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Abstract

The goal in label-imbalanced and group-sensitive classification is to optimize
relevant metrics such as balanced error and equal opportunity. Classical
methods, such as weighted cross-entropy, fail when training deep nets
to the terminal phase of training (TPT), that is training beyond zero
training error. This observation has motivated recent flurry of activity
in developing heuristic alternatives following the intuitive mechanism of
promoting larger margin for minorities. In contrast to previous heuristics, we
follow a principled analysis explaining how different loss adjustments affect
margins. First, we prove that for all linear classifiers trained in TPT, it is
necessary to introduce multiplicative, rather than additive, logit adjustments
so that the interclass margins change appropriately. To show this, we discover
a connection of the multiplicative CE modification to the cost-sensitive
support-vector machines. Perhaps counterintuitively, we also find that, at
the start of training, the same multiplicative weights can actually harm the
minority classes. Thus, while additive adjustments are ineffective in the
TPT, we show that they can speed up convergence by countering the initial
negative effect of the multiplicative weights. Motivated by these findings,
we formulate the vector-scaling (VS) loss, that captures existing techniques
as special cases. Moreover, we introduce a natural extension of the VS-loss
to group-sensitive classification, thus treating the two common types of
imbalances (label/group) in a unifying way. Importantly, our experiments on
state-of-the-art datasets are fully consistent with our theoretical insights and
confirm the superior performance of our algorithms. Finally, for imbalanced
Gaussian-mixtures data, we perform a generalization analysis, revealing
tradeoffs between balanced / standard error and equal opportunity.

1 Introduction
1.1 Motivation and contributions
Equitable learning in the presence of data imbalances is a classical machine learning (ML)
problem, but one with increasing importance as ML decisions are adapted in increasingly
more complex applications directly involving people [3]. Two common types of imbalances
are those appearing in label-imbalanced and group-sensitive classification. In the first type,
examples from a target class are heavily outnumbered by examples from the rest of the classes.
The standard metric of average misclassification error is insensitive to such imbalances and
among several classical alternatives the balanced error is a widely used metric. In the second
type, the broad goal is to ensure fairness with respect to a protected underrepresented group
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(e.g. gender, race). While acknowledging that there is no universal fairness metric [27, 13],
several suggestions have been made in the literature including Equal Opportunity favoring
same true positive rates across groups [15].
Methods for imbalanced data are broadly categorized into data- and algorithm- level ones.
In the latter category, belong cost-sensitive methods and, specifically, those that modify the
training loss to account for varying class/group penalties. Corresponding state-of-the-art
(SOTA) research is motivated by observations that classical methods, such as weighted
cross-entropy (wCE) fail when training overparameterized deep nets without regularization
and with train-loss minimization continuing well beyond zero train-error, in the so-called
terminal phase of training (TPT) ([43] and references therein). Intuitively, failure of wCE
when trained in TPT is attributed to the failure to appropriately adjust the relative margins
between different classes/groups in a way that favors minorities. To overcome this challenge,
recent works have proposed a so-called logit-adjusted (LA) loss that modifies the cross-entropy
(CE) loss by including extra additive hyper-parameters acting on the logits [24, 8, 32]. Even
more recently, [54] suggested yet another modification that introduces multiplicative hyper-
parameters on the logits leading to a class-dependent temperature (CDT) loss. Empirically,
both adjustments show performance improvements over wCE. However, it remains unclear:
Do both additive and multiplicative hyper-parameters lead to margin-adjustments favoring
minority classes? If so, what are the individual mechanisms that lead to this behavior? How
effective are different adjustments at each stage of training?
This paper answers the above questions. Specifically, we argue that multiplicative hyper-
parameters are most effective for margin adjustments in TPT, while additive parameters
can be useful in the initial phase of training. Importantly, this intuition justifies our
algorithmic contribution: we introduce the vector-scaling (VS) loss that combines both types
of adjustments and attains improved performance on SOTA imbalanced datasets. Finally,
using the same set of tools, we extend the VS-loss to instances of group-sensitive classification.
We make multiple contributions as summarized below; see also Figure 1.
● Explaining the distinct roles of additive/multiplicative adjustments. We show
that when optimizing in TPT multiplicative logit adjustments are critical. Specifically, we
prove for linear models that multiplicative adjustments find classifiers that are solutions to
cost-sensitive support-vector-machines (CS-SVM), which by design create larger margins
for minority classes. While effective in TPT, we also find that, at the start of training, the
same adjustments can actually harm minorities. Instead, additive adjustments can speed
up convergence by countering the initial negative effect of the multiplicative ones. The
analytical findings are consistent with our experiments.
● An improved algorithm: VS-loss. Motivated by the unique roles of the two different
types of adjustments, we propose the vector-scaling (VS) loss that combines the best of both
worlds and outperforms existing techniques on benchmark datasets.

Prior Ours
Inductive bias 𝖷 ✓

Group imbalances 𝖷 ✓
Generalization + Tradeoffs 𝖷 ✓

Adjustment type Inductive bias

Additive Multiplicative SVM CS-SVM

LA-loss [MJR+20 +++] ✓ ✓

CDT-loss [YCZC20] ✓ ✓

VS-loss [Ours] ✓ ✓ ✓

Figure 1: Summary of contributions.

