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Abstract

Labeling radiology reports is essential for creating medical imaging datasets and enabling
Al-driven clinical decision support. While SBERT-based classifiers offer computationally
efficient solutions for this task, a major challenge is the class heterogeneity across datasets,
as different groups focus on extracting distinct disease labels. For instance, NTH and CheX-
pert CXR datasets share only 7 of their 14 and 13 labels, respectively. To address this,
we propose to use Surgical Aggregation, a class-heterogeneous federated learning frame-
work that collaboratively trains a global multi-label classifier without requiring alignment
of labeling schemes across clients. Surgical Aggregation selectively merges shared class
weights while appending new disease-specific nodes, thereby unifying distinct local labeling
priorities, to dynamically incorporate all disease labels of interest. We evaluated Surgical
Aggregation in multiple simulated settings with varying number of participating nodes as
well as different degrees of overlapping labels. Our results demonstrate high performance
confirming adaptability in class-heterogeneous environments, thereby offering a scalable and
privacy-preserving solution for collaborative medical report labeling. Our code is available
at https://github.com/BioIntelligence-Lab/Federated-MedEmbedX
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1. Introduction

The extraction of structured information from free-text radiology reports represents a fun-
damental task with several downstream applications, ranging from the development of Al-
assisted clinical decision support systems to the optimization of clinical workflows (Doo
et al., 2023; Reichenpfader et al., 2024; Savage et al., 2025). Automated labeling of radiol-
ogy reports enables creation of large labeled datasets for training computer vision algorithms
in detecting diseases and abnormalities. Furthermore, structured and labeled reports could
also potentially facilitate automated processes such as the retrieval of patient-specific data,
scheduling of follow-up appointments, and triaging of urgent cases, thereby improving diag-
nostic precision and patient outcomes. However, this often requires time-consuming domain
expertise to navigate diverse radiology vocabularies to label radiology reports, thereby un-
derscoring the necessity of developing a robust, scalable, and efficient medical report labeling
framework.

Recent advancements in natural language processing (NLP) have positioned large lan-
guage models (LLMs) as promising tools for medical report labeling (Reichenpfader et al.,
2024). These models have demonstrated excellent performance across a range of use cases,
including information extraction, summarization, and question answering (Mukherjee et al.,
2023; Doo et al., 2024; Dorfner et al., 2024; Ma et al., 2024; Al Mohamad et al., 2025).
However, LLMs face two significant limitations. First, they are computationally expensive
to deploy, requiring high-end GPUs and substantial resources, which increases costs and
carbon footprint. Second, LLMs are generative rather than discriminative, leading to po-
tential issues such as failure to strictly follow instructions or consistently format responses.
Finally, the performance of LLMs is significantly dependent on the quality of the prompt
and requires domain expertise to curate good prompts. Thus, while LLMs offer strong per-
formance, an ideal solution for medical report labeling should be lightweight, deterministic
in performance, and have low computational requirements.

Sentence Transformers (S-BERT) offer an attractive alternative (Reimers, 2019). S-
BERT is trained by fine-tuning BERT (Bidirectional Encoder Representations from Trans-
formers) (Devlin, 2018) using a siamese network structure to capture semantic similarity
between different sentences, making them ideal for downstream tasks like text labeling.
A potential solution involves using S-BERT to generate embeddings of radiology report
texts followed by training a lightweight multi-label classifier (e.g., MLP) to label these em-
beddings with different disease labels. However, the primary limitation of S-BERT based
classification models is their focus on specific subsets of labels. Different research groups
and institutions often prioritize extracting different sets of disease labels. For example, the
NIH and CheXpert CXR datasets, two of the largest publicly available databases, contain
14 and 13 disease labels, respectively, with only 7 labels in common, as shown in Figure
A.1. Consequently, S-BERT models trained on one dataset are limited in scope, lack inter-
operability, and result in downstream deep learning models that are suboptimal for clinical
applications. This fragmentation raises the question: Can we create a global report label-
ing model where researchers worldwide, while developing their local labeling models? Can
collaboratively build a more comprehensive medical report labeling framework?

