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Abstract

Forecasting of Irregular Multivariate Time Se-
ries (IMTS) is critical for numerous areas, such as
healthcare, biomechanics, climate science, and
astronomy. Despite existing research address-
ing irregularities in time series through ordinary
differential equations, the challenge of model-
ing correlations between asynchronous IMTS re-
mains underexplored. To bridge this gap, this
study proposes Transformable Patching Graph
Neural Networks (T-PATCHGNN), which trans-
forms each univariate irregular time series into
a series of transformable patches encompassing
a varying number of observations with uniform
temporal resolution. It seamlessly facilitates local
semantics capture and inter-time series correla-
tion modeling while avoiding sequence length ex-
plosion in aligned IMTS. Building on the aligned
patching outcomes, we then present time-adaptive
graph neural networks to model dynamic inter-
time series correlation based on a series of learned
time-varying adaptive graphs. We demonstrate
the remarkable superiority of T-PATCHGNN on
a comprehensive IMTS forecasting benchmark
we build, which contains four real-world scien-
tific datasets covering healthcare, biomechanics
and climate science, and seventeen competitive
baselines adapted from relevant research fields.1

1. Introduction
While the forecasting of Multivariate Time Series (MTS)
has been extensively investigated, most research focuses on
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regularly sampled and fully observed MTS (Lim & Zohren,
2021). The forecasting challenges associated with Irreg-
ular Multivariate Time Series (IMTS), characterized by
their irregular sampling intervals and missing data, have
received significantly less attention. Indeed, IMTS are
prevalent across a wide range of subject areas, such as
healthcare, biomechanics, climate science, astronomy, and
finance (Rubanova et al., 2019; De Brouwer et al., 2019;
Yao et al., 2018; Vio et al., 2013; Engle & Russell, 1998;
Zhang et al., 2021a). Accurate forecasting of IMTS serves
as the foundation to support various significant activities
from making informed decisions to planning with foresight.

Unlike regular MTS, the modeling and analysis for IMTS
is more challenging due to the inherent irregularity within
the series and asynchrony between them (Horn et al., 2020).
As illustrated in Figure 1(a), given a set of historical IMTS
observations and forecasting queries, the IMTS forecasting
problem aims to accurately predict the values in correspon-
dence to these queries. Although a few proactive efforts have
been made for IMTS forecasting (Rubanova et al., 2019;
De Brouwer et al., 2019; Biloš et al., 2021; Schirmer et al.,
2022), these works mainly focus on handling irregularity
within the time series based on neural Ordinary Differential
Equations (ODEs) (Chen et al., 2018), failing to explicitly
consider the crucial correlations between multiple series.
Moreover, calculating ODE solvers is computationally ex-
pensive due to the numerical integration process, leading to
poor efficiency in both training and inference stages (Biloš
et al., 2021; Shukla & Marlin, 2020).

It is a non-trivial task for accurate IMTS forecasting, which
faces three major challenges. (1) The first challenge is the
irregularity in intra-time series dependency modeling. The
varying time intervals between adjacent observations disrupt
the consistent flow of time series data, making it difficult
for classical time series forecasting models (Lim & Zohren,
2021) to accurately capture the underlying temporal dynam-
ics and dependencies (Rubanova et al., 2019; Che et al.,
2018). (2) The second challenge is the asynchrony in inter-
time series correlation modeling. While there are always
considerable correlations between time series of different
variables, the observations among IMTS can be significantly
misaligned at time due to irregular sampling or missing data.
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Figure 1: (a) Irregular multivariate time series forecasting
problem, where v1, v2, and v3 represent three different vari-
ables. (b) Canonical pre-alignment representation causes
the average sequence length to increase from 5 to 15, an
explosive growth proportional to the variable count.

This asynchrony complicates direct comparisons and cor-
relations at specific time points and potentially obscures
or distorts the actual relationships between the time series,
resulting in a significant challenge to model inter-time series
correlations (Zhang et al., 2021b). (3) The last challenge
is the sequence length explosion with the increase of vari-
ables. As shown in Figure 1(b), to facilitate IMTS modeling,
current studies typically represent IMTS in a time-aligned
format which involves extending each univariate irregular
time series to a uniform length corresponding to the count of
all unique timestamps among IMTS observations (Che et al.,
2018). However, such a canonical pre-alignment representa-
tion may lead to the sequence length explosively growing
proportional to the addition of variables, which raises se-
vere scalability concerns on both computation and memory
overhead when encountering a large number of variables.

To this end, we propose a Transformable Patching Graph
Neural Networks (T-PATCHGNN) approach for IMTS fore-
casting. T-PATCHGNN initially transforms each univariate
irregular time series into a series of transformable patches,
which vary in observation count but maintain a unified time
horizon resolution. This process for IMTS offers three ma-
jor advantages: (1) The independent patching process for
each univariate irregular time series bypasses the canonical
pre-alignment representation for IMTS, eliminating the risk
of sequence length explosion in the representation of IMTS
with large-scale variables; (2) local semantics of irregular
time series can be better captured by putting each individ-
ual observation into patches with richer context (Nie et al.,
2022); (3) after transformable patching, the IMTS is natu-
rally aligned in a consistent patch-level temporal resolution.
It addresses the asynchrony problem, seamlessly facilitating

subsequent inter-time series correlation modeling.

Along this line, a transformable time-aware convolution net-
work is introduced to encode each transformable patch into a
latent embedding, which subsequently serves as input tokens
to a Transformer for intra-time series dependency modeling.
Furthermore, we present time-adaptive graph neural net-
works to model the inter-time series correlation. To explic-
itly represent the dynamic correlations between IMTS, we
learn a series of time-varying adaptive graphs constructed
based on both the learnable inherent variable embedding and
dynamic patch embedding, and consequently, these graphs
keep the same temporal resolution as transformable patches.
Then, graph neural networks are applied to these learned
graphs to model patch-level dynamic correlations between
IMTS. Finally, a Multi-Layer Perception (MLP) output layer
is employed to generate predicted results in terms of fore-
casting queries based on the obtained comprehensive latent
representation of IMTS.

Our major contributions are summarized as follows:

• We propose a new transformable patching method to
transform each univariate irregular time series of IMTS
into a series of variable-length yet time-aligned patches.
This tactfully bypasses the canonical pre-alignment
representation for IMTS while aligning IMTS in a con-
sistent temporal resolution. It prevents the sequence
length of aligned IMTS from explosively growing pro-
portional to the increasing variables, and meanwhile,
seamlessly facilitates local semantics capture and inter-
time series correlation modeling for IMTS.

• Based on the transformable patching outcomes, we
propose time-adaptive graph neural networks to model
the dynamic inter-time series correlation within IMTS.

• We build a benchmark for IMTS forecasting evalua-
tion. Seventeen state-of-the-art baseline models from
various relevant research fields, i.e., IMTS forecasting,
interpolation, classification, and MTS forecasting, are
taken for a fair comparison on four public scientific
IMTS datasets, which cover areas of healthcare, biome-
chanics, and climate science. Extensive experiments
demonstrate remarkable superiority of T-PATCHGNN.

