PhoneLM: an Efficient and Capable Small Language Model Family

Anonymous ACL submission

Abstract

The interest in developing small language mod-
els (SLM) for on-device deployment is fast
growing. However, the existing SLM design
hardly considers the device hardware charac-
teristics. Instead, this work presents a sim-
ple yet effective principle for SLM design: ar-
chitecture searching for optimal runtime ef-
ficiency before pre-training. Guided by this
principle, we develop PhonelLM SLM family
(with 0.5B and 1.5B versions), that acheive
the state-of-the-art capability-efficiency trade-
off among those with similar parameter size.
We fully open-source the code, weights, and
training datasets of PhonelM for reproducibil-
ity and transparency, including both base and
instructed versions. We also release a finetuned
version of PhonelLM capable of accurate An-
droid Intent invocation, and an end-to-end An-
droid demo.

1 Introduction

In last few years, the striking progress has been
made in large language models, attributed to the
scaling-up ability of transformer. One the other
hand, we also notice growing interests in small
language models (SLMs), which typically encom-
pass sub- or a few billions of parameters and fa-
cilitate on-device deployments (Lu et al., 2024;
Yuan et al., 2024). In practice, SLMs have been
shipped to commercial off-the-shelf devices on a
vast scale. For instance, the latest Google/Sam-
sung phones have built-in LLLM service (Gemini
Nano), through which third-party mobile apps can
freely enjoy LLM capability through text prompts
or LoRA (Hu et al., 2021). Apple also introduces
SLMs to facilitate privacy-preserving on-device
intelligence tasks such as refining text and priori-
tizing notifications in iOS (Inc., 2024a).
On-device SLM deployment is extremely chal-
lenging due to the resource scarce of edge de-
vices (Xu et al., 2024). While there has been plenty

< PhoneLM-1.5B-Instruct ¢ PhonelLM-1.5B-Call

Hi! I am a Al ChatBot. How can | help
you today? Hil | am a Phone Assistant!How can |

assist you today?

Who is Albert Einstein?
Wake me up at 8:00.

Albert Einstein was a famous
German-born physicist who made
significant contributions to the field
of physics. He is best known for his
theory of relativity, which
revolutionized our understanding of
space, time, and gravity. Einstein's
work also led to the development of
the atomic bomb, which had a |
profound impact on the world.

Done for you.

| @

Y

4
4

Tell me more about relativity. Plavm 4L o o

~ Thealarm will remind in 10 hours 18
minutes

Relativity is a theory that describes
the behavior of objects in motion and
the nature of space and time. It was
first proposed by Albert Einstein in
1905 and has since been expanded
upon by many physicists.

08:00

©

(a) Chat (b) Android Intent Invocation

Figure 1: An end-to-end Android demo of PhonelLM’s
capability. (a) shows an example of a user having a
conversation with PhonelM-1.5B-Instruct; (b) shows an
example of a user invokes an Android intent through
chatting with PhoneLM-1.5B-Call.

of open-sourced SLMs, e.g., Microsoft Phi fam-
ily (Microsoft, 2024.04), that are claimed to be de-
signed for resource-constrained devices, we found
rare evidences supporting it except its relatively
small parameter size. Motivated by the absence
of a high-level principle for SLM design, we ask
a question: beyond using a small parameter size,
what else can model developers do to better sup-
port on-device deployment with limited resources?

In this work, we propose an intuitive yet effec-
tive principle for constructing on-device small lan-
guage models: searching for an resource-efficient
architecture on a given hardware before pre-
training. It fundamentally differs from traditional
SLM pipeline in that it moves the consideration of
resource efficiency ahead of pre-training, while ex-
isting practice typically puts performance optimiza-

70 OGemma—ZB Qwen2.5-1.5B
MiniCPM-2B
687 SmolLM-1.7B
L) StableLM-1.6B

o
=
1

PhoneLM-1.5B

o
&
1

O Qwen1.5-1.8B

Average Accuracy
o
N
1

>
o
1

o
©
1

OPT-1.3B

TinyLLaMA-1.1B
[

O Gemma-2B Qwen2.5-1.5B
MiniCPM-2B
StableLM-1.6B
[)
SmolLM-1.7B PhoneLM-1.5B
O oQwen1.5-1.8B
TinyLLaMA-1.1B
[]
OPT-1.3B

T T T T T T
40 60 80 100 120 140

Prefilling Throughput (tokens/s)

T T T T T T
20 30 40 50 60 70

Decoding Throughput (tokens/s)

Figure 2: The comparison of the average accuracy and runtime performance between PhonelLM-1.5B and SLMs with
similar parameter quantities (1B to 2B). The length of input prompt is 64 tokens. The average accuracy select seven
NLP tasks to reflect the ability of the models (same as table reftab:performance), and the prefill/decode throughput
is tested using the CPU on the Xiaomi 14 mobile phone. The closer the model is to the upper right corner, the
better it is. Solid dots represent that the training data of the model is open source, and hollow dots represent that the

training data of the model is closed source.

tions after pre-training (e.g., PTQ) but searches for
an architecture with best capability (e.g., through
observations on loss curve) (Hu et al., 2024). The
principle is reasoned with two observations. (1) Ac-
cording to the scaling law (Kaplan et al., 2020), the
final model accuracy is not sensitive to the model
configurations in a wide range; yet our experiments
in §2 demonstrate the opposite finding for infer-
ence speed, where the same-sized SLMs (1.5B)
can run with up to 3.13x speed gap (compared
with OPT-1.3B) on the same smartphone. (2) The
cost of pre-training SLMs for different devices will
be amortized by deploying SLM as a system-level
service that delivers language ability to third-party
apps, e.g., Google AlCore (Inc., 2024b). In such
circumstance, the pre-training cost of SLMs for
each device is one shot, regardless of how many
applications it serves (Yin et al., 2024).

Guided by this principle, we develop and re-
lease PhonelM for smartphone hardware (e.g.,
Qualcomm Snapdragon SoC), a family of pre-
trained and instructed SLMs. It now includes
5 model variants: PhonelLM-0.5B, PhonelLM-0.5B-
Instruct, PhonelLM-1.5B, PhonelLM-1.5B-Instruct,
and PhonelLM-1.5B-Call. The first two are base
models, while the other three are finetuned for in-
struction following and system-level function call
in Android. We also provide a few quantized ver-
sions to facilitate fast deployments.

There are three notable features of PhonelM:

First, PhonelM is extremely efficient through ex-

haustive ahead-of-pretraining architecture search
on smartphone hardware. For instance, PhonelM-
1.5B runs at 58 tokens/second on Xiaomi 14 (Snap-
dragon 8Gen3 SoC) CPU, which is 1.2 x faster than
StableLM 2 1.6B and 1.6x faster than SmolLM
1.7B with similar parameter size. The prefilling
speed of PhonelM-1.5B even achieves 654 token-
s/second on Xiaomi 14 NPU. The underlying ar-
chitecture of PhonelM is against recent SLM de-
signs that converge to using SiL.U (PhonelLM adopts
ReLU) (Elfwing et al., 2018) and a width-height ra-
tio between 54.6—88.6 (PhonelLM uses 134.7). Such
architecture not only offers speed advantage on
CPU, but also facilitates the NPU-friendly quanti-
zation (Xu et al., 2025) and sparse activation (Liu
et al., 2023).

Second, PhonelM achieves impressive language
capability with a small parameter size, as shown in
Figure 2. Across 7 typical benchmarks (listed in
Table 5), PhonelLM-1.5B scores 67.3% accuracy on
average, which is on par with the state-of-the-art
SLMs with similar size trained on open datasets
(i.e., SmolLM (HuggingFace, 2024.07) 1.7B and
DCLM (Toyota, 2024.08) 1.4B). It even achieves
better capability than many SLMs trained on propri-
etary datasets such as Qwen 1.5 1.8B and StableLM
2 1.6B. After finetuned, PhonelLM-1.5B is also capa-
ble of having smooth conversations with humans,
and controlling smartphones using Android intent
through function calls.

