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ABSTRACT

Prompting schemes such as Chain of Thought, Tree of Thoughts, and Graph of
Thoughts can significantly enhance the reasoning capabilities of large language
models. However, most existing schemes require users to define static, problem-
specific reasoning structures that lack adaptability to dynamic or unseen problem
types. Additionally, these schemes are often under-optimized in terms of hyper-
parameters, prompts, runtime, and prompting cost. To address these limitations,
we introduce Framework of Thoughts (FoT)–a general-purpose foundation frame-
work for building and optimizing dynamic reasoning schemes. FoT comes with
built-in features for hyperparameter tuning, prompt optimization, parallel execu-
tion, and intelligent caching, unlocking the latent performance potential of reason-
ing schemes. We demonstrate FoT’s capabilities by implementing three popular
schemes–Tree of Thoughts, Graph of Thoughts, and ProbTree–within FoT. We
empirically show that FoT enables significantly faster execution, reduces costs,
and achieves better task scores through optimization. We release our codebase to
facilitate the development of future dynamic and efficient reasoning schemes.

1 INTRODUCTION

Large language models (LLMs) have become popular for various problem-solving and reasoning
tasks such as mathematical or logical reasoning (Cobbe et al., 2021), task planning (Shridhar et al.,
2021), or multi-hop question-answering (Yang et al., 2018; Trivedi et al., 2022). It has been shown
that, similar to humans, LLMs’ accuracy on these tasks improves significantly when LLMs generate
a step-by-step thought process before concluding a final answer (Wei et al., 2022; Kojima et al.,
2022). Multiple prompting schemes have been proposed to elicit such thought processes in LLMs:
Chain of Thought (CoT) (Wei et al., 2022) and zero-shot CoT (Kojima et al., 2022) include examples
of desired thought sequences or an instruction to think step by step in the prompt. Later schemes
such as Tree of Thoughts (ToT) (Yao et al., 2023) or Graph of Thoughts (GoT) (Besta et al., 2024a)
involve multiple prompts organizing the LLM’s thoughts into more complex tree or graph structures
rather than linear chains. Several other prompting schemes based on chains, trees, and graphs have
been proposed. However, most of these prompting schemes come with some key limitations.

Limitation #1: The prompting schemes rely on manually-defined and static graph structures.
The vast majority of the schemes are not fully automatic (refer to Besta et al., 2024b), requiring
users to manually specify task-specific prompts and graph structures that define how to decompose
and solve a problem type. The graph structure then remains static during execution and the LLM
only fills in some specific thoughts related to the problem. This typically prevents generalizability
to previously unseen or dynamic problems where the ideal reasoning structure is not known a-priori
but must be actively discovered for every problem instance (Zhou et al., 2024).

Limitation #2: The prompting schemes are not sufficiently optimized. Existing schemes have
untapped accuracy potential due to insufficient hyperparameter and prompt optimization. Pandey
et al. (2025), for instance, transparently state that they do not assert optimality of their AGoT scheme
and suggest that better prompts and hyperparameters may be discovered.

Limitation #3: The prompting schemes are executed inefficiently. All schemes rely on some
form of extended test-time compute, i.e., generating more tokens during a response. However, many
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Figure 1: The execution graphs of a static prompting scheme implemented in the GoT framework
versus a dynamic prompting scheme implemented in FoT. Nodes are operations, edges are informa-
tion flows between them. While the graph structure is static and pre-planned in GoT, it can evolve
dynamically in FoT (see steps 1-2). FoT executes operations in parallel (see step 2) and caches
results of reoccurring operations (see step 3) to accelerate execution and reduce inference costs.

schemes are not time- and cost-efficient as they run LLM prompts sequentially and often perform
the same LLM calls several times, thereby creating waiting times and unnecessary inference costs.
In light of these widespread limitations of current schemes, we make two main contributions.

Contribution #1: We introduce Framework of Thoughts (FoT), which is not a reasoning or
prompting scheme itself but a foundation framework for implementing and optimizing reasoning
schemes. Unlike previous frameworks such as the Graph of Thoughts (GoT) framework (Besta
et al., 2024a), in which the prompting scheme of the same name was implemented, FoT comes with
the following advantages (see Figure 1 for an illustrative comparison to the GoT framework):

(a) Dynamic graph structures. Unlike existing frameworks such as GoT or even LangChain
(Inc., 2022) and LangGraph (Inc., 2024), which work well for static narrow-domain execu-
tion flows, FoT also enables prompting schemes that automatically and dynamically derive
the graph structure, allowing the graph structure to change during execution.

(b) Faster parallelized execution. FoT executes operations concurrently whenever possible
and introduces a set of dynamic execution constraints to protect the graph structure’s logical
integrity, i.e., to prevent race conditions while the graph structure evolves dynamically.

(c) Cost savings through persistent caching. FoT caches the results of all operations and re-
uses cached results whenever possible, thereby preventing costly re-execution. Results can
be cached temporarily within one execution/sample or persistently across multiple samples.

(d) Optimized hyperparameters and prompts. FoT has built-in tools for hyperparameter and
prompt optimization, helping developers further optimize these often neglected factors. We
show that substantial optimization really only becomes viable in combination with caching
as the runtime and costs of the optimization procedure would otherwise be prohibitive.

FoT is designed as a modular and open framework, allowing users to specify any operations that
can be defined in Python code, such as LLM calls, data retrieval, running code interpreters, or using
other external tools. To readers unfamiliar with chain-, tree-, and graph-based prompting schemes,
we strongly recommend viewing appendix Section A.1 and the corresponding Figure 5 for a concrete
and detailed example of a prompting scheme implemented in FoT.

Contribution #2: We empirically evaluate FoT’s efficiency and optimization advantages. We
re-implement three popular prompting schemes, ToT, GoT, and Probabilistic Tree-of-Thought Rea-
soning (ProbTree) (Cao et al., 2023) in FoT to demonstrate the framework’s universal applicability
and possible optimization and efficiency gains. ProbTree is another suitable scheme for this demon-
stration, because it defines dynamic double-tree structures and also requires retrieval capabilities.
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Table 1: Overview of popular prompting schemes, adapted from Besta et al. (2024b). We extended
the table with the schemes in bold. “single” = single-prompt, “multi” = multi-prompt. “Dv.” =
derivation, “A” = automatic, “SA” = semi-automatic, “M” = manual. “R” = retrieval, “T” = tool use,
“✓” = fully included, “(✓)” = partially included, “✗” = not included.

Topology Pipeline
Scheme Citation Class Scope Dv. R T

Chain of Thought (CoT) (Wei et al., 2022) chain single SA ✗ ✗
Zero-Shot CoT (Kojima et al., 2022) chain single SA ✗ ✗
Least-to-Most Prompting (Zhou et al., 2023) chain multi SA ✗ ✗
Decomposed Prompting (Khot et al., 2023) chain multi SA (✓) (✓)

Self-Discover (Zhou et al., 2024) tree single SA ✗ ✗
Self-Consistency CoT (CoT-SC) (Wang et al., 2023) tree multi SA ✗ ✗
Tree of Thoughts (ToT) (Yao et al., 2023) tree multi SA ✗ ✗
Forest-of-Thought (Bi et al., 2024) tree multi SA (✓) ✗
Dynamic Least-to-Most Prompting (Drozdov et al., 2023) tree multi A (✓) ✗
Skeleton-of-Thought (SoT) (Ning et al., 2024) tree multi A ✗ ✗

Graph of Thoughts (GoT) (Besta et al., 2024a) graph multi M ✗ ✗
Socratic Questioning (SQ) (Qi et al., 2023) graph multi SA ✗ ✗
Probabilistic ToT (ProbTree) (Cao et al., 2023) graph multi SA ✓ ✗
Decompose-Analyze-Rethink (Xue et al., 2024) graph multi SA ✗ ✗
Adaptive GoT (AGoT) (Pandey et al., 2025) graph multi A ✓ ✗