2. Related Works
2.1. Irregular Multivariate Time Series Forecasting

Existing efforts on IMTS primarily focus on classification
tasks (Che et al., 2018; Shukla & Marlin, 2021; Zhang et al.,
2021b; 2023a; Horn et al., 2020; Shukla & Marlin, 2018;
Li et al., 2023; Baytas et al., 2017). Only a few proactive
studies (Rubanova et al., 2019; De Brouwer et al., 2019;
Biloš et al., 2021; Schirmer et al., 2022) have made efforts
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on the IMTS forecasting. Specifically, these works primar-
ily rely on neural ODEs (Chen et al., 2018) and focus on
handling the continuous dynamics and irregularity within
the time series. For instance, Latent-ODE (Rubanova et al.,
2019) enables Recurrent Neural Networks (RNNs) to have
continuous-time hidden state dynamics specified by neural
ODEs. GRU-ODE-Bayes (De Brouwer et al., 2019) incor-
porates neural ODEs to develop a continuous-time Gated
Recurrent Unit (GRU) and introduces a Bayesian update
network to process the sparse observations. CRU (Schirmer
et al., 2022) handles irregular intervals between observations
by evolving the hidden state based on a linear stochastic
differential equation and the continuous-discrete Kalman
filter. However, calculating ODE solvers is known to be
low-efficient due to the expensive numerical integration
computation. To address this, Neural Flows (Biloš et al.,
2021) models the solution curves of ODEs through neu-
ral networks to mitigate the expensive numerical solvers
in neural ODEs. While these works have made big efforts
to handle the irregularity within irregular time series, it is
still underexplored to effectively model the inter-time series
correlations within asynchronous IMTS.

2.2. Irregular Multivariate Time Series Representation

To represent IMTS in a time-aligned manner and facilitate
the subsequent modeling, existing works predominantly
adopt a pre-alignment representation method (Che et al.,
2018; Shukla & Marlin, 2021; Zhang et al., 2021b; 2023a;
Baytas et al., 2017; Rubanova et al., 2019; De Brouwer
et al., 2019; Biloš et al., 2021; Schirmer et al., 2022). It
involves extending all univariant series in IMTS to a consis-
tent sequence length that equals the number of all unique
timestamps in IMTS and indicating the missing values with
mask terms (Che et al., 2018). However, with the number
of variables increasing, such a representation method may
suffer from the sequence length explosion problem, which
is detailed in Section 3.2, raising severe scalability concerns
on both computation and memory overhead. Beyond the
pre-alignment representation, Horn et al. (2020) introduce a
more scalable representation method by regarding observa-
tions of IMTS as a set of tuples comprising of time, value,
and variable indicator, and then these tuples are summarized
for the IMTS classification. However, this representation
method may not be suitable for the forecasting task that
requires each variable to be more meticulously and distinc-
tively analyzed.

2.3. Graph Neural Networks for Multivariate Time
Series

Graph Neural Networks (GNNs) are introduced to MTS
for their powerful capability to model complicated correla-
tions between variables (Li et al., 2018; Yu et al., 2018; Wu
et al., 2019; 2020b; Huang et al., 2023; Yi et al., 2023; Cao

et al., 2020; Liu et al., 2022). DCRNN (Li et al., 2018) and
STGCN (Yu et al., 2018) apply GNNs to the pre-defined
graph structures, which may be difficult to obtain in some
domains. Therefore, some studies (Wu et al., 2019; 2020b;
Huang et al., 2023; Yi et al., 2023; Cao et al., 2020) pro-
pose to learn graph structures from data, enabling automatic
modeling of variables’ topological relationships. However,
when it comes to IMTS, the observations can be notably
misaligned at times, raising challenges for the inter-time
series correlation modeling. Raindrop (Zhang et al., 2021b)
addresses it by propagating the asynchronous observations
at all the timestamps when an observation appears at an arbi-
trary variable, which involves the IMTS pre-alignment and
may suffer from the sequence length explosion problem.

Another line of works associated with us applies GNNs
for modeling regular MTS with missing data (Cini et al.,
2022; Marisca et al., 2022; Chen et al., 2024), which usu-
ally necessitate aligning the missing MTS at times like the
aforementioned pre-alignment representation and focus on
handling the data missing issues. However, our work empha-
sizes bypassing the canonical pre-alignment representation
to address both the irregularity and asynchrony challenges
within IMTS modeling.

3. Preliminary
3.1. Problem Definition

Definition 1 (Irregular Multivariate Time Series). An
IMTS can be represented as O = {on

1:Ln
}Nn=1 =

{[(tni , xn
i )]

Ln
i=1}Nn=1, where there are N variables, the n-th

variable contains Ln observations, and the i-th observation
of n-th variable is composed of the recorded time tni and
value xn

i .

Definition 2 (Forecasting Query). A forecasting query is
represented as qnj , denoting j-th query on n-th variable to
predict its corresponding value at a future time qnj .

Problem 1 (Irregular Multivariate Time Series Fore-
casting). Given historical IMTS observations O =
{[(tni , xn

i )]
Ln
i=1}Nn=1, and a set of IMTS forecasting queries

Q = {[qnj ]
Qn

j=1}Nn=1, the problem is to accurately forecast
recorded values X̂ = {[x̂n

j ]
Qn

j=1}Nn=1 in correspondence to
the forecasting queries:

F (O,Q) −→ X̂ , (1)

where F(·) denotes the forecasting model we aim to learn.

3.2. Canonical Pre-Alignment Representation for IMTS

To facilitate IMTS modeling, a pre-alignment representation
method (Che et al., 2018) has been widely adopted as the
standard in current studies (Che et al., 2018; Shukla & Mar-
lin, 2021; Zhang et al., 2021b; 2023a; Rubanova et al., 2019;
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De Brouwer et al., 2019; Biloš et al., 2021; Schirmer et al.,
2022). In this method, an IMTS O is represented by three
matrix (T ,X ,M). T = [tl]

L
l=1 = ∪N

n=1[t
n
i ]

Ln
i=1 ∈ RL

denotes the chronological unique timestamps of all observa-
tions within O. X = [[x̃n

l ]
N
n=1]

L
l=1 ∈ RL×N are variable’s

values corresponding to the timestamps, where x̃n
l = xn

i if
the value of n-th variable is observed at time tl, otherwise
x̃n
l would be filled ‘NA’. M = [[mn

l ]
N
n=1]

L
l=1 ∈ RL×N rep-

resents a masking matrix, where mn
l = 1 if x̃n

l is observed
at time tl, otherwise zero.

We can observe that the sequence length L depends on
the number of unique timestamps among O. Let Lavg =
1
N

∑N
n=1 Ln and Lmax = max[Ln]

N
n=1 respectively denote

the averaged and maximal number of observations for N
variables in an IMTS, then the sequence length L after pre-
aligned representation theoretically falls into:

Lmax ≤
∣∣∣∪N

n=1[t
n
i ]

Ln
i=1

∣∣∣ ≤ N × Lavg, (2)

which could be explosively growing proportional to the
number of variables, thereby posing significant scalability
concerns when dealing with large-scale variables.

4. Methodology
The overview of T-PATCHGNN is illustrated in Figure 2. In
subsequent sections, we sequentially introduce the technical
details of irregular time series patching, intra- and inter-time
series modeling, and the IMTS forecasting process.

4.1. Irregular Time Series Patching

In this section, as a unified patching operation is applied to
all univariate irregular time series, we take the n-th variable
for illustration and omit the superscript n for simplicity in
the presentation.

4.1.1. TRANSFORMABLE PATCHING

Time series patching has been demonstrated effective in
MTS forecasting tasks due to its benefits in capturing lo-
cal semantic information, reducing computation and mem-
ory usage, and modeling longer-range historical observa-
tions (Nie et al., 2022). The standard time series patching
segments regular time series into a series of subseries-level
patches, each of which consists of a fixed number of consec-
utive observations. However, in the context of IMTS, this
approach will lead to patches spanning across diverse time
horizons due to the varying time intervals between obser-
vations. For instance, a patch composed of five sequential
observations might span merely a few minutes for densely
sampled scenarios and could cover several days in cases of
sparse sampling. This variability in the patch’s temporal
resolution can even exacerbate the inherent irregularity and
asynchrony characteristics in IMTS modeling.

