 182.20 704 1856 25 relu 4 4 3.95 505.01 139.14
13 182.20 704 1856 25 relu 16 4 3.98 554.88 131.29
14 182.20 704 1856 25 silu 16 16 3.98 487.49 124.17
15 182.20 704 1856 25 silu 4 4 3.95 391.94 103.51
16 182.20 704 1856 25 silu 16 4 3.94 448.85 98.58
17 187.61 576 1536 40 relu 16 16 4.11 430.52 119.42
18 187.61 576 1536 40 silu 16 16 4.13 407.08 88.21

(b) 200M

Table 7: 100M and 200M models’ setting

– SciQ (Welbl et al., 2017): a dataset of 13.7K797

multiple choice science exam questions.798

– BoolQ (Clark et al., 2019): Tests common-799

sense and factual reasoning with yes/no ques-800

tions.801

– TruthfulQA (Lin et al., 2022): Assesses the802

model’s ability to avoid providing false infor-803

mation.804

– SocialIQA (Sap et al., 2019): A dataset of805

13.7K multiple choice science exam questions.806

• Problem Solving Datasets:807

– ARC Easy (Clark et al., 2018): Contains sim-808

ple science questions testing general knowl-809

edge and reasoning.810

– ARC Challenge (Clark et al., 2018): Presents811

complex science exam questions requiring 812

knowledge integration. 813

– MMLU (Hendrycks et al., 2021): Evaluates 814

problem-solving across diverse academic dis- 815

ciplines. 816

– CMMLU (Li et al., 2023a): Evaluates 817

problem-solving across diverse academic dis- 818

ciplines in Chinese. 819

– C-Eval Valid (Huang et al., 2023): A compre- 820

hensive Chinese evaluation suite for founda- 821

tion models. It consists of 13948 multi-choice 822

questions spanning 52 diverse disciplines and 823

four difficulty levels. 824

The results are presented in table 8. 825

12

name SocialIQA TruthfulQA
MC1

TruthfulQA
MC2

TruthfulQA
zh MC2 MMLU CMMLU C-Eval Valid

Pythia-410M 32.9 23.7 41.2 47.9 23.6 25.3 23
OPT-350M 32.9 23.3 40.8 47.3 23.1 25.4 22.5
BLOOM-560M 34.2 25 42.4 41.6 23 25.3 23
MobiLlama-0.5B 32.9 23.3 37.5 42 24.9 25.3 21.6
OpenELM-450M 32.8 24.8 40.2 47.5 25.9 24.9 22.7
SmolLM-360M 32.9 24.6 37.9 47.4 25.8 25.4 25.7
SmolLM2-360M 40.9 21.5 33.5 44.2 25.6 24.7 22.4
Qwen1.5-0.5B 33.3 23.6 38.3 41.3 36.5 47.4 49.9
Qwen2.5-0.5B 44.4 25.1 40.0 42.8 47.6 48.7 51.8
Cerebras-GPT-590M 33.1 25.1 44.1 47.5 23.1 25.3 22.9
PhoneLM-0.5B 42.5 21.9 36.5 43 25.4 24.6 23.6