2 OVERVIEW OF PROMPTING SCHEMES

Throughout this paper, we will use the terms prompting schemes and reasoning schemes interchange-
ably, as all schemes mentioned here incorporate both prompting and reasoning. A large number of
prompting schemes have been proposed so far. Besta et al. (2024b) present a survey of the most
relevant approaches along with a taxonomy to classify these schemes. The taxonomy distinguishes
schemes by their topology class (chain, tree, or graph), topology scope (single-prompt or multi-
prompt), topology derivation (automatic, semi-automatic, or manual), incorporation of different
parts of the generative AI pipeline (e.g., retrieval or tool use), and other dimensions. Table 1 pro-
vides an overview of some of the most relevant prompting schemes according to this taxonomy. We
added noteworthy schemes that were not yet identified by (Besta et al., 2024b). We note that all of
these schemes could be implemented in FoT and thereby profit from the efficiency and optimization
capabilities. To create awareness for the diversity of schemes and their specific requirements, we
now summarize some key ideas of existing prompting schemes:

Thinking step-by-step: Chain of Thought (CoT) (Wei et al., 2022) includes examples of desired
thought sequences (so-called few-shot examples) in the prompt, triggering the LLM to produce
similar chains of thought when reasoning about a new problem. Kojima et al. (2022) show that
adding a “let’s think step by step” instruction to the prompt also elicits CoT responses from LLMs,
known as zero-shot CoT. Both few-shot and zero-shot CoT are single-prompt schemes.

Problem decomposition: Some schemes such as Decomposed Prompting (Khot et al., 2023), Least-
to-Most Prompting (Zhou et al., 2023), Dynamic Least-to-Most Prompting (Drozdov et al., 2023),
and Self-Discover (Zhou et al., 2024) decompose complex problems into a series of subproblems,
which are solved by subtask handlers. The decomposition is defined in the prompt (Decomposed
Prompting), derived by the LLM ([Dynamic] Least-to-Most Prompting), or learned (Self-Discover).

Question hierarchies: Socratic Questioning (SQ) (Qi et al., 2023), Probabilistic Tree-of-Thought
Reasoning (ProbTree) (Cao et al., 2023), and Decompose-Analyze-Rethink (DeAR) (Xue et al.,
2024) recursively decompose complex questions into subquestions, thereby forming hierarchical
question trees. They then answer the subquestions and use the answers to reason about the original
question. ProbTree uses fact retrieval and dynamically chooses the most confident answer strategy.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: In the execution graph, nodes are operations and edges are connections that can carry
thoughts. In the reasoning graph, nodes are thoughts and edges are dependencies. The execution
graph can show the past, present, and future (i.e., completed, executing, and planned operations),
whereas the reasoning graph only shows the past (thoughts produced by completed operations). The
execution graph may be modified by operations, whereas the reasoning graph evolves as a byproduct.

Trees and graphs: Tree of Thoughts (ToT) (Yao et al., 2023) and Graph of Thoughts (GoT) (Besta
et al., 2024a) arrange thoughts into task-specific tree and graph structures, respectively. They incor-
porate ideas such as exploration, backtracking, and iterative refinement. Both require users to define
task-specific prompts and graph structures that define the task decomposition.

Self-consistency: Self-Consistency with CoT (CoT-SC) (Wang et al., 2023) and Forest-of-Thought
(Bi et al., 2024) sample multiple answers to the same problem and select the most consistent one.

Fully automatic: Skeleton-of-Thought (SoT) (Ning et al., 2024) and Adaptive Graph of Thought
(AGoT) (Pandey et al., 2025) are fully automatic reasoning schemes that do not require the user to
define task-specific structures or prompts. They also incorporate parallel execution where possible.
AGoT recursively calls itself if the LLM decides that further decomposition of a thought is required.

3 FRAMEWORK OF THOUGHTS

Framework of Thoughts (FoT) is a foundation framework for implementing and optimizing dynamic
multi-prompt reasoning schemes based on chains, trees, or graphs. Unless stated otherwise, we will
use the term graph to refer to all three of these structures.

3.1 DYNAMIC GRAPH STRUCTURES

In FoT, reasoning processes are modeled as one or more operations, whose inputs and outputs are
chained together forming graphs. Operations can be anything that takes one or more input thoughts
and returns one or more output thoughts, e.g., LLM calls, tool calls, code executions, or others.
Thoughts can be any unit of information from a given universe of discourse D. FoT distinguishes
two types of graphs: The execution graph models how operations are executed and chained to arrive
at an answer whereas the reasoning graph models what thoughts influence what other thoughts,
making up the reasoning. See Figure 2 for an illustration and Figure 5 in the appendix for a concrete
example.
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Figure 3: Non-exhaustive list with three example operations. Operations can generate new thoughts
and/or modify the execution graph.

Execution Graph: The execution graph models the sequence of execution of the operations and
how their inputs and outputs are connected. It retains the full history of how an answer came to-
gether and which operations were involved. At any given step i during the execution, we define the
execution graph as a directed multigraph

GX
i = (Oi, E

X
i , sXi , tXi , πi),

where:

• Oi is the set of operations, each generating a set of output thoughts from a set of input
thoughts,

• EX
i is the set of all connections between operations through which the operations receive

and return thoughts,
• sXi , tXi : EX

i → Oi map each connection to its source and target operations, respectively,

• πi : E
X
i → D ∪ {⊥} maps each connection e ∈ EX

i to the thought t ∈ D that its source
operation sXi (e) generated for it, thereby keeping track of the current reasoning state at step
i. If the source operation sXi (e) has not yet been executed, then πi(e) = ⊥ (no thought).

We note that πi is similar to the graph reasoning state in GoT (Besta et al., 2024a) and the execution
graph is similar to GoT’s graph of operations (GoO). However, unlike the GoO, FoT’s execution
graph is not static but can be modified by the operations and evolve dynamically during execution,
therefore the step index i.

Reasoning Graph: The reasoning graph is the result of the execution of operations and a simpler
graph than the execution graph. It only describes what thoughts influenced what other thoughts but
contains no information on which operations decided that these thoughts should be dependent. We
define the reasoning graph as a directed graph:

GR
i = (Ti, E

R
i , ri),

where

• Ti = {πi(e) | e ∈ EX
i ∧ πi(e) ̸= ⊥} is the set of thoughts generated by the operations in

the execution graph until step i,
• ER

i ⊆ Ti × Ti is the set of dependencies between these thoughts (i.e., which though may
have influenced which other thought),

• ri : Ti → Oi maps each thought to the operation that generated it.

Operations: Operations are the building blocks of the execution graph. They perform the reasoning.
An operation o is a function that takes an execution graph and one or more input thoughts and returns
an updated execution graph and one or more output thoughts:
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Table 2: Definitions of ancestors, descendants, and exclusive descendants of an operation o.

Set Definition Intuition
Ancestors A(o) = { p ∈ Oi | ∃ a directed path p⇝ o } Operations that o depends on,

directly or indirectly.
Descendants D(o) = { d ∈ Oi | ∃ a directed path o⇝ d } Operations that directly or

indirectly depend on o’s output.
Exclusive
Descendants

E(o) = { d ∈ D(o) | ∀l ∈ Oi \
(
D(o) ∪ {o}

)
:

∀ directed paths p : l⇝ d, p goes through o}
Descendants that are only
reachable via o.

o : D∗ ×GX → D∗ ×GX

where D∗ is the set of all finite tuples of thoughts from the universe of discourse D and GX is the
set of all possible execution graphs. This means that operations can do two things:

1. Generate new thoughts: Generate a set of output thoughts from a set of input thoughts.

2. Modify the execution graph: Modify the execution graph GX
i by adding or removing

operations and connections yielding

GX
i+1 = (Oi+1, E

X
i+1, s

X
i+1, t

X
i+1, πi+1),

where
Oi+1 = (Oi ∪ O+) \ O−,

EX
i+1 = (EX

i ∪ E+) \ E−,

O+ and E+ denote added operations and connections and O− and E− denote removed
operations and connections. The projections sXi+1, t

X
i+1, πi+1 are updated accordingly.