To address this problem, we propose to divide each univari-
ate irregular time series o1:L as a series of transformable
patches [olp:rp ]

P
p=1 with variable-length consecutive obser-

vations, where P is the number of resulting patches, and
l1 = 1, rP = L. Each transformable patch spans a patch
window size s with a unified time horizon (e.g., 2 hours)
to guarantee a consistent temporal resolution across time
and variables. The division can be overlapped or disjoint
between two consecutive transformable patches. Along
this line, the resulting patches of IMTS are aligned in a
consistent time horizon resolution. As each univariate irreg-
ular time series is patched independently, this bypasses the
canonical pre-alignment process on IMTS, preventing se-
quence length explosion from the increasing variable count.

4.1.2. PATCH ENCODING

After transforming each univariate irregular time series into
a series of transformable patches, we encode each patch into
a latent embedding to capture the local semantics within
time series.

Continuous time embedding. To model the time infor-
mation in IMTS, we first adopt a continuous time embed-
ding (Shukla & Marlin, 2021) to encode the continuous time
of observations:

ϕ(t)[d] =

{
ω0 · t+ α0, if d = 0

sin (ωd · t+ αd) , if 0 < d < Dt

, (3)

where the ωd and αd are learnable parameters and Dt is em-
bedding’s dimension. The linear term captures non-periodic
patterns that evolve over time and the periodic terms cap-
ture periodicity among time series data, where ωd and αd

represent the frequency and phase of the sine function.

By incorporating continuous time embedding via concate-
nation, we derive observations in the patch:

zlp:rp = [zi]
rp
i=lp

= [ϕ(ti)∥xi]
rp
i=lp

. (4)

Transformable time-aware convolution. As each trans-
formable patch is essentially a sub-irregular time series,
we introduce the Transformable Time-aware Convolution
Network (TTCN) (Zhang et al., 2023b) to capture the se-
mantics within it. TTCN employs a meta-filter to derive
the time-aware convolution filter, featuring adaptively gen-
erated parameters and transformable filter size that matches
the input sequence’s length, formulated as:

fd =

[
exp(Fd(zi))∑Lp

j=1 exp(Fd(zj))

]Lp

i=1

, (5)

where Lp is the sequence length of patch zlp:rp , fd ∈
RLp×Din is the derived filter for d-th feature map, Din is di-
mension of inputs, and Fd denotes the meta-filter that can be
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Figure 2: Overview of T-PATCHGNN, which initially divides each univariate irregular time series into a series of trans-
formable patches with varying number of consecutive observations but maintains a unified time horizon resolution. Then the
patching outcomes can be seamlessly modeled by Transformer and time-adaptive GNNs, which incorporate the time-varying
adaptive graph structure learning (GSL), to realize an effective intra- and inter-time series modeling for IMTS. ⊕g represents
a gated adding operation.

instantiated by learnable neural networks. By normalizing
the derived filter parameters along the temporal dimension,
TTCN ensures consistent scaling of the convolution results
for sequences with varying lengths.

With D − 1 filters derived based on Eq. (5), we attain the
latent patch embedding hc

p ∈ RD−1 through the following
temporal convolution:

hc
p =

 Lp∑
i=1

fd[i]
⊤zlp:rp [i]

D−1

d=1

. (6)

TTCN is applicable to encode transformable patches as
it offers flexibility to adapt to variable-length sequences
through transformable filters, customs parameterization for
varying time intervals in irregular time series, and the abil-
ity to model arbitrarily long sequences without additional
learnable filter parameters.

Considering that some patches may have no observations in
the cases of sparse time series or high time horizon resolu-
tion, we additionally incorporate a patch masking term into
the patch embedding:

hp = [hc
p∥mp], (7)

where mp equals one if the patch has observations, other-
wise zero, and we have h1:P = [hp]

P
p=1 ∈ RP×D.

4.2. Intra- and Inter-Time Series Modeling

This section elaborates on how applying transformable
patching to irregular time series can seamlessly facilitate
both intra- and inter-time series modeling.

4.2.1. TRANSFORMER TO MODEL SEQUENTIAL PATCHES

With the patches encoded, they can be utilized as input
tokens in a Transformer (Vaswani et al., 2017) to model
the dependencies within the irregular time series. The po-
sition encodings PE1:P ∈ RP×D are added to indicate
the temporal order of patches: xtf,n

1:P = hn
1:P + PE1:P .

After that, the multi-head attention is applied by transform-
ing them into query matrices qn

h = xtf,n
1:P WQ

h , key matri-
ces kn

h = xtf,n
1:P WK

h and value matrices vn
h = xtf,n

1:P WV
h ,

where WQ
h ,W

K
h ,WV

h ∈ RD×(D/H) are learnable param-
eters, and H is the number of heads. A scaled dot-product
attention is adopted to obtain the outputs of intra-time series
modeling:

htf,n
1:P = ∥Hh=1 Softmax

(
qn
hk

n
h
T√

D/H

)
vn
h ∈ RP×D. (8)

4.2.2. TIME-VARYING ADAPTIVE GRAPH STRUCTURE
LEARNING

Time series of different variables often exhibit substantial
correlations. Insights from other variables can be highly in-
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formative and significantly enhance the forecasting of each
variable. For instance, there is a significant correlation be-
tween a patient’s heart rate and blood pressure that changes
in one can be indicative of changes in the other, reflecting
the body’s cardiovascular status (Obrist et al., 1978). How-
ever, observations within IMTS can be notably misaligned at
times, raising obstacles for the inter-time series correlation
modeling. Existing work (Zhang et al., 2021b) addresses
this by propagating the asynchronous observations at all
the timestamps when an observation appears at an arbitrary
variable, which also involves the IMTS pre-alignment and
may suffer from the sequence length explosion problem.

Fortunately, the asynchrony problem among IMTS can be
seamlessly addressed after applying transformable patching
to IMTS. Each variable has a consistent number of patches
that are aligned to a uniform time horizon resolution. Along
this line, we present time-adaptive graph neural networks to
model inter-time series correlation within IMTS.

To shed light on the dynamic correlations underlying IMTS,
we propose to learn a series of time-varying adaptive graphs,
which keep the same temporal resolution as the patches.
Specifically, inspired by studies (Wu et al., 2019; 2020b),
we first maintain two embedding dictionaries with learn-
able parameters for all variables Es

1,E
s
2 ∈ RN×Dg . This

learns to capture the inherent characteristics of variables.
While the above variable embedding can be updated dur-
ing training, they will be static in the inference and remain
invariable across all the periods in time series. However,
the correlations between variables can dynamically change
along with time (Zhang et al., 2021b). To address this, we
incorporate patch embedding Htf

p = [htf,n
p ]Nn=1 ∈ RN×D,

which implies the time-varying semantics of time series at
the patch-level temporal resolution, into the static variable
embedding through a gated adding operation:

Ep,k = Es
k + gp,k ∗Ed

p,k,

Ed
p,k = Htf

p Wd
k,

gp,k = ReLU(tanh([Htf
p ∥Es

k]W
g
k)),

k = {1, 2},

(9)

where Wd
k ∈ RD×Dg ,Wg

k ∈ R(D+Dg)×1 are learnable
parameters. In this way, we obtain the time-varying adaptive
graph structure for each patch’s time horizon to explicitly
characterize the dynamic correlations underlying IMTS:

Ap = Softmax
(
ReLU

(
Ep,1E

T
p,2

))
(10)

4.2.3. GNNS TO MODEL INTER-TIME SERIES
CORRELATION

Based on the learned graph structures, we introduce
GNNs (Kipf & Welling, 2016; Wu et al., 2020a; Zhou et al.,
2020) to model the dynamic inter-time series correlations at

a patch-level resolution:

Hp = ReLU

(
M∑

m=0

(Ap)
mHtf

p Wgnn
m

)
∈ RN×D, (11)

where M is the number of layers for GNNs, and Wgnn
m ∈

RD×D are learnable parameters at m-th layer.