Third, PhonelM is fully open-sourced, repro-

ducible, and demonstrable. PhonelM is trained on
only open datasets without any manipulation. We
release the complete codebase to develop PhonelM,
including the data preparation, training, fine-tuning,
and evaluation procedures. To showcase the capa-
bility of PhoneLM in an end-to-end manner, we also
release a demonstrable Android app powered by
PhonelLM and mllm (Yi et al., 2023) engine. With
the app, users can chat with PhonelLM on devices or
invoke OS function calls with human language, as
shown in Figure 1.

In a nutshell, PhonelLM achieves the state-of-
the-art speed-capability tradeoff for smartphones
among the SLMs trained on open datasets. We
anticipate PhonelLM, as well as the underlying prin-
ciple of its development, to bring the community
to the attentions on the importance of algorithm-
hardware co-design and co-optimizations in SLMs.
PhonelM has risks like being maliciously used to
generate false content, so we recommend strict ac-
cess control and monitoring mechanisms.

2 A Principle for SLM Development

SLM shall adapt to the target device hardware.

A key argument of this work is that, unlike on
clouds, the SLM architecture and development
shall adapt to the specific hardware for runtime
efficiency as the first-class concern. Throughout
this work, the “SLM architecture” mainly refers to
the hyperparameters of transformer-decoder mod-
els, including the types of attention (MHA, GQA,
etc.), activation function of feed forward network
(FFN), depth and width of the model, etc.

Motivating experiments. To support the princi-
ple proposed, we test a bunch of SLMs with 100M
and 200M parameters using various configurations
on 2B tokens (dataset is the same as used to train
PhonelLM). We then compare their loss on the same
validation dataset. At the same time, we tested the
inference speeds of these models using the infer-
ence engine mllm (Yi et al., 2023) on a smartphone
equipped with the Snapdragon 8Gen3 SoC. The re-
sults of average metric (introduced in Section 4.2)
and inference speed (throughput) are shown in fig-
ure 3. More details of these model architectures
are shown in appendix A. We fit a quadratic curve
to the loss of the 100M and 200M models when
training on the same 2B tokens of data. Overall,
fewer transformer layers, a larger model hidden
size, and more attention heads tend to have faster
inference speeds.

A key observation is that runtime speed is more
sensitive to the SLM architecture than the loss. For
a given model size, the range of its runtime speed
is much wider than that of the loss. Comparing the
SLMs with different sizes (100M and 200M), there
is significant overlap of inference speed, but hardly
any overlap of loss. In other words, a model with
200M parameters is consistently more capable than
the one with 100M parameters, but does not always
run slower on devices. The speed gap could be as
large as 5x under the same model size. With more
training tokens, the loss gap would even close up
according to our experiments.

A principle of SLM development. Based on
the insights, we present an intuitive yet effective
principle for SLM development: search for the
most efficient architecture on given hardware, then
pre-train it on datasets with best quality and most
quantity as possible. This principle differs from
existing approaches that uses model capability as
the target metric in SLM architecture search (Hu
et al., 2024), leaving runtime optimizations in post-
training stages.

3 PhoneLM: Smartphone-native SLM
Family

Following the proposed principle, we developed
and trained PhonelLM, a smartphone-native SLM
family, with the following notable features: (1)
Good runtime performance and capability. (2) Con-
venient for smartphone deployment and more suit-
able for model inference using NPU.

In this section, we present the architecture and
training details of PhoneLM.

3.1 Architecture

Model Size 0.5B 1.5B
Hidden size 1,024 2,560
Intermediate Hidden Size 4,864 6,816
Heads 16 16
Layers 24 19
Vocab size 49,152 49,152
Context Len 2,048 2,048
Training Tokens 1.1T 1.5T

Table 1: PhonelM hyperparameters and training settings.
Notably, only PhonelLM-1.5B is developed with ahead-
of-pretraining architecture search.

PhonelLM adopts a transformer decoder architec-
ture with two variants (0.5B and 1.5B parame-

4.2 1 w o ® 100M w "
. 200M w8 e
4.1 1 m17 u .17 R
11 Pd ~ 14 11 //
404 Lo omt wd__-"T 16 13 el
) B g mp-7 - - =Tt P} 75 . -
2 3.9 10 FS o 10 - o
- o gd B%s
38 N J ’l ’?
. 17 o6 13.3 ; 6 __- 17 14 12‘ 0 3 6 T
] Gis____% !5 g..)_—f" 3 o3 _ @ - _&‘——" ® 100M
T o L 58 200M
3.6 o!? o2 =
400 500 600 700 800 900 100 200 300 400

Prefilling Throught (tokens/s)

Decoding Throught (tokens/s)

Figure 3: The comparison of the throughput and ability of the models with parameter quantities of 100M and 200M.
More details of these model architecture are shown in appendix A

hidden intermediate layers (li(r)i‘:ﬂis‘;g (‘:zi‘;?]i;/‘sg) Table 2 summarizes the throughput results for
2048 12788 16 7075 5512 various 1.5B model structures tested on the Xiaomi
2560 7680 18 64.98 60.60 14 CPU (Snapdragon 8Gen3). Based on these ex-
gggg 16(5;21460 }g g;g gggg periment, we selected the configuration with the
1792 10752 21 65.42 50.18 highest inference speed as the final structure for
2048 8192 22 67.10 5404 PhonelM.
172 8960 2 6329 48.63 Activation Function Selection. Unlike recent

Table 2: The throughput of models with multiple struc-
tures of 1.5B parameters on the Xiaomi 14 CPU (Snap-
dragon 8Gen3).

ters), as detailed in Table 1. PhonelLM featuring
a context length of 2,048 tokens and utilize the
tokenizer from SmolLM (HuggingFace, 2024.07),
which supports a vocabulary size of 49,152. The
models employ Rotary Position Embedding (RoPE)
and multi-head attention mechanisms. The model
adopts RMSNorm in place of LayerNorm as used
in the traditional Transformer architecture. In their
feed-forward components, they incorporate Gated
Linear Units (GLU) mechanisms alongside ReLU
activation functions.

Hardware-specific Hyperparameter Search
for Resource Efficiency. To optimize PhonelLM for
smartphone deployment, we conducted an exhaus-
tive hyperparameter search on smartphone hard-
ware. This search aimed to identify configurations
that maximize runtime efficiency. Specifically, we
explored a range of parameters including the num-
ber of layers, which varied from 15 to 25. We also
examined the use of multi-head attention (MHA)
with 16 heads and Grouped Query Attention (GQA)
with 4 groups. Finally, we evaluated models with
different ratios of intermediate hidden size to hid-
den size, ranging between 2 and 5.

SLMs that utilize SiLU or GELU, PhonelLM em-
ploys ReLLU as its activation function. This choice
is driven by two main factors. First, calculating
ReLU is more efficient on smartphones, particu-
larly for NPUs optimized for integer calculations.
This efficiency makes ReLU a preferable choice
for mobile devices where computational resources
are limited. Second, ReLLU introduces sparsity into
the feed-forward network, which facilitates faster
inference through techniques such as coefficient
calculation. These techniques, discussed in detail
by Song et al. (Song et al., 2023) and Alizadeh
et al. (Alizadeh et al., 2023), leverage the sparsity
introduced by ReL.U to accelerate computations on
mobile platforms.