The latter ability of operations allows for automatically-derived dynamic graphs. This way, execu-
tion graphs may evolve while the operations making up the execution graph are being executed. See
Figure 3 for three examples of operations.

Initial execution graph: While the execution graph can be automatically-derived by the operations,
the user must specify at least the initial version of the execution graph GX

0 containing at least one op-
eration. This operation may then derive all subsequent operations and their connections dynamically
based on the initial input.

3.2 SAFE PARALLEL EXECUTION

FoT’s architecture includes a Controller and a Scheduler module. The Controller executes opera-
tions on the execution graph in an order defined by the Scheduler. It can run multiple operations
sequentially or in parallel. The Scheduler only schedules operations that are ready to be executed.
This generally means that all ancestor operations have been executed, meaning all input thoughts
have been generated1. When operations are allowed to modify the execution graph, parallel ex-
ecution poses a risk of race conditions, where conflicting or inconsistent graph modifications are
attempted concurrently by multiple operations. To prevent non-deterministic outcomes and loss of
information, we dynamically constrain the modifications that an operation o is allowed to do (see
Table 2 for a definition of relevant graph regions and Figure 4 for an illustration):

• o can only see the subgraph induced by its ancestors A(o), descendants D(o), and itself.

• o cannot modify the subgraph induced by its ancestors A(o), as these operations have
already been executed and the corresponding thoughts have been generated.

• o cannot modify the subgraph induced by its non-exclusive descendants D(o) \ E(o) as
this might lead to race conditions with other parallel operations.

1An exception to this is an operation that only requires a subset of the input thoughts in order to execute.
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Figure 4: Illustration of graph regions defined in Table 2.

• o can modify the subgraph induced by its exclusive descendants E(o). It can add or remove
operations and connections within this subgraph (including connections from o).

• o can add new edges from ancestors A(o) to exclusive descendants E(o).

• o can modify connections from exclusive descendants E(o) or itself to descendants D(o)
by moving the start of these connections to any operation in E(o) ∪A(o) ∪ o.

3.3 EFFICIENT CACHING

For many prompting schemes, the execution graph contains multiple instances of the same oper-
ation. Sometimes, these operations even execute with the same inputs. Instead of executing the
potentially costly (e.g., LLM-based) operation again, FoT can cache and recall the previous opera-
tion outputs. FoT offers two types of caches: The Process Cache stores results temporarily within a
single execution for a single problem instance. The Persistent Cache stores results persistently and
can recall previous outputs even when executing subsequent problem instances from the dataset.

3.4 HYPERPARAMETER & PROMPT OPTIMIZATION

Almost all prompting schemes come with a set of prompts and several hyperparameters, such as
those defining permissible graph structures, behavior of operations, or search and execution strate-
gies. Since finding a set of well-performing prompts and hyperparameters is a non-trivial task,
performance differences between prompting schemes may be due to suboptimal prompts and hy-
perparameters rather then architectural and methodological differences. To allow each prompting
scheme to reach its potential, our FoT implementation includes a hyperparameter optimizer based
on Optuna (Akiba et al., 2019) and a prompt optimizer based on DSPy (Khattab et al., 2023). We
provide implementation details in Appendix A.3. FoT is open to various objective functions for
optimization. This allows users to optimize their prompting schemes towards increased accuracy
(typically against some validation set ground truth), decreased runtime, lower cost (e.g., based on
prompt and response token count), or any (weighted) combination of these objectives.

4 EVALUATION

To evaluate the efficiency and optimization gains possible with FoT, we implement the three popular
prompting schemes ToT, GoT, and ProbTree in FoT and apply them to five tasks that were used
by the original authors of these schemes. We evaluate ToT on the Game of 24 (Go24) (Yao et al.,
2023), where the goal is to find an arithmetic expression that combines four numbers to reach 24.
We evaluate GoT on Sorting, tasking the LLM to correctly sort a list of 128 integers, and Document
Merging (DM), where the model must merge several documents into one; both problems were used
in the original GoT paper (Besta et al., 2024a). We also implement ToT for Sorting. We evalu-
ate ProbTree on HotpotQA (Yang et al., 2018) and MuSiQue (Trivedi et al., 2022), two multi-hop
question-answering datasets. For all schemes and tasks, we then report the effect of adding paral-
lelization and caching to the baseline implementation.

Train-test split: We split all datasets into training and test sets. The training sets are only used for
optimization. All results reported in this paper are obtained on the test sets. For Go24, we use the
same 100 test instances as Yao et al. (2023) and 200 different instances for training. Due to the small
sizes of the Sorting and DM datasets, we split them equally into 50 train and 50 test instances. For
HotpotQA and MuSiQue, we use 1,000 instances for training and 1,000 instances for test.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Average runtime and cost per instance of all tested prompting schemes. “S” = Sequential
execution. “P” = Parallel execution. “Process” = Process cache. “Persistent” = Persistent cache.

ToT GoT ProbTree
Go24 Sorting Sorting DM HotpotQA MuSiQue

Average runtime per instance, in seconds (speed-up)

S+No cache 782 (1.0x) 452 (1.0x) 259 (1.0x) 145 (1.0x) 12.8 (1.0x) 21.6 (1.0x)
S+Process 635 (1.2x) 452 (1.0x) 259 (1.0x) 141 (1.0x) 12.8 (1.0x) 21.6 (1.0x)
S+Persistent 373 (2.1x) 452 (1.0x) 259 (1.0x) 140 (1.0x) 12.8 (1.0x) 18.4 (1.2x)
P+No cache 31 (25.2x) 39 (11.6x) 30 (8.5x) 32 (4.6x) 6.8 (1.9x) 10.4 (2.1x)
P+Process 30 (25.8x) 39 (11.6x) 30 (8.5x) 31 (4.7x) 6.8 (1.9x) 10.4 (2.1x)
P+Persistent 22 (35.4x) 39 (11.6x) 30 (8.5x) 31 (4.7x) 6.8 (1.9x) 8.9 (2.4x)

Average cost per instance, in USD cents (relative)

No cache 29.6 (100%) 15.9 (100%) 5.0 (100%) 6.9 (100%) 0.5 (100%) 0.8 (100%)
Process 25.1 (85%) 15.9 (100%) 5.0 (100%) 6.1 (88%) 0.5 (100%) 0.8 (100%)
Persistent 16.1 (54%) 15.9 (100%) 5.0 (100%) 5.9 (86%) 0.5 (100%) 0.7 (84%)

Metrics: We measure performance on Go24 as the accuracy (percentage of correct answers; higher
is better). Like Besta et al. (2024a), we score performance on Sorting by counting the number of
mistakes (fewer mistakes are better). On DM, we calculate F1 scores from the redundancy and
retention metrics (higher F1 scores are better). For HotpotQA and MuSiQue, we measure F1 scores
(higher is better). We report runtime as the sum of the durations of all operations on the longest
sequentially executed path and costs directly as the LLM API inference costs in USD.

LLMs: Yao et al. (2023) used a GPT-4 model in their original ToT implementation. Due to budget
restrictions, we instead use the cheaper GPT-4o on Go24. On Sorting and NDA, we use GPT-
3.5-Turbo, as done by Besta et al. (2024a). This also makes the Sorting results of ToT and GoT
comparable. The original ProbTree implementation by Cao et al. (2023) used an older GPT-3 model,
which is no longer available on OpenAI’s API. We implement ProbTree with GPT-4.1-mini instead.

Optimization: We further optimize four schema implementations using FoT’s optimization tools:
We optimize the hyperparameters of ToT (for Go24 and Sorting), GoT (for Sorting), and the Improve
prompt of GoT used in DM. As the optimization objective, we choose the respective task score (see
metrics above) but constrain the costs to not exceed those of the unoptimized variant to prevent task
score improvements stemming purely from more test-time compute.