In practical usage, we can flexibly stack multiple K intra-
and inter-time series modeling blocks to effectively address
diverse IMTS modeling scenarios.

4.3. IMTS Forecasting

Subsequently, a flattened layer with a linear head is used to
obtain the final latent representation for each variable:

H = Flatten([Hp]
P
p=1)W

f ∈ RN×Do , (12)

where Wf ∈ RPD×Do are learnable parameters.

Given Hn ∈ H for n-th variable and a set of forecasting
queries {[qnj ]

Qn

j=1}Nn=1, an MLP projection layer is used to
generate the predicted results for these queries:

x̂n
j = MLP([Hn∥ϕ(qnj )]). (13)

The model is trained by minimizing the Mean Squared Er-
ror (MSE) loss between the prediction and the ground truth:

L =
1

N

N∑
n=1

1

Qn

Qn∑
j=1

(
x̂n
j − xn

j

)2
. (14)

4.4. Analysis on Scalability

As the proposed transformable patching independently pro-
cesses each univariate irregular time series to achieve align-
ment of IMTS, the average sequence length to be processed
for IMTS equals to their average number of observations,
i.e., Lavg = 1

N

∑N
n=1 Ln. Based on the analysis in Eq. (2),

it is evident that by using transformable patching, the aver-
age sequence length to be processed, denote as Ltp, serves
as a lower bound relative to the resulting average sequence
length, Lcpr, derived by canonical pre-alignment represen-
tation:

Ltp = Lavg ≤ Lmax ≤ Lcpr ≤ N × Lavg. (15)

It prevents Ltp from explosively growing proportional to
the number of variables, enhancing the model’s scalability
as the variable count increases. We also provide empiri-
cal evidence to analyze the scalability in Section 5.4 and
Appendix A.2.
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Table 1: Overall performance evaluated by MSE and MAE (mean± std). The best-performing and second-best results are
highlighted in bold and underline, respectively.

Algorithm PhysioNet MIMIC Human Activity USHCN
MSE×10−3 MAE×10−2 MSE×10−2 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−1 MAE×10−1

DLinear 41.86 ± 0.05 15.52 ± 0.03 4.90 ± 0.00 16.29 ± 0.05 4.03 ± 0.01 4.21 ± 0.01 6.21 ± 0.00 3.88 ± 0.02
TimesNet 16.48 ± 0.11 6.14 ± 0.03 5.88 ± 0.08 13.62 ± 0.07 3.12 ± 0.01 3.56 ± 0.02 5.58 ± 0.05 3.60 ± 0.04
PatchTST 12.00 ± 0.23 6.02 ± 0.14 3.78 ± 0.03 12.43 ± 0.10 4.29 ± 0.14 4.80 ± 0.09 5.75 ± 0.01 3.57 ± 0.02
Crossformer 6.66 ± 0.11 4.81 ± 0.11 2.65 ± 0.10 9.56 ± 0.29 4.29 ± 0.20 4.89 ± 0.17 5.25 ± 0.04 3.27 ± 0.09
Graph Wavenet 6.04 ± 0.28 4.41 ± 0.11 2.93 ± 0.09 10.50 ± 0.15 2.89 ± 0.03 3.40 ± 0.05 5.29 ± 0.04 3.16 ± 0.09
MTGNN 6.26 ± 0.18 4.46 ± 0.07 2.71 ± 0.23 9.55 ± 0.65 3.03 ± 0.03 3.53 ± 0.03 5.39 ± 0.05 3.34 ± 0.02
StemGNN 6.86 ± 0.28 4.76 ± 0.19 1.73 ± 0.02 7.71 ± 0.11 8.81 ± 0.37 6.90 ± 0.02 5.75 ± 0.09 3.40 ± 0.09
CrossGNN 7.22 ± 0.36 4.96 ± 0.12 2.95 ± 0.16 10.82 ± 0.21 3.03 ± 0.10 3.48 ± 0.08 5.66 ± 0.04 3.53 ± 0.05
FourierGNN 6.84 ± 0.35 4.65 ± 0.12 2.55 ± 0.03 10.22 ± 0.08 2.99 ± 0.02 3.42 ± 0.02 5.82 ± 0.06 3.62 ± 0.07

GRU-D 5.59 ± 0.09 4.08 ± 0.05 1.76 ± 0.03 7.53 ± 0.09 2.94 ± 0.05 3.53 ± 0.06 5.54 ± 0.38 3.40 ± 0.28
SeFT 9.22 ± 0.18 5.40 ± 0.08 1.87 ± 0.01 7.84 ± 0.08 12.20 ± 0.17 8.43 ± 0.07 5.80 ± 0.19 3.70 ± 0.11
RainDrop 9.82 ± 0.08 5.57 ± 0.06 1.99 ± 0.03 8.27 ± 0.07 14.92 ± 0.14 9.45 ± 0.05 5.78 ± 0.22 3.67 ± 0.17
Warpformer 5.94 ± 0.35 4.21 ± 0.12 1.73 ± 0.04 7.58 ± 0.13 2.79 ± 0.04 3.39 ± 0.03 5.25 ± 0.05 3.23 ± 0.05

mTAND 6.23 ± 0.24 4.51 ± 0.17 1.85 ± 0.06 7.73 ± 0.13 3.22 ± 0.07 3.81 ± 0.07 5.33 ± 0.05 3.26 ± 0.10
Latent-ODE 6.05 ± 0.57 4.23 ± 0.26 1.89 ± 0.19 8.11 ± 0.52 3.34 ± 0.11 3.94 ± 0.12 5.62 ± 0.03 3.60 ± 0.12
CRU 8.56 ± 0.26 5.16 ± 0.09 1.97 ± 0.02 7.93 ± 0.19 6.97 ± 0.78 6.30 ± 0.47 6.09 ± 0.17 3.54 ± 0.18
Neural Flow 7.20 ± 0.07 4.67 ± 0.04 1.87 ± 0.05 8.03 ± 0.19 4.05 ± 0.13 4.46 ± 0.09 5.35 ± 0.05 3.25 ± 0.05

T-PATCHGNN 4.98 ± 0.08 3.72 ± 0.03 1.69 ± 0.03 7.22 ± 0.09 2.66 ± 0.03 3.15 ± 0.02 5.00 ± 0.04 3.08 ± 0.04

5. Experiments
5.1. Experimental Setup

5.1.1. DATASETS

We involve four datasets, including PhysioNet, MIMIC,
Human Activity, and USHCN, across diverse subject areas,
such as healthcare, biomechanics, and climate science, to
comprehensively evaluate models’ performance on IMTS
forecasting tasks. Consistently, we randomly divide all the
instances among each dataset into training, validation, and
test sets adhering to ratios of 60%, 20%, and 20%. Please
refer to Appendix Section A.5 for details of these datasets.

5.1.2. IMPLEMENTATION DETAILS

All experiments are performed on a Linux server with 20-
core Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz
and NVIDIA Tesla V100 GPU. To ensure a fair comparison,
for all compared models, we consistently set the hidden
dimensions to 64 for PhysioNet and MIMIC, and 32 for
Human Activity and USHCN. The batch size is chosen as
192 for USHCN and 32 for the other datasets. We employ
Adam optimizer for these models’ training and apply early
stopping when the validation loss doesn’t decrease over 10
epochs. To mitigate randomness, we perform each experi-
ment using five different random seeds and present the mean
and standard deviation of the results.