To address this challenge, we implemented Surgical Aggregation, a federated learn-
ing framework that addresses class-heterogeneity by selectively aggregating model updates
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Figure 1: Surgical Aggregation based federated learning framework for class-heterogeneous
multi-label chest X-ray report labeling. Local models are trained at each site
using report data, with S-BERT embeddings for extracting textual features. The
server aggregates representation block weights and task-specific blocks to build
a global model for automatically labeling shared and distinct disease labels from
distributed radiology reports.

from different clients, incorporating both shared and distinct labels without forcing label
alignment (Kulkarni et al., 2025). In this work, we evaluated surgical aggregation for col-
laboratively labeling CXR reports across varying degrees of overlapping labels and number
of participating clients.

2. Materials and Methods

2.1. Data

In this study, we used 3,665 chest radiograph reports from the Indiana University (IU) Chest
X-ray Collection (Indiana Network for Patient Care), retrieved from the National Institutes
of Health—National Library of Medicine’s Open-i platform https://openi.nlm.nih.gov
(Demner-Fushman et al., 2016). The IU dataset is a deidentified and a publicly available
dataset, making it exempt from IRB review. The IU dataset reports have been annotated by
board certified radiologists with thirteen predefined disease labels (CheXpert dataset (Irvin
et al., 2019)). This dataset has been previously used to validate the performance of both
open and closed-source LLMs for extraction of different disease labels, making it a perfect
dataset for validation and comparison of the proposed technique with expert-annotated and
LLM-predicted labels (Doo et al., 2024; Savage et al., 2024).

In addition, we also used a stratified subset of expert-annotated 692 radiology reports
from the Medical Information Mart for Intensive Care (MIMIC) chest radiograph dataset
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(Santomartino et al., 2024) MIMIC is a credentialed public access dataset consisting of
radiologic images (N = 377,110) and reports (N = 227,835) collected from Beth Israel
Deaconess Medical Center.

2.2. Radiology Report Classification Using S-BERT
2.2.1. S-BERT

S-BERT, or Sentence-BERT, is a variant of the BERT model fine-tuned to generate sen-
tence embeddings that effectively preserve semantic similarity. It employs a Siamese network
structure, wherein pairs of sentences are encoded using two identical BERT-based networks
with shared weights. The embeddings are optimized using loss functions such as contrastive
loss or triplet loss, ensuring that semantically similar sentences are mapped closer in the
embedding space, while dissimilar sentences are positioned farther apart, thereby optimiz-
ing the embeddings for downstream classification and clustering tasks. For this study, we
utilized the all-MiniLM-L6-v2 S-BERT model, a lightweight variant optimized for compu-
tational efficiency.

2.2.2. MuLTI-LABEL CLASSIFICATION USING AN MLP

To classify radiology reports based on S-BERT embeddings, we implemented a Multi-Layer
Perceptron (MLP) as the classifier. MLPs are particularly well-suited for multi-label classifi-
cation tasks, offering flexibility for modeling non-linear relationships between input features
and multiple output labels. This flexibility also enables direct concantenation of new task-
specific model heads - allowing seamless integration with other pre-trained models that
share similar architectures, a key requirement for implementing Surgical Aggregation. The
MLP model implemented in this work consisted of two fully connected hidden layers and
was trained using the Adam optimizer and binary cross-entropy loss. We used the Area
Under the Curve (AUC) as an evaluation metric during training.

2.3. Federated Learning with Surgical Aggregation

Federated learning (FL) is a decentralized paradigm that facilitates collaborative training
of machine learning models while ensuring that sensitive data remains on local nodes, pre-
serving privacy (Sandhu et al., 2023). Within this framework, we employed the surgical
aggregation technique to address the challenges posed by class heterogeneity in radiology
report datasets, where nodes may have distinct or partially overlapping label sets (Kulkarni
et al., 2025).