4.1 RESULTS

Table 3 reports the efficiency gains (per-instance runtime and cost) possible for ToT, GoT, and Prob-
Tree when implemented in FoT. Table 4 shows the task score improvements resulting from the
optimization along with the total duration and cost of the optimization procedure. The per-instance
runtime and cost of the optimized schemes can be found in Table 5 in the appendix.

It can be seen in Table 3 that FoT’s parallelization and caching enable runtime accelerations between
1.9x and 35.4x on average, depending on the scheme and task. The average acceleration across all
tasks (with parallel execution and persistent caching) is 10.7x, one order of magnitude faster than
baseline implementations. While caching has no effect on Sorting and HotpotQA, it reduces the
costs on Go24, DM, and MuSiQue by 14-46% on average. This shows that caching is not just
effective on synthetic tasks such as Go24 but can also help on potential real-world tasks such as
DM.

Table 4 shows that FoT’s hyperparameter and prompt optimization tools could improve task scores
while simultaneously reducing costs (see Table 5 in the appendix) on all evaluated schemes. While
the optimization process itself incurs significant costs for exploring potential hyperparameter and
prompt combinations, it can be seen that caching is particularly valuable during this procedure, re-
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Table 4: Average task score improvements before and after optimization as well as total duration and
cost of optimization. Abbreviations as in Table 3. Measured scores are accuracy (Go24), mistakes
(Sorting), F1 score (DM). “↑” = Higher score is better. “↓” = Lower score is better.

ToT GoT
Score Go24 ↑ Sorting ↓ Sorting ↓ DM ↑
Original 63.0% 18.4 12.7 8.4
Optimized 66.0% 18.2 12.1 8.8

Total optimization duration, in minutes (speed-up)

S+No cache 39,596 (1.0x) 14,372 (1.0x) 8,371 (1.0x) 3,838 (1.0x)
S+Process 30,576 (1.3x) 14,372 (1.0x) 8,371 (1.0x) 3,804 (1.0x)
S+Persistent 9,294 (4.3x) 2,136 (6.7x) 822 (10.2x) 1,638 (2.3x)
P+No cache 2,603 (15.2x) 1,928 (7.5x) 1,195 (7.0x) 1,225 (3.1x)
P+Process 2,548 (15.5x) 1,928 (7.5x) 1,195 (7.0x) 1,216 (3.2x)
P+Persistent 788 (50.2x) 418 (34.4x) 196 (42.6x) 441 (8.7x)

Total optimization cost, in USD (relative)

No cache 1,224.41 (100%) 303.18 (100%) 135.74 (100%) 99.35 (100%)
Process 917.61 (75%) 303.18 (100%) 135.74 (100%) 95.17 (96%)
Persistent 153.56 (13%) 46.10 (15%) 12.27 (9%) 36.15 (36%)

ducing optimization costs to only 9-36% of the costs that would have been incurred without caching.
Similarly, FoT accelerated the total duration of the optimization procedure by a factor of up to 8.7-
50.2. This highlights the fact that optimization of reasoning schemes often only becomes viable
when parallelization and caching are used, as the required time and budget could otherwise be pro-
hibitive.

5 CONCLUSION

We introduced Framework of Thoughts (FoT), a foundation framework for implementing and opti-
mizing prompting schemes. Unlike previous frameworks such as the Graph of Thoughts framework,
FoT can not only model static graph structures but also dynamic graph structures that evolve during
execution. This paves the way for a new generation of adaptive prompting schemes that can reason
effectively, also about previously unseen or highly heterogeneous problem types. Schemes imple-
mented in FoT benefit from FoT’s “efficient-by-default” setup that accelerates runtimes through
parallelization and saves inference costs through extensive caching. We empirically show how
this can accelerate existing schemes by an order of magnitude and cut cost nearly in half in some
cases. Lastly, FoT provides developers with tools to optimize hyperparameters and prompts of their
prompting schemes. Using these tools, we identified configurations with better accuracy and simul-
taneously lower costs for the popular schemes Tree of Thoughts and Graph of Thoughts.

Limitations & Future Work We implemented one manual (GoT) and two semi-automatic (ToT
and ProbTree) prompting schemes in FoT. While GoT’s execution graph is entirely static, ToT and
ProbTree exhibit at least some degree of the dynamic graph modifications that FoT was designed
to model. Still, we encourage others to implement new fully-automatic prompting schemes in FoT
that demonstrate the advantage of dynamic graphs on more problem types than this paper did. For
FoT itself, we envision future improvements such as parallel optimization of multiple prompts on
different prompt optimization techniques such as GEPA (Agrawal et al., 2025), joint optimization of
hyperparameters and prompts, more user-friendly graph abstractions and interfaces, as well as more
relaxed graph modification rules during parallel execution.
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Reproducibility Statement To ensure reproducibility of our results and enable others to build new
prompting schemes in FoT, we share our entire codebase2. Our exact prompting scheme implemen-
tations and the FoT code can be found there. The repository further includes instructions on how to
install the framework and run the dataset evaluations and optimization studies, a simple test exam-
ple in a Jupyter notebook to familiarize oneself with the framework, as well as dataset evaluation
and optimization outputs. Readers looking to re-implement parts of our code can also find further
implementation details in appendix Sections A.2 (schema explanations) and A.7 (schema prompts),
as well as Table 6 (schema hyperparameters).

Ethics Statement We apply different prompting schemes to tasks such as merging documents or
answering complex questions. These tasks can hold significant value in some domains and situa-
tions. However, we stress that prompting schemes based on LLMs are not perfect and can result in
incorrect yet plausible answers. Users of such prompting schemes, whether implemented in FoT or
not, should exhibit caution and always cross-check outputs for correctness, especially in high-stakes
scenarios.
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A APPENDIX

A.1 ILLUSTRATIVE EXAMPLE

Figure 5 provides a concrete example of a Tree of Thoughts (ToT) prompting scheme implemented in
Framework of Thoughts (FoT). The figure shows the step-by-step evolution of a dynamic execution
graph on the Game of 24 task. In the Game of 24, the goal is to combine four given numbers using
arithmetic operations (+, −, ×, ÷) and brackets to reach 24. The shown implementation takes the
four numbers [1, 2, 3, 4] as input and explores possible arithmetic combinations of these numbers
until it finds and returns a full arithmetic expression (4× (2× 3))÷ 1 = 24.

The actual ToT implementation for Game of 24 used in this paper is more complex than the imple-
mentation shown in Figure 5 to stay true to the original ToT implementation by Yao et al. (2023),
which proposes more than three new thoughts in each Propose prompt and samples multiple Value
prompt estimations for each thought chain, to name just two differences. See Section A.2 for a
description of our implementation.

A.2 DETAILED EXPLANATION OF THE METHODS

In the following, a detailed explanation of each method is given. Variables in monospace are
hyperparameters that can be optimized.

ToT on Game of 24 (Go24) The goal of Game of 24 is to form a mathematical expression with
four given numbers using +, −, ×, ÷, and brackets that equals 24. One example for the input
numbers [1, 2, 3, 4] would be (4× (2× 3))÷ 1 = 24.

The ToT implementation uses an iterative process as follows:

A Propose operation creates number of examples many expressions that could lead in the
right direction, as well as the remaining numbers. As an example, for [1, 2, 3, 4] it could output the
expressions 1 + 2 = 3 with the remainder [3, 4, 3], or 2× 3 = 6 with the remainder [1, 4, 6].

Each of these proposals are then scored by an LLM (Value operation) number of samples
times into ”SURE”, ”LIKELY”, or ”IMPOSSIBLE” to reach 24 at some point. The scores for each
proposal are turned into floating point numbers and a Filter operation keeps only the keep top N
candidates.

The next Propose operation then creates new expressions and remainders for the remainders of the
top candidates, and the process repeats until only one number is left.
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Figure 5: Exemplary evolution of the execution graph in an implementation of the Tree of Thoughts
prompting scheme in Framework of Thoughts for the Game of 24 (see explanation in Section A.1).
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ToT and GoT on Sorting The goal of Sorting is to sort an array of 128 digits into ascending order
with repetition. An example on the 8 digit input [1, 6, 4, 0, 3, 4, 6, 7] would be [0, 1, 3, 4, 4, 6, 6, 7].