For detailed setups of T-PATCHGNN, we chose the patch
window size s as 8 hours for PhysioNet and MIMIC, 300
milliseconds for Human Activity, and 2 months for USHCN.
To reduce the number of resulting patches, we do not make
the patch segmenting overlap and maintain a sliding stride
for the patch window equal to its size. The dimension of
time embedding Dt and variable embedding Dg is set to 10.

The number of heads H in Transformer, layers M in GNNs,
and the number of block K is selected as 1. We adopt three
layers MLPs to instantiate the meta-filters in TTCN and the
output projection layer. We set the learning rate to 0.001 for
the entire model training.

5.1.3. EVALUATION METRICS

Current IMTS forecasting studies predominantly utilize
Mean Square Error (MSE) for the evaluation, which
tends to be sensitively affected by outliers and is hard
to interpret (Chai & Draxler, 2014). To offer a more
comprehensive assessment of model performance, we
also incorporate Mean Absolute Error (MAE), a metric
extensively employed in evaluations for classical time
series forecasting (Lim & Zohren, 2021; Fan et al.,
2023). These two metrics are formally defined as fol-
lows: MSE = 1

N

∑N
n=1

1
Qn

∑Qn

j=1

(
x̂n
j − xn

j

)2
, MAE =

1
N

∑N
n=1

1
Qn

∑Qn

j=1

∣∣x̂n
j − xn

j

∣∣.
5.1.4. BASELINES

To establish a thorough benchmark for the under-explored
IMTS forecasting task, we incorporate seventeen relevant
baselines for a fair comparison, covering the SOTA mod-
els from (1) MTS forecasting: DLinear (Zeng et al., 2023),
TimesNet (Wu et al., 2022), PatchTST (Nie et al., 2022),
Crossformer (Zhang & Yan, 2022), Graphwavenet (Wu et al.,
2019), MTGNN (Wu et al., 2020b), StemGNN (Cao et al.,
2020), CrossGNN (Huang et al., 2023) and FourierGNN (Yi
et al., 2023), (2) IMTS classification: GRU-D (Che et al.,
2018), SeFT (Horn et al., 2020), RainDrop (Zhang et al.,
2021b), Warpformer (Zhang et al., 2023a), (3) IMTS
interpolation: mTAND (Shukla & Marlin, 2021), and
(4) IMTS forecasting: Latent ODEs (Rubanova et al., 2019),
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Table 2: Ablation results of T-PATCHGNN on four datasets.

Ablation PhysioNet MIMIC Human Activity USHCN
MSE×10−3 MAE×10−2 MSE×10−2 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−1 MAE×10−1

Complete 4.98 ± 0.08 3.72 ± 0.03 1.69 ± 0.03 7.22 ± 0.09 2.66 ± 0.03 3.15 ± 0.02 5.00 ± 0.04 3.08 ± 0.04

w/o Patch 5.27 ± 0.06 3.88 ± 0.03 1.73 ± 0.02 7.41 ± 0.06 2.85 ± 0.05 3.28 ± 0.02 5.32 ± 0.02 3.30 ± 0.09
rp Patch 5.64 ± 0.13 3.97 ± 0.05 1.72 ± 0.01 7.29 ± 0.02 2.82 ± 0.02 3.29 ± 0.04 5.20 ± 0.07 3.17 ± 0.07
w/o VE 10.53 ± 0.15 5.30 ± 0.01 3.71 ± 0.02 12.06 ± 0.03 2.79 ± 0.03 3.18 ± 0.03 5.08 ± 0.03 3.25 ± 0.08
w/o PE 5.10 ± 0.02 3.83 ± 0.06 1.71 ± 0.01 7.42 ± 0.11 2.79 ± 0.02 3.21 ± 0.04 5.08 ± 0.02 3.22 ± 0.08
w/o Transformer 5.10 ± 0.12 3.83 ± 0.07 1.71 ± 0.02 7.27 ± 0.06 2.78 ± 0.04 3.20 ± 0.04 5.22 ± 0.06 3.19 ± 0.11

CRU (Schirmer et al., 2022), Neural Flows (Biloš et al.,
2021). The details of these baseliens are provided in Ap-
pendix Section A.6.

5.2. Main Results

Table 1 reports the models’ forecasting performance eval-
uated by MSE and MAE on four datasets. As can be seen,
T-PATCHGNN archives the consistently best performance
on all datasets and even outperforms the second-best base-
line over 10%. Besides, we observe the MTS forecasting
models, including patching-based models and GNN-based
models, do not attain consistently competitive performance
on IMTS forecasting. It indicates that straightforwardly
applying these two techniques to IMTS fails to effectively
handle the challenging intra- and inter-time series model-
ing. Moreover, the existing IMTS forecasting models do
not achieve satisfactory performance, probably because they
fail to effectively model inter-time series correlations to en-
hance forecasting performance. We also test these models’
performance on longer and shorter forecasting windows,
where the results are provided in Appendix Section A.1.

5.3. Ablation Study

We evaluate the performance of T-PATCHGNN and its sev-
eral variants on four datasets. (1) Complete represents the
model without any ablation; (2) w/o Patch removes trans-
formable patching and adopts the canonical pre-alignment
representation; (3) rp Patch replaces transformable patch-
ing with standard time series patching (Nie et al., 2022);
(4) w/o VE removes the variable embedding in Eq. (9)
when constructing adaptive graph; (5) w/o PE removes
the patch embedding when constructing adaptive graph;
(6) w/o Transformer removes the Transformer module in
the model.

Table 2 shows the results of model ablation. As can be seen,
removing any component can lead to a performance descent
compared to the complete model. From these results, we
observe w/o Patch causes notable performance degradation
for all datasets, which proves that patching irregular time se-
ries can indeed facilitate the subsequent intra- and inter-time
series modeling for IMTS. However, directly using standard
time series patching can even lead to worse performance

Table 3: Evidence of sequence length explosion. Aligned
length represents the sequence length after canonical pre-
alignment. Amplification indicates the multiple of growth
by comparing the aligned length of IMTS to the original
number of observations.

Description PhysioNet MIMIC Human Activity USHCN

# Variable 41 96 12 5
Avg # observations 10.7 1.5 30.2 36.1
Avg aligned length 75 46.1 120.6 163.9
Max aligned length 216 643 130 214
Avg amplification ×7.0 ×21.9 ×4.0 ×4.5
Max amplification ×16.8 ×96.0 ×4.0 ×5.0

than w/o Patch in some datasets like PhysioNet. It verifies
our claims that the standard patching faces troubles with the
variability in the patch’s temporal resolution, which may
even exacerbate the inherent irregularity and asynchrony
characteristics in IMTS modeling. Comparing the results
of w/o VE and w/o PE, we can find that variable’s inherent
characteristic is more important than its dynamic patterns to
characterize the inter-time series correlations for physiolog-
ical signals forecasting tasks (PhysioNet and MIMIC). This
makes sense because there is a remarkable semantic dis-
crepancy between these signals, it is difficult to accurately
characterize their interrelation without effectively identify-
ing them. However, we observe that the dynamic patch
embedding plays a significant role on human motion and
climate forecasting, which indicates the variables’ correla-
tion in these tasks can usually dynamically vary along with
time. For instance, temperature decreases in winter often
lead to increased snow cover, but this correlation does not
necessarily apply in summer.