Pre-quantized positional embedding. To fur-
ther enhance computational efficiency on mobile
devices, we apply INT8 quantization to the sin
and cos values of RoPE. This linear quantization
process scales floating-point values to the INT8
range [-128, 127]. Specifically, we first determine
the maximum absolute values of sine and cosine
functions, then scale the original values by divid-
ing them by their respective maximum values and
multiplying by 127, followed by rounding to the
nearest integer. This approach minimizes accuracy
loss while significantly improving computational
efficiency on mobile accelerators such as NPUs.

type dataset token
web DCLM-baseline (Li et al., 2024) 1.35T
code StarCoderData (Li et al., 2023b) 112.75B
math OpenWebMath (Paster et al., 2023) 13.25B
Dolma-algebraic (Soldaini et al., 2024) 12.75B
academic Dolma-arxiv (Soldaini et al., 2024) 29B
total 1.5T
(a) Stable Training Stage
type dataset token
web DCLM-baseline (Li et al., 2024) 10B
code StarCoderData (Li et al., 2023b) 1.575B
The Stack Smol 0.95B
acadamic Dolma-arxiv (Soldaipi‘et al., 2024) 2.325B
Dolma-pes2o (Soldaini et al., 2024) 2.35B
math instruct Mathlnstruct (Yue et al., 2023) 65.25M
UltraChat (Ding et al., 2023) 1.775B
chat instruct OpenAssistant 2 (Kopf et al., 2024) 42.25M
OpenHermes (Teknium, 2023) 77.25M
Magicoder Evol Instruct (ise uiuc, 2024) 30.25M
code instruct CommitPackFT (Muennighoff et al., 2023) 0.35B
Magicoder OSS Instruct (Wei et al., 2023) 43.5M
SlimOrca (Lian et al., 2023) 209.75M
function calling APIGen (Liu et al., 2024) 48.25M
instruct Glaive Function Calling (glaiveai, 2024) 57.5M
total 20B
(b) Decay Stage
type dataset token
math instruct Mathlnstruct (Yue et al., 2023) 65.25M
UltraChat (Ding et al., 2023) 1.775B
chat instruct OpenAssistant 2 (Kopf et al., 2024) 42.25M
OpenHermes (Teknium, 2023) 77.25M
Magicoder Evol Instruct (ise uiuc, 2024) 30.25M
code instruct CommitPackFT (Muennighoff etal., 2023) 0.35B
Magicoder OSS Instruct (Wei et al., 2023) 43.5M
SlimOrca (Lian et al., 2023) 209.75M
total 2.59B

(c) Instruct Turning Stage

Table 3: The classification of the datasets used in each
stage and the number of their tokens. The description
of the datasets is in appendix C.

3.2 Pre-training

The training of PhonelLM has been set up as follows:
(1) The optimizer is AdamW (Loshchilov, 2017)
with 81 of 0.9, 55 of 0.95, and € of 1e-8. (2) We
use Fully Sharded Data Parallel (FSDP) to lever-
age multi-GPU and multi-node setups efficiently.
(3) Another critical improvement is the integra-
tion of Flash Attention 2, an optimized attention
mechanism. (4) We also use Zero Redundancy Op-
timizer(ZeRO), a memory optimization technique
that reduces the models’s memory footprint. (5)
We use BF16 to accelerate the training process.
The details of the setting of pre-training stage are
shown in table 4.

We use a dataset sourced from open datasets.
For PhonelLM-0.5B, we use 1.1 trillion tokens, and
for PhonelLM-1.5B, we use 1.5 trillion tokens. In
pre-training stage, we apply the weight decay, a
learning rate warmup, and a cosine learning rate
decay schedule.

PhonelM is totally trained on open-sourced
datasets without any manipulation, as shown in

PhoneLLM-0.5B Train Loss

84 —— #1 Stable Training Stage
—— #2 Decay Stage
6 —— #3 SFT Stage

Train Loss

] It
0 200 400 600 800 1000 1200
Training Tokens (Billion)

PhoneLLM-1.5B Train Loss

—— #1 Stable Training Stage
—— #2 Decay Stage
6 —— #3 SFT Stage

Train Loss

y 1

T T T T T T T

0 250 500 750 1000 1250 1500
Training Tokens (Billion)

Figure 4: Training loss of PhoneLM-0.5B and PhonelM-
1.5B. This figure includes the loss in the Pre-training
stage in Section 3.2 and the loss during Instruct Tuning
stage in Section 3.3.

table 3. In the stable training stage, several
open-source datasets are used, including DCLM-
baseline, StarCoderData, OpenWebMath, Dolma.
The details of the training datasets are shown in ap-
pendix C. The pre-training loss of PhonelLM family
on the pretraining dataset is shown in figure 4 with
black line.

3.3 Fine-tuning

The fine-tuning of PhonelLM base model is similar
to MiniCPM (Hu et al., 2024) and Llama 3 (Dubey
et al., 2024), which includes two stages: decay
stage and Fine-tuning stage. (1) Decay Stage. We
use a mixture of the pre-training data and high-
quality supervised fine- tuning data, which is about
20 billion tokens. In this stage, we use a linear
learning rate decay schedule. (2) Fine-tuning Stage.
We find it still necessary to conduct a separate Fine-
tuning stage. We utilize fine-tuning data similar to
that in the decay phase but excludes pre-training
data, totaling approximately 2.59 billion tokens.
The learning rate for fine-tuning is set to match
the final learning rate from the decay stage. The
optimizer in the Fine-tuning stage is the same as
that in the pre-training stage for acceleration, but
with different hyperparameter settings, which are
shown in the table 4.

Instruct Tuning. In the decay stage, the data
mixture contains some dataset from stable training
stage, including DCLM-baseline, StarCoderData,

stage Stable | Decay SFT
Datasets (tokens) 1.1TB 20B | 2.59B
Learning Rate Scheduler | Cosine | Linear | None
Max Learning Rate 4e-04 8e-05 | 4e-05
Min Learning Rate 8e-05 4e-05 | 4e-05
Batch Size 13.5M 1.5M 32M
Epoch 1 1 7
Training Days (A100) 72x10 | 16x0.6 | 16x1
(a) PhonelLM-0.5B
stage Stable Decay SFT
Datasets (tokens) 1.5TB 20B | 2.59B
Learning Rate Scheduler | Cosine Linear | None
Max Learning Rate 4e-04 4e-05 | 2e-05
Min Learning Rate 4e-05 2e-05 | 2e-05
Batch Size oM OM | 128M
Epoch 1 1 8
Training Days (A100) 64x35 | 64x0.2 | 64x1

(b) PhonelLM-1.5B

Table 4: Training settings

and Dolma. Then it contains some high-quality
fine-tuning data,which is used in Fine-tuning stage.
The fine-tuning datasets are shown in table 3, in-
cluding APIGen, Stack Smol, UltraChat, MathIn-
struct, OpenAssistant 2, OpenHermes, Commit-
PackFT, OSS-Instruct, and SlimOrca. The details
of these datasets are shown in appendix C. The
pre-training loss of Decay Stage and Fine-tuning
Stage is shown in figure 4 Since we continue fine-
tuning the model after the decay stage, the loss
drops significantly at the beginning of each epoch.

Function Call Tuning. To enhance the model’s
capability in smartphone operation, we fine-tuned
the PhonelM on the DroidCall (Xie et al., 2024)
dataset, a synthetic dataset specifically focused on
Android intent invocations generated by GPT-4.
The DroidCall dataset includes 10k samples cov-
ering simple, parallel, and nested function call pat-
terns for common Android operations. We use
LoRA to fine-tune PhonelM, adding adapter to all
linear layers within both the attention layers and
MLP layers The fine-tuning process was config-
ured with an initial learning rate of 1.41e-5, uti-
lizing a rank (r) of 8 and an alpha value of 16. A
linear learning rate scheduler was employed with a
warmup ratio of 0.1. To ensure a minimal computa-
tional load and to increase inference speed, we used
a minimalist prompt, which essentially only in-
cluded function information and user queries. The
final function calling model was derived from the
optimal checkpoint of the fine-tuning process. The
details of prompt construction are shown in ap-
pendix E.

—— ARC-e —— HellaSwag
ARC-¢ —— WinoGrande

—— PIQA BoolQ
— SciQ
PhoneLM-0.5B

%
S

S

IS
S

Matric Score(%)
o
(=}

200 400 600 800 1000 1200
Training Tokens (Billion)

PhoneLM-1.5B

|

Matric Score(%)
o
(=]
‘\

IS
S

0 200 400 600 800 1000 1200 1400 1600
Training Tokens (Billion)

Figure 5: PhonelLM’s performance across training itera-
tions on standard zero-shot tasks

4 Experiment Results

We evaluate PhonelLM on a wide range of common-
sense reasoning and problem-solving tasks and
compare it to several existing open-source language
models with similar model sizes.