The ToT implementation uses an iterative process as follows:

number of branches LLM operations create a first sorted candidate. Each of these candidates
is evaluated to how many mistakes have been made and the top candidate is kept.

number of branches LLM operations then try to figure out the mistakes and improve on the
candidates. This process is repeated improvement levels times, after which the best candidate
is returned.

The GoT implementation uses the following divide-and-conquer approach:

The list is split into 8 short lists. Each of them gets sorted by an LLM operation number of sort
branches times in parallel and the best scored one of each is kept. After that, two neighbouring
lists are merged by an LLM operation number of merge branches times in parallel and the
best scored one is kept. This is repeated twice to end up with one sorted list of 128 digits.

After that, an LLM operation repairs the list in sequence global improvement rounds be-
fore returning.

GoT on Document Merging (DM) The goal of this process is to merge 4 documents (here Non-
Disclosure Agreements, NDAs) into a single document, hereby maximizing retaining information
and minimizing redundancy.

The GoT implementation uses the following iterative approach:

First, number of merges LLM operations merge all NDAs into one. An LLM scores the re-
dundancy and retention in the mergers between 0 and 10, of which the harmonic mean is calculated.

The top keep best merges candidates are then aggregated number of aggregations
times using an LLM operation to an improved candidate, which is then also scored.

Of all candidates from both stages, the best is then improved using an LLM operation number of
improvements times before being returned.

The generative LLM calls are executed at temperature 1 while the scoring is performed at tempera-
ture 0.

ProbTree on HotpotQA and MuSiQue The goal of both HotpotQA and MuSiQue is to answer a
multi-hop question such as ”ARE BOTH SUPERDRAG AND COLLECTIVE SOUL ROCK BANDS?”,
with MuSiQue being more challenging than HotpotQA.

The Probtree implementation uses the following process:

At first, an LLM operation using few-shot prompting generates a tree structure subdividing the
original question into a tree of questions that are separately answerable. In the example above, these
could be ”IS SUPERDRAG A ROCK BAND?” and ”IS COLLECTIVE SOUL A ROCK BAND?”.

Each of the leaf nodes are then answered by an LLM operation closed book (meaning no supportive
evidence is provided), and open book (a retriever adds supportive information using BM25 on a
Wikipedia dump).

After that, the tree is traversed upwards and each parent question is answered open book, closed
book, and based on the aggregated evidence from their child nodes.

Each LLM operation emits token-level log likelihoods that are used to filter the best answer with the
highest confidence.

For detailed intricacies of the tree structure, how dependencies between questions can be mapped,
and the process of filtering based on token-level log likelihoods, see the original paper (Cao et al.,
2023).
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A.3 HYPERPARAMETER & PROMPT OPTIMIZATION

Hyperparameter Optimization A hyperparameter can be any variable that

• models variations of prompts and parsers in an LLM-based operation, (e.g., chooses from
a set of possible prompts),

• influences how graph-modifying operations change the graph structure, (e.g., what opera-
tions to perform next based on the inputs),

• influences the inital execution graph structure, (e.g., number of branches in a ToT prompt-
ing scheme),

• influences the Scheduler’s search strategy, (e.g., breadth-first, depth-first), or

• sets the number of permissible concurrent executions in the Controller.

For hyperparameter optimization, our FoT implementation uses Optuna (Akiba et al., 2019), which
includes a variety of hyperparameter optimization techniques. We use a tree-structured Parzen esti-
mator (TPE) (Watanabe, 2023) which is a sequential model-based optimization (SMBO) technique.
Hyperparameters may be conditional and can be categorical, discrete or continuous. TPE models
the search space by estimating two probability densities: one over the best-performing hyperparam-
eters and one over the others. It applies kernel density estimators to model these distributions. New
candidates are proposed by maximizing the expected improvement, which reduces to maximizing
the ratio of the two densities.

Prompt Optimization To optimize the formulation of prompts, our FoT implementation inte-
grates Cooperative Prompt Optimization (COPRO) via DSPy (Khattab et al., 2023). Starting with
an initial prompt formulation, COPRO applies an evolutionary algorithm to generate offspring vari-
ations of the instruction part of the prompt, selecting the best-performing variations, and generating
new variations of these again.

Optimization Objective The optimization objective can be either based on the ground truth for a
given test set (e.g., an accuracy measure), the output of the execution, and/or measurements that are
computed during execution such as prompt and response token count or cost, a predefined execution
cost per operation, or execution latency. The objective can also be any (weighted) combination of
the above. As the objective function may be a noisy non-differentiable blackbox function, we cannot
use gradient-based optimizers. Instead, we rely on hyperparameter optimizers that can efficiently
explore the hyperparameter space.

A.4 EVALUATIONS FOR PROBTREE

For the retrieval step in Probtree, we use BM25 on the October 2017 Wikipedia dump, the same
dataset as used in the original Probtree paper (Cao et al., 2023). However, we use the same dataset
for retrieval for MuSiQue unlike the original implementation.

The resulting F1 score for the dataset evaluation of Probtree on HotpotQA is 53.8% and on MuSiQue
is 24.7%.

A.5 OPTIMIZATION EXPERIMENTS

Table 5 shows the per-instance runtime and cost of our optimized ToT, and GoT variants.

For both Sorting tasks, 50 iterations were run. On the Game of 24 task, 25 iterations were run due to
cost restrictions. Original and optimized hyperparameters as well as the acceptable parameter range
during optimization can be found in Table 6.

The parameters used in the COPRO prompt optimization on the Document Merging task are: depth:
6, keep top: 8, breadth: 8. The prompt proposal language model is GPT-4o-mini at a temperature of
1.6.
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Table 5: Average runtime and cost per instance for optimized schemes. Abbreviations as in Table 3.

ToT GoT
Go24 Sorting Sorting DM

Optimized scheme: Average runtime per instance, in seconds (in % of unoptimized scheme)

S+No cache 452 (58%) 398 (88%) 239 (92%) 101 (70%)
S+Process 346 (55%) 398 (88%) 239 (92%) 100 (71%)
S+Persistent 195 (52%) 398 (88%) 239 (92%) 100 (71%)
P+No cache 27 (86%) 47 (119%) 29 (95%) 27 (86%)
P+Process 26 (86%) 47 (119%) 29 (95%) 27 (86%)
P+Persistent 21 (96%) 47 (119%) 29 (95%) 27 (86%)

Optimized scheme: Average cost per instance, in USD cents (in % of unoptimized scheme)

No cache 25.2 (85%) 15.8 (99%) 4.9 (98%) 5.9 (87%)
Process 20.1 (80%) 15.8 (99%) 4.9 (98%) 5.8 (95%)
Persistent 12.3 (76%) 15.8 (99%) 4.9 (98%) 5.8 (97%)

Table 6: Original and optimized hyperparameters alongside the ranges used in the optimization.

Hyperparameter Original Optimized Range

Task: Game of 24 (ToT)

number of examples 8 11 [4, 12]
samples (3, 3, 3) (3,2,2) [1, 5] each
keep top N (layers 1, 2) (5, 5) (5, 3) [2,min(7, |input|)] each

Task: Sorting (ToT)

number of branches 20 14 [5, 20]
improvement levels 4 6 [1, 6]

Task: Sorting (GoT)

number of sort branches 5 2 [1, 10]
number of merge branches 10 13 [5, 25]
global improvement rounds 1 2 [1, 3]

A.6 OPTIMIZED PROMPT

The original unoptimized Improve prompt can be seen in Listing 1 and the optimized Improve prompt
in Listing 2.

Listing 1: Original Improve prompt only with USER message.
USER:
The following NDA <S> merges initial NDAs <Doc1> - <DocN>.
Please improve the summary NDA <S> by adding more information
and removing redundancy. Output only the improved NDA, placed
between the two tags <Merged> and </Merged>, without any
additional text.