5.4. Scalability and Efficiency Analysis

Table 3 showcases the extent of the sequence length explo-
sion issue following canonical pre-alignment representation
across four datasets. It is evident that, on average, sequence
lengths can expand more than 20-fold from the original num-
ber of observations, particularly when dealing with a larger
number of variables. In extreme cases, the sequence length
may increase explosively proportional to the number of vari-
ables (revealed by max amplification), posing significant
scalability challenges. However, our transformable patching
effectively circumvents this issue by processing the original
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(a) Average training time per epoch

(b) Average inference time per instance

Figure 3: Efficiency comparison of training and inference.

observation sequences without requiring pre-alignment.

To further study the benefits of transformable patching on
the model’s efficiency, we present the average training time
per epoch and average inference time per IMTS instance on
MIMIC in Figure 3. We can observe T-PATCHGNN out-
performs all models that employ canonical pre-alignment
representation in terms of efficiency during both training
and inference phases. Furthermore, when compared to cur-
rent predominant ODE-based IMTS forecasting models, T-
PATCHGNN even achieves at least 65 times faster training
speeds and 15 times quicker inference speeds. More analyt-
ical testing on models’ scalability with increased variables
is provided in Appendix A.2.

5.5. Effect of Patch Size

Figure 4 depicts the effect of different patch window sizes
on various datasets. We can observe the impact of patch
size on performance varies across datasets from different
areas. Specifically, for PhysioNet and MIMIC, performance
remains relatively stable with smaller patch sizes and peaks
when the patch size reaches 8 hours. This could be attributed
to the sparse nature of many physiological signals, where a
timespan shorter than four hours may not encompass suffi-
cient observations to capture local patterns effectively within
sub-series. However, as patch size increases beyond this
point, we observe a decline in model performance. An ex-
cessively large patch size results in a reduced patch-level
temporal resolution, adversely affecting the detailed intra-
and inter-time series analysis. When it comes to Human
Activity and USHCN, a relatively small patch size would
be preferred. As the IMTS from these areas usually exhibit
highly dynamic patterns, a relatively small patch size can
enable finer-grained modeling of dynamics within IMTS.

(a) PhysioNet (b) MIMIC

(c) Human Activity (d) USHCN

Figure 4: Effect of different patch sizes.

From another perspective, the optimal patch size can be se-
lected by comprehensively considering the forecasting and
observed window sizes. Long-range forecasting and obser-
vation usually involve a larger patch size to better capture
the trend semantics within patches and long-range depen-
dencies across time series (e.g., PhysioNet and MIMIC),
whereas short-range forecasting (e.g., Human Activity and
USHCN) are more recommended to choose a relatively
smaller patch size for finer-grained resolution modeling.
The sensitivity analysis on more hyper-parameters is pro-
vided in Appendix A.3.

6. Conclusion
This paper presented a Transformable Patching Graph Neu-
ral Networks approach, T-PATCHGNN, to address the IMTS
forecasting problem. T-PATCHGNN achieved the align-
ment between asynchronous IMTS by transforming each
univariate irregular time series into a series of transformable
patches with varying observation counts but maintaining uni-
fied time horizon resolution. This transformation enabled
the capture of local semantics within IMTS and seamlessly
facilitated intra- and inter-time series modeling without a
canonical pre-alignment representation process, prevent-
ing the aligned sequence length from explosively growing
proportional to the increasing variables. Building on trans-
formable patching, we then presented the time-adaptive
graph neural networks to model dynamic inter-time series
correlations based on a series of learned time-varying adap-
tive graphs. We demonstrated the remarkable superiority
of T-PATCHGNN on a comprehensive IMTS forecasting
benchmark we build.
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Table 4: Performance of varying observation and forecast horizons.

Algorithm History=3h, Forecast=45h History=12h, Forecast=36h History=36h, Forecast=12h History=45h, Forecast=3h
MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−3 MAE×10−2

DLinear 51.82 17.13 43.56 15.73 41.63 15.48 41.23 15.51
TimesNet 57.30 10.70 24.95 7.62 13.57 5.50 13.86 5.65
PatchTST 42.18 13.67 18.56 7.80 9.85 5.11 8.53 4.64
Crossformer 9.48 5.86 8.57 5.70 5.70 4.47 5.33 4.44
Graph Wavenet 9.43 5.86 7.23 4.82 4.71 3.90 4.10 3.73
MTGNN 9.83 5.95 7.48 5.01 5.08 3.99 5.22 4.19
StemGNN 8.70 5.37 7.46 4.84 6.65 4.69 5.47 4.56
CrossGNN 10.44 6.56 7.97 5.37 6.87 4.73 4.80 4.24
FourierGNN 9.59 5.61 7.95 4.99 6.35 4.61 5.37 4.34

GRU-D 8.18 4.99 6.89 4.55 4.42 3.66 4.44 3.79
SeFT 9.78 5.55 9.30 5.41 9.15 5.15 8.76 5.57
RainDrop 10.47 5.72 9.89 5.62 9.70 5.40 9.28 5.62
Warpformer 8.48 5.13 7.57 4.83 5.60 4.09 6.44 4.67

mTAND 8.45 5.23 7.11 4.67 5.71 4.17 5.44 4.33
Latent-ODE 8.25 5.04 7.20 4.69 6.70 4.36 7.10 5.33
CRU 9.20 5.38 9.20 5.31 9.50 5.41 11.60 6.98
Neural Flow 8.30 4.99 8.50 5.27 7.70 4.68 7.40 5.10

T-PATCHGNN 8.01 4.87 6.48 4.19 4.14 3.31 3.69 3.25

Table 5: Training and inference time with increased variables.

Algorithm
# Variable 100 500 1000 2000

Training(s) Inference(ms) Training(s) Inference(ms) Training(s) Inference(ms) Training(s) Inference(ms)

GRU-D 870.79 469.43 4178.09 2228.06 8839.45 4819.39 > 10000 12073.38
Warpformer 138.66 208.31 out of memory out of memory out of memory out of memory out of memory out of memory
mTAND 6.32 4.15 22.71 30.92 78.92 126.40 out of memory out of memory
T-PATCHGNN 5.05 2.30 5.65 2.45 6.53 3.08 7.45 3.19

A. Additional Experiment
A.1. Varying Observation and Forecast Horizons

Table 4 presents the model’s performance on longer- (forecast next 36 / 45 hours using historical 12 / 3 hours) and shorter-
horizon (forecast next 12 / 3 hours using historical 36 / 45 hours) forecasting on PhysioNet. We can observe T-PATCHGNN
achieves the consistently best performance for different forecasting horizons. Moreover, our model showcases larger
superiority over baselines to process longer historical windows (e.g., 24h, 36h, and 45h), which is probably attributed
to the transformable patching to facilitate long-range time series dependencies modeling. Furthermore, it shows that the
performance of these algorithms tends to be closer when the historical observed window becomes very short (e.g., 3h). This
may be because a shorter historical window contains less semantics and is thus easier to capture by different models. While
most models perform better when forecasting horizon window reduction, the ODE-based models yet perform worse when
using a longer history to predict shorter horizons. This may be because the too-long sequence and less labeled data degrade
the performance of this type of method.

A.2. Model Scalability with Increased Variables

To further analyze the impact of pre-alignment representation on scalability, we created a synthetic dataset designed to
flexibly test the influence of increased variables and report the average training time per epoch and inference time per
instance. In this test, we generated 1,000 IMTS instances with multiple variables. Each variable comprises an average of
10 observations, randomly distributed at different timestamps (in seconds) within a day. To conserve memory and enable
testing with larger variables, we set the batch size to 1 and restricted the hidden dimension to 2. As illustrated in Table 5,
we observe that the sequence length explosion problem deteriorates as the number of variables increases. This leads to
pronounced scalability issues affecting both computational efficiency and memory usage for the pre-alignment methods,
i.e., GRU-D, Warpformer and mTAND. However, our T-PATCHGNN with transformable patching effectively mitigates this
problem, maintaining high training and inference efficiency despite the increased variables.
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Figure 5: Effect of different block K.
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Figure 6: Effect of different variable embedding (VE)&time embedding (TE) dimensions Dt&Dg .