4.1 Baselines and Tasks

We compare the PhonelLM family models with sev-
eral existing open-source language models of simi-
lar model sizes. Table 5 lists all models used in the
experiments. Gray text indicates models trained on
datasets that are not publicly available, while black
text denotes models trained on publicly available
datasets.

To evaluate the capabilities of PhonelM, we
used 7 datasets from two domains: commonsense
reasoning and problem solving. The common-
sense reasoning datasets are HellaSwag (Zellers
et al., 2019), Winogrande (Sakaguchi et al., 2020),
PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017),
and BoolQ (Clark et al., 2019). The problem solv-
ing ones are ARC Easy and ARC Challenge (Clark
et al., 2018). Detailed descriptions are in the Ap-
pendix B.

We adopt the benchmark Im_eval (EleutherAl,
2024) to evaluate the models after the stable train-
ing stage. The primary evaluation metric is accu-
racy, which is the ratio of correct predictions to
the total number of examples. For commonsense
reasoning and problem-solving tasks, accuracy re-
flects the model’s ability to choose correct options
or offer accurate solutions. In line with previous
practices, the models are evaluated in a zero-shot
setting for these tasks. Our findings indicate that

Training

ARC ARC

Name Size Date tokens HellaSwag WinoGrande PIQA SciQ BoolQ Easy Chall Average
Pythia (EleutherAl, 2023.03b) 410M 23.03 207B 40.6 53.7 66.9 724 60.3 45.9 245 52.04
OPT (Facebook, 2022.05a) 350M 22.05 180B 36.8 523 64.3 68.5 57.6 40.1 23.7 49.04
BLOOM (BigScience, 2022.11a) 560M 22.11 350B 36.9 51.7 65.0 71.7 533 41.8 23.7 49.16
MobiLlama (MBZUAI, 2024.02) 500M 24.02 1.25T 51.1 534 70.9 76.4 557 46.0 26.6 54.30
OpenELM (Apple, 2024.04) 450M 24.04 1.5T 54.0 58.0 723 79.4 55.8 48.1 27.6 56.46
SmolLM (HuggingFace, 2024.07) 360M 24.07 600B 535 56.8 71.5 84.2 55.4 63.8 36.0 60.17
SmolLM?2 (Allal et al., 2024) 360M 24.12 4T 56.3 58.6 71.9 86.4 61.4 68.3 37.7 62.94
Alibaba. 2024.02
Team. 2024
(Cerebras, 2023.03b)
PhoneLM 500M 24.11 1.IT 54.0 57.9 73.3 85.1 60.7 60.4 31.6 60.43
(a) 0.5B
Name Size Date I;I:l:le]::g HellaSwag WinoGrande PIQA SciQ BoolQ ::fs(; C‘A'I}C Average
Pythia (EleutherAl, 2023.03a) 1.4B 23.03 207B 52.0 572 71.1 79.2 63.2 539 283 57.84
OPT (Facebook, 2022.05b) 1.3B 22.05 180B 53.7 59.0 71.0 78.1 572 51.3 28.0 56.90
BLOOM (BigScience, 2022.11b) 1.IB 22.11 350B 43.0 549 67.2 74.6 59.1 454 25.6 52.83
TinyLlama (Unknown, 2023.12) 1.IB 23.12 3B 59.1 589 73.0 823 58.6 55.7 31.0 59.80
MobileLLaMA (Meituan, 2023.12) 1.4B 23.12 1.3T 56.1 59.4 73.0 81.9 56.7 55.8 30.3 59.03
MobiLlama (MBZUAL, 2024.02) 1B 24.02 1.25T 622 59.3 74.8 82.8 60.3 56.4 31.7 61.07
OpenELM (Apple, 2024.04) 1.IB 24.04 1.5T 64.8 61.7 75.6 83.6 63.6 55.4 323 62.43
DCLM (Toyota, 2024.08) 1.4B 24.08 43T 53.6 66.3 77.0 94.0 714 74.8 41.2 68.33
SmolLM (HuggingFace, 2024.07) 1.7B 24.07 IT 49.6 60.9 75.8 93.2 66.0 76.4 43.5 66.49
SmolLM2 (Allal et al., 2024) 1.7B 24.12 11T 71.5 65.9 71.5 90.9 72.4 73.3 47.6 71.30
Alibaba. 2024.02
Team. 2024
Facebook. 2022.11
StabilityAl 2024.01
Cerebras. 2023.03a
OpenBMB. 2024.04
OpenBMB. 2024.04
Google 2024.02
Google. 2024.07
Dubey et al.. 2024
PhoneLM 1.5B 24.11 1.5T 66.9 63.0 71.3 88.8 65.5 69.7 39.9 67.31
(b) 1.5B

Table 5: Benchmark Score of PhonelLM. Models with gray text indicate that their training datasets are not publicly

available.

PhonelLM outperforms the baselines in many tasks
and achieves the highest average scores among
most open-source models.In the Appendix B, we
also evaluate these models on other tasks.

4.2 Capability

The capability for 7 standard zero-shot tasks of
PhonelM are presented in table 5. It can be seen
from table 5(a) that PhonelLM-0.5B achieves the
highest average accuracy on these 7 tasks. Except
for the two tasks of ARC-e and ARC-c, where
PhonelLM-0.5B performs lower than SmollLM,
PhonelLM-0.5B demonstrates the strongest perfor-
mance on other tasks among models with simi-
lar parameter counts. For PhonelLM-1.5B, which is
shown in table 5(b), it performs better than other
open-source models on most tasks. Combining all
the tasks, it can be seen that PhonelLM performs
better than other models with the same number of
parameters in commonsense reasoning tasks and
problem solving tasks.

In figure 5, the accuracy of PhonelLM-0.5B and
PhonelLM-1.5B are plotted against training itera-
tions for 7 standard zero-shot tasks. We observe
an overall increase in accuracy with longer training
durations across most tasks.

4.3 Instruction and Function Call

Instruction Following Evaluation. We have at-
tached examples of PhonelLM-1.5B-Instruction in
several scenarios, including "Reasoning”, "Knowl-
edge", "Programming and Logic Building", "In-
novative Thinking", "Translation", and "Creativity
and Imagination" in Appendix D.

Function call Evaluation. To assess the model’s
intrinsic function calling capabilities, we designed
structured prompts to systematically guide the
chat model in executing function calls. Follow-
ing the fine-tuning methodology outlined in Sec-
tion 3.3, we adapted the PhonelLM and evaluated
multiple mainstream models on the DroidCall
benchmark (Xie et al., 2024). The experimental
results, as shown in Table 6, demonstrate the effec-
tiveness of our approach.

4.4 On-device Runtime Cost

Hardware and framework. To benchmark
PhonelLM models on the Android smartphone, we
used a Xiaomi 14 with a Qualcomm Snapdragon 8
Gen 3 SoC and 16GiB of RAM. The smartphone
was set to performance mode for stable results. The
inference engine is mllm (Yi et al., 2023). For CPU
experiments, 4 threads were used. The weights of

Prefilling

Decoding

80 1

v
S

60

I)
G

=)
S

40

Throughput (tokens/s)
b
s
A\
Throughput (tokens/s)

v
S

—e— TinyLLaMA-1.1B
OPT-1.3B

=@ PhoneLM-1.5B
StableLM-1.6B
SmolLM-1.7B

—8— Qwenl.5-1.8B
Gemma-2B

201 °
—e— MiniCPM-2B

0 200 400 600 800 1000 0
Prompt lengths (tokens)

200 400 600 300 1000
Prompt lengths (tokens)

Figure 6: PhonelLM’s throughput. This figure illustrates the comparison of throughput between PhonelM and other
models with similar parameter sizes on the Xiaomi 14 mobile phone, under varying input prompt lengths. All
models were inferred using the mobile phone’s CPU with 4 threads.