● Introducing logit-adjustments for group-
imbalanced data.We introduce a version of VS-loss
tailored to group-imbalanced datasets, thus treat-
ing, for the first time, loss-adjustments for label
and group imbalances in a unifying way. For the
latter, we propose a new algorithm combining our
VS-loss with the previously proposed DRO-method
to achieve state-of-the-art performance in terms of
both Equal Opportunity and worst-subgroup error.
● Generalization analysis / fairness trade-
offs. We present a sharp generalization analysis of
the VS-loss on binary overparameterized Gaussian
mixtures. Our formulae are explicit in terms of data geometry, priors, parameterization
ratio and hyperparameters; thus, leading to tradeoffs between standard error and fairness
measures. We find that VS-loss can improve both balanced and standard error over CE.
Interestingly, the optimal hyperparameters that minimize balanced error also optimize Equal
Opportunity.
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1.2 Connections to related literature
CE adjustments. The use of wCE for imbalanced data is rather old [53], but it becomes
ineffective under overparameterization, e.g. [6]. This deficiency has led to the idea of
additive label-based parameters ιy on the logits [24, 8, 50, 32, 52]. Specifically, [32] proved
that setting ιy = log(πy) (πy denotes the prior of class y) leads to a Fisher consistent
loss, termed LA-loss, which outperformed other heuristics (e.g., focal loss [28]) on SOTA
datasets. However, Fisher consistency is only relevant in the large sample size limit. Instead,
we focus on overparameterized models. In a recent work, [54] proposed the CDT-loss,
which instead uses multiplicative label-based parameters ∆y on the logits. The authors
arrive at the CDT-loss as a heuristic means of compensating for the empirically observed
phenomenon of that the last-layer minority features deviate between training and test
instances [25]. Instead, we arrive at the CDT-loss via a different viewpoint: we show that
the multiplicative weights are necessary to move decision boundaries towards majorities
when training overparameterized linear models in TPT. Moreover, we argue that while
additive weights are not so effective in the TPT, they can help in the initial phase of training.
Our analysis sheds light on the individual roles of the two different modifications proposed
in the literature and naturally motivates the VS-loss in (2). Compared to the above works
we also demonstrate the successful use of VS-loss in group-imbalanced setting and show its
competitive performance over alternatives in [45, 18, 40]. Beyond CE adjustments there
is active research on alternative methods to improve fairness metrics, e.g. [23, 56, 29, 41].
These are orthogonal to CE adjustments and can potentially be used in conjunction.
Relation to vector-scaling calibration. Our naming of the VS-loss is inspired by
the vector scaling (VS) calibration [14], a post-hoc procedure that modifies the logits v
after training via v → ∆ ⊙ v + ι, where ⊙ is the Hadamard product. [55] shows that VS
can improve calibration for imbalanced classes, but, in contrast to VS calibration, the
multiplicative/additive scalings in our VS-loss are part of the loss and directly affect training.
Blessings/curses of overparameterization. Overparameterization acts as a catalyst for
deep neural networks [38]. In terms of optimization, [47, 42, 20, 2] show that gradient-based
algorithms are implicitly biased towards favorable min-norm solutions. Such solutions, are
then analyzed in terms of generalization showing that they can in fact lead to benign
overfitting e.g. [4, 16]. While implicit bias is key to benign overfitting it may come with
certain downsides. As a matter of fact, we show here that certain hyper-parameters (e.g.
additive ones) can be ineffective in the interpolating regime in promoting fairness. Our
argument essentially builds on characterizing the implicit bias of wCE/LA/CDT-losses.
Related to this, [46] demonstrated the ineffectiveness of ωy in learning with groups.

2 Problem setup
Data. Let training set {(xi, gi, yi)}ni=1 consisting of n i.i.d. samples from a distribution D
over X × G × Y; X ⊆ Rd is the input space, Y = [C] ∶= {1, . . . ,C} the set of C labels, and,
G = [K] refers to group membership among K ≥ 1 groups. Group-assignments are known
for training data, but unknown at test time. For concreteness, we focus here on the binary
setting, i.e. C = 2 and Y = {−1,+1}; we present multiclass extensions in the Experiments and
in the Supplementary Material (SM). We assume throughout that y = +1 is minority class.
Fairness metrics. Given a training set we learn fw ∶ X ↦ Y parameterized by w ∈ Rp.
For instance, linear models take the form fw = ⟨w, h(x)⟩ for some feature representation
h ∶ X ↦ R

p. Given a new sample x, we decide class membership ŷ = sign(fw(x)). The
(standard) risk or misclassification error is R ∶= P{ŷ ≠ y} . Let s = (y, g) define a subgroup
for given values of y and g. We also define the class-conditional risks R± = P{ŷ ≠ y ∣y = ±1} ,
and, the sub-group-conditional risks R±,j = P{ŷ ≠ y ∣y = ±1, g = j} , j ∈ [K]. The balanced
error averages the conditional risks of the two classes: Rbal ∶= (R+ +R− ) /2. Assuming
K = 2 groups, Equal Opportunity requires R+,1 = R+,2 [15]. More generally, we consider the
(signed) difference of equal opportunity (DEO) Rdeo ∶= R+,1 −R+,2. In our experiments, we
also measure the worst-case subgroup error max(y∈±1,g∈[K])Ry,g.
Terminal phase of training (TPT). Motivated by modern training practice, we assume
overparameterized fw so that Rtrain = 1

n ∑i∈[n] 1[sign(fw(xi)) ≠ yi] can be driven to zero.
Typically, training such large models continues well-beyond zero training error as the training
loss is being pushed toward zero. As in [43], we call this the terminal phase of training.
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2.1 Algorithms
Cross-entropy adjustments.We introduce the vector-scaling (VS) loss, which combines
both additive and multiplicative logit adjustments, previously suggested in the literature in
isolation. The following is the binary VS-loss for labels y ∈ {±1}, weight parameters ω± > 0,
additive logit parameters ι± ∈ R, and multiplicative logit parameters ∆± > 0:

`VS(y, fw(x)) = ωy ⋅ log (1 + eιy ⋅ e−∆yyfw(x)) . (1)

For imbalanced datasets with C > 2 classes, the VS-loss takes the following form:

`VS(y, fw(x)) = −ωy log (e∆yfy(x)+ιy/ ∑
c∈[C]

e∆cfc(x)+ιc). (2)

Here fw ∶ Rd → R
C and fw(x) = [f1(x), . . . , fC(x)] is the vector of logits. The VS-loss

(Eqns. (1),(2)) captures existing techniques as special cases by tuning accordingly the
additive/multiplicative hyperparameters. Specifically, we recover: (i) weighted CE (wCE)
loss by ∆y = 1, ιy = 0, ωy = π−1

y ; (ii) LA-loss by ∆y = 1; (iii) CDT-loss by ιy = 0.

With the goal of (additionally) ensuring fairness with respect to sensitive groups, we extend
the VS-loss by introducing parameters (∆y,g, ιy,g, ωy,g) that depend both on class and group
membership (specified by y and g, respectively). Our proposed group-sensitive VS-loss is
as follows (multiclass version can be defined accordingly):

`Group−VS(y, g, fw(x)) = ωy,g ⋅ log (1 + eιy,g ⋅ e−∆y,gyfw(x)). (3)

CS-SVM. For linear classifiers fw(x) = ⟨w, h(x)⟩ with h ∶ X → R
p, CS-SVM [31] solves

min
w

∥w∥2 sub. to{⟨w, h(xi)⟩ ≥ δ , yi = +1
⟨w, h(xi)⟩ ≤ −1 , yi = −1 , i ∈ [n], (4)

for hyper-parameter δ ∈ R+ representing the ratio of margins between classes. δ = 1 corre-
sponds to (standard) SVM, while tuning δ > 1 (resp. δ < 1) favors a larger margin δ/∥ŵδ∥2
for the minority vs 1/∥ŵδ∥2 for the majority classes. Thus, δ → +∞ (resp. δ → 0) corresponds
to the decision boundary starting right at the boundary of class y = −1 (resp. y = +1).
Group-sensitive SVM. The group-sensitive version of CS-SVM (GS-SVM), for K = 2
protected groups adjusts the constraints in (4) so that yi⟨w, h(xi)⟩ ≥ δ (or ≥ 1), if gi = 1 (or
gi = 2.) δ > 1, GS-SVM favors larger margin for the sensitive group g = 1. Refined versions
when classes are also imbalanced modify the constraints to yi⟨w,h(xi)⟩ ≥ δyi,gi . Both CS-
SVM and GS-SVM are feasible iff data are linearly separable (see SM). However, we caution
that the GS-SVM hyper-parameters are in general harder to interpret as “margin-ratios".

3 Insights on the VS-loss
Here, we shed light on the distinct roles of the VS-loss hyper-parameters ωy, ιy and ∆y.
3.1 CDT-loss vs LA-loss: Why multiplicative weights?
We first demonstrate the unique role played by the multiplicative weights ∆y through a
motivating experiment on synthetic data in Fig. 2. We generated a binary Gaussian-mixture
dataset of n = 100 examples in R

300 with data means sampled independently from the
Gaussian distribution and normalized such that ∥µ+1∥2 = 2∥µ−1∥2 = 4. We set prior π+ = 0.1
for the minority class +1. For varying model size values p ∈ [5 ∶ 5 ∶ 50 , 75 ∶ 25 ∶ 300] we trained
linear classifier fw(x) = ⟨w, h(x)⟩ using only the first p features, i.e. h(x) = x(1 ∶ p) ∈ Rp.
This allows us to investigate performance versus the parameterization ratio γ = p/n. 1 We
train the model w using the following special cases of the VS-loss (Eqn. (1)): (i) CDT-loss
with ∆+ = δ−1

⋆ ,∆− = 1 (δ⋆ > 0 is set to the value shown in the inset plot; see SM for details).
(ii) LDAM-loss: ι+ = π−1/4, ι− = (1 − π)−1/4 (special case of LA-loss [8]). (iii) LA loss:
ι+ = log ( 1−π

π
), ι− = log ( π

1−π ) (Fisher-consistent values [32]). We ran gradient descent and
averaged over 25 independent experiments. The balanced error was computed on a test
set of size 104 and reported values are shown in red/blue/black markers. We also plot the
1Such simple models have been used in e.g. [16, 10, 9, 11, 49] for analytic studies of double descent
[5, 38] in terms ofclassification error. Fig. 2(a) reveals a double descent for the balanced error.
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Figure 2: Insights on various cost-sensitive modifications of the CE-loss. (a) CDT has superior
balanced-error performance over LA in the separable regime. Also, its performance matches that of
CS-SVM, unlike LA matching SVM; Sec. 3.1 for more details. Solid lines follow theory of Sec. 4. (b)
Although critical in TPT, multiplicative weights (aka CDT) can harm minority classes in initial phase
of training by guiding the classifier in the wrong direction. Properly tuned additive weights (aka LA)
can mitigate this effect and speed up convergence. This explains why VS can be superior compared
to CDT (see Observation 1). Dashed lines show where TPT starts for each loss. (c) CDT and VS
converge to CS-SVM, unlike LA and wCE. We prove this in Theorem 1.