Here are NDAs <Doc1> - <DocN>:

<Doc1>
[Content of NDA 1]
</Doc1>

<Doc2>
[Content of NDA 2]
</Doc2>
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...

<DocN>
[Content of NDA N]
</DocN>

Here is the summary NDA <S>:
<S>
[Content of summary]
</S>

Listing 2: Optimized Improve prompt with SYSTEM and USER message.
SYSTEM:
Your input fields are:
1. ‘summaries‘ (list[str]): The summaries of the NDAs to improve
2. ‘docs‘ (list[str]): The original NDAs
Your output fields are:
1. ‘merged‘ (str): The improved summary of the NDAs
All interactions will be structured in the following way, with the

appropriate values filled in.

[[ ## summaries ## ]]
{summaries}

[[ ## docs ## ]]
{docs}

[[ ## merged ## ]]
{merged}

[[ ## completed ## ]]
In adhering to this structure, your objective is:
Generate a succinct, informative, and harmonized summary of the provided
non-disclosure agreements (NDAs) by meticulously blending insights from

both
the accompanying summaries and the original documents. Your output should
encapsulate critical details while enhancing clarity and legibility,

minimizing
any excessive language. Highlight and comport essential legal terms

appropriately,
ensuring the intent and key clauses remain conspicuous. Finalize your

summary
formatted within the designated <Merged> and </Merged> tags aimed at

promoting
swift understanding and seamless usage of the key information presented.
Ensure to format the output between <Merged> and </Merged> tags.

USER:
[[ ## summaries ## ]]
[Content of summary]

[[ ## docs ## ]]
[Content of NDAs]

Respond with the corresponding output fields, starting with:
[[ ## merged ## ]]
and end with:
[[ ## completed ## ]]
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A.7 PROMPTS USED IN THE PAPER

ToT on Game of 24 (Go24) The prompts for this task were taken from the original implemen-
tation of Game of 24 (Yao et al., 2023) with additional system messages to ensure newer models
follow the exact few-shot prompt. The prompts used are Propose (Listing 3), Value (Listing 4), and
LastStepValue (Listing 5). The system message in the Propose prompt also contains a parameter to
control the number of examples.

Listing 3: Propose prompt for Game of 24 with SYSTEM and USER message.
SYSTEM:
Follow exactly the few shot prompt. Output exactly [num_examples] next

steps.

USER:
Input: 2 8 8 14
Possible next steps:
2 + 8 = 10 (left: 8 10 14)
8 / 2 = 4 (left: 4 8 14)
14 + 2 = 16 (left: 8 8 16)
2 * 8 = 16 (left: 8 14 16)
8 - 2 = 6 (left: 6 8 14)
14 - 8 = 6 (left: 2 6 8)
14 / 2 = 7 (left: 7 8 8)
14 - 2 = 12 (left: 8 8 12)
Input: [input_list]
Possible next steps:

Listing 4: Value prompt for Game of 24 with SYSTEM and USER message.
SYSTEM:
Follow exactly the few shot prompt.

USER:
Evaluate if given numbers can reach 24 (sure/likely/impossible)
10 14
10 + 14 = 24
sure
11 12
11 + 12 = 23
12 - 11 = 1
11 * 12 = 132
11 / 12 = 0.91
impossible
4 4 10
4 + 4 + 10 = 8 + 10 = 18
4 * 10 - 4 = 40 - 4 = 36
(10 - 4) * 4 = 6 * 4 = 24
sure
4 9 11
9 + 11 + 4 = 20 + 4 = 24
sure
5 7 8
5 + 7 + 8 = 12 + 8 = 20
(8 - 5) * 7 = 3 * 7 = 21
I cannot obtain 24 now, but numbers are within a reasonable range
likely
5 6 6
5 + 6 + 6 = 17
(6 - 5) * 6 = 1 * 6 = 6
I cannot obtain 24 now, but numbers are within a reasonable range
likely
10 10 11
10 + 10 + 11 = 31
(11 - 10) * 10 = 10
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10 10 10 are all too big
impossible
1 3 3
1 * 3 * 3 = 9
(1 + 3) * 3 = 12
1 3 3 are all too small
impossible
[left]

Listing 5: LastStepValue prompt for Game of 24 with SYSTEM and USER message.
SYSTEM:
Follow exactly the few shot prompt.

USER:
Use numbers and basic arithmetic operations (+ - * /) to obtain 24. Given

an input and an answer, give a judgement (sure/impossible) if the
answer is correct, i.e. it uses each input exactly once and no other
numbers, and reach 24.

Input: 4 4 6 8
Answer: (4 + 8) * (6 - 4) = 24
Judge:
sure
Input: 2 9 10 12
Answer: 2 * 12 * (10 - 9) = 24
Judge:
sure
Input: 4 9 10 13
Answer: (13 - 9) * (10 - 4) = 24
Judge:
sure
Input: 4 4 6 8
Answer: (4 + 8) * (6 - 4) + 1 = 25
Judge:
impossible
Input: 2 9 10 12
Answer: 2 * (12 - 10) = 24
Judge:
impossible
Input: 4 9 10 13
Answer: (13 - 4) * (10 - 9) = 24
Judge:
impossible
Input: [left]
Answer: [answer]

ToT and GoT on Sorting The prompts for this task were taken from the original implementation
of Sorting (Besta et al., 2024a), with minor adjustments. The only contain user messages. The
prompts used are Generate (for both ToT and GoT) (Listing 6), Improve (ToT) (Listing 7), Split
(GoT) (Listing 8), and Aggregate (GoT) (Listing 9).

Listing 6: Generate prompt for Sorting.
USER:
<Instruction> Sort the following list of numbers in ascending order.

Output only the sorted list of numbers, no additional text. </
Instruction>

<Examples>
Input: [5, 1, 0, 1, 2, 0, 4, 8, 1, 9, 5, 1, 3, 3, 9, 7]
Output: [0, 0, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5, 7, 8, 9, 9]

Input: [3, 7, 0, 2, 8, 1, 2, 2, 2, 4, 7, 8, 5, 5, 3, 9, 4, 3, 5, 6, 6, 4,
4, 5, 2, 0, 9, 3, 3, 9, 2, 1]
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Output: [0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5,
5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 9]

Input: [4, 4, 9, 7, 9, 7, 0, 0, 4, 9, 1, 7, 9, 5, 8, 7, 5, 6, 3, 8, 6, 7,
5, 8, 5, 0, 6, 3, 7, 0, 5, 3, 7, 5, 2, 4, 4, 9, 0, 7, 8, 2, 7, 7, 7,
2, 1, 3, 9, 9, 7, 9, 6, 6, 4, 5, 4, 2, 0, 8, 9, 0, 2, 2]

Output: [0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9]

</Examples>

Input: [input_list]

Listing 7: ToT Improve prompt for Sorting.
USER:
<Instruction> The following two lists represent an unsorted list of

numbers and a sorted variant of that list. The sorted variant is not
correct. Fix the sorted variant so that it is correct.

Make sure that the output list is sorted in ascending order, has the same
number of elements as the input list ([length of input_list]), and

contains the same elements as the input list. </Instruction>

<Approach>
To fix the incorrectly sorted list follow these steps:
1. For each number from 0 to 9, compare the frequency of that number in

the incorrectly sorted list to the frequency of that number in the
input list.

2. Iterate through the incorrectly sorted list and add or remove numbers
as needed to make the frequency of each number in the incorrectly
sorted list match the frequency of that number in the input list.

</Approach>

<Examples>
Input: [3, 7, 0, 2, 8, 1, 2, 2, 2, 4, 7, 8, 5, 5, 3, 9]
Incorrectly Sorted: [0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7,

8, 8, 9, 9, 9, 9]
Reason: The incorrectly sorted list contains four extra 0s, two extra 4s

and three extra 9s and is missing two 2s.
Output: [0, 1, 2, 2, 2, 2, 3, 3, 4, 5, 5, 7, 7, 8, 8, 9]

Input: [6, 4, 5, 7, 5, 6, 9, 7, 6, 9, 4, 6, 9, 8, 1, 9, 2, 4, 9, 0, 7, 6,
5, 6, 6, 2, 8, 3, 9, 5, 6, 1]

Incorrectly Sorted: [0, 1, 1, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9]

Reason: The incorrectly sorted list contains two extra 4s and is missing
two 6s and one 9.