Model Accuracy | Soft Accuracy
Qwen2.5-Coder-1.5B 50.0 63.5
Qwen?2.5-1.5B-Instruct 58.5 75.3
Phi-3.5-mini-instruct 62.0 71.7
MiniCPM3-4B 70.0 85.7
Gemma-2-2b-it 56.5 75.8
TinyLlama-1.1B-Chat-v1.0 18.0 18.7
Llama-3.2-1B-Instruct 36.0 43.8
Llama-3.2-3B-Instruct 47.5 57.9
GPT-40-mini 71.0 86.1
PhoneLM-1.5B-Instruct 17.5 17.8
PhoneLM-1.5B-Call 75.0 86.1

Table 6: Performance comparison of different models
on the DroidCall test set. Accuracy: A sample is correct
only if all predicted functions and parameters exactly
match ground-truth calls; accuracy is the ratio of fully
correct samples to the total. Soft Accuracy: It evaluates
partial correctness by averaging per-call scores, where
each score reflects the ratio of correctly predicted pa-
rameters to the total required.

the linear and embedding layers were quantized
to 4-bit, while activation values remained in fp32
during runtime. For NPU experiments, we used
Qualcomm’s QNN (Inc., 2024¢) framework and
methods from mllm-NPU (Xu et al., 2025).

Evaluation. We provide two separate measure-
ments for token throughput: prefilling and decod-
ing. In the benchmark experiments of the model,
we set different prompt lengths ranging from 32 to
1024 tokens and generate 100 tokens in an autore-
gressive manner to measure the throughput in the
prefilling stage and the decoding stage. We repeat
5 times for each model and take the average result.
We use key-value caching in all experiments.

Results. Figure 6 shows CPU benchmark re-
sults. PhonelLM-0.5B has higher prefilling through-
put than most 0.5B models except SmolLM-360M,
and its decoding throughput surpasses all mod-
els. PhonelLM-1.5B outperforms models larger than

1.3B in both prefilling and decoding throughput.
Throughput decreases as prompt length increases
due to higher self-attention computational load.
Figure 2 compares throughputs at 64 tokens prompt
length against average metrics. Models in the upper
right corner exhibit better performance and speed.
Notably, PhonelLM-1.5B achieves 654 tokens/sec-
ond prefilling throught on Xiaomi 14 NPU, outpac-
ing Qwen2.5-1.5B at 602 tokens/second.

4.5 An End-to-end Android Demo

We also have an end-to-end Android demo applica-
tion for PhonelLM-1.5B based on mllm. This demo
contains two invocations: chat and Android intent
invocation. The screenshots of this application are
shown in figure 1. Figure 1(a) shows an exam-
ple of a user having a conversation with an An-
droid application with PhonelLM-1.5B-Instruct built
in. Figure 1(b) shows the Android intent invocation
ability of the PhonelLM-1.5B-Call model. In this ex-
ample, after understanding the user’s "Wake me up
at 8:00", the model uses the Android alarm-setting
Intent to set an alarm for 8 o’clock.

5 Conclusions

This work presents PhonelM, an efficient, capa-
ble, and fully open-sourced small language family.
PhonelM is built atop a unique principle: search-
ing for a runtime-efficient transformer architecture
ahead of pre-training. We also release an end-to-
end demo using PhonelM for intent invocations on
Android OS in a fast and accurate performance.
The goal of PhoneLM is to advance the development
and research on small language models towards
more practical on-device deployment.

6 Limitations

Our approach tested 14 metrics (7 in the main text
and 7 in the appendix), but only covered two types
of tasks: commonsense reasoning and problem-
solving. Metrics for other tasks applicable to lan-
guage models were not experimented upon.

The Instruct model proposed in this paper lacks
quantitative experimental metrics, primarily due to
the absence of an effective method to evaluate the
model’s instruction-following capability.

Additionally, the third-party models compared in
our experiments were SLMs released up to Decem-
ber 2024, thus excluding several SLMs launched
in 2025.

References

Alibaba. 2024.02. Qwen 1.5. https://huggingface.
co/alibaba/Qwen-1.5.

Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko,
Karen Khatamifard, Minsik Cho, Carlo C Del Mundo,
Mohammad Rastegari, and Mehrdad Farajtabar. 2023.
Llm in a flash: Efficient large language model
inference with limited memory. arXiv preprint
arXiv:2312.11514.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch,
Gabriel Martin Blazquez, Lewis Tunstall, Agustin
Piqueres, Andres Marafioti, Cyril Zakka, Leandro
von Werra, and Thomas Wolf. 2024. Smollm2 - with
great data, comes great performance.

Apple. 2024.04. Openelm. https://huggingface.
co/apple/OpenELM.

BigScience. 2022.11a. bigscience/bloom-560m.
https://huggingface.co/bigscience/
bloom-560m.

BigScience. 2022.11b. bigscience/bloomz-1bl. https:
//huggingface.co/bigscience/bloomz-1b1.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jian-
feng Gao, and Yejin Choi. 2020. Piqa: Reasoning
about physical commonsense in natural language. In
Proceedings of the AAAI Conference on Artificial
Intelligence.

Cerebras. 2023.03a. cerebras/cerebras-gpt-
1.3b. https://huggingface.co/cerebras/
Cerebras-GPT-1.3B.

Cerebras. 2023.03b. cerebras/cerebras-gpt-
590m. https://huggingface.co/cerebras/
Cerebras-GPT-590M.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings

of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. In
arXiv preprint arXiv:1803.05457.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

EleutherAl. 2023.03a. Eleutherai/pythia-1.4b. https:
//huggingface.co/EleutherAI/pythia-1.4b.

EleutherAl. 2023.03b. Eleutherai/pythia-410m. https:
//huggingface.co/EleutherAI/pythia-410m.

EleutherAl. 2024. Language model evaluation harness.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018.
Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning.
Neural networks, 107:3-11.

Facebook. 2022.05a. facebook/opt-125m.
huggingface.co/facebook/opt-125m.

Facebook. 2022.05b. facebook/opt-1.3b.
huggingface.co/facebook/opt-1.3b.

Facebook. 2022.11. facebook/galactica-1.3b. https:
//huggingface.co/facebook/galactica-1.3b.

https://

https://

glaiveai. 2024. glaive function calling.

Google. 2024.02. Gemma.
co/google/Gemma.

https://huggingface.

Google. 2024.07. Gemma-2. https://huggingface.
co/google/Gemma-2.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxi-
ang Huang, Weilin Zhao, et al. 2024. Minicpm:
Unveiling the potential of small language models
with scalable training strategies. arXiv preprint
arXiv:2404.06395.

https://huggingface.co/alibaba/Qwen-1.5
https://huggingface.co/alibaba/Qwen-1.5
https://huggingface.co/alibaba/Qwen-1.5
https://huggingface.co/apple/OpenELM
https://huggingface.co/apple/OpenELM
https://huggingface.co/apple/OpenELM
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/cerebras/Cerebras-GPT-1.3B
https://huggingface.co/cerebras/Cerebras-GPT-1.3B
https://huggingface.co/cerebras/Cerebras-GPT-1.3B
https://huggingface.co/cerebras/Cerebras-GPT-590M
https://huggingface.co/cerebras/Cerebras-GPT-590M
https://huggingface.co/cerebras/Cerebras-GPT-590M
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-410m
https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/galactica-1.3b
https://huggingface.co/facebook/galactica-1.3b
https://huggingface.co/facebook/galactica-1.3b
https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2
https://huggingface.co/google/Gemma
https://huggingface.co/google/Gemma
https://huggingface.co/google/Gemma
https://huggingface.co/google/Gemma-2
https://huggingface.co/google/Gemma-2
https://huggingface.co/google/Gemma-2

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,
Maosong Sun, and Junxian He. 2023. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models. In Advances in Neural Infor-
mation Processing Systems.

HuggingFace. 2024.07. Smollm.
huggingface.co/huggingface/SmolLM.

https://

Apple Inc. 2024a. ios 18. https://www.apple.com/
ios/ios-18/.

Google Inc. 2024b. Google ai edge sdk for gemini nano.
https://developer.android.com/ai/aicore.