training errors, which are zero for γ ≳ 0.45. The shaded region highlights the transition
to the overparameterized / separable regime. In this regime, we continued training in the
TPT. The plots reveal the following clear message: The CDT-loss has better balanced-error
performance compared to the LA-loss when both trained in TPT. Moreover, they offer an
intuitive explanation by uncovering a connection to max-margin classifiers: In the TPT, (a)
LA-loss performs the same as SVM, and, (b) CDT-loss performs the same as CS-SVM.
We formalize those empirical observations in the theorem below, which holds for arbitrary
linearly separable datasets (beyond Gaussian mixtures of the experiment). Specifically, for
a sequence of norm-constrained minimizations of the VS-loss, we show that: As the norm
constraint R increases (thus, the problem approaches the original unconstrained loss), the
direction of the constrained minimizer wR converges to that of the CS-SVM solution ŵ∆−/∆+ .
Theorem 1 (VS-loss=CS-SVM). Fix a binary training set {xi, yi}ni=1 with at least one
example from each of the two classes. Assume feature map h(⋅) such that the data are
linearly separable, that is ∃w ∶ yiwTh(xi) ≥ 1,∀i ∈ [n]. Consider training a linear model
fw(x) = ⟨w, h(x)⟩ by minimizing the VS-loss Ln(w) ∶= ∑i∈[n] `VS(yi, fw(xi)) with `VS
defined in (1) for positive parameters ∆±, ω± ≥ 0 and arbitrary ι±. Define the norm-constrained
optimal classifier wR = arg min∥w∥2≤RLn(w). Let ŵδ be the CS-SVM solution of (4) with
δ = ∆−/∆+. Then, limR→∞ wR/∥wR∥2 = ŵδ/∥ŵδ∥2.

On the one hand, the theorem makes clear that ω± and ι± become ineffective in the TPT as
they all result in the same SVM solutions. On the other hand, the multiplicative parameters
∆± lead to the same classifier as that of CS-SVM, thus favoring solutions that move the
classifier towards the majority class provided that ∆− > ∆+⇔ δ > 1. The proof is given in
the SM together with extensions for multiclass datasets. In the SM, we also strengthen
Theorem 1 by characterizing the implicit bias of gradient-flow on VS-loss. Finally, we show
that group-sensitive VS-loss with ∆y,g = ∆g converges to the corresponding GS-SVM.
Remark 1. Thm 1 is reminiscent of Thm. 2.1 in [44] who showed for a regularized ERM with
CE-loss that when the regularization parameter vanishes, the normalized solution converges
to the SVM classifier. Our result connects nicely to [44] extending their theory to VS-loss
/ CS-SVM, as well as, to the group-case. In a similar way, our result on the implicit
bias of gradient-flow on the VS-loss connects to more recent works [47, 20] that pioneered
corresponding results for CE-loss. Although related, our results on the properties of the
VS-loss are not obtained as special cases of these existing works. We remark that, when
combined with a recent result by [19], our Theorem 1 also implies that gradient descent on
the VS-loss with sufficiently small step size converges in direction to the solution of the
CS-SVM. In other words, Theorem 1 characterizes the implicit bias of gradient descent on the
VS-loss. As a final note, in Fig. 2(b,c) we kept constant learning rate 0.1. Significantly faster
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convergence is observed with normalized GD schemes [36, 21]; see the SM for a detailed
numerical study. We also note that Thm. 1 gives a modern interpretation to the CS-SVM
via the lens of implicit bias theory.

3.2 VS-loss: Best of two worlds
We have shown that multiplicative weights ∆± are responsible for good balanced accuracy in
the TPT. Here, we show that, at the initial phase of training, the same multiplicative weights
can actually harm the minority classes. The following observation supports this claim.
Observation 1. Assume fw(x) = 0 at initialization. Then, the gradients of CDT-loss with
multiplicative logit factors ∆y are identical to the gradients of wCE-loss with weights ωy = ∆y.
Thus, we conclude the following where say y = +1 is minority. On the one hand, wCE, which
typically sets ω+ > ω− (e.g., ωy = 1/πy), helps minority examples by weighing down the loss
over majority. On the other hand, the CDT-loss requires the reverse direction ∆+ < ∆− as per
Theorem 1, thus initially it guides the classifier in the wrong direction to penalize minorities.