(a) 0.5B

name SocialIQA TruthfulQA
MC1

TruthfulQA
MC2

TruthfulQA
zh MC2 MMLU CMMLU C-Eval Valid

Pythia-1.4B 33.6 22.8 38.9 44.9 24.4 25.3 23
OPT-1.3B 32.7 24.1 38.7 47 25.2 25.3 23
BLOOM-1.1B 33.5 25.3 41.8 40.5 24 25.4 24.1
TinyLlama-1.1B 32.9 22 37.3 42.6 24.9 24.7 24.2
MobileLLaMA-1.4B 33 21.7 34.8 43.5 24.5 25.2 23.1
MobiLlama-1B 32.9 21.7 35.2 41.6 25.4 25.4 25.3
OpenELM-1.1B 32.7 22.2 37 47.3 25.3 25.3 23.4
DCLM-1B 44.3 22.8 36.5 43.8 46.5 30.6 29.3
SmolLM-1.7B 43.6 24.4 38.5 44.8 27.7 25.2 24.5
SmolLM2-1.7B 44.5 25.1 36.6 42.9 45.9 30 32.3
Qwen1.5-1.8B 32.9 25.8 39.4 42.3 45.4 59.1 61.1
Qwen2.5-1.5B 49.1 30.2 47.6 46.4 60.9 66.5 67.7
Galactica-1.3B 32.5 24.8 41.4 47.1 27.7 25.2 22.7
StableLM2-1.6B 32.9 30.6 45.1 48.8 41.1 30.3 31.6
Cerebras-GPT-1.3B 32.8 24.5 42.7 46.2 23 25.3 23
MiniCPM-1B 32.6 23.1 36.9 37.4 44.9 47.4 47
MiniCPM-2B 32.9 25.2 40.5 41.8 45.6 44.4 43.2
Gemma-2B 33 22.2 33.1 43.6 32.9 28.4 26.1
Gemma2-2B 51.2 24.1 36.2 41.3 49.6 34.5 35
Llama3.2-1B 43.0 23.6 37.6 42.7 36.2 29.2 29.9
PhoneLM-1.5B 43.2 20.9 33.3 46.1 26.5 25.0 25.7

(b) 1.5B

Table 8: Some Benchmark Score of PhoneLM. Models with gray text indicate that their training datasets are not
publicly available.

C Training Dataets826

DCLM-baseline (Li et al., 2024) is a 4T827

token and 3B document pretraining dataset828

that achieves strong performance on language829

model benchmarks.PhoneLM only uses a max-830

imum of 1.5T among it. The code is pub-831

liced in https://huggingface.co/datasets/832

mlfoundations/dclm-baseline-1.0-parquet.833

StarCoderData (Li et al., 2023b) contains 783GB834

of code in 86 programming languages, and in-835

cludes 54GB GitHub Issues + 13GB Jupyter836

notebooks in scripts and text-code pairs, and837

32GB of GitHub commits, which is approxi-838

mately 250 Billion tokens. The code is pub-839

liced in https://huggingface.co/datasets/840

bigcode/starcoderdata.841

OpenWebMath (Paster et al., 2023) is a dataset842

containing the majority of the high-quality, math-843

ematical text from the internet. It is filtered and 844

extracted from over 200B HTML files on Com- 845

mon Crawl down to a set of 6.3 million docu- 846

ments containing a total of 14.7B tokens. The 847

code is publiced in https://huggingface.co/ 848

datasets/open-web-math/open-web-math. 849

Dolma (Soldaini et al., 2024) is a dataset of 3 850

trillion tokens from a diverse mix of web content, 851

academic publications, code, books, and encyclo- 852

pedic materials. The code is publiced in https: 853

//huggingface.co/datasets/allenai/dolma. 854

APIGen (Liu et al., 2024) contains 60,000 855

data collected by APIGen, an automated 856

data generation pipeline designed to produce 857

verifiable high-quality datasets for function- 858

calling applications. The code is publiced 859

in https://huggingface.co/datasets/ 860

Salesforce/xlam-function-calling-60k. 861

13

https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet
https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet
https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/allenai/dolma
https://huggingface.co/datasets/allenai/dolma
https://huggingface.co/datasets/allenai/dolma
https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k
https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k
https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k