Qualcomm Inc. 2024c. Qualcomm neu-
ral processing sdk for ai. https://
www. qualcomm. com/developer/software/
neural-processing-sdk-for-ai.

ise uiuc. 2024. Magicoder evol instruct.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Carlos Mufioz Ferrandis, Yacine Jer-
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
et al. 2022. The stack: 3 tb of permissively licensed
source code. arXiv preprint arXiv:2211.15533.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stan-
ley, Richard Nagyfi, et al. 2024. Openassistant
conversations-democratizing large language model
alignment. Advances in Neural Information Process-
ing Systems, 36.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023a. Cmmlu: Measuring massive multi-
task language understanding in chinese. Preprint,
arXiv:2306.09212.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi,
Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, Saurabh Garg,
Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean
Mercat, Mayee Chen, Suchin Gururangan, Mitchell
Wortsman, Alon Albalak, Yonatan Bitton, Mari-
anna Nezhurina, Amro Abbas, Cheng-Yu Hsieh,
Dhruba Ghosh, Josh Gardner, Maciej Kilian, Han-
lin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal,
Gabriel Ilharco, Giannis Daras, Kalyani Marathe,
Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao
Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song,
Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke
Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi
Pouransari, Alexander Toshev, Stephanie Wang, Dirk

10

Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jit-
sev, Thomas Kollar, Alexandros G. Dimakis, Yair
Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal
Shankar. 2024. Datacomp-lm: In search of the
next generation of training sets for language mod-
els. Preprint, arXiv:2406.11794.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023b. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pent-
land, Austin Cook, Chanvichet Vong, and "Teknium".
2023. Slimorca: An open dataset of gpt-4 augmented
flan reasoning traces, with verification.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulga: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137-22176. PMLR.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, et al. 2024. Apigen:
Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint
arXiv:2406.18518.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fang-
ming Liu, Xiwen Zhang, Nicholas D Lane, and
Mengwei Xu. 2024. Small language models: Sur-
vey, measurements, and insights. arXiv preprint
arXiv:2409.15790.

MBZUAI 2024.02. Mobillama. https://
huggingface.co/mbzuai/Mobil lama.
Meituan. 2023.12. Mobilellama. https://

huggingface.co/meituan/MobilelLaMA.

Microsoft. 2024.04. microsoft/phi-3-mini. https://
huggingface.co/microsoft/phi-3-mini.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2023. Octopack: Instruction tun-

ing code large language models. arXiv preprint
arXiv:2308.07124.

OpenBMB. 2024.04. Minicpm.
huggingface.co/openbmb/MiniCPM.

https://

Keiran Paster, Marco Dos Santos, Zhangir Azer-
bayev, and Jimmy Ba. 2023. Openwebmath: An
open dataset of high-quality mathematical web text.
Preprint, arXiv:2310.06786.

https://huggingface.co/huggingface/SmolLM
https://huggingface.co/huggingface/SmolLM
https://huggingface.co/huggingface/SmolLM
https://www.apple.com/ios/ios-18/
https://www.apple.com/ios/ios-18/
https://www.apple.com/ios/ios-18/
https://developer.android.com/ai/aicore
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://https://huggingface.co/Open-Orca/SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/microsoft/phi-3-mini
https://huggingface.co/microsoft/phi-3-mini
https://huggingface.co/microsoft/phi-3-mini
https://huggingface.co/openbmb/MiniCPM
https://huggingface.co/openbmb/MiniCPM
https://huggingface.co/openbmb/MiniCPM
https://arxiv.org/abs/2310.06786
https://arxiv.org/abs/2310.06786
https://arxiv.org/abs/2310.06786

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. Winogrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of the AAAI Conference on Artificial
Intelligence.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiga: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, lan Magnusson,
Jacob Morrison, Niklas Muennighoff, Aakanksha
Naik, Crystal Nam, Matthew E. Peters, Abhilasha
Ravichander, Kyle Richardson, Zejiang Shen, Emma
Strubell, Nishant Subramani, Oyvind Tafjord, Pete
Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. 2024. Dolma: an Open Corpus of Three
Trillion Tokens for Language Model Pretraining Re-
search. arXiv preprint.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.
2023. Powerinfer: Fast large language model serv-
ing with a consumer-grade gpu. arXiv preprint
arXiv:2312.12456.

StabilityAl. 2024.01. stabilityai/stablelm-2-zephyr*.
https://huggingface.co/stabilityai/
stablelm-2-zephyr.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Teknium. 2023. openhermes: An open dataset of syn-
thetic data for generalist 1lm assistants.

Toyota. 2024.08. Dclm. https://huggingface.co/
TRI-ML/DCLM-1B.

Unknown. 2023.12. Tinyllama.
huggingface.co/tinyllama.

https://

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder-oss-instruct-75k:
An open dataset generated by gpt-3.5-turbo-1106.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Weikai Xie, Li Zhang, Shihe Wang, Rongjie Yi, and
Mengwei Xu. 2024. Droidcall: A dataset for
Ilm-powered android intent invocation. Preprint,
arXiv:2412.00402.

Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang
Huang, Mengwei Xu, and Xuanzhe Liu. 2025. Fast
on-device llm inference with npus.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi,
Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao
Zhao, Chen Yang, Shihe Wang, et al. 2024. A survey
of resource-efficient llm and multimodal foundation
models. arXiv preprint arXiv:2401.08092.

Rongjie Yi, Xiang Li, Qichen Qiu, Zhenyan Lu, Hao
Zhang, Daliang Xu, Liming Yang, Weikai Xie,
Chenghua Wang, and Mengwei Xu. 2023. mllm:
fast and lightweight multimodal 1lm inference engine
for mobile and edge devices.

Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xu-
anzhe Liu. 2024. Llm as a system service on mobile
devices. arXiv preprint arXiv:2403.11805.

Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang,
Xin Yuan, Zeling Zhang, Xiang Li, Dingge Zhang,
Hanzi Mei, Xianqing Jia, et al. 2024. Mobile founda-
tion model as firmware. In Proceedings of the 30th
Annual International Conference on Mobile Comput-
ing and Networking, pages 279-295.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

A Setting of 100M and 200M models

Tested the speed and performance of 100M and
200M models, training on data with 20 billion to-
kens. The settings are shown in the table 7.

B Matrics

We also evaluate the models on other following
tasks, which contains the following tasks: So-
ciallQA, TruthfulQA, MMLU, CMMLU and C-
Eval. The following are the datasets used in all
experiments:

* Commonsense Reasoning Datasets:

— HellaSwag (Zellers et al., 2019): Tests narra-
tive understanding through plausible sentence
completion.

— Winogrande (Sakaguchi et al., 2020): Evalu-
ates pronoun ambiguity resolution using com-
monsense reasoning.

— PIQA (Bisk et al., 2020): Focuses on physical
commonsense reasoning and object interac-
tions.

https://huggingface.co/stabilityai/stablelm-2-zephyr
https://huggingface.co/stabilityai/stablelm-2-zephyr
https://huggingface.co/stabilityai/stablelm-2-zephyr
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/tinyllama
https://huggingface.co/tinyllama
https://huggingface.co/tinyllama
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://arxiv.org/abs/2412.00402
https://arxiv.org/abs/2412.00402
https://arxiv.org/abs/2412.00402
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm

ID | size(M) | hidden intermediate layers activation heg ds htl:a‘:ls loss (I:Zf(fiﬂlsl;s ng(zﬂlsl;sg)
1 106.73 1280 2096 3 relu 16 16 3.76 916.70 455.32
2 106.73 1280 2096 3 silu 16 16 3.81 877.19 424.08
3 101.42 768 2046 9 relu 16 16 3.70 742.85 258.56
4 101.42 768 2046 9 relu 4 4 3.67 784.94 266.68
5 101.42 768 2046 9 relu 16 4 3.66 871.94 260.37
6 101.42 768 2046 9 silu 16 16 3.69 788.95 260.03
7 101.42 768 2046 9 silu 4 4 3.66 773.27 255.42
8 101.42 768 2046 9 silu 16 4 3.65 853.46 252.71
9 99.54 704 1856 11 relu 16 16 3.65 720.98 228.11
10 99.54 704 1856 11 silu 16 16 3.64 753.61 228.03
11 100.00 576 1536 18 relu 16 16 3.68 601.56 154.59
12 100.00 576 1536 18 relu 4 4 3.59 652.11 164.05
13 100.00 576 1536 18 relu 16 4 3.66 705.54 153.85
14 100.00 576 1536 18 silu 16 16 3.67 614.41 151.98
15 100.00 576 1536 18 silu 4 4 3.58 640.13 160.48
16 100.00 576 1536 18 silu 16 4 3.65 691.67 150.15
17 101.06 448 1184 33 relu 16 16 3.68 469.89 89.48
18 101.06 448 1184 33 silu 16 16 3.67 481.58 87.70