To see why the above is true note that for fw(x) = ⟨w, h(x)⟩ the gradient of VS-loss is
∇w`VS(y, fw(x)) = −ωy∆y σ( −∆yyfw(x) + ιy) ⋅ yh(x) where σ(t) = (1 + exp(−t))−1 is the
sigmoid function. It is then clear that at fw(x) = 0, the logit factor ∆y plays the same role
as the weight ωy. From Theorem 1, we know that pushing the margin towards majorities
(which favors balancing the conditional errors) requires ∆+ < ∆−. Thus, gradient of minorities
becomes smaller, initially pushing the optimization in the wrong direction. Now, we turn our
focus at the impact of ιy’s at the start of training. Noting that σ(⋅) is increasing function, we
see that setting ι+ > ι− increases the gradient norm for minorities. This leads us to a second
observation: By properly tuning the additive logit adjustments ιy we can counter the initial
negative effect of the multiplicative adjustment, thus speeding up training. The observations
above naturally motivated us to formulate the VS-loss in Eqn. (2) bringing together the best
of two worlds: the ∆y’s that play a critical role in the TPT and the ιy’s that compensate for
the harmful effect of the ∆y’s in the beginning of training.
Figure 2(b,c) illustrate the discussion above. In the binary linear classification setting of
Fig. 2(a), we investigate the effect of the additive adjustments on the training dynamics.
Specifically, we trained using gradient descent: (i) CE ; (ii) wCE with ωy = 1/πy; (iii) LA-loss
with ιy = log(1/πy); (iv) CDT-loss with ∆+ = δ−1

⋆ ,∆− = 1; (v) VS-loss with ∆+ = δ−1
⋆ ,∆− = 1,

ιy = log(1/πy) and ωy = 1; (vi) VS-loss with same ∆’s, ιy = 0 and ωy = 1/πy. Figures 2(b) and
(c) plot balanced test error Rbal and angle-gap to CS-SVM solution as a function of iteration
number for each algorithm. The vertical dashed lines mark the iteration after which training
error stays zero and we enter the TPT. Observe in Fig. 2(c) that CDT/VS-losses, both
converge to the CS-SVM solution as TPT progresses verifying Theorem 1. This also results
in lowest test error in the TPT in Fig. 2(b). However, compared to CDT-loss, the VS-loss
enters faster in the TPT and converges orders of magnitude faster to small values of Rbal.
Note in Fig. 2(c) that this behavior is correlated with the speed at which the two losses
converge to CS-SVM. Following the discussion above, we attribute this favorable behavior
during the initial phase of training to the inclusion of the ιy’s. This is also supported by Fig.
2(c) as we see that LA-loss (but also wCE) achieves significantly better values of Rbal at the
first stage of training compared to CDT-loss. In Sec. 5.1 we provide deep-net experiments
on an imbalanced CIFAR-10 dataset that further support these findings.

4 Generalization analysis and fairness tradeoffs
Our results in the previous section regarding VS-loss/CS-SVM hold for arbitrary linearly-
separable training datasets. Here, under additional distributional assumptions, we establish
a sharp asymptotic theory for VS-loss/CS-SVM and their group-sensitive counterparts.
Data model. We study binary Gaussian-mixture generative models (GMM) for the data
distribution D. For the label y ∈ {±1}, let π ∶= P{y = +1}. Group membership is decided
conditionally on the label such that ∀j ∈ [K] ∶ P{g = j∣y = ±1} = p±,j , with ∑j∈[K] p+,j =
∑j∈[K] p−,j = 1. Finally, the feature conditional given label y and group g is a multivariate
Gaussian of mean µy,g ∈ Rd and covariance Σ, i.e. x∣(y, g) ∼ N(µy,g,Σ). Specifically
for label-imbalances, we let K = 1 and x∣y ∼ N(µy, Id) (see SM for Σ ≠ Id). For group-
imbalances, we focus on two groups with p+,1 = p−,1 = p < 1 − p = p+,2 = p−,2, j = 1,2 and
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(a) (b)

Figure 3: Fairness tradeoffs between classification error and error-imbalance/balanced-error/DEO on
GMM data achieved by (a) CS-SVM for class prior π = 0.05 and (b) GS-SVM for group prior p = 0.05,
as a function of the margin-ratio hyperparameter δ ≥ 1 and for various values of overparameterization
γ. Plots in (a) are generated using our sharp predictions in Theorem 2. Plots in (b) use corresponding
result for GS-SVM given in the SM. See text for interpretations.

x ∣ (y, g) ∼ N(yµg, Id). In both cases, M denotes the matrix of means, i.e. M = [µ+ µ−] and
M = [µ1 µ2], respectively. Also, consider the eigen-decomposition: MTM = VS2VT , S ≻
0r×r,V ∈ R2×r, r ∈ {1,2}, with S an r × r diagonal positive-definite matrix and V an
orthonormal matrix obeying VTV = Ir. We study linear classifiers with h(x) = x.
Learning regime. We focus on the separable regime. For the models above, linear sep-
arability undergoes a sharp phase-transition as d,n → ∞ at a proportional rate γ = d

n
.

That is, there exists threshold γ⋆ ∶= γ⋆(V,S, π) ≤ 1/2 for the label-case, such that data are
linearly separable with probability approaching one provided that γ > γ⋆ (accordingly for
the group-case) [7, 34, 10, 22, 26]. See SM for formal statements and explicit definitions.