In the Surgical Aggregation framework, the model architecture is divided into two com-
ponents: the representation block and the task block. The representation block consists of
all layers up to the final classification layer and is responsible for learning shared embed-
dings that capture generalizable features of the input data. The task block comprises the
final classification layer, equipped with sigmoid activations, and is specialized for predicting
the labels associated with each node’s dataset.

The global model is constructed from scratch during aggregation, comprising a shared
representation block and a task block that encompasses all tasks across participating nodes.
The aggregation strategy adapts to three primary scenarios:
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e Fully Shared Labels: When a label is present across all participating nodes, the
corresponding task block weights are aggregated across nodes alongside the represen-
tation block. This ensures that knowledge pertaining to these labels is reinforced and
generalized across the entire federated system.

e Partially Shared Labels: For labels that are shared among a subset of nodes, the
task block weights corresponding to these labels are aggregated within that subset
while contributing to updates in the representation block. This allows for knowledge
consolidation among nodes sharing the same labels while preserving adaptability to
task-specific variations.

e Unique Labels: When a label is exclusive to a single node, its associated task block
weights are directly appended to the global model’s representation block without
aggregation. This approach maintains the specificity of node-exclusive tasks while
ensuring seamless integration into the global framework.

In all scenarios, the weights of the representation block are aggregated across nodes
to construct a robust and generalizable feature extractor. This division and aggregation
strategy enable Surgical Aggregation to effectively accommodate varying levels of label
overlap while maintaining scalability and interoperability across nodes. Figure 1 illustrates
the complete surgical aggregation framework for collaboratively training a global model for
radiology report labeling.

2.4. Experiments
2.4.1. EXPERIMENT 1: VARYING THE NUMBER OF NODES

In this experiment, we assessed how the number of nodes affects federated learning (FL)
model performance. To that end, we varied the number of federated nodes from 2 to 10. In
addition, to isolate the effect of node variation, the number of shared labels was fixed to 0
for all setups.

Data Splitting: For each nodal configuration, the dataset was divided into training and
test sets with an 80-20 split. Within the training subset, the data was divided equally across
all the nodes based on the number of nodes selected for each experimental configuration
(ranging from 2 to 10 nodes).

Ensuring Zero Overlap in Labels: This dataset is multi-label, meaning a single
report can contain multiple disease labels. However, for this experiment, the assigned
disease labels for each node were restricted to ensure zero overlap between nodes. Once the
data was split across nodes, any disease labels that were not assigned to the specific node
were dropped. This represents a realistic scenario where certain diseases present in a chest
X-ray report might not be reported due to the disease-specific focus of the research group.

FL Implementation: Federated learning was implemented by aggregating the model
updates at the global server using surgical aggregation with FedAvg. The aggregation
occurred after every local epoch, and this process was repeated for a total of 20 iterations.
Finally, each experimental configuration was repeated 20 times with different data partitions
to mitigate potential partition bias.
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2.4.2. EXPERIMENT 2: VARYING THE NUMBER OF SHARED LABELS IN IID SETTING

This experiment explored the impact of shared labels by varying their number from 0 (no
shared labels) to 13 (all labels shared). The number of nodes was fixed to 2 for this setup.
Similar to Experiment 1, the dataset was divided into training and test sets using an 80-20
split, and the experiments were repeated 20 times to account for partition bias.

Varying Overlap in Labels: The number of overlapping labels between the two
nodes was varied from 0 (no shared labels) to 13 (all labels shared). For each configuration,
a subset of labels to be shared was randomly selected. The remaining labels were evenly
distributed across the two nodes, and any non-assigned labels (apart from the shared labels)
were dropped. This ensured that each node retained its distinct set of non-overlapping
labels.