(a) 100M

ID | size(M) | hidden intermediate layers activation he(al ds h::’ds loss (Igfiﬂlsr;sg) ng(z(lillsl;sg)
1 201.32 2048 5460 2 relu 16 16 421 726.44 430.06
2 201.32 2048 5460 2 silu 16 16 421 552.06 325.93
3 188.76 1536 4096 4 relu 16 16 3.94 706.14 391.36
4 188.76 1536 4096 4 silu 16 16 391 683.97 351.09
5 199.78 1024 2688 12 relu 16 16 3.89 559.80 225.88
6 199.78 1024 2688 12 relu 4 4 3.87 533.00 222.27
7 199.78 1024 2688 12 relu 16 4 3.89 546.76 215.04
8 199.78 1024 2688 12 silu 16 16 3.85 461.42 178.95
9 199.78 1024 2688 12 silu 4 4 3.86 427.38 162.85
10 199.78 1024 2688 12 silu 16 4 3.86 412.81 160.71
11 182.20 704 1856 25 relu 16 16 4.02 489.62 144.05
12 182.20 704 1856 25 relu 4 4 3.95 505.01 139.14
13 182.20 704 1856 25 relu 16 4 3.98 554.88 131.29
14 182.20 704 1856 25 silu 16 16 3.98 487.49 124.17
15 182.20 704 1856 25 silu 4 4 3.95 391.94 103.51
16 182.20 704 1856 25 silu 16 4 3.94 448.85 98.58
17 187.61 576 1536 40 relu 16 16 4.11 430.52 119.42
18 187.61 576 1536 40 silu 16 16 4.13 407.08 88.21

(b) 200M

Table 7: 100M and 200M models’ setting

— SciQ (Welbl et al., 2017): a dataset of 13.7K
multiple choice science exam questions.

— BoolQ (Clark et al., 2019): Tests common-

sense and factual reasoning with yes/no ques-

tions.

— TruthfulQA (Lin et al., 2022): Assesses the
model’s ability to avoid providing false infor-

mation.

— SociallQA (Sap et al., 2019): A dataset of

13.7K multiple choice science exam questions.

* Problem Solving Datasets:

— ARC Easy (Clark et al., 2018): Contains sim-
ple science questions testing general knowl-

edge and reasoning.

— ARC Challenge (Clark et al., 2018): Presents

12

complex science exam questions requiring
knowledge integration.

MMLU (Hendrycks et al., 2021): Evaluates
problem-solving across diverse academic dis-
ciplines.

CMMLU (Li et al.,, 2023a): Evaluates
problem-solving across diverse academic dis-
ciplines in Chinese.

C-Eval Valid (Huang et al., 2023): A compre-
hensive Chinese evaluation suite for founda-
tion models. It consists of 13948 multi-choice
questions spanning 52 diverse disciplines and
four difficulty levels.

The results are presented in table 8.

name SociallQA T"“It\fl‘glllQA Tr“;}[’g‘ZIQA Trz“lfll‘\fd‘gg"‘ MMLU CMMLU C-Eval Valid
Pythia-410M 32.9 237 412 479 236 253 23
OPT-350M 32.9 23.3 40.8 473 23.1 25.4 2.5
BLOOM-560M 34.2 25 42.4 41.6 23 25.3 23
MobiLlama-0.5B 329 233 375 42 249 253 216
OpenELM-450M 32.8 24.8 40.2 475 25.9 24.9 22.7
SmolLM-360M 329 24.6 37.9 47.4 25.8 25.4 25.7
SmolLM2-360M 40.9 215 335 44.2 25.6 24.7 2.4
Phone.M-0.5B 253 219 365 43 254 24.6 23.6
(a) 0.5B
name SociallQA ““f\f[‘g‘l'QA ““ﬁ'g‘leA “Z“hﬂl‘\f[“clgA MMLU CMMLU C-Eval Valid
Pythia-1.4B 336 238 389 449 244 253 23
OPT-1.3B 32.7 24.1 38.7 47 25 253 23
BLOOM-1.1B 335 253 418 40.5 24 25.4 24.1
TinyLlama-1.1B 32.9 2 37.3 42.6 24.9 24.7 24.2
MobileLLaMA-1.4B 33 217 34.8 435 245 252 23.1
MobiLlama-1B 32.9 21.7 352 41.6 25.4 25.4 253
OpenELM-1.1B 327 22 37 473 25.3 25.3 23.4
DCLM-1B 443 22.8 36.5 43.8 46.5 30.6 293
SmolLM-1.7B 43.6 24.4 385 44.8 277 252 24.5
SmolLM2-1.7B 445 25.1 36.6 42.9 45.9 30 323
PhoneLM-1.5B 32 20.9 333 46.1 265 25.0 25.7
(b) 1.5B

Table 8: Some Benchmark Score of PhoneLM. Models with gray text indicate that their training datasets are not

publicly available.

C Training Dataets

DCLM-baseline (Li et al.,, 2024) is a 4T
token and 3B document pretraining dataset
that achieves strong performance on language
model benchmarks.PhonelLM only uses a max-
imum of 1.5T among it. The code is pub-
liced in https://huggingface.co/datasets/
mlfoundations/dclm-baseline-1.0-parquet.

StarCoderData (Li et al., 2023b) contains 783GB
of code in 86 programming languages, and in-
cludes 54GB GitHub Issues + 13GB Jupyter
notebooks in scripts and text-code pairs, and
32GB of GitHub commits, which is approxi-
mately 250 Billion tokens. The code is pub-
liced in https://huggingface.co/datasets/
bigcode/starcoderdata.

OpenWebMath (Paster et al., 2023) is a dataset
containing the majority of the high-quality, math-

13

ematical text from the internet. It is filtered and
extracted from over 200B HTML files on Com-
mon Crawl down to a set of 6.3 million docu-
ments containing a total of 14.7B tokens. The
code is publiced in https://huggingface.co/
datasets/open-web-math/open-web-math.

Dolma (Soldaini et al., 2024) is a dataset of 3
trillion tokens from a diverse mix of web content,
academic publications, code, books, and encyclo-
pedic materials. The code is publiced in https:
//huggingface.co/datasets/allenai/dolma.

APIGen (Liu et al.,, 2024) contains 60,000
data collected by APIGen, an automated
data generation pipeline designed to produce
verifiable high-quality datasets for function-
calling applications. The code is publiced
in https://huggingface.co/datasets/
Salesforce/xlam-function-calling-60k.

https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet
https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet
https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/allenai/dolma
https://huggingface.co/datasets/allenai/dolma
https://huggingface.co/datasets/allenai/dolma
https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k
https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k
https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k

The Stack Smol (Kocetkov et al., 2022) is
a small subset of the-stack dataset, each pro-
gramming language has 10,000 random samples
from the original dataset. The code is pub-
liced in https://huggingface.co/datasets/
bigcode/the-stack-smol.

UltraChat (Ding et al.,, 2023) is an open-
source, large-scale, and multi-round dialogue data
powered by Turbo APIs. The code is pub-
liced in https://huggingface.co/datasets/
stingning/ultrachat.

Mathlnstruct (Yue et al., 2023) is a meticu-
lously curated instruction tuning dataset that is
lightweight yet generalizable. The code is pub-
liced in https://huggingface.co/datasets/
TIGER-Lab/MathInstruct.