Analysis of CS/GS-SVM. We use PÐ→ to denote convergence in probability and Q(⋅) the
standard normal tail. We let (x)− ∶= min{x, 0}; 1[E] the indicator function of event E ; Br2 the
unit ball in Rr; and, e1 = [1, 0]T ,e2 = [0, 1]T standard basis vectors in R2. We further need the
following definitions. Let random variables as follows: G ∼ N(0,1), Y symmetric Bernoulli
with P{Y = +1} = π, EY = e11[Y = 1] − e21[Y = −1] and ∆Y = δ ⋅ 1[Y = +1] + 1[Y = −1],
for δ > 0. With these define key function ηδ ∶ R≥0 × Br2 × R → R as ηδ(q,ρ, b) ∶= E[(G +

ETY VSρ + bY −∆Y

q
)2
−
] − (1 − ∥ρ∥2

2)γ. Finally, define (qδ,ρδ, bδ) as the unique triplet (see SM
for proof) satisfying ηδ(qδ,ρδ, bδ) = 0 and (ρδ, bδ) ∶= arg min∥ρ∥2≤1,b∈R ηδ(qδ, ρ, b). Note that
these triplets can be easily computed numerically for given values of γ, δ, π, p and means’
Gramian MTM = VS2VT .

Theorem 2 (Balanced error of CS-SVM). Let GMM data with label imbalances and learning
regime as described above. Consider the CS-SVM classifier in (4) with h(x) = x, intercept
b (i.e. constraints ⟨x,w⟩ + b ≥ {δ or 1} in (4)) and fixed margin-ratio δ > 0. Define R+ ∶=
Q (eT1 VSρδ + bδ/qδ) and R− ∶= Q (−eT2 VSρδ − bδ/qδ) . Then, as n, d→∞ with d/n = γ > γ⋆,
it holds that R+

PÐ→R+ and R−

PÐ→R−. In particular, Rbal
PÐ→Rbal ∶= (R+ +R−)/2.

The theorem further shows (∥ŵδ∥2,
ŵT
δ µ+

∥ŵδ∥2
,

ŵT
δ µ−

∥ŵδ∥2
, b̂δ)

PÐ→ (qδ,eT1 VSρδ,eT2 VSρδ, bδ). Thus,
bδ is the asymptotic the intercept, q−1

δ is the asymptotic classifier’s margin 1/∥ŵδ∥2 to the
majority, and ρδ determines the asymptotic alignment of the classifier with the class mean.
The proof uses the convex Gaussian min-max theorem (CGMT) framework [48, 51]; see SM
for background, the proof, as well as, (a) simpler expressions when the means are antipodal
(±µ) and (b) extensions to general covariance model (Σ ≠ I). The experiment (solid lines) in
Figure 2(a) validates the theorem’s predictions. Also, in the SM, we characterize the DEO
of GS-SVM for GMM data. Although similar in nature, that characterization differs to Thm.
2 since each class is now itself a Gaussian mixture as described in the model above.
Fairness tradeoffs. The theory above allow us to study tradeoffs between misclassification
/ balanced error / DEO in Fig. 3. Fig. 3(a) focuses on label imbalances. We make the
following observations. (1) The optimal value δ⋆ minimizing Rbal also achieves perfect
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balancing between the conditional errors of the two classes, that is R+ = R− = Q( `−+`+2 ). We
prove this interesting property in the SM by deriving an explicit formula for δ⋆ that only
requires computing the triplet (q1,ρ1, b1) for δ = 1 corresponding to the standard SVM. Such
closed-form formula is rather unexpected given the seemingly involved nonlinear dependency
of Rbal on δ in Thm. 2. In the SM, we also use this formula to formulate a theory-inspired
heuristic for hyperparameter tuning, which shows good empirical performance on simple
datasets such as imbalanced MNIST. (2) The value of δ minimizing standard error R (shown
in magenta) is not equal to 1, hence CS-SVM also improves R (not only Rbal). In Fig. 3(b),
we investigate the effect of δ and the improvement of GS-SVM over SVM. The largest DEO
and smallest misclassification error are achieved by the SVM (δ = 1). But, with increasing
δ, misclassification error is traded-off for reduction in absolute value of DEO. Interestingly,
for some δ0 = δ0(γ) (with value increasing with γ) GS-SVM guarantees Equal Opportunity
(EO) Rdeo = 0 (without explicitly imposing such constraints as in [39, 12]).

5 Experiments
We show experimental results further justifying theoretical findings. (Code available in [1]).
5.1 Label-imbalanced data
Our first experiment (Table 1) shows that non-trivial combinations of additive/multiplicative
adjustments can improve balanced accuracy over individual ones. Our second experiment
(Fig. 4) validates the theory of Sec. 3 by examining how these adjustments affect training.
Datasets. Table 1 evaluates LA/CDT/VS-losses on imbalanced instances of CIFAR-10/100.
Following [8], we consider: (1) STEP imbalance, reducing the sample size of half of the classes
to a fixed number. (2) Long-tailed (LT ) imbalance, which exponentially decreases the number
of training images across different classes. We set an imbalance ratio Nmax/Nmin = 100,
where Nmax = maxyNy,Nmin = minyNy and Ny are sample sizes of class y. For consistency
with [17, 8, 32, 54] we keep a balanced test set and in addition to evaluating our models on it,
we treat it as our validation set and use it to tune our hyperparameters. More sophisticated
tuning strategies (perhaps using bi-level optimization) are deferred to future work. We use
data-augmentation exactly as in [17, 8, 32, 54]. See SM for more implementation details.
Model and Baselines. We compare the following: (1) CE-loss. (2)
Re-Sampling that includes each data point in the batch with probabil-
ity πy

−1. (3) wCE with weights ωy = πy
−1. (4) LDAM-loss [8], spe-

cial case of LA-loss where ιy = 1
2(Nmin/Ny)1/4 is subtracted from the logits.