A.3. Parameter Sensitivity

Figure 5 displays the effect of different intra- and inter-time series modeling blocks. We observe stacking multiple K blocks
always has the potential to achieve better performance. However, it also costs more expensive computational overheads.
Therefore, we choose K = 1 for the major experiments.

Figure 6 shows the effect of dimensions Dt&Dg of variable&time embeddings. It indicates relatively small sizes (e.g., 10 or
15) usually perform better. A too-large size may lead to performance collapse due to the potential data sparsity issues for
some variables to learn semantic embedding.

Figure 7 reports the effect of different hidden dimension D. We find setting the hidden dimension to 32 for smaller datasets
(e.g., Human Activity and USHCN) and 64 for larger datasets (e.g., PhysioNet) would be a good choice. However, this is
not absolute. While MIMIC is a large-scale dataset, its best setting is 32 due to a notable sparsity in its measurements. The
choice of hidden dimension should comprehensively consider the number of training data and the sparsity of measurements.
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Figure 7: Effect of different hidden dimension D.
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(a) Patch 1 (0-7h) (b) Patch 2 (8-15h) (c) Patch 3 (16-23h)

Figure 8: Adjacent matrices of time-adaptive graphs learned from PhysioNet.
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(g) Patch 7 (Jan, Feb) (h) Patch 8 (Mar,
Apr)

(i) Patch 9 (May, Jun) (j) Patch 10 (Jul,
Aug)

(k) Patch 11 (Sep,
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Figure 9: Adjacent matrices of time-adaptive graphs learned from USHCN.

A.4. Visualization on Learned Adaptive Graphs

Figure 8 and Figure 9 provide visualizations on the learned adjacent matrices of adaptive graph structures to analyze how
they work in different contexts. Overall, we find the learned adjacent matrices are usually sparse, which implies our model
attempts to learn the real correlations from data instead of simply aggregating these variables. Moreover, we observe
remarked and insightful time-varying correlations learned from dynamic contexts (e.g., USHCN), further underscoring the
necessity of learning time-adaptive graph structures.

For PhysioNet, as illustrated in Figure 8, we observe our model can learn insightful correlations between different indicator
variables of patients. For example, the adjacent matrix indicates that heart rate (HR) and respiratory rate (RespRate) are
highly correlated because they usually simultaneously increase during physical activity or stress to meet the body’s higher
demand for oxygen. A high correlation is also displayed between RespRate and body temperature (Temp) as they usually
increase together in many situations like when the body is fighting an infection. In addition, some underlying and more
complex correlations may be automatically discovered from data through the graph structure learning process. For instance,
it indicates that there is a high correlation between blood urea nitrogen (BUN) and Lactate levels. Typically, BUN levels
reflect renal function. Impaired renal function can lead to reduced clearance of both urea and lactate, and thus cause lactate
to accumulate.

The cases from USHCN are illustrated in Figure 9, where the learned graph structures exhibit pronounced seasonal variation.
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For instance, in winter (Patch 1 (Jan, Feb)), snowfall (SNOW) markedly influences maximum temperature forecasts (TMAX).
This effect gradually wanes from winter to summer, correlating with the reduction or absence of snowfall. As seasons cycle
from summer back to winter, this influence progressively strengthens. A similar trend is also showcased between TMAX
and snow depth (SNWD). Furthermore, we discover that these correlations exhibit cyclical changes on an annual scale. This
highlights our model’s ability to learn the temporal dynamics of variable correlations within data.

A.5. Description on Datasets

PhysioNet2 (Ikaro Silva & Mark, 2012) contains 12,000 IMTS corresponding to different patients, where each consists of a
total of 41 clinical signal variables irregularly collected during the initial 48 hours following the patient’s admission to the
ICU. For each IMTS, we use the first 24 hours as the observed data to predict the queried values in the next 24 hours.

MIMIC3 (A. Johnson & Mark, 2016) is a widely accessible clinical database that houses electronic health records of patients
in critical care. Following the pre-processing provided by (Biloš et al., 2021), we obtain 23,457 patients’ IMTS collected
from the first 48 hours after the patient’s admission, and each with 96 variables. Similar to the PhysioNet, we utilize the
initial 24-hour period as the observed data to forecast the target values for the subsequent 24-hour time frame.

Human Activity4 comprises 12 variables consisting of irregularly measured 3D positional records of four different sensors
worn in the human left ankle, right ankle, belt, and chest. The dataset is gathered from five individuals executing a diverse
range of activities such as walking, sitting, lying down, standing, and others. To better align with the requirements of
realistic forecasting scenarios, we chunk the original time series to obtain a total of 5,400 IMTS, each of which contains
4,000 milliseconds span, and we leverage the first 3,000 milliseconds as the observed data to predict the positional value of
sensors in the next 1,000 milliseconds.

Given that data missing is a frequent occurrence in climate research possibly due to sensor malfunctions, measurement
errors, or data acquisition issues, we follow the previous works (De Brouwer et al., 2019; Schirmer et al., 2022) and have
chosen the USHCN5 (Menne & Vose) as one of our evaluation datasets. USHCN encompasses daily measurements for 5
climate variables spanning over 150 years collected by widespread meteorological stations throughout the United States. We
follow the pre-processing adopted by (De Brouwer et al., 2019) to obtain 1,114 stations and four-year observational periods
between 1996 and 2000. To meet realistic forecasting requirements, we chunk the data to acquire a total of 26,736 IMTS,
each of which uses the previous 24 months’ climate data to forecast the following month’s climate conditions.

A.6. Baseline Details

We incorporate seventeen relevant baselines for a fair comparison, covering the SOTA models from MTS forecasting,
and IMTS classification, interpolation, and forecasting. We carefully search the key hyper-parameters of these models
around their recommended setups. For a fair comparison across all models, we standardize the hidden dimensions to 64
for PhysioNet and MIMIC, and 32 for Human Activity and USHCN. We select a batch size of 192 for USHCN and 32 for
the other datasets. The Adam optimizer is used for training, with early stopping implemented if there is no reduction in
validation loss after 10 epochs.

A.6.1. MODELS FOR MTS FORECASTING

For MTS forecasting models, we input sequences after canonical pre-alignment and incorporate the observed time, mask
information, and forecasting queries as additional features into these models.

DLinear (Zeng et al., 2023) decomposes time series into trend series and remainder series, subsequently employing two
single-layer linear networks to model each of these sequences to accomplish the forecasting task. We use the following
setting in our experiment: The window size of moving average is 25. The learning rate is 1× 10−4.

TimesNet (Wu et al., 2022) disassembles complex sequential changes into different periods through a modular structure, and
achieves unified modeling of both inter-period and intra-period representation by transforming the original one-dimensional
time series into a two-dimensional space to capture cross-time dependency for forecasting. We use the following setting in

2https://archive.physionet.org/challenge/2012
3https://mimic.mit.edu/
4https://archive.ics.uci.edu/dataset/196/localization+data+for+person+activity
5https://www.osti.gov/biblio/1394920
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our experiment: The number of top-k for period is 5. The number of the encoder layers is 2. The learning rate is 1× 10−4.

PatchTST (Nie et al., 2022) is a Transformer-based model using Patch and Channel Independence to capture cross-time
dependency for forecasting. We use the following setting in our experiment: The number of multi-heads is 2. The length of
the patch is 16. The length of the stride is 8. The number of the encoder layers is 1. The learning rate is 1× 10−4.