OpenAssistant 2 (Kopf et al., 2024) contains
message trees. Each message tree has an ini-
tial prompt message as the root node, which can
have multiple child messages as replies, and these
child messages can have multiple replies. The
code is publiced in https://huggingface.co/
datasets/OpenAssistant/oasst2.

OpenHermes (Teknium, 2023) dataset is
composed of 242,000 entries of primarily
GPT-4 generated data, from open datasets
across the Al landscape. The code is pub-
liced in https://huggingface.co/datasets/
teknium/openhermes.

CommitPackFT (Muennighoff et al., 2023) is
a 2GB filtered version of CommitPack to contain
only high-quality commit messages that resemble
natural language instructions. The code is pub-
liced in https://huggingface.co/datasets/
bigcode/commitpackft.

OSS Instruct dataset (Wei et al.,, 2023)
is generated by gpt-3.5-turbo-1106 devel-
oped by OpenAl. The code is publiced
in https://huggingface.co/datasets/
ise-uiuc/Magicoder-0SS-Instruct-75K.

SlimOrca (Lian et al., 2023) release provides
an efficient means of reaching performance on-
par with using larger slices of our data, while
only including 500k GPT-4 completions. The
code is publiced in https://huggingface.co/
datasets/Open-0rca/SlimOrca.

14

D Instruct Following Examples

Reasoning:

Prompt: What are the key benefits of practicing mindfulness medita-
tion?

PhoneLLM-1.5B-Instruct:
There are many benefits of practicing mindfulness meditation, includ-
ing:

1. Reduced stress and anxiety

2. Improved focus and concentration

3. Increased self-awareness and emotional regulation
4. Improved sleep quality

5. Reduced symptoms of depression

6. Increased feelings of well-being and happiness

7. Improved immune system function

8. Reduced symptoms of chronic pain

9. Improved relationships and communication skills
10. Increased feelings of compassion and empathy.

_ J
Knowledge:

Prompt: What are some ways to reduce the carbon footprint of your
home?

PhonelLM-1.5B-Instruct:
There are several ways to reduce the carbon footprint of your home.
Here are some suggestions:

1. Install energy-efficient appliances and lighting.

2. Use low-flow showerheads and faucets.

3. Install a programmable thermostat to regulate heating and cooling.
4. Use natural light and ventilation instead of artificial lighting and
air conditioning.

5. Plant trees or install shading devices to block the sun’s heat.

6. Use eco-friendly cleaning products and reduce the use of dispos-
able products.

7. Reduce water usage by fixing leaks and installing low-flow fixtures.
8. Use renewable energy sources such as solar panels or wind tur-
bines.

9. Reduce waste by recycling, composting, and using reusable prod-
ucts.

10. Choose sustainable building materials and design your home to
be energy-efficient.

\ J
Programming and Logic Building:

Prompt: Generate a Python code snippet that implements a function
to calculate the Fibonacci sequence using recursion. Bonus points if
you can make it more efficient using memoization.

PhoneLLM-1.5B-Instruct:
def fibonacci(n):
if n<=1:
return n
else:
return fibonacci(n-1) +
fibonacci(n-2)

Test the function
print(fibonacci(@))
print(fibonacci(1))
print(fibonacci(2))
print(fibonacci(3))
print(fibonacci(4))
print(fibonacci(5))
print(fibonacci(6))
print(fibonacci(7))
print(fibonacci(8))
print(fibonacci(9)) # 34
print(fibonacci(10)) # 55

HOoH H HH HHHHEH

https://huggingface.co/datasets/bigcode/the-stack-smol
https://huggingface.co/datasets/bigcode/the-stack-smol
https://huggingface.co/datasets/bigcode/the-stack-smol
https://huggingface.co/datasets/stingning/ultrachat
https://huggingface.co/datasets/stingning/ultrachat
https://huggingface.co/datasets/stingning/ultrachat
https://huggingface.co/datasets/TIGER-Lab/MathInstruct
https://huggingface.co/datasets/TIGER-Lab/MathInstruct
https://huggingface.co/datasets/TIGER-Lab/MathInstruct
https://huggingface.co/datasets/OpenAssistant/oasst2
https://huggingface.co/datasets/OpenAssistant/oasst2
https://huggingface.co/datasets/OpenAssistant/oasst2
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/datasets/bigcode/commitpackft
https://huggingface.co/datasets/bigcode/commitpackft
https://huggingface.co/datasets/bigcode/commitpackft
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/Open-Orca/SlimOrca
https://huggingface.co/datasets/Open-Orca/SlimOrca
https://huggingface.co/datasets/Open-Orca/SlimOrca

Innovative Thinking:

Prompt: Construct a sentence that uses every letter of the alphabet at
least once.

PhoneLLM-1.5B-Instruct:
Able was I ere I saw Elba, but ere I saw Elba, I heard a rumor that
would change my life forever.

Translation:

Prompt: Translate this sentence into French: ”"Ming due to the circum-
stances, the knower system according to the matter.”

PhoneLM-1.5B-Instruct:

"Ming, parce qu’il y a des circonstances, le systeme d’apprentissage
selon le matériel."

Creativity and Imagination:

Prompt: Write a role-play with a tourist and a travel guide for a
finctional planet.

PhoneLM-1.5B-Instruct:
Tourist: Hi, I'm looking for a planet that’s not too crowded. Can you
recommend one?

Travel Guide: Sure, I can recommend a few. One of the most popular
planets is Zorion. It’s a bit more remote, but it’s still accessible.

Tourist: That sounds great. What’s the best way to get there?

Travel Guide: You can take a shuttle from the nearest spaceport. It’s
about a 3-hour journey.

Tourist: That sounds doable. What’s the atmosphere like on Zorion?

Travel Guide: It’s a bit different from Earth. The atmosphere is
mostly nitrogen and oxygen, but there’s also a lot of carbon dioxide.
It’s a bit more humid too.

Tourist: That’s interesting. What’s the terrain like?

Travel Guide: It’s mostly rocky and barren, but there are some forests
and lakes. It’s a bit like Mars, but with more vegetation.

Tourist: That sounds like a unique experience. Are there any popular
tourist attractions on Zorion?

Travel Guide: Yes, there are a few. One of the most popular is the
Zorion Museum, which showcases the planet’s history and culture.
Another is the Zorion Observatory, which is a great place to see the
stars.

Tourist: That sounds amazing. Is there anything else I should know
before I go?

Travel Guide: Just be prepared for the weather. It can get pretty hot
and humid, so bring a lot of water and sunscreen. And don’t forget
your passport, as Zorion is a popular tourist destination.

Tourist: Thanks for the tips. I'm excited to visit Zorion.

\.

E Function Calling fine-tuning details

We adopt a chat-based approach for function call-
ing, where the requirements, use query, and func-
tion descriptions are encapsulated in the system
prompt and user prompt sections, while the func-
tion calls are placed in the assistant output section.
The prompt design for function calling fine-tuning

15

thus focuses on structuring these three components:
system prompt, user message, and assistant out-
put. These components are subsequently formatted
using a chat template, which is then utilized for
model fine-tuning. These components are shown in
1, in which $function is the functions description
information, which describes the function name,
parameters, and other information, $user_query is
the user input.

Listing 1: Minimalist prompt of function calling

System Prompt:

You are an expert in composing functions .

User message:

Here is a list of functions that you can
invoke:

$functions

Now my query is: $user_query

Assistant output:

$result]l = funcO(argl="v1", arg2="v2", ...)

result2 = funcl(argl="vl", arg2=resultl, ...)
. $

	Introduction
	A Principle for SLM Development
	PhoneLM: Smartphone-native SLM Family
	Architecture
	Pre-training
	Fine-tuning

	Experiment Results
	Baselines and Tasks
	Capability
	Instruction and Function Call
	On-device Runtime Cost
	An End-to-end Android Demo

	Conclusions
	Limitations
	Setting of 100M and 200M models
	Matrics
	Training Dataets
	Instruct Following Examples
	Function Calling fine-tuning details