Table 1: Top-1 accuracy results on balanced validation set (%).

Dataset CIFAR 10 CIFAR 100
Imbalance Profile LT-100 STEP-100 LT-100 STEP-100
CE 71.94 ± 0.38 62.69 ± 0.50 38.82 ± 0.69 39.49 ± 0.16
Re-Sampling 71.2 65.0 34.7 38.4
wCE 72.6 67.3 40.5 40.1
LDAM [8]. 73.35 66.58 39.60 39.58
LDAM-DRW [8] 77.03 76.92 42.04 45.36
LA (τ = τ∗) [32] 80.81 ± 0.30 78.23 ± 0.52 42.87 ± 0.32 45.69 ± 0.27
CDT (γ = γ∗) [54] 79.55 ± 0.35 73.26 ± 0.29 42.57 ± 0.32 44.12 ± 0.17
VS (τ = τ∗, γ = γ∗) 80.82 ± 0.37 79.10 ± 0.66 43.52 ± 0.46 46.53 ± 0.17

(5) LDAM-DRW [8],
combining LDAM with
deferred re-weighting.
(6) LA-loss [32], with
the Fisher-consistent
parametric choice
ιy = τ log(πy). (7)
CDT-loss [54], with
∆y = (Ny/Nmax)γ . (8)
VS-loss, with com-
bined hyperparameters
ιy = τ log(πy) and
∆y = (Ny/Nmax)γ , pa-
rameterized by τ, γ > 0 respectively 2. The works introducing (5)-(7) above, all trained for
a different number of epochs, with dissimilar regularization and learning rate schedules.
For consistency, we follow the training setting in [8]. Thus, for LDAM we adapt results
reported by [8], but for LA and CDT, we reproduce our own in that setting. Finally, for a
fair comparison we ran LA-loss for optimized τ = τ∗ (rather than τ = 1 in [32]).
VS-loss balanced accuracy. Table 1 shows Top-1 accuracy on balanced validation set
(averaged over 5 runs). We use a grid to pick the best τ / γ / (τ, γ)-pair for the LA /
2Here, the hyperparameter γ is used with some abuse of notation and is important to not be confused
with the parameterization ratio in the linear models in Sec. 3 and 4. We have opted to use the
same notation as in [54] to ease direct comparisons of experimental findings.

8



CDT / VS losses on the validation set. Since VS includes LA and CDT as special cases
(corresponding to γ = 0 and τ = 0 respectively), we expect that it is at least as good as
the latter over our hyper-parameter grid search. We find that the optimal (τ∗, γ∗)-pairs
correspond to non-trivial combinations of each individual parameter. Thus, VS-loss has
better balanced accucy as shown in the table. See SM for optimal hyperparameters choices.

(a) ∆y’s (parameterized by γ) can hurt training. (b) LA trains easier than CDT.

(c) ιy’s mitigate the effect of ∆y’s (c1,c2), but ∆′ys dominate TPT performance (c3,c4).

Figure 4: Experiments on CIFAR10 with Long-tailed LT-100 imbalance demonstrating the effects of
additive/multiplicative parameters at different phases of training. All results are averaged over 5 runs
and shaded regions indicate the 95% confidence intervals. See text for details and interpretations.

How hyperparameters affect training? We perform three experiments. (a) Figure 4(a)
shows that larger values of hyperparameter γ (corresponding to more dispersed ∆y’s between
classes) hurt training performance and delay entering to TPT. Complementary Figures
4(c1,c2) show that eventually, if we train longer, then, train accuracy approaches 100%.
These findings are in line with Observation 1 in Sec. 3.2. (b) Figure 4(b) shows training
accuracy of LA-loss for changing hyperparameter τ controlling additive adjustments. On the
one hand, increasing values of τ delay training accuracy to reach 100%. On the other hand,
when compared to the effect of ∆y’s in Fig. 4(a), we observe that the impact of additive
adjustments on training is significantly milder than that of multiplicative adjustments. Thus,
LA trains easier than CDT. (c) Figure 4(c) shows train and balanced accuracies for (i)
CDT-loss in blue: τ = 0, γ = 0.15, (ii) VS-loss in orange: τ = −0.5, γ = 0.15. In Fig. 4(c1,c3)
we trained for 200 epochs, while in Fig. 4(c2,c4) we trained for 300 epochs. For γ = 0.15,
CDT-loss does not reach good training accuracy within 200 epochs (∼ 93% at epoch 200 in
Fig. 4(c1)), but the addition of ιy’s with τ = −0.5 mitigates this effect achieving improved
∼ 97% accuracy at 200 epochs. This also translates to balanced test accuracy: VS-loss has
better accuracy at the end of training in Fig. 4(c3). Yet, CDT-loss has not yet entered
the interpolating regime in this case. So, we ask: What changes if we train longer so that
both CDT and VS loss get (closer) to interpolation. In Fig. 4(c2) train accuracy of both
algorithms increases when training continues to 300 epochs. Again, thanks to the ιy’s VS-loss
trains faster. However, note in Figure 4(c4) that the balanced accuracies of the two methods
are now very close to each other. Thus, in the interpolating regime what dominates the
performance are the multiplicative adjustments which are same for both losses. This is in
agreement with the finding of Theorem 1 and the synthetic experiment in Fig. 2(b,c).