Output: [0, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9]

Input: [4, 4, 9, 7, 9, 7, 0, 0, 4, 9, 1, 7, 9, 5, 8, 7, 5, 6, 3, 8, 6, 7,
5, 8, 5, 0, 6, 3, 7, 0, 5, 3, 7, 5, 2, 4, 4, 9, 0, 7, 8, 2, 7, 7, 7,
2, 1, 3, 9, 9, 7, 9, 6, 6, 4, 5, 4, 2, 0, 8, 9, 0, 2, 2]

Incorrectly Sorted: [0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4,
4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8,
8, 9, 9, 9, 9, 9, 9, 9, 9]

Reason: The incorrectly sorted list contains one extra 8 and is missing
two 2s, one 3, three 4s, two 5s, one 6, six 7s and one 9.

Output: [0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9]

</Examples>

Input: [input_list]
Incorrectly Sorted: [incorrectly_sorted]
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Listing 8: GoT Split prompt for Sorting.
USER:
<Instruction> Split the following list of 128 numbers into 8 lists of 16

numbers each, the first list should contain the first 16 numbers, the
second list the second 16 numbers, the third list the third 16

numbers, the fourth list the fourth 16 numbers, the fifth list the
fifth 16 numbers and so on.

Only output the final 8 lists in the following format without any
additional text or thoughts!:

{
"List 1": [3, 4, 3, 5, 7, 8, 1, ...],
"List 2": [2, 9, 2, 4, 7, 1, 5, ...],
"List 3": [6, 9, 8, 1, 9, 2, 4, ...],
"List 4": [9, 0, 7, 6, 5, 6, 6, ...],
"List 5": [7, 9, 4, 1, 1, 8, 1, ...],
"List 6": [1, 9, 0, 4, 3, 3, 5, ...],
"List 7": [2, 4, 3, 5, 8, 2, 2, ...],
"List 8": [4, 2, 1, 2, 7, 6, 8, ...]

} </Instruction>

<Example>
Input: [6, 0, 2, 3, 8, 3, 0, 2, 4, 5, 4, 1, 3, 6, 9, 8, 3, 1, 2, 6, 5, 3,

9, 8, 9, 1, 6, 1, 0, 2, 8, 9, 5, 3, 1, 2, 7, 9, 4, 8, 8, 9, 3, 2, 8,
4, 7, 4, 3, 8, 7, 3, 6, 4, 0, 0, 6, 8, 1, 5, 8, 7, 5, 1, 4, 0, 8, 6,
1, 3, 6, 1, 7, 6, 8, 7, 3, 7, 8, 2, 0, 8, 2, 6, 0, 0, 9, 9, 8, 6, 9,
4, 8, 5, 5, 0, 0, 9, 3, 9, 4, 0, 5, 6, 2, 4, 6, 7, 7, 7, 8, 0, 4, 9,
1, 4, 8, 5, 1, 4, 4, 7, 4, 9, 3, 9, 6, 7]

Output:
{

"List 1": [6, 0, 2, 3, 8, 3, 0, 2, 4, 5, 4, 1, 3, 6, 9, 8],
"List 2": [3, 1, 2, 6, 5, 3, 9, 8, 9, 1, 6, 1, 0, 2, 8, 9],
"List 3": [5, 3, 1, 2, 7, 9, 4, 8, 8, 9, 3, 2, 8, 4, 7, 4],
"List 4": [3, 8, 7, 3, 6, 4, 0, 0, 6, 8, 1, 5, 8, 7, 5, 1],
"List 5": [4, 0, 8, 6, 1, 3, 6, 1, 7, 6, 8, 7, 3, 7, 8, 2],
"List 6": [0, 8, 2, 6, 0, 0, 9, 9, 8, 6, 9, 4, 8, 5, 5, 0],
"List 7": [0, 9, 3, 9, 4, 0, 5, 6, 2, 4, 6, 7, 7, 7, 8, 0],
"List 8": [4, 9, 1, 4, 8, 5, 1, 4, 4, 7, 4, 9, 3, 9, 6, 7]

}
</Example>

Input: [input_list]

Listing 9: GoT Aggregate prompt for Sorting.
USER:
<Instruction> Merge the following 2 sorted lists of length [length of

input1] each, into one sorted list of length [length of input2] using
a merge sort style approach.

Only output the final merged list without any additional text or thoughts
!:</Instruction>

<Approach>
To merge the two lists in a merge-sort style approach, follow these steps

:
1. Compare the first element of both lists.
2. Append the smaller element to the merged list and move to the next

element in the list from which the smaller element came.
3. Repeat steps 1 and 2 until one of the lists is empty.
4. Append the remaining elements of the non-empty list to the merged list

.
</Approach>
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Merge the following two lists into one sorted list:
1: [input1]
2: [input2]

Merged list:

GoT on Document Merging (DM) The prompts for this task were taken from the original imple-
mentation of Sorting (Besta et al., 2024a), with minor adjustments. They only contain user messages
with the exception of the optimized improve prompt. The prompts used are Merge (Listing 10),
Score (Listing 11), Aggregate (Listing 12), Improve (original) (Listing 1), and Improve (optimized)
(Listing 2).

Listing 10: GoT Merge prompt for DM.
USER:
Merge the following [N] NDA documents <Doc1> - <Doc[N]> into a single NDA

, maximizing retained information and minimizing redundancy. Output
only the created NDA between the tags <Merged> and </Merged>, without
any additional text.

Here are NDAs <Doc1> - <Doc[N]>:

<Doc1>
[Content of NDA 1]
</Doc1>

<Doc2>
[Content of NDA 2]
</Doc2>

...

<DocN>
[Content of NDA N]
</DocN>

Listing 11: GoT Score prompt for DM.
USER:
The following NDA <S> merges NDAs <Doc1> - <Doc[N]>.
Please score the merged NDA <S> in terms of how much redundant

information is contained, independent of the original NDAs, as well
as how much information is retained from the original NDAs.

A score of 10 for redundancy implies that absolutely no information is
redundant, while a score of 0 implies that at least half of the
information is redundant (so everything is at least mentioned twice).

A score of 10 for retained information implies that all information from
the original NDAs is retained, while a score of 0 implies that no
information is retained.

You may provide reasoning for your scoring, but the final score for
redundancy should be between the tags <Redundancy> and </Redundancy>,
and the final score for retained information should be between the

tags <Retained> and </Retained>, without any additional text within
any of those tags.

Here are NDAs <Doc1> - <Doc[N]>:

<Doc1>
[Content of NDA 1]
</Doc1>

<Doc2>
[Content of NDA 2]
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</Doc2>

...

<DocN>
[Content of NDA N]
</DocN>

Here is the summary NDA <S>:
<S>
[Content of summary]
</S>

Listing 12: GoT Aggregate prompt for DM.
USER:
The following NDAs <S1> - <S[number of summaries]> each merge the initial

NDAs <Doc1> - <Doc[N]>.
Combine the merged NDAs <S1> - <S[number of summaries]> into a new one,

maximizing their advantages and overall information retention, while
minimizing redundancy.

Output only the new NDA between the tags <Merged> and </Merged>, without
any additional text.

Here are the original NDAs <Doc1> - <Doc[N]>:

<Doc1>
[Content of NDA 1]
</Doc1>

<Doc2>
[Content of NDA 2]
</Doc2>

...

<DocN>
[Content of NDA N]
</DocN>

Here are the summary NDAs <S1> - <S[number of summaries]>:

<S1>
[Content of summary 1]
</S1>

...