The Stack Smol (Kocetkov et al., 2022) is862

a small subset of the-stack dataset, each pro-863

gramming language has 10,000 random samples864

from the original dataset. The code is pub-865

liced in https://huggingface.co/datasets/866

bigcode/the-stack-smol.867

UltraChat (Ding et al., 2023) is an open-868

source, large-scale, and multi-round dialogue data869

powered by Turbo APIs. The code is pub-870

liced in https://huggingface.co/datasets/871

stingning/ultrachat.872

MathInstruct (Yue et al., 2023) is a meticu-873

lously curated instruction tuning dataset that is874

lightweight yet generalizable. The code is pub-875

liced in https://huggingface.co/datasets/876

TIGER-Lab/MathInstruct.877

OpenAssistant 2 (Köpf et al., 2024) contains878

message trees. Each message tree has an ini-879

tial prompt message as the root node, which can880

have multiple child messages as replies, and these881

child messages can have multiple replies. The882

code is publiced in https://huggingface.co/883

datasets/OpenAssistant/oasst2.884

OpenHermes (Teknium, 2023) dataset is885

composed of 242,000 entries of primarily886

GPT-4 generated data, from open datasets887

across the AI landscape. The code is pub-888

liced in https://huggingface.co/datasets/889

teknium/openhermes.890

CommitPackFT (Muennighoff et al., 2023) is891

a 2GB filtered version of CommitPack to contain892

only high-quality commit messages that resemble893

natural language instructions. The code is pub-894

liced in https://huggingface.co/datasets/895

bigcode/commitpackft.896

OSS Instruct dataset (Wei et al., 2023)897

is generated by gpt-3.5-turbo-1106 devel-898

oped by OpenAI. The code is publiced899

in https://huggingface.co/datasets/900

ise-uiuc/Magicoder-OSS-Instruct-75K.901

SlimOrca (Lian et al., 2023) release provides902

an efficient means of reaching performance on-903

par with using larger slices of our data, while904

only including 500k GPT-4 completions. The905

code is publiced in https://huggingface.co/906

datasets/Open-Orca/SlimOrca.907

D Instruct Following Examples 908

Reasoning:

Prompt: What are the key benefits of practicing mindfulness medita-
tion?

PhoneLM-1.5B-Instruct:
There are many benefits of practicing mindfulness meditation, includ-
ing:

1. Reduced stress and anxiety
2. Improved focus and concentration
3. Increased self-awareness and emotional regulation
4. Improved sleep quality
5. Reduced symptoms of depression
6. Increased feelings of well-being and happiness
7. Improved immune system function
8. Reduced symptoms of chronic pain
9. Improved relationships and communication skills
10. Increased feelings of compassion and empathy.

909

Knowledge:

Prompt: What are some ways to reduce the carbon footprint of your
home?

PhoneLM-1.5B-Instruct:
There are several ways to reduce the carbon footprint of your home.
Here are some suggestions:

1. Install energy-efficient appliances and lighting.
2. Use low-flow showerheads and faucets.
3. Install a programmable thermostat to regulate heating and cooling.
4. Use natural light and ventilation instead of artificial lighting and
air conditioning.
5. Plant trees or install shading devices to block the sun’s heat.
6. Use eco-friendly cleaning products and reduce the use of dispos-
able products.
7. Reduce water usage by fixing leaks and installing low-flow fixtures.
8. Use renewable energy sources such as solar panels or wind tur-
bines.
9. Reduce waste by recycling, composting, and using reusable prod-
ucts.
10. Choose sustainable building materials and design your home to
be energy-efficient.

910

Programming and Logic Building:

Prompt: Generate a Python code snippet that implements a function
to calculate the Fibonacci sequence using recursion. Bonus points if
you can make it more efficient using memoization.

PhoneLM-1.5B-Instruct:
def fibonacci(n):
if n <= 1:
return n

else:
return fibonacci(n-1) +

fibonacci(n-2)

Test the function
print(fibonacci(0)) # 0
print(fibonacci(1)) # 1
print(fibonacci(2)) # 1
print(fibonacci(3)) # 2
print(fibonacci(4)) # 3
print(fibonacci(5)) # 5
print(fibonacci(6)) # 8
print(fibonacci(7)) # 13
print(fibonacci(8)) # 21
print(fibonacci(9)) # 34
print(fibonacci(10)) # 55

911

14

https://huggingface.co/datasets/bigcode/the-stack-smol
https://huggingface.co/datasets/bigcode/the-stack-smol
https://huggingface.co/datasets/bigcode/the-stack-smol
https://huggingface.co/datasets/stingning/ultrachat
https://huggingface.co/datasets/stingning/ultrachat
https://huggingface.co/datasets/stingning/ultrachat
https://huggingface.co/datasets/TIGER-Lab/MathInstruct
https://huggingface.co/datasets/TIGER-Lab/MathInstruct
https://huggingface.co/datasets/TIGER-Lab/MathInstruct
https://huggingface.co/datasets/OpenAssistant/oasst2
https://huggingface.co/datasets/OpenAssistant/oasst2
https://huggingface.co/datasets/OpenAssistant/oasst2
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/bigcode/commitpackft
https://huggingface.co/datasets/bigcode/commitpackft
https://huggingface.co/datasets/bigcode/commitpackft
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/Open-Orca/SlimOrca
https://huggingface.co/datasets/Open-Orca/SlimOrca
https://huggingface.co/datasets/Open-Orca/SlimOrca