5.2 Group-sensitive data
The message of our experiments on group-imbalanced datasets is three-fold. (1) We demon-
strate the practical relevance of logit-adjusted CE modifications to settings with imbalances
at the level of (sub)groups. (2) We show that such methods are competitive to alternative
state-of-the-art; specifically, distributionally robust optimization (DRO) algorithms. (3) We
propose combining logit-adjustments with DRO methods for even superior performance.
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Dataset. We study a setting with spurious correlations —strong associations between
label and background in image classification— which can be cast as a subgroup-sensitive
classification problem [45]. We consider the Waterbirds dataset [45]. The goal is to classify
images as either ‘waterbirds’ or ‘landbirds’, while their background —either ‘water’ or ‘land’—
can be spuriously correlated with the type of birds. Formally, each example has label
y ∈ Y = {±1} ≡ {waterbird, landbird} and belongs to a group g ∈ G = {±1} ≡ {water, land}.
Let then s = (y, g) ∈ {±1} × {±1} be the four sub-groups with (+1,−1), (−1,+1) being
minorities (specifically, p̂+1,+1 = 0.22, p̂+1,−1 = 0.012, p̂−1,+1 = 0.038 and p̂−1,−1 = 0.73.). Denote
Ns the number of training examples belonging to sub-group s and Nmax ∶= maxsNs. For
notational consistency with Sec. 2, we note that the imbalance here is in subgroups; thus,
Group-VS-loss in (3) consists of logit adjustments that depend on the subgroup s = (y, g).
Model and Baselines. As in [45], we train a ResNet50 starting with pretrained weights
on Imagenet. Let βs=(y,g) = (N(y,g)/Nmax). We propose training with the group-sensitive
VS-loss in (3) with ∆y,g = ∆s = βγs and ιs = −β−γs with γ = 0.3. We compare against CE
and the DRO method of [45]. We also implement a new training scheme that combines
Group-VS+DRO. We show additional results for Group-LA/CDT (not previously used
in group contexts). For fair comparison, we reran the baseline experiments with CE
and report our reproduced numbers. Since class +1 has no special meaning here, we use
Symm-DEO = (∣R(+1,+1) −R(+1,−1)∣ + ∣R(−1,+1) −R(−1,−1)∣)/2 and also report balanced and
worst sub-group accuracies. We did not fine-tune γ as the heuristic choice already shows the
benefit of Group-VS-loss. We expect further improvements tuning over validation set.
Results. Table 2 reports test values obtained at last epoch (300 in total).

Table 2: Symmetric DEO, balanced and worst-case
subgroup accuracies on Waterbirds dataset; averages
over 10 runs, along with standard deviations.

Loss Symm. DEO Bal. acc. Worst acc.
CE 25.3±0.66 84.9±0.29 68.1±2.2
Group LA 24.0±2.4 84.2±3.0 70.1±2.6
Group CDT 18.5±0.46 87.2±1.2 75.4±2.2
Group VS 18.1±0.65 88.1±0.38 76.7±2.3
CE + DRO 16.3±0.37 88.7±0.31 75.2±2.1
Group LA + DRO 16.3±0.82 88.7±0.40 74.3±2.5
Group CDT + DRO 11.7±0.15 90.3±0.2 79.9±1.5
Group VS + DRO 11.8±0.70 90.2±0.22 78.9±1.0

Our Group-VS loss significantly im-
proves performance (measured with all
three fairness metrics) over CE, provid-
ing a cure for the poor CE performance
under overparameterization reported in
[46]. Group-CDT/VS have comparable
performances, with or without DRO.
Also, both outperform Group-LA that
only uses additive adjustments. While
these conclusions hold for the specific
heuristic tuning of ιy’s, ∆y’s described
above, they are in alignment with our
Theorem 1. Interestingly, Group-VS
improves by a small margin the worst
accuracy over CE+DRO, despite the latter being specifically designed to minimize that
objective. Our proposed Group-VS + DRO outperforms the CE+DRO algorithm used in
[45] when training continues in TPT. Finally, Symm. DEO appears correlated with balanced
accuracy, in alignment with our discussion in Sec. 4 (see Fig. 3(a)).

6 Concluding remarks
We presented a theoretically-grounded study of recently introduced cost-sensitive CE mod-
ifications for imbalanced data. To optimize key fairness metrics, we formulated a new
such modification subsuming previous techniques as special cases and provided theoretical
justification, as well as, empirical evidence on its superior performance against existing
methods. We suspect the VS-loss and our better understanding on the individual roles of
different hyperparameters can benefit NLP and computer vision applications; we expect
future work to undertake this opportunity with additional experiments. When it comes
to group-sensitive learning, it is of interest to extend our theory to other fairness metrics
of interest. Ideally, our precise asymptotic theory could help contrast different fairness
definitions and assess their pros/cons. Our results are the first to theoretically justify the
benefits/pitfalls of specific logit adjustments used in [24, 8, 32, 54]. The current theory is
limited to settings with fixed features. While this assumption is prevailing in most related
theoretical works [20, 37, 16, 4, 35], it is still far from deep-net practice where (last-layer)
features are learnt jointly with the classifier. We expect recent theoretical developments on
that front [43, 33, 30] to be relevant in our setting when combined with our ideas.
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