2.4.3. EXPERIMENT 3: VARYING THE NUMBER OF SHARED LABELS IN NON-IID SETTING

This experiment focused on evaluating surgical aggregation in a realistic non-IID federated
setup by varying their number from 0 (no shared labels) to 13 (all labels shared). Similar
to Experiment 2, we used two nodes, but with distinct datasets—one using IU dataset
reports and the other using the MIMIC reports. Unlike the IID setting, the report language
as well as the distribution of non-overlapping labels differed significantly between nodes,
introducing greater heterogeneity in the local training distributions. The dataset was split
into training and test sets using an 80-20 ratio, and the experiment was repeated 20 times
to mitigate partition bias.

2.4.4. EXPERIMENT 4: COMPARATIVE ANALYSIS OF DIFFERENT EMBEDDING MODELS

This experiment evaluates the performance of different embedding models in the federated
learning framework. We assess how the choice of embeddings affects model performance by
testing multiple sentence transformers and domain-specific models. The models evaluated
include the S-BERT model, all-MiniLM-L6-v2, a closed-source embedding model from Ope-
nAT (text-embedding-3-large) and a domain-specific embedding model (BioClinical BERT).
The experimental setup consisted of two federated learning nodes, each with a distinct
subset of data, while maintaining zero shared labels across both nodes.

2.4.5. COMPARATIVE MODELS

We compared the performance of federated global models across both experiments with
three baseline models.

e S-BERT with MLP classifier on the complete dataset: We trained a baseline MLP
classifier for 20 epochs using S-BERT embeddings on the entire IU dataset, employing
an 80-20 train-test split. To mitigate partition bias, the experiment was repeated 20
times. This model served as the upper baseline for assessing the performance of
federated global models.

e LLMs: For comparison, we included the reported performance of both open- and
closed-source LLMs from the literature on the same IU dataset.
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2.4.6. EVALUATION

We evaluated all models using accuracy for predicting each individual disease label as well
as the overall accuracy. Pairwise t-tests were conducted to compare the performance of the
baseline models with each federated global model, as well as to evaluate the differences be-
tween federated global models across various experimental settings. Statistical significance
was defined as p < 0.05

3. Results

3.1. Baseline model performance

The baseline MLP classifier trained using S-BERT embeddings from the IU dataset achieved
an average accuracy of 91.67+1.7% across all disease labels on the held-out test sets across 20
iterations. In comparison, the best-performing open-source model reported in the literature
is Vicuna-1.5 7B with an average zero-shot accuracy of 93.80% across the complete dataset.
The best-performing closed-source model in the literature, GPT-4, had an accuracy of
94.50% across the entire dataset.

3.2. Federated learning with Surgical Aggregation

The Surgical Aggregation framework demonstrated excellent performance in tackling class
heterogeneity across varying experimental configurations with different number of nodes
and overlapping labels.

3.2.1. EXPERIMENT 1: VARYING THE NUMBER OF NODES

As shown in Figure 2(a), the average accuracy across all federated learning configurations
was significantly lower (p < 0.05) than the baseline performance accuracy, with the highest
performance for the 2-node setup (accuracy = 89.98 +1.75%). Furthermore, as the number
of nodes increased, performance significantly degraded (p < 0.05), with the lowest accuracy
observed at 10 nodes (74.73 + 2.29%). The variation in average accuracy of the surgical
aggregation framework across different disease classes with changing number of nodes is
illustrated in Figure 2(a). One of the potential reasons for this drop in performance could be
attributed to the heterogeneity in label distribution where certain labels such Pneumothorax
only have 25 positive cases (Figure 2(d)).

3.2.2. EXPERIMENT 2 AND 3: VARYING THE NUMBER OF SHARED LABELS

In IID setting, there was minimal difference in the Surgical Aggregation model performance
when varying the number of shared labels from 0 (no overlap) to 13 (full overlap). The
highest accuracy observed was 90.89 4+ 1.4%, and the lowest was 90.19 + 1.52%. Figure
2(b) illustrates the performance of the surgical aggregation with varying degrees of over-
lapping labels demonstrating the excellent ability of surgical aggregation to deal with class
heterogeneity.