Innovative Thinking:

Prompt: Construct a sentence that uses every letter of the alphabet at
least once.

PhoneLM-1.5B-Instruct:
Able was I ere I saw Elba, but ere I saw Elba, I heard a rumor that
would change my life forever.

912

Translation:

Prompt: Translate this sentence into French: ”Ming due to the circum-
stances, the knower system according to the matter.”

PhoneLM-1.5B-Instruct:
"Ming, parce qu’il y a des circonstances, le système d’apprentissage
selon le matériel."

913

Creativity and Imagination:

Prompt: Write a role-play with a tourist and a travel guide for a
finctional planet.

PhoneLM-1.5B-Instruct:
Tourist: Hi, I’m looking for a planet that’s not too crowded. Can you
recommend one?

Travel Guide: Sure, I can recommend a few. One of the most popular
planets is Zorion. It’s a bit more remote, but it’s still accessible.

Tourist: That sounds great. What’s the best way to get there?

Travel Guide: You can take a shuttle from the nearest spaceport. It’s
about a 3-hour journey.

Tourist: That sounds doable. What’s the atmosphere like on Zorion?

Travel Guide: It’s a bit different from Earth. The atmosphere is
mostly nitrogen and oxygen, but there’s also a lot of carbon dioxide.
It’s a bit more humid too.

Tourist: That’s interesting. What’s the terrain like?

Travel Guide: It’s mostly rocky and barren, but there are some forests
and lakes. It’s a bit like Mars, but with more vegetation.

Tourist: That sounds like a unique experience. Are there any popular
tourist attractions on Zorion?

Travel Guide: Yes, there are a few. One of the most popular is the
Zorion Museum, which showcases the planet’s history and culture.
Another is the Zorion Observatory, which is a great place to see the
stars.

Tourist: That sounds amazing. Is there anything else I should know
before I go?

Travel Guide: Just be prepared for the weather. It can get pretty hot
and humid, so bring a lot of water and sunscreen. And don’t forget
your passport, as Zorion is a popular tourist destination.

Tourist: Thanks for the tips. I’m excited to visit Zorion.

914

E Function Calling fine-tuning details915

We adopt a chat-based approach for function call-916

ing, where the requirements, use query, and func-917

tion descriptions are encapsulated in the system918

prompt and user prompt sections, while the func-919

tion calls are placed in the assistant output section.920

The prompt design for function calling fine-tuning921

thus focuses on structuring these three components: 922

system prompt, user message, and assistant out- 923

put. These components are subsequently formatted 924

using a chat template, which is then utilized for 925

model fine-tuning. These components are shown in 926

1, in which $function is the functions description 927

information, which describes the function name, 928

parameters, and other information, $user_query is 929

the user input. 930

Listing 1: Minimalist prompt of function calling

System Prompt:

You are an expert in composing functions .

User message:

Here is a list of functions that you can
invoke:

$functions
Now my query is: $user_query

Assistant output :

$result1 = func0(arg1="v1", arg2="v2", ...)
result2 = func1(arg1="v1", arg2= result1 , ...)
... $

15

	Introduction
	A Principle for SLM Development
	PhoneLM: Smartphone-native SLM Family
	Architecture
	Pre-training
	Fine-tuning

	Experiment Results
	Baselines and Tasks
	Capability
	Instruction and Function Call
	On-device Runtime Cost
	An End-to-end Android Demo

	Conclusions
	Limitations
	Setting of 100M and 200M models
	Matrics
	Training Dataets
	Instruct Following Examples
	Function Calling fine-tuning details