<S[number of summaries]>
[Content of summary [number of summaries]]
</S[number of summaries]>

ProbTree on HotpotQA and MuSiQue The prompts for this task were taken from the original
implementation of Probtree (Cao et al., 2023), with minor adjustments. They only contain user mes-
sages. The prompts used are Understanding (HotpotQA) (Listing 13), Understanding (MuSiQue)
(Listing 14), OpenBook (Listing 15), ClosedBook (HotpotQA) (Listing 16), ClosedBook (MuSiQue)
(Listing 17), and ChildAggregate (Listing 18).

Listing 13: ProbTree Understanding prompt for HotpotQA.
USER:
Please generate a hierarchical question decomposition tree (HQDT) with

json format for a given question. In this tree, the root node is the

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

original complex question, and each non-root node is a sub-question
of its parent. The leaf nodes are atomic questions that cannot be
further decomposed.

Q: Jeremy Theobald and Christopher Nolan share what profession?
A: {"Jeremy Theobald and Christopher Nolan share what profession?": ["

What is Jeremy Theobald’s profession?", "What is Christopher Nolan’s
profession?"]}.

Q: How many episodes were in the South Korean television series in which
Ryu Hye-young played Bo-ra?

A: {"How many episodes were in the South Korean television series in
which Ryu Hye-young played Bo-ra?": ["In which South Korean
television series Ryu Hye-young played Bo-ra?", "How many episodes
were <1>?"]}.

Q: Vertical Limit stars which actor who also played astronaut Alan
Shepard in "The Right Stuff"?

A: {"Vertical Limit stars which actor who also played astronaut Alan
Shepard in \"The Right Stuff\"?": ["Vertical Limit stars which actor
?".

... (in total 16 examples)

Q: [question]

Listing 14: ProbTree Understanding prompt for MuSiQue.
USER:
Please generate a hierarchical question decomposition tree (HQDT) with

json format for a given question. In this tree, the root node is the
original complex question, and each non-root node is a sub-question
of its parent. The leaf nodes are atomic questions that cannot be
further decomposed.

Q: When did the first large winter carnival take place in the city where
CIMI-FM is licensed to broadcast?

A: {"When did the first large winter carnival take place in the city
where CIMI-FM is licensed to broadcast?": ["Which city is CIMI-FM
licensed to broadcast?", "When did the first large winter carnival
take place in <1>?"]}.

Q: What county is Hebron located in, in the same province the Heritage
Places Protection Act applies to?

A: {"What county is Hebron located in, in the same province the Heritage
Places Protection Act applies to?": ["Which did Heritage Places
Protection Act apply to the jurisdiction of?", "which country is
Hebron, <1> located in?"]}.

Q: What weekly publication in the Connecticut city with the most Zagat
rated restaurants is issued by university of America-Lite: How
Imperial Academia Dismantled Our Culture’s author?

A: {"What weekly publication in the Connecticut city with the most Zagat
rated restaurants is issued by university of America-Lite: How
Imperial Academia Dismantled Our Culture’s author?": ["Which
university was the author of America-Lite: How Imperial Academia
Dismantled Our Culture educated at?", "What city in Connecticut has
the highest number of Zagat-rated restaurants?", "What is the weekly
publication in <2> that is issued by <1>?"], "Which university was
the author of America-Lite: How Imperial Academia Dismantled Our
Culture educated at?": ["Who is the author of America-Lite: How
Imperial Academia Dismantled Our Culture?", "Which university was <1>
educated at?"]}.

... (in total 15 examples)

Q: [question]

Listing 15: ProbTree OpenBook prompt.
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USER:
Please answer the question and explain why. Output no more than 5 words

after "So the answer is". End with "So the answer is: <answer>."

#1 Wikipedia Title: First (magazine)
Text: FiRST is a Singaporean movie magazine formerly published monthly,

now running as a weekly newspaper insert.
#2 Wikipedia Title: Arthur’s Magazine
Text: Arthur’s Magazine (1844-1846) was an American literary periodical

published in Philadelphia in the 19th century. Edited by T.S. Arthur,
it featured work by Edgar A. Poe, J.H. Ingraham, Sarah Josepha Hale,
Thomas G. Spear, and others. In May 1846 it was merged into "Godey’s
Lady’s Book".

#3 Wikipedia Title: First for Women
Text: First for Women is a woman’s magazine published by Bauer Media

Group in the USA. The magazine was started in 1989. It is based in
Englewood Cliffs, New Jersey. In 2011 the circulation of the magazine
was 1,310,696 copies.

#4 Wikipedia Title: First Eleven (magazine)
Text: First Eleven is a British specialist magazine for parents of

children at independent schools.
#5 Wikipedia Title: Earth First! (magazine)
Text: Earth First!, the radical environmental journal, is the official

publication of the Earth First! movement. First published as a
newsletter in 1980, it has existed alongside the movement as a way to
spread commonly held beliefs in "Earth First!" culture, such as

biocentrism, deep ecology, and direct action. The magazine is also
commonly known as the "Earth First! Journal".

Q: Which magazine was started first Arthur’s Magazine or First for Women?
A: Arthur’s Magazine was started in 1844. First for Women was started in

1989. So Arthur’s Magazine was started first. So the answer is:
Arthur’s Magazine.

... (2 more example blocks)

[k retrieved documents]
Q: [question]
A:

Listing 16: ProbTree ClosedBook prompt for HotpotQA.
USER:
Please answer the question by thinking step-by-step. End with "So the

answer is: <answer>."
Q: Jeremy Theobald and Christopher Nolan share what profession?
A: Jeremy Theobald is an actor and producer. Christopher Nolan is a

director, producer, and screenwriter. Therefore, they both share the
profession of being a producer. So the answer is: producer.

Q: How many episodes were in the South Korean television series in which
Ryu Hye-young played Bo-ra?

A: The South Korean television series in which Ryu Hye-young played Bo-ra
is Reply 1988. The number of episodes Reply 1988 has is 20. So the

answer is: 20.
Q: Vertical Limit stars which actor who also played astronaut Alan

Shepard in "The Right Stuff"?
A: The movie Vertical Limit starred actors including Chiris O’Donnell,

Robin Tunney, Scott Glenn, etc. The actor who played astronaut Alan
Shepard in "The Right Stuff" is Scott Glenn. So the actor who stars
in Vertical Limit and played astronaut Alan Shepard in "The Right
Stuff" is Scott Glenn. So the answer is: Scott Glenn.

... (in total 22 examples)

Q:
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Listing 17: ProbTree ClosedBook prompt for MuSiQue.
USER:
Please answer the question by thinking step-by-step. End with "So the

answer is: <answer>."
Q: When did the first large winter carnival take place in the city where

CIMI-FM is licensed to broadcast?
A: CIMI-FM is licensed to broadcast in Quebec City. The first large

winter carnival in Quebec City took place in 1894. So the answer is:
1894.

Q: When was Neville A. Stanton’s employer founded?
A: The employer of Neville A. Stanton is University of Southampton. The

University of Southampton was founded in 1862. So the answer is:
1862.

Q: What religion did the black community found?
A: The black community found African Methodist Episcopal Church. So the

answer is: African Methodist Episcopal Church.

... (in total 23 examples)

Q:

Listing 18: ProbTree ChildAggregate prompt for MuSiQue.
USER:
Given a qeustion and a context, answer the question and explain why. End

with "So the answer is: <answer>."

#
Context:
Which famous fashion show Stella Maxwell has been a model for? Victoria’s

Secret.
Since when Victoria’s Secret? 1977.

Question:
Stella Maxwell has been a model for a famous fashion shown since when?

Answer:
Stella Maxwell has been a model for a famous fashion shown, Victoria’s

Secret since 2015. So the answer is: since 2015.
#

... (2 more example blocks)

Context:
[subquestions and their answers]

Question:
[question]

Answer:

A.8 USE OF LLMS

For the development of the codebase, Cursor, mainly using OpenAI GPT-4o, was used for code
completion, documentation, repository structuring, refactoring, and error fixing. No LLMs were
used for writing this paper.
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