We observed similar trends in the non-1ID setting, where the baseline accuracy across the
combined ITU and MIMIC test sets was 91.15+0.71%. As in the IID setting, the performance
of surgical aggregation remained relatively stable despite variations in the number of shared
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Figure 2: Comparison of average accuracy between baseline model performance (dashed
red line) and surgical aggregation experiments (blue line). (a) Mean accuracy vs.
Number of Nodes (b) Mean Accuracy vs. Number of Shared Labels.

labels, as shown in Figure 2(c). This demonstrates the ability of surgical aggregation to
generalize effectively across class- and data-heterogeneous datasets for learning a global
disease labeling model. The highest accuracy observed was 89.19 & 1.26%, and the lowest
was 86.41 + 1.68%.

3.2.3. EXPERIMENT 4: COMPARISON BETWEEN DIFFERENT EMBEDDING MODELS

Our results indicated that the OpenAl’s text-embedding-3-large model was the top per-
forming model with an average accuracy of 93.48 + 1.16%. In comparison, all-MiniLM-v2
had an accuracy of 90.62 41.36% and the clinical biobert had an accuracy of 83.8241.90%.
While API-based models achieve the highest accuracy, they require external data transmis-
sion, raising privacy concerns in federated learning. In contrast, domain-specific models like
BioBERT can be deployed locally but exhibit lower performance, likely due to limitations
in generalization. Sentence-transformers such as all-MiniLM-v2 offer a practical balance
between performance, computational efficiency, and privacy, making them a viable choice
for federated learning in clinical Al applications.

4. Discussion

The results of this study reaffirm the effectiveness of the proposed Surgical Aggregation
framework in addressing the challenges of class heterogeneity in federated learning. De-
spite the inherent complexities of distributed learning and task variability, the framework
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demonstrated its capability to aggregate local models selectively and effectively, yielding
strong performance across different experimental setups. These findings underscore the po-
tential of Surgical Aggregation as a powerful method for federated learning in multi-label
classification tasks. This is especially pertinent for medical use, such as in imaging research
consortia, where label overlap varies considerably across institutions.

One of the most significant advantages of Surgical Aggregation is its architectural inde-
pendence (Kanhere et al., 2024; Kulkarni et al., 2025). Clients participating in the system
are not required to implement any specific architecture or accommodate the tasks being
undertaken by other clients. This flexibility allows for seamless integration of new nodes
into the system without the need for prior knowledge of existing tasks, enabling continual
system expansion. This property is especially valuable in real-world scenarios where data
sources and tasks evolve over time.

The results from the overlapping labels experiment highlight the robustness of Sur-
gical Aggregation in handling class heterogeneity. The lack of significant differences in
performance across varying levels of label overlap demonstrates the framework’s ability to
effectively combine knowledge from heterogeneous label distributions. This result is partic-
ularly encouraging, as it suggests that Surgical Aggregation can adapt to realistic scenarios
where overlapping labels are unavoidable in multi-institutional datasets.

While Surgical Aggregation performed well overall, the experiments with an increas-
ing number of nodes revealed a decline in performance as the number of nodes increased.
This trend is likely attributable to the reduction in available training samples per node
as the data is distributed across more clients. Addressing this limitation may require fur-
ther exploration into advanced aggregation strategies. Additionally, while Surgical Ag-
gregation achieved strong results, the performance remains below the centralized baseline.
Bridging this gap will require further refinements to the framework, validation on diverse
datasets from different institutions, and application across a variety of imaging modalities
and anatomical regions.

The promising initial results of this study demonstrate the potential of Surgical Aggre-
gation as a novel federated learning framework for multi-label classification tasks. Its ability
to handle class heterogeneity and scale with new nodes lays a strong foundation for future
research. Expanding the framework’s application to more datasets, exploring additional
optimizations, and addressing the challenges identified in this study will further enhance
its capabilities and establish its role as a robust solution for federated learning in diverse
medical imaging scenarios.
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Figure A.1: Tllustration of label heterogeneity between the NIH and CheXpert datasets.
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