Crossformer (Zhang & Yan, 2022) is a Transformer-based model using Cross-Time Attention and Cross-Dimension
Attention to capture cross-dimension dependency and cross-time dependency for forecasting. We use the following setting
in our experiment: The length of the segment is 12. The size of the window is 2. The number of the encoder layers is 1 for
the Human Activity and 2 for other datasets. The number of the multi-heads is 3 for the Human Activity and 8 for other
datasets. The learning rate is 1× 10−3.

We use the implementation provided by https://github.com/thuml/TimesNet to reproduce the above four baseline models.

GraphWavenet (Wu et al., 2019) leverages the self-adaptive adjacency matrix and diffusion convolution to capture the
cross-dimension dependency and uses gated mechanism and dilated casual convolution to capture the cross-time dependency
for forecasting. We use the following setting in our experiment: The dilation exponential is 3 for MIMIC and 2 for other
datasets. The size of the kernel is 5 for PhysioNet and Human Activity, 7 for USHCN and 9 for MIMIC. The number of the
blocks is 2 for Human Activity and 3 for other datasets. The number of convolution layers is 3 for MIMIC and 4 for other
datasets. The learning rate is 1× 10−3. We use the official implementation at https://github.com/nnzhan/Graph-WaveNet.

MTGNN (Wu et al., 2020b) integrates graph convolutional networks and temporal convolutional networks to capture
cross-dimensional relationships and cross-temporal dependencies in a direct and explicit manner. We use the following
setting in our experiment: The dilation exponential is 2 for PhysioNet and Human Activity, 3 for USHCN and 4 for MIMIC.
The size of the kernel is 7. The number of the convolution layers is 4 for MIMIC and USHCN, 5 for PhysioNet and Human
Activity. The size of the subgraph is 5 for USHCN, 12 for Human Activity and 20 for PhysioNet and MIMIC. The learning
rate is 1× 10−3. We use the official implementation at https://github.com/nnzhan/MTGNN.

StemGNN (Cao et al., 2020) transfers the spatiotemporal domain to the frequency domain through discrete Fourier transform
and graph Fourier transform while capturing spatiotemporal dependencies in the frequency domain. We use the following
setting in our experiment: The number of layers is 5 and the learning rate is 1× 10−4. We use the official implementation at
https://github.com/microsoft/StemGNN.

CrossGNN (Huang et al., 2023) uses adaptive multi-scale identifier to construct multi-scale time series with different noise
levels, subsequently utilize cross-scale GNN to capture the cross-time dependency and cross-variable GNN to capture the
cross-dimension dependency for forecasting. We use the following setting in our experiment: The dimension of the scale
vector and variable vector is 10. The scale number is 4. The number of cross-scale neighbors is 10. The learning rate is
1× 10−3. We use the official implementation at https://github.com/hqh0728/CrossGNN.

FourierGNN (Yi et al., 2023) initially constructs a hypervariate graph and transforms features into the Fourier space.
Subsequently, it stacks Fourier graph operators in the Fourier domain and finally maps the convolved results back to the
original feature space for forecasting. We use the following setting in our experiment: The number of frequency is 1. The
scale is 0.02. The hidden size factor is 1. The sparsity threshold is 0.01. The learning rate is 1× 10−3. We use the official
implementation at https://github.com/aikunyi/FourierGNN.

A.6.2. MODELS FOR IRREGULAR TIME SERIES CLASSIFICATION

To adapt these classification baseline models for forecasting tasks, we substitute their classification output layer with a
MLP-based forecasting output layer that is the same as us.

GRU-D (Che et al., 2018) is a GRU-based model using time decay and missing data imputation strategies to handle irregularly
sampled time series. We set learning rate to 1×10−3 and follows the implementation at https://github.com/zhiyongc/GRU-D.

SEFT (Horn et al., 2020) converts the time series into a set encoding, then using set functions to model them. We use the
following setting in our experiment: The number of layers is 2. The learning rate is 1× 10−3. We use the implementation
provided by https://github.com/mims-harvard/Raindrop.

RainDrop (Zhang et al., 2021b) employs neural message passing and temporal self-attention to model the dependencies
among sensors, considering cross-sample shared relationships between sensors and adaptively estimates unaligned ob-
servations based on neighboring measurements. We use the following setting in our experiment: The dimension of the
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observation is 4. The number of layers and heads for the Transformer is 2. The learning rate is 1× 10−3. We use the official
implementation at https://github.com/mims-harvard/Raindrop.

Warpformer (Zhang et al., 2023a) is a Transformer-based model that adopts a tailored input representation, explicitly
encapsulating both the within-series irregularities and inter-series variations. It further incorporates a warping module
to flexibly synchronize irregular time series at a predefined scale, along with a custom-designed attention module for
advanced representation learning. We use the following setting in our experiment: The number of warp is 0-0.2-1.
The number of the heads is 1 and layers is 2. The learning rate is 1 × 10−3. We use the official implementation at
https://github.com/imJiawen/Warpformer.

A.6.3. MODELS FOR IRREGULAR TIME SERIES INTERPOLATION AND FORECASTING

mTAND (Shukla & Marlin, 2021) is an IMTS interpolation model that can be easily applied to forecasting tasks by
only replacing the queries for interpolation with forecasting. It learns embeddings for numerical values corresponding
to continuous time steps and generates fixed-length representations for variable-length sequential data using an attention
mechanism. We use the following setting in our experiment: The encoder and the decoder is mTAND-rnn, the k-iwae is
5, the std is 0.01, the number of the ref-points is 64. The learning rate is 1× 10−3. We use the official implementation at
https://github.com/reml-lab/mTAN.

Latent-ODE (Rubanova et al., 2019) is an ODE-based model that improves RNNs with continuous-time hidden state
dynamics specified by neural ODEs. We use the following setting in our experiment: The number of the rec-layers and
gen-layers is 3 for PhysioNet and USHCN and 1 for MIMIC and Human Activity. The learning rate is 1× 10−3. We use the
official implementation at https://github.com/YuliaRubanova/latent-ode.

CRU (Schirmer et al., 2022) integrates the Kalman Filter with an encoder-decoder architecture to facilitate updates of the
latent states in ODEs. We use the following setting in our experiment: The scaling factor of timestamps for numerical
stability is 0.2 for PhysioNet and MIMIC and 0.3 for USHCN and Human Activity. The variance activation function in
encoder is square and the variance activation function in decoder is exp. The activation function for transition net is relu. The
number of bias is 15 for USHCN and Human Activity and 20 for PhysioNet and MIMIC. The bandwidth is 3 for USHCN
and Human Activity and 10 for PhysioNet and MIMIC. The learning rate is 1× 10−3. We use the official implementation at
https://github.com/boschresearch/Continuous-Recurrent-Units.

Neural Flow (Biloš et al., 2021) models the solution curves of ODEs through neural networks. We use the following
setting in our experiment: The number of the flow-layers is 4 for MIMIC and 2 for other datasets. The number of the
hidden-layers is 2 for MIMIC and 3 for other datasets. The rec-dims is 20 for MIMIC and 40 for other datasets. The flow
model is GRU for MIMIC and coupling for other datasets. The time-net is TimeTanh for MIMIC and TimeLinear for other
datasets. The time-hidden-dim is 8. The activation is ReLU for MIMIC and Tanh for other datasets. The learning rate is
1× 10−3. The decay of the learning rate is 0.33 for MIMIC and 0.5 for other datasets. We use the official implementation at
https://github.com/mbilos/neural-flows-experiments